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PREFACE

The seventeenth workshop on General Relativity and Gravitation in Japan was held at
Noyori Conference Hall, Nagoya University, located in the Higashiyama Campus from 3
December to 7 December 2007. The main purpose of this workshop was to review the latest
progress in the field of general relativity, gravitation and general relativistic astrophysics as
well as to promote interaction between researchers working in these fields.

The workshop was organized as an international conference and composed of 12 invited
talks 89 contributed short talks (50 oral presentations and 39 poster presentations). Among
them, 19 were presented by the researchers from overseas. All the talks were given in English.
The workshop was attended by about 170 researchers. We appreciate very much all the
participants for their contribution to the workshop.

We would like to thank Ms. K. Yokota and Ms. N. Takahashi, the secretaries at the Kyoto
University, for their devoted transaction for various official works. We are also grateful to
the graduate students of the gravitational theory group in the Department of Physics, Nagoya
University for their cooperation in management of the workshop. The workshop was fi-
nancially supported in part by Grants-in-Aid for Sscientific Research(B) No.17340075 and
Grant-in-Aid for Creative Scientific Research No.19GS0219.
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Can F(R)-gravity be a viable model: the universal unification
scenario for inflation, dark energy and dark matter

Shin’ichi Nojiri! and Sergei D. Odintsov?

! Department of Physics, Nagoya University, Nagoya 464-8602, Japan
2 Institucio Catalana de Recerca i Estudis Avancats (ICREA) and Institut de Ciencies de I’Espai

(IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra
(Barcelona), Spain

Abstract

We review on the viability of F(R)-gravity. We show that recent cosmic acceleration,
radiation/matter-dominated epoch and inflation could be realized in the framework
of F(R)-gravity in the unified way. For some classes of F'(R)-gravity, the correction
to the Newton law is extremely small and there is no so-called matter instability (the
very heavy positive mass for additional scalar degree of freedom is generated). The
reconstruction program in modified gravity is also reviewed and it is demonstrated
that any time-evolution of the universe expansion could be realized in F(R)-gravity.
Special attention is paid to modified gravity which unifies inflation with cosmic ac-
celeration and passes local tests. It turns out that such a theory may describe also
dark matter.

1 Introduction

Recent astrophysical observations indicate that the accelerating expansion of the universe has started
about five billion years ago and the present universe is flat. This implies the existence of dark energy,
that is, unknown component in the universe.

Usually the evolution of the universe can be described by the FRW equation:

3
Here the spatial part of the universe is assumed to be flat. We denote the Hubble rate by H, which is
defined in terms of the scale factor a by '

a

H=-. 2

: )
In (1), p expresses the energy density of the usual matter, dark matter, and dark energy. The dark energy
could be cosmological constant and/or a matter with ‘equation of state (EoS)’ parameter w, which is less
than —1/3 and is defined by

§< ~1/3. (3)

w =

Instead of including unknown exotic matter or energy, one may consider the modification of gravity,
which corresponds to the change of the L.h.s. in (1).

An example of such modified gravity pretending to describe dark energy could be the scalar-Einstein-
Gauss-Bonnet gravity [1], whose action is given by

1 1
5= [d'ay=g {MR — 50,00"6 — V(@) + f<¢>g} . 4)
Here G is Gauss-Bonnet invariant:

G =R?*— 4R, R" + Ry, pe R"" . (5)

1E-mail:nojiri@phys.nagoya-u.ac.jp
2E-mail:odintsov@ieec.uab.es, also at Lab. Fundam. Study, Tomsk State Pedagogical University, Tomsk



Another example is so-called F(R)-gravity (for a review, see [2]). In F'(R)-gravity models, the scalar
curvature R in the Einstein-Hilbert action

S = / d'z\/ R . (6)

is replaced by a proper function of the scalar curvature:

Srr) = / d'z/=gF(R) . (7)
Recently, an interesting realistic theory has been proposed in [3], where F(R) is given by

B m2e; (R/m?)"

o ca (R 1

(R+ fus(R)) , fus(R)= (8)

T 22

In this model, R is large even in the present universe, and fgg(R) could be expanded by the inverse
power series of R:

2 2 -n
m“c;  m-c1 [ R
R) ~ — + — +e, 9
fus(R) . 2 (mg) (9)
Then there appears an effective cosmological constant Acg as Aeg = m2cy /co, which generates the

accelerating expansion in the present universe
In the HS-model (8), there occurs a flat spacetime solution, where R = 0, since the following condition
is satisfied:
}?iglo fHS (R) =0. (10)

An interesting point in the HS model is that several cosmological conditions could be satisfied.

In the next section, we review on the general properties of F(R)-gravity. After some versions of
F(R)-gravity were proposed as a model of the dark energy, there appeared several criticisms/viability
criteria, which we review in Section 3. It is shown how the critique of modified gravity may be removed
for realistic models. In Section 4, we propose models [4] and [5], which unify the early-time inflation
and the recent cosmic acceleration and pass several cosmological constraints. Reconstruction program
for F(R)-gravity is reviewed in Section 5. The partial reconstruction scenario is proposed. Section six
is devoted to the description of dark matter in terms of viable modified gravity where composite scalar
particle from F'(R) gravity plays the role of dark particle. Some summary and outlook is given in the
last section.

2 General properties of F'(R)-gravity

In this section, the general properties of the F'(R)-gravity are reviewed. For general F'(R)-gravity, one can
define an effective equation of state (EoS) parameter. The FRW equations in Einstein gravity coupled
with perfect fluid are:

_ 3 _ 1 2 :
p=H?, p——?(?)H +2H) . (11)
For modified gravities, one may define an effective EoS parameter as follows:
2H
The equation of motion for modified gravity is given by
1 2
SO F(R) = Ry F'(R) = g0/ OF (R) + Y,V F'(R) = =" Ty (13)
By assuming spatially flat FRW universe,
ds® = —dt* + a(t)? (dxi)2 , (14)



the FRW-like equation follows:

0= —@ +3 (H2 + H) F'(R) - 18 (4H2H + HH) F"(R) + K2p(m) (15)

There may be several (often exact) solutions of (15). Without any matter, assuming that the Ricci
tensor could be covariantly constant, that is, R, o g.., Eq.(13) reduces to the algebraic equation:

0= F(R) — 2RF(R) . (16)

If Eq.(16) has a solution, the Schwarzschild (or Kerr) - (anti-)de Sitter space is an exact vacuum solution
(see[6] and refs. therein).
When F(R) behaves as F(R) o< R™ and there is no matter, there appears the following solution:
_ (m=1)(2m-1)

Hw#ﬂ, (17)

which gives the following effective EoS parameter:
6m? —Tm —1
3(m—1)2m—1)

Weff = — (18)

When F(R) o R™ again but if the matter with a constant EoS parameter w is included, one may get
the following solution:

2m
3(w+1)
H~ 22T 19
0 (19)
and the effective EoS parameter is given by
w41
Wef = —1 + —— . (20)
m

This shows that modified gravity may describe early/late-time universe acceleration.

3 Criticism of F(R)-gravity

Just after the F'(R)-models were proposed as models of the dark energy, there appeared several works
[7, 8] (and more recently in [9, 10]) criticizing such theories.

First of all, we comment on the claim in [7]. Note that one can rewrite F'(R)-gravity in the scalar-
tensor form. By introducing the auxiliary field A, we rewrite the action (7) of the F(R)-gravity in the
following form:

S— %/d%\/fg{F'(A) (R—A)+ F(A)} . (21)

By the variation over A, one obtains A = R. Substituting A = R into the action (21), one can reproduce
the action in (7). Furthermore, we rescale the metric in the following way (conformal transformation):

G — € G, o=—InF'(A). (22)

Hence, the Einstein frame action is obtained:

SE

1 3
= /d4x\/—g (R - 59””8,)0800 - V(O’)) ,

20 —o A A
Vio) = €9(e) =1 (0() = g~ prian )

Here g (e~7) is given by solving the equation ¢ = —1In (1 + f/(A)) =In F'(A) as A = g (e~ 7). Due to the
scale transformation (22), there appears a coupling of the scalar field o with usual matter. The mass of
o is given by

m 2 do2 2

, 1d&V(e) 1] 4 AF(A) 1
’ {Ff(A) <F'<A>>2+F~<A>}' 2



Unless m,, is very large, there appears the large correction to the Newton law. Naively, one expects the
order of the mass m, could be that of the Hubble rate, that is, m, ~ H ~ 10733 eV, which is very light
and the correction could be very large, which is the claim in [7].

We should note, however, that the mass m, depends on the detailed form of F(R) in general [11].
Moreover, the mass m, depends on the curvature. The curvature on the earth Rea¢n is much larger than
the average curvature Rgolar in the solar system and Rgopay is also much larger than the average curvature
in the unverse, whose order is given by the square of the Hubble rate H?, that is, Reartnh 3> Rsolar > H2.
Then if the mass becomes large when the curvature is large, the correction to the Newton law could be
small. Such a mechanism is called the Chameleon mechanism and proposed for the scalar-tensor theory
in [12]. In fact, the HS model [3] has this property and the correction to the Newton law can be very
small on the earth or in the solar system. In the HS model, the mass m, is given by (see also [13])

2 92 n+2
m2a "2 (B . (25)
2n(n+ 1)e; \'m?

Here the order of the mass-dimensional parameter m? could be m? ~ 1074 eV?2. Then in solar system,
where R ~ 107%1eV?, the mass is given by m2 ~ 107°8+3n eV? and in the air on the earth, where
R~ 107eV? m2 ~ 1073147 V2. The order of the radius of the earth is 107m ~ (1074 eV)fl.
Therefore the scalar field o could be heavy enough if n > 1 and the correction to the Newton law is not
observed being extremely small. On the other hand, in the air on the earth, if we choose n = 10, for
example, one gets the mass is extremely large:

My ~ 10% GeV ~ 10%° x Mpranck - (26)

Here Mpjanck is the Planck mass. Hence, the Newton law correction should be extremely small.

Let us discuss the matter instability proposed in [8], which may appear when the energy density or
the curvature is large compared with the average one in the universe, as is the case inside of the planet.
Multiplying ¢** with Eq.(13), one obtains

FO(R) F'(R)R 2F(R) K2

OR+ WY p - - T
B+ 5o VeV R 3r@(p) T 3EO(R) © GFO(R)

(27)

Here T is the trace of the matter energy-momentum tensor: 7' = T,” )" We also denote d"F(R)/dR"

by F(™(R). Let us now consider the perturbation from the solution of the Einstein gravity. We denote
the scalar curvature solution given by the matter density in the Einstein gravity by R, ~ (k2/2)p > 0
and separate the scalar curvature R into the sum of R; and the perturbed part R, as R = Ry + R,
(IRp| < |Rp|). Then Eq.(27) leads to the perturbed equation:

FO)(Ry) F'(Ry)R,,
= 0 —_yg R,V
0 Ry + (2)(Rb) VP Ry + 3F(2)(Rb)
2F(Ry) Ry FO)(Ry)

- - OR, + 2 %)
SFO(R,)  3FO(R,) 7T FO(R,)

V,RyV*R, + U(Ry)R, . (28)

Here U(Ry) is given by

FA(Ry)  FO)(Ry)? Ry
_ _ P i
URy) = (F(Q)(Rb) F(Q)(Rb)Q) VRV Ry + =
FOR)FO(Ry)R,  FU(Ry) | 2F(Ry)FP(R,)  FO(Ry)R, (29)
SFO(R,)2 SFO(R,) T 3FO(R)?  3FO(R,)?

It is convinient to consider the case that R, and R, are uniform, that is, they do not depend on the
spatial coordinate. Hence, the d’Alembertian can be replaced with the second derivative with respect to
the time coordinate: OR, — —9? R, and Eq.(29) has the following structure:

0=—0R, +U(Ry)R, + const. . (30)



Then if U(Rp) > 0, R, becomes exponentially large with time ¢: R, ~ eV Ut and the system becomes
unstable. In the 1/R-model [14], since the order of mass parameter m,, is

Pt~ 10%sec ~ (1073eV) (31)

one finds

Ry ~ (10%sec) < pm_3> (32)

Hence, the model is unstable and it would decay in 10726 sec (for planet size). On the other hand, in
1/R + R%model [11], we find

U(Rg) ~ % >0. (33)

Then the system could be unstable again but the decay time is ~ 1,000 sec, that is, macroscopic. In HS
model [3], U(Ry) is negative[13]:
n+ 2)m?3c3

U(Ro) ~ _(C1Tl(n 1) <0. (34)

Therefore, there is no matter instability[13].

Let us discuss the critical claim against modified gravity in [9, 10]. As shown in (16), as an exact
solution, there appears de Sitter-Schwarzschild spacetime in F(R)-gravity. The claim in [9, 10] is that the
solution does not match onto the stellar interior solution. Since it is difficult to construct explicit solution
describing the stellar configuration even in the Einstein gravity, we now proceed in the following way:
First, we separate F'(R) into the sum of the Einstein-Hilbert part and other part as F(R) = R+ f(R).
Then Eq.(13) has the following form:

1 1 K2
ig/u/R - R,uu - ig,uuA + ?T(m)w/
1
= =59 (f(R) + 8) + Ry ['(R) + 9 B (R) = V.V, f'(R) - (35)

Here —A is the value of f(R) in the present universe, that is, A is the effective cosmological constant:
A = —f(Ry). We now treat the r.h.s. in (35) as a perturbation. Then the last two derivative terms in
(35) could be dangerous since there could be jump in the value of the scalar curvature R on the surface of
stellar configuration. Of course, the density on the surface could change in a finite width A as in Figure
1 and the derivatives should be finite and the magnitude could be given by

O ~ (36)

A
One now assumes the order of the derivative could be the order of the Compton length of proton:
Oy ~my ~1GeV ~ 10%eV (37)
Here m,, is the mass of proton. It is also assumed
R~ R, ~107%eV? | (38)

that is, the order of the scalar curvature R is given by the order of it inside the earth.
In case of the 1/R model [14], one gets
mf,u‘1
R2

Of (R) ~ V.V, f'(R) ~ ~1072eV? > R, . (39)

Then the perturbative part could be much larger than unperturbative part in (35), say, R ~ R, ~
10747 eV?. Therefore, the perturbative expansion could be inconsistent.
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Figure 1: Typical behavior of R and p near the surface of the stellar configuration.

In case of the model [3], however, we find

2
OF (R) ~ ¥, /() ~ "2 (o

m?2

—n—1
—3— 2
— ) ~ 107371 eV | (40)
Then if n > 2, we find Of'(R), V,V,f'(R) < R. and therefore the perturbative expansion could
be consistent. This indicates that such modified gravity model may pass the above test. Thus, it is
demonstrated that some versions of modified gravity may easily pass above tests.

4 Unifying inflation and late-time acceleration

In this section, we consider an extension of the HS model [3] to unify the early-time inflation and late-time
acceleration, following proposals [4, 5].
In order to construct such models, we impose the following conditions:

e Condition that inflation occurs:

lim f(R) = —A; . (41)

R—o0

Here A; is an effective early-time cosmological constant.

Instead of (41) one may impose the following condition

Rlirn f(R) =aR™ . (42)
Here m and « are positive constants. Then as shown in (19), the scale factor a(t) evolves as
2m
octho, hy=———, 43
alt) o * = 3w+1) (43)
and wegr = —1 4 2/3hg. Here w is the matter EoS parameter, which could correspond to dust or

radiation. We assume m > 1 so that H/H? > 1.
e The condition that there is flat spacetime solution is given as
£(0) =0 (44)
e The condition that late-time acceleration occurs should be
f(Ro)=—=2Ry, f'(Ro)~0. (45)

Here R is the current curvature of the universe and we assume Ry > Ro. Due to the condition
(45), f(R) becomes almost constant in the present universe and plays the role of the effective small
cosmological constant: A; ~ —f(Rg) = 2Ryg.



Figure 2: The typical behavior of f(R) which satisfies the conditions (41), (44), and (45).

Figure 3: The typical behavior of f(R) which satisfies the conditions (42), (44), and (45).
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Figure 4: The potential in the inflationary epoch.

The typical behavior of f(R) which satisfies the conditions (41), (44), and (45) is given in Figure 2
and the behavior of f(R) satisfying (41), (42), and (45) is given in Figure 1.

Some examples may be of interest. An example which satisfies the conditions (41), (44), and (45) is
given by the following action[4]:

(R — Ro)™ " + R2n+!

f(R) = — ~ (46)
fO + fl {(R o R0)2n+1 + R(Q)n-’rl}
Here n is a positive integer. The conditions (42) and (45) require
R2n+1 ~ 1

f1

One can now investigate how the exit from the inflation could be realized in the model (46). It is easier
to consider this problem in the scalar-tensor form (Einstein frame) in (23). In the inflationary epoch,
when the curvature R = A is large, f(R) has the following form:

Jo

fo+ fLR3"H!

R)~——+ 55— - 48
f( ) fl + f12R2n+1 ( )
Hence, one gets
(271 + ].)fo
~ A (49)
and
1 2(n+1)fo fio e
V(o) ~ — — . ) : 50
o~ 5 -7 (o 0
Note that the scalar field o is dimensionless now. Let us check the condition for the slow roll, |[V'/V| <« 1.
Since .
V(o io T2
o) g (i ) o
V(o) (2n+1)fo

if we start with o ~ 1, one finds

V(o) Ro\ ™
~— 22 52
which is very small and the slow roll condition is satisfied.

Thus, the value of the scalar field o increases very slowly as in Figure 4 and the scalar curvature R
becomes smaller. When o becomes large enough and R becomes small enough, the inflation could stop.



Another possibility to achieve the exit from the inflation is to add small non-local term to gravitational
action.
We now consider another example, where f(R) satisfies the conditions (42), (44), and (45) [5]:

- aR2n —ﬁRn

f(R) = TR (53)

Here «, 3, and 7 are positive constants and n is a positive integer. When the curvature is large (R — 00),
f(R) behaves as

f(R) — ;R" . (54)

To achieve the exit from the inflation, more terms could be added in the action. Since the derivative of
f(R) is given by
nR* 1! (ayR?*" — 2aR"™ — 3
J'(R) = ( 5 ) , (55)
(1+~R")

we find the curvature Ry in the present universe, which satisfies the condition f/'(Ry) = 0, is given by

1/n
Ro{i(H\/Hij)} , (56)

Y- (1= Bv/a) 1+ By/a
Fm o (“ 2+ /1t Bi/a ) | o

Let us check if we can choose parameters to reproduce realistic cosmological evolution. As a working
hypothesis, we assume v/« > 1, then

Ry~ (B/an)'/*™ | f(Ro) = 2Ry ~ —B/ (58)

We also assume f(Ry) ~ (a/v)R} ~ Ry. Here Ry is the curvature in the inflationary epoch. As a result,
one obtains

and

a~2RG Ry, B~ ARZR;*"RY Y, v ~ 2Ry Ry "Ry (59)
Hence, we can confirm the assumption fv/a > 1ifn > 1 as
by 4RZR;PMRIV2 ~ 1022801 1 (60)
e

Thus, we presented modified gravity models which unify early-time inflation and late-time acceleration.
One should stress that the above models (46) and (53) satisfy the cosmological constraints/local tests in
the same way as in the HS model [3].

5 Reconstruction of F(R)-gravity

In this section, it is shown how we can construct F(R) model realizing any given cosmology (including
inflation, matter-dominated epoch, etc) using technique of ref.[15]. The general F'(R)-gravity action with
general matter is given as:

S / d*2/=g {F(R) + Lonatier} - (61)

The action (61) can be rewritten by using proper functions P(¢) and Q(¢) of a scalar field ¢:

S = /d4x\/jg {P(®)R + Q(¢) + Luatter | - (62)

Since the scalar field ¢ has no kinetic term, one may regard ¢ as an auxiliary scalar field. By the variation
over ¢, we obtain

0=P(¢)R+Q'(9), (63)



which could be solved with respect to ¢ as ¢ = ¢(R). By substituting ¢ = ¢(R) into the action (62), we
obtain the action of F(R)-gravity where

F(R) = P(¢(R)) R+ Q(¢(R)) . (64)
By the variation of the action (62) with respect to g, the equation of motion follows:
1 1

0= =59 {P(@)R+Q(9)} — Ru P($) + VuVuP(9) = guu V> P(¢) + 5T (65)

In FRW universe (14), Eq.(65) has the following form:

0 = —6mP(s) - Qo) -6 A
2
0 = (4H+6H2) P(g) +Q(¢)+2% +4H% +p (66)
By combining the two equations in (66) and deleting Q(¢), we obtain
d’P dP .
0=2 d(:;(t)) —oH ((Z(t)) +4HP(@) +p+p . (67)

Since one can redefine ¢ properly as ¢ = ¢(¢), we may choose ¢ to be a time coordinate: ¢ = ¢. Then
assuming p, p could be given by the corresponding sum of matter with a constant EoS parameters w;
and writing the scale factor a(t) as a = age?) (ag : constant), we obtain the second rank differential
equation:

d*P(¢)
dp?

dP(¢))

:2 _—
0 o

_ 29l(¢) + 4g/l(¢)P<¢) + Z (14 w;) pi0a83(1+wi)e—3(1+wz)9(¢) ) (68)

2

If one can solve Eq.(68), with respect to P(¢), one can also find the form of Q(¢) by using (66) as

dP Carer) a1
P(3) - 66/(9) 20D L 3™ g0 20031 w0(6) (69)

Q(6) = ~6(¢'(9)) i

Thus, it follows that any given cosmology can be realized by some specific F'(R)-gravity.
We now consider the cases that (68) can be solved exactly. A first example is given by

g
9 (@) =g0+ . (70)
¢
For simplicity, we neglect the contribution from matter. Then Eq.(68) gives
d2P a1 dP 291
0=—5— =)——-—=P. 71
(%) %% )

The solution of (71) is given in terms of the Kummer functions or confluent hypergeometric functions:

P=2"Fg(a,v;2), 2"77Fgla—~v+1,2—7;2) (72)
Here
_ _14+g1£4/g9f +10g1 41
z= go(l5 , Q= 4 ;
2 0 n
_ . Vg +10g1 +1 afa+l)--(a+n-1)z
=1+r=—" Fi(a,7;2) = —. 73
7 2 K(2,732) ;7(7+1)~-~(7+n—1) n! (73)
Eq.(70) gives the following Hubble rate:
H=gy+ 2. (74)

t

10



Then when t is small, H behaves as

ngt—l, (75)

which corresponds to the universe with matter whose EoS parameter is given by

2
w=-14—-—". 76
e (76)

On the other hand, when t is large, we find
H— g0 » (77)

that is, the universe is asymptotically deSitter space.
We now show how we could reconstruct a model unifying the early-time inflation with late-time
acceleration. In principle, one may consider ¢g(¢) satisfying the following conditions:

e The condition for the inflation (¢t = ¢ — 0):
g"(O) =0, (78)

which shows that H(0) = ¢’(0) is almost constant, which corresponds to the asymptotically deSitter
space.

e The condition fot the late-time acceleration (at t = ¢ ~ tp):
9" (to) =0, (79)
which corresponds to the asymptotically deSitter space again.

An example could be

(5 — &%) — 13"
(t2 — )" +c

Here go, g1, and c are positive constants and n is positive integer greater than 1. Note that ¢'(¢) is a

monotonically decreasing function of ¢ if 0 < ¢ < tg We also assume

9'(0) =go+n (80)

2n

t
0<go— glco < go - (81)

One should note that ¢’(0) = go corresponds to the large Hubble rate in the inflationary epoch and
g (to) = go — 914" 46 the small Hubble rate in the present universe. It is very difficult to solve (68) with
(80), so we expand ¢'(¢) for small ¢. For simplicity, we consider the case that n = 2 and no matter
presents. Then

2911%
ts+c

9(¢) = go — ¢*+ 0 (¢torgi) . (82)

Hence, one gets

291t5 [ {¢‘°’ 39> 6o 6 } 29" 4o
P = Py+ Pe%? — P - — e T DR,
(©) o thte "3 w0 @ 9 o @)’

—%em - Pg} +0 (1) - (83)
0

Using boundary conditions we can specify different modified gravities which unify the early-time inflation
with late-time acceleration. The important element of above reconstruction scheme is that it may be
applied partially. For instance, one can start from the known model which passes local tests and describes
the late-time acceleration. After that, the reconstruction method may be applied only at very small times
(inflationary universe) to modify such a theory partially. As a result, we get the modified gravity with
necessary early-time behavior and (or) vice-versa.

11



6 Dark Matter from F(R)-gravity

It is extremely interesting that dark matter could be explained in the framework of viable F(R)-gravity
which was discussed in previous sections.

The previous considerations of F'(R)-gravity suggest that it may play the role of gravitational alter-
native for dark energy. However, one can study F(R)-gravity as a model for dark matter. There have
been proposed several scenarios to explain dark matter in the framework of F'(R)-gravity. In most of such
approaches[16], the MOND-like scenario or power-law gravity have been considered. In such scenarios,
the field equations have been solved and the large-scale correction to the Newton law has been found and
used as a source of dark matter.

There was, however, an observation [17] that the distribution of the matter is different from that of
dark matter in a galaxy cluster. From this it has been believed that the dark matter can not be explained
by the modification of the Newton law but dark matter should represent some (particles) matter.

Tt is known that F(R)-gravity contains a particle mode called ‘scalaron’, which explicitly appears when
one rewrites F'(R)-gravity in the the scalar-tensor form (23). In the Einstein gravity, when we quantize
the fluctuations over the background metric, we obtain graviton, which is massless tensor particle. In
case of F'(R)-gravity, when one quantizes the fluctuations of the scalar field in the background metric, one
gets the massive scalar particles in the addition to the graviton. Since the scalar particles in F'(R)-gravity
are massive, the pressure could be negligible and the strength of the interaction between such the scalar
particles and usual matter should be that of the gravitational interaction order and therefore very small.
Hence, such scalar particle could be a natural candidate for dark matter.

In the model [3] or our models (46) and (53), the mass of the effective scalar field depends on the
curvature or energy density, in accord with so-called Chameleon mechanism. As our models (46) and
(53) describe the early-time inflation as well as late-time acceleration, the ‘scalaron’ particles, that is,
the scalar particles in F(R)-gravity, could be generated during the inflationary era. An interesting point
is that the mass could change after the inflation due to Chameleon mechanism. Especially in the model
(46), the mass decreases when the scalar curvature increases as shown in (49). Hence, in the inflationary
era, when the curvature is large, one may consider the model where m, is large. After the inflationary
epoch, the scalar particles, generated by the inflation, could lose their mass. Since the mass corresponds
to the energy, the difference between the mass in the inflationary epoch and that after the inflation could
be radiated as energy and could be converted into the matter and the radiation. This indicates that the
reheating could be naturally realized in such model. Let the mass of ¢ in the inflationary epoch be m;
and that after inflation be m 4. Then for N particles, the radiated energy Ex may be estimated as

E:(mj—mA)N, (84)

which could be converted into radiation, baryons and anti-baryons (and leptons). It is believed that the
number of early-time baryons and anti-baryons is 10!° times of the number of baryons in the present
universe. Since the density of the dark matter is almost five times of the density of the baryonic matter,
we find

mr > 10my4 . (85)

In the solar system, one gets A = R ~ 10761 eV?. Then if n > 10 ~ 12 and A; ~ 102°~38 the order
of the mass m, is given by
mi ~ 10239~295710n 6V2 , (86)

which is large enough so that o could be Cold (non-relativistic) Dark Matter. On the other hand, in
1/R-model, the corresponding mass is given by

2 pt 51 172
m ~— ~107""eV~. 87
YR~ R (87)
Here 1 is the parameter with dimension of mass and yu ~ 10733eV. The mass m; /R 18 very small
and cannot be a Cold Dark Matter. The corresponding composite particles can be a Hot (relativistic)
Dark Matter but Hot Dark Matter has been excluded due to difficulty to generate the universe structure
formation.
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In the inflationary era, the spacetime is approximated by the de Sitter space:
ds? = —dt? + 2ot Z (dl‘i)Q . (88)
i=1,2,3

Then the scalar particle o could be Fourier-transformed as
o= / d3ké(k, t)e”kx (89)

Hence, the number of the particles with k created during inflation is proportional to e””. Here

fm2 9

m2 9
HI 1 D
sufficient number of the particles could be created.

In the original f(R)-frame (7), the scalar field o appears as composite state. The equation of motion
in f(R)-gravity contains fourth derivatives, which means the existence of the extra particle mode or
composite state. In fact, the trace part of the equation of motion (13) has the following Klein-Gordon
equation-like form:

Then if

3V2f'(R) = R+ 2f(R) — Rf'(R) — x°T. (92)

The above trace equation can be interpreted as an equation of motion for the non trivial ‘scalaron’ f/(R).
This means that the curvature itself propagates. In fact the scalar field o in the scalar-tensor form of the
theory can be given by ‘scalaron’, which is the combination of the scalar curvature in the original frame:

o=—In(1+f(R)) . (93)

Note that the ‘scalaron’ is different mode from graviton, which is massless and tensor.
Eq.(49) shows that the mass, which depends on the value of the scalar field o, is given by

2n+1
2 f 2n+1 f12 2n+2 73"13

~ 30 == 94

TR <2n+2> ((2”+1)f0 7 )

If the curvature becomes small, ¢ becomes large and m?2 decreases. Then the scalar particles lose their
masses after the inflation. The difference of the mass in the inflationary epoch and that after the inflation
could be radiated as energy and can be converted into the matter and the radiation.

By substituting the expression of o (49) into (94), one obtains

(=)

5 f12A2n+3
"o N @+ )n+1)fo (9)

Note that A corresponds to the scalar curvature. Let denote the value of A in the inflationary epoch by
Ay and that after the inflation by A4. Then the condition (85) shows

n+3/2
mr A] 10
—~ | — 1 .
- ( ) > 10 (96)

For the model with n = 2, the condition (85) or (96) could be satisfied if A;/A4 > 103, which seems to
indicate that the reheating could be easily realized in such a model.
Now we check if the condition (91) could be satisfied. Note HZ ~ A;. Eq.(95) also indicates that in
the inflationary era, where A = R ~ A;, the magnitude of the mass is given by
, A

m ~
o on
RO

(97)
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which is large enough and the condition (91) is satisfied. Here Eq.(47) is used. Thus, sufficient number
of o-particles could be created.

Let us consider the rotational curve of galaxy. As we will see the shift of the rotational curve does not
occur due to correction to the Newton law between visible matter (baryon or intersteller gas) but due to
invisible (dark) matter, and the Newton law itself is not modified.

Let the temperature of the dark matter be T = 1/kf where k is the Boltzmann constant. First, we
assume the mass m, of the scalar particle ¢ is constant. As the total mass of dark matter is much larger
than that of baryonic matter and radiation, we neglect the contributions from the baryonic matter and
radiation just for simplicity. We now work in Newtonian approximation and the system is spherically
symmetric. Let the gravitational potential, which can be formed by the sum of the dark matter particles,
be V(r). Then the gravitational force is given by F(r) = —mdV (r)/dr. If we denote the number density
of the dark matter particles by n(r), in the Newtonian approximation, by putting x? = 87G, one gets

2 T
F(r) = —GZZ” / 4rs*n(s)ds (98)
0
and therefore V(r) is given by
T dS S 9
V(r) = 4nGm, — u’n(u)du . (99)
57 Jo

If one assumes the number density n(r) of dark matter particles could obey the Boltzmann distribution,
we find
n(r) = Nge PmeV(r) (100)

Here N is a constant, which can be determined by the normalization. Using (99) and (100) and deleting
n(r), the differential equation follows:

(7‘2‘//(7"))/ = 47Gmy Nor2e PmaV () (101)

An exact solution of the above equation is given by

2 T 9 1
V(T) = ﬂmo In <TO) , Ty m . (102)

As the general solution for the non-linear differential equation (101) is not known, we assume V' (r) could
be given by (102). Then the rotational speed v of the stars in the galaxy could be determined by the
balance of the gravitational force and the centrifugal force:

v? 2m
M = —F(r)=mV'(r) = 5m:r ’ (103)
Here m, is the mass of a star. Hence,
2
2
= 104
v, (104)

that is, v becomes a constant, which could be consistent with the observation.

For the dark matter particles from f(R)-gravity, the mass m, depends on the scalar curvature or
the value of the background o as in (94). The scalar curvature is determined by the energy density p
(if pressure could be neglected as in usual baryonic matter and cold dark matter) and if we neglect the
contribution from the baryonic matter, the energy density p is given by

p(r) =men(r) . (105)
Therefore it follows
Mg = Mg (p(’l")) = Mg (man(r)) ) (106)
which could be solved with respect to m,:
me = mg (n(r)) . (107)
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Furthermore by combining (100) and (107), one may solve m, with respect to V(r) and Ny as

Mg =me (No, V(1)) . (108)
Then (98) could be modified as

Fr) = —w /O " drs?my (No, V() n(s)ds (109)
which gives, instead of (101),

(r2V'(r)) = 47Gm, (No, V (r)) Nor2e™ #meNoV()V(r) (110)

Eq.(110) is rather complicated but at least numerically solvable.

For the model (46), if the curvature is large enough even around the galaxy, the mass m, is given
by (95). The scalar curvature A = R is proportional to the energy density (since the pressure could be
neglected), A « p, and the energy density p is given by (105). Then

1 (2n+1)2n+1)fo) 75 2ag
i) ~ g { ARG DA ) (1)
Using (100), one also gets
___ I+l mo(r) ey 2t D@0t DS | T
Vi) = (2n + 3)Bm, (1) n me 0T (<o) { fi } (112)

Here m( has mass dimension. By substituting (112) into (110), it follows
" i 2
M l 7»2 1-— lIl Mo (T) mU (T) _ ,,,2 3 -9 ln Mo (T) (ma (T))
2n+3) B mo ) me(r)? mo me(r)3

+2r <1 ~In mﬂ(’”)) TZlf(iT))Q} _1 {2(n + l)J(;n + 1) fo

mo
It is very difficult to find the exact solution of (113), although one may solve (113) numerically. Then we
now consider the region where m, < mg but ln (m,/my) is slow varying function of r, compared with
the power of 7. In the region, we may treat In (m,/mg) as a large negative constant:

2

}+ 2 (mo(r)) 5 . (113)

In (my/mgo) ~ =C' . (114)
Then the following solution is obtained:
_2(2n+3)
r 2n+5
me(r) = mg (To) ,
42n+1)(2n+9)C 2nts (2(n41)(2n + 1) fo —
2 = 2N o+l ) 115
" Gnrop ) f? (115)

Note that ¢ can be real for any positive n. Eq.(112) shows that

2(2n+3)

22n+1) 1 ro\ e T
%4 = | — In— . 116
(r) 2n+5 [Bmg (ro) . 0 (116)

Note that the potential (116) is obtained by assuming the Newton law by summing up the Newton po-
tentials coming from the f(R)-dark matter particles (‘scalaron’) distributed around the galaxy. Eq.(115)
indicates that the condition m, < mg requires r > ro. Then by using the equation for the balance of
the gravitational force and the centrifugal force, as in (103), we find

2n+3)

v (r> e (117)

To
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which is monotonically increasing function of 7 and the behavior is different from that in (104). If there is
only usual baryonic matter without any dark matter, the velocity is the decreasing function of r, if there
is also usual dark matter, as shown in (104), the velocity is almost constant, if dark matter originates from
f(R)-gravity, as we consider here, there is a region where the velocity could be an increasing function
of r. Of course, one should be more careful as these are qualitative considerations. The condition
me <€ Mg requires r 3> ro but in the region faraway from galaxy, the scalar curvature becomes small
and the approximation (95) could be broken. Anyway if there appears a region where velocity is the
increasing function of r, this might be a signal of f(R)-gravity origin for dark matter. For more precise
quantitative arguments, it is necessary to include the contribution from usual baryonic matter as well as
to do numerical calculation. In any case, it seems very promising that composite particles from viable
modified gravity which unifies inflation with late-time acceleration may play the role of dark matter.

7 Discussion

In summary, we reviewed F'(R)-gravity and demonstrated that some versions of such theory are viable
gravitational candidates for unification of early-time inflation and late-time cosmic acceleration. It is
explicitly shown that the known critical arguments against such theory do not work for those models. In
other words, the modified gravity under consideration may pass the local tests (Newton law is respected,
the very heavy positive mass for additional scalar degree of freedom is generated). The reconstruction
of modified F(R) gravity is considered. It is demonstrated that such theory may be reconstructed for
any given cosmology. Moreover, the partial reconstruction (at early universe) may be done for modified
gravity which complies with local tests and dark energy bounds. This leads to some freedom in the choice
of modified gravity for the unification of given inflationary era compatible with astrophysical bounds and
dark energy epoch. As a final very promising result it is shown that modified gravity under consideration
may qualitatively well describe dark matter, using the composite scalar particle from F(R) theory and
Chameleon scenario.

Thus, modified gravity remains viable cosmological theory which is realistic alternative to standard
Einstein gravity. Moreover, it suggests the universal gravitational unification of inflation, cosmic accel-
eration and dark matter without the need to introduce any exotic matter. Moreover, it remains enough
freedom in the formulation of such theory which is very positive fact, having in mind, coming soon precise
observational data.
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Ghost condensation and gravity in Higgs phase
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Abstract
In this presentation I review basic properties of the simplest Higgs phase of grav-
ity called ghost condensation, and discuss possible applications and observational
bounds.

1 Introduction

Acceleration of the cosmic expansion today is one of the greatest mysteries in both cosmology and
fundamental physics. Assuming that Einstein’s general relativity is the genuine description of gravity
all the way up to cosmological distance and time scales, the so called concordance cosmological model
requires that about 70% of our universe should be some sort of energy with negative pressure, called dark
energy. However, since the nature of gravity at cosmological scales has never been probed directly, we
do not know whether the general relativity is really correct at such infrared (IR) scales. Therefore, it
seems natural to consider modification of general relativity in IR as an alternative to dark energy. Dark
energy, IR modification of gravity and their combination should be tested and distinguished by future
observations and experiments.

From the theoretical point of view, however, IR modification of general relativity is not an easy
subject. Most of the previous proposals are one way or another scalar-tensor theories of gravity, and are
strongly constrained by e.g. solar system experiments [1] and the theoretical requirement that ghosts be
absent [2, 3, 4]. The massive gravity theory [5] and the Dvali-Gabadadze-Porrati (DGP) brane model [6]
are much more interesting IR modification of gravity, but they are known to have macroscopic UV
scales [7, 8]. A UV scale of a theory is the scale at which the theory breaks down and loses its predictability.
For example, the UV scale of the 4D general relativity is the Planck scale, at which quantum gravity
effects are believed to become important. Since the Planck scale is microscopic, the general relativity
maintains its predictability at essentially all scales we can directly probe. On the other hand, in the
massive gravity theory and the DGP brane model, the UV scale is macroscopic. For example, if the scale
of IR modification is the Hubble scale today or longer then the UV scale would be ~ 1,000km or longer.
At the UV scale an extra degree of freedom, which is coupled to matter, becomes strongly coupled and its
quantum effects cannot be ignored. This itself does not immediately exclude those theories, but means
that we need UV completion in order to predict what we think we know about gravity within ~ 1,000km.
Since this issue is originated from the IR modification and the extra degree of freedom cannot be decoupled
from matter, it is not clear whether the physics in IR is insensitive to unknown properties of the UV
completion. In particular, there is no guarantee that properties of the IR modification of gravity will
persist even qualitatively when the theories are UV completed in a way that they give correct predictions
about gravity at scales between ~ 1,000km and ~ 0.1mm.

Ghost condensation is an analogue of the Higgs mechanism in general relativity and modifies gravity
in IR in a way that avoids the macroscopic UV scale [9] 2. In ghost condensation the theory is ex-
panded around a background without ghost and the low energy effective theory has a universal structure
determined solely by the symmetry breaking pattern. While the Higgs mechanism in a gauge theory
spontaneously breaks gauge symmetry, the ghost condensation spontaneously breaks a part of Lorentz
symmetry since this is the symmetry relevant to gravity. In a gauge theory the Higgs mechanism makes
it possible to give a mass term to the gauge boson and to modify the force law in a theoretically con-
trollable way. Similarly, the ghost condensation gives a “mass term” to the scalar sector of gravity and

1E-mail: mukoyama@pbhys.s.u-tokyo.ac.jp
2See e.g.[10, 11, 12, 13, 14, 15, 16] for other related proposals.
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modifies gravitational force in the linearized level even in Minkowski and de Sitter spacetimes. The
Higgs phase of gravity provided by the ghost condensation is simplest in the sense that the number of
Nambu-Goldstone bosons associated with spontaneous Lorentz breaking is just one and that only the
scalar sector is essentially modified.

2 Ghost Condensation

The ghost condensation can be pedagogically explained by comparison with the usual Higgs mechanism
as in the table shown below. First, the order parameter for ghost condensation is the vacuum expectation
value (vev) of the derivative d,,¢ of a scalar field ¢, while the order parameter for Higgs mechanism is the
vev of a scalar field @ itself. Second, both have instabilities in their symmetric phases: a tachyonic insta-
bility around ¢ = 0 for Higgs mechanism and a ghost instability around 9,,¢ = 0 for ghost condensation.
In both cases, because of the instabilities, the system should deviate from the symmetric phase and the
order parameter should obtain a non-vanishing vev. Third, there are stable point where small fluctuations
do not contain tachyons nor ghosts. For Higgs mechanism, such a point is characterized by the vev of the
order parameter satisfying V/ = 0 and V" > 0. On the other hand, for ghost condensation a stable point
is characterized by P’ = 0 and P” > 0. Fourth, while the usual Higgs mechanism breaks usual gauge
symmetry and changes gauge force law, the ghost condensation spontaneously breaks a part of Lorentz
symmetry (the time translation symmetry) and changes linearized gravity force law even in Minkowski
background. Finally, generated corrections to the standard Gauss-law potential is Yukawa-type for Higgs
mechanism but oscillating for ghost condensation.

Higgs mechanism

Ghost condensate

Order
Parameter

(@) 1rgo)
N
N/

<8 ﬂ¢> P((09))
oS o

Instability

Tachyon _ ;2?2

Ghost _ ¢52

Condensate

V'=0, V>0

P'=0, P">0

Spontaneous
breaking

Gauge symmetry

Lorentz symmetry

Modifying

Gauge force

Gravity

New
potential

Yukawa-type

Oscillating

At this point one might wonder if the system really reach a configuration where P’ = 0 and P” > 0.
Actually, it is easy to show that this is the case. For simplicity let us consider a Lagrangian L, =
P(—(9¢)?) in the expanding FRW background with P of the form shown in the upper right part of the
table. We assume the shift symmetry, the symmetry under the constant shift ¢ — @ -+ ¢ of the scalar
field. This symmetry prevents potential terms of ¢ from being generated. The equation of motion for ¢
is simply 0;[a®P’ qﬂ = 0, where a is the scale factor of the universe. This means that a®P’ ¢ is constant
and that

(1)

Ppoxa™—0 (a— o)
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as the universe expands. We have two choices: P’ = 0 or qb = 0, namely one of the two bottoms of the
function P or the top of the hill between them. Obviously, we cannot take the latter choice since it is a
ghosty background and anyway unstable. Thus, we are automatically driven to P’ = 0 by the expansion
of the universe. In this sense the background with P’ = 0 is an attractor.

Having shown that the ghost condensate is an attractor, let us construct a low energy effective
field theory around this background. For this purpose let us consider a small fluctuation around the
background with P’ = 0. For ¢ = M?t + 7, the quadratic action for 7 coming from the Lagrangian P is
Jd*z[(P'(M*)+M*P"(M*))7? — P'(M*)(V)?]. By setting P'(M*) = 0 we obtain the time kinetic term
M*P"(M*)7? with the correct sign. Unless the function P is fine-tuned, P” is non-zero at P’ = 0. This
means that the coefficient of the time kinetic term is non-vanishing and, thus, we do not have the strong
coupling issue which the massive gravity and the DGP brane model are facing with. On the other hand,
the coefficient of (V7)? vanishes at P’ = 0 and the simple Lagrangian P does not give us a spatial kinetic
term for m. However, this does not mean that there is no spatial kinetic term in the low energy EFT for
7. This just says that the leading spatial kinetic term is not contained in P and that we should look for
the leading term in different parts. Indeed, other terms like P((8¢)2)Q(0¢) do contain spatial kinetic
terms for 7 but the spatial-derivative expansion starts with the fourth derivative: (V2m)?+---. If there is
a non-vanishing second-order spatial kinetic term (V7)? then it can be included in P by redefinition and
the redefined P’ goes to zero by the expansion of the universe as shown above. Namely, the expansion
of the universe ensures that the spatial-derivative expansion starts from (V27)% + --.. Combining this
spatial kinetic term with the previously obtained time kinetic term and properly normalizing 7, we obtain
the low energy effective action of the form

1
M4/d4x [27%2 - %(Vzwf +---, (2)

where « is a dimensionless parameter of order unity . One might worry that other (nonlinear) terms in
effective theory such as 7(V7)? might mess up the effective action. In fact, it turns out that all such terms
are irrelevant at low energy [9]. An important fact to show this is that the scaling dimension of 7 is not
the same as its mass dimension 1 but is 1/4, reflecting the situation that the Lorentz symmetry is broken
spontaneously. Moreover, it is also straightforward to show that all spurious modes associates with higher
time derivative terms such as (qb)2 have frequency above the cutoff M and, thus, should be ignored. In
this sense, we are assuming the existence of a UV completion but not assuming any properties of it.
Finally, it must be noted that the effective action of the form (2) is stable against radiative corrections.
Indeed, the only would-be more relevant term in the effective theory is the usual spatial kinetic term
(V7)?2, but its coefficient P’ is driven to an extremely small value by the expansion of the universe even
if it is radiatively generated.

The effective action (2) would imply the low energy dispersion relation for 7 is w? ~ ak*/M?2. However,
since the background spontaneously breaks Lorentz invariance, 7 couples to gravity in the linearized level
even in Minkowski or de Sitter background. Hence, mixing with gravity introduces an order M? /Mgl
correction to the dispersion relation. As a result the dispersion relation in the presence of gravity is
w? =~ ak?/M? — aM?k? /2M;. This dispersion relation leads to TR modification of gravity due to Jean’s
instability. Note that there is no ghost around the stable background P’ = 0 and the Jeans’s instability
is nothing to do with a ghost.

In the above we have expanded a general Lagrangian consistent with the shift symmetry around the
stable background in order to construct the low energy EFT. This is the most straightforward approach.
An alternative, more powerful way is to use the symmetry breaking pattern. In this approach, we actually
do not need to specify a concrete way of the spontaneous symmetry breaking. In this sense, the ghost
around ¢ = 0 has nothing to do with the construction of the EFT around P’ = 0. Indeed, it is suffice
to assume the symmetry breaking pattern, namely from the full 4-dimensional Lorentz symmetry to the
3-dimensional spatial diffeomorphism [9].

Here, let us briefly review this approach based on the symmetry breaking pattern. This leads to the
exactly same conclusion as above, but is more universal and can be applied to any situations as far as
the symmetry breaking pattern is the same. We assume that (i) the 4-dimensional Lorentz symmetry

3With this normalization, 7 has the dimension of length.
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is spontaneously broken down to a 3-dimensional spatial diffeomorphism and that (ii) the background
spacetime metric is maximally symmetric, either Minkowski or de Sitter. With the assumption (i), we
are left with the 3-dimensional spatial diffeomorphism & — #'(¢,Z). Our strategy here is to write down
the most general action invariant under this residual symmetry. After that, the action for the Nambu-
Goldstone (NG) boson 7 is obtained by undoing the unitary gauge.

For simplicity let us consider the Minkowski background plus perturbation: g,., = 1u, + hu,. The
infinitesimal gauge transformation is 6hy, = 0,&, + 0,€,, where {# is a 4-vector representing the gauge
freedom. Under the residual gauge transformation ¢! (i = 1,2,3), the metric perturbation transforms as

0hgo =0, bho; = 00&,  Ohyj = 0:&5 + 0;&;. (3)

Now let us seek terms invariant under the residual gauge transformation. Those terms must begin at
quadratic order since we assumed that the flat spacetime is a solution to the equation of motion. The
leading term (without derivatives acted on the metric perturbations) is [ dz*M?*h2;. This is indeed
invariant under the residual gauge transformation (3). From this term, we can obtain the corresponding
term in the effective action for the NG boson 7. Since hgg — hgo + 20p&y, by promoting the broken
symmetry £ to a physical degree of freedom , we obtain the term [ dz*M*(hoo — 27)2. This includes a
time kinetic term for 7 as well as a mixing term. At this point we wonder if we can get the usual space
kinetic term (V)2 or not. The only possibility would be from (hg;)? since ho; — hg; — 8;m under the
broken symmetry transformation €0 = 7. However, this term is not invariant under the residual spatial
diffeomorphism &7 and, thus, cannot enter the effective action. Actually, there are combinations invariant
under the spatial diffeomorphism. They are made of the geometrical quantity called extrinsic curvature.
The extrinsic curvature K;; in the linear order is K;; = 0;ho; + 0;hoj — Oohsj and transforms as a tensor
under the spatial diffeomorphism. Thus, f dzA M2 (K})2 and f dz*M2KW K;; are invariant under spatial
diffeomorphism and can be used in the action. Since K;; — K;; — 0;0;m under the broken symmetry
€% = 7, we obtain [ dz*(M? + M?)(V27)2. Combining these terms with the above time kinetic term and
properly normalizing the definition of 7 and M, we obtain

1/, 1.\ a -
Leff:M4{2 <7r—2h00) _W(v277)2+.”}’ (4)

where « is a dimensionless constant of order unity. By setting hoo = 0, this completely agrees with (2),
which was obtained by expanding the scalar field action explicitly around the stable background. Here,
in deriving the effective action all we needed was the symmetry breaking pattern. Thus, the low energy
EFT of the ghost condensation is universal and should hold as far as the symmetry breaking pattern is
the same.

In ghost condensation the linearized gravitational potential is modified at the length scale r. in the
time scale t., where r. and ¢, are related to the scale of spontaneous Lorentz breaking M as

Mp, Mlgl
re™ S te™ o5 (5)

Note that r. and ¢. are much longer than 1/M. The way gravity is modified is peculiar. At the time
when a gravitational source is turned on, the potential is exactly the same as that in general relativity.
After that, however, the standard form of the potential is modulated with oscillation in space and with
exponential growth in time. This is an analogue of Jeans instability, but unlike the usual Jeans instability,
it persists in the linearized level even in Minkowski background. The length scale r. and the time scale ¢,
above are for the oscillation and the exponential growth, respectively. At the time ~ t., the modification
part of the linear potential will have an appreciable peak only at the distance ~ r.. At larger distances,
it will take more time for excitations of the Nambu-Goldstone boson to propagate from the source and
to modify the gravitational potential. At shorter distances, the modification is smaller than at the peak
position because of the spatial oscillation with the boundary condition at the origin. The behavior
explained here applies to Minkowski background, but in ref. [9] the modification of gravity in de Sitter
spacetime was also analyzed. It was shown that the growing mode of the linear gravitational potential
disappears when the Hubble expansion rate exceeds a critical value H, ~ 1/t.. Thus, the onset of the IR
modification starts at the time when the Hubble expansion rate becomes as low as H..
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If we take the M/Mp; — 0 limit then the Higgs sector is completely decoupled from the gravity
and the matter sectors and, thus, the general relativity is safely recovered. Therefore, cosmological and
astrophysical considerations in general do not set a lower bound on the scale M of spontaneous Lorentz
breaking, but provide upper bounds on M. If we trusted the linear approximation for all gravitational
sources for all times then the requirement H, < Hy would give the bound M < (M3, Hy)'/3 ~ 10MeV,
where Hj is the Hubble parameter today [9]. However, for virtually all interesting gravitational sources
the nonlinear dynamics dominates in time scales shorter than the age of the universe. As a result the
nonlinear dynamics cuts off the Jeans instability of the linear theory, and allows M < 100GeV [17].

Note that the ghost condensate provides the second most symmetric class of backgrounds for the
system of field theory plus gravity. The most symmetric class is of course maximally symmetric solutions:
Minkowski, de Sitter and anti-de Sitter. The ghost condensate minimally breaks the maximal symmetry
and introduces only one Nambu-Goldstone boson.

Because of the universality of the low energy EFT, it is worthwhile investigating properties of the
Higgs phase of gravity, whether or not it leads to interesting physical phenomena. Actually, it turns
out that the physics in the Higgs phase of gravity is extremely rich and intriguing. They include IR
modification of gravity [9], a new spin-dependent force [18], a qualitatively different picture of inflationary
de Sitter phase [19, 20], effects of moving sources [21, 22], nonlinear dynamics [23, 17], properties of black
holes [24, 25, 26], implications to galaxy rotation curves [27, 28, 29], dark energy models [30, 31, 32, 33, 34],
other classical dynamics [35, 36], attempts towards UV completion [37, 38, 39], and so on.

3 Possible Applications

Dark energy: In the usual Higgs mechanism, the cosmological constant (cc) would be negative in the
broken phase if it is zero in the symmetric phase. Therefore, it seems difficult to imagine how the Higgs
mechanism provides a source of dark energy. On the other hand, the situation is opposite with the ghost
condensation: the cc would be positive in the broken phase if it is zero in the symmetric phase. Hence,
while this by itself does not solve the cc problem, this can be a source of dark energy.

Dark matter: If we consider a small, positive deviation of P’ from zero then the homogeneous
part of the energy density is proportional to a=3 and behaves like dark matter. Inhomogeneous linear
perturbations around the homogeneous deviation also behaves like dark matter. However, at this moment
it is not clear whether we can replace dark matter with ghost condensate. We need to see if it clumps
properly. Ref. [17] can be thought to be a step towards this direction.

Inflation: We can also consider inflation within the regime of the validity of the EFT with ghost
condensation. In the very early universe where H is higher than the cutoff M, we do not have a good
EFT describing the sector of ghost condensation. However, the contribution of this sector to the total
energy density pio; is naturally expected to be negligible: pgnost ~ M ‘<« MZ?H 2 ~ piot. As the Hubble
expansion rate decreases, the sector of ghost condensation enters the regime of validity of the EFT and
the Hubble friction drives P’ to zero. If we take into account quantum fluctuations then P’ is not quite
zero but is ~ (H/M)®/? ~ (6p/p)? ~ 1071 in the end of ghost inflation. In this way, we have a consistent
story, starting from the outside the regime of validity of the EFT and dynamically entering the regime of
validity. All predictions of the ghost inflation are derived within the validity of the EFT, including the
relatively low-H de Sitter phase, the scale invariant spectrum and the large non-Gaussianity [19].

Black hole: In ref. [25] we consider the question “what happens near a black hole?” A ghost
condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent
vector ut = —gh¥0,¢. It is argued that the ghost condensate in this picture approximately corresponds
to a congruence of geodesics and the accretion rate of the ghost condensate into a black hole should be
negligible for a sufficiently large black hole. This argument is confirmed by a detailed calculation based on
the perturbative expansion w.r.t. the higher spatial kinetic term. The essential reason for the smallness
of the accretion rate is the same as that for the smallness of the tidal force acted on an extended object
freely falling into a large black hole.
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4 Bounds

In this section we consider the bounds on the symmetry breaking scale M. We argue that the nonlinear
dynamics cuts off the Jeans instability of the linear theory, and allows M < 100 MeV [17].

4.1 Jeans Instability

For M 2 10 MeV, the Jeans instability time is shorter than the lifetime of the universe, and we must
consider the effects of this instability. We have seen that the nonlinear effects dominate near interesting
gravitational sources, but the linear dynamics still controls the behavior of the system for sufficiently
weak ghostone amplitudes. In the linear regime, fluctuations with wavelength A 2 Lj grow on a time
scale

A
~Ty— 6
T J LJv ( )
where v A2
Pl
Livap Bgps ™

are the Jeans length and time scales. Wavelengths of order Lj become unstable first, and longer wave-
lengths take longer to grow. Since fluctuations on wavelength shorter than Lj are stable, we expect the
minimum size of a positive or negative energy region to be Lj. On the other hand, the maximum size is
determined by requiring that the time scale 7 above be shorter than the Hubble time. Hence, a positive
or negative region can grow within the age of the universe if its size L is in the range

LJ S L S Lmax, (8)

where \ o
Lpax ~ ——— ~Ro | ——— | . 9
> MpHy 0 © (100 GeV) ©)

The unstable modes grow at least until nonlinear effects become important. This happens for 7 2 n¢,
where

/\2
e~ —. (10)
T
or equivalently ¥ > Y. with
2 M2
g Te SN M (11)

2 2
T T Mg,

It is reasonable to assume that the nonlinear effects cut off the Jeans instability at this critical amplitude.
This mechanism will fill the universe with regions of positive and negative ghostone field with amplitude
of order £%. and the size in the range (8). Since ¥ is a conserved charge, there will be equal amounts of
positive and negative X.

The sun’s Newtonian potential triggers the Jeans instability of the ghost condensate and, thus, it is
expected that there be a positive or negative region around the sun. This is justified if the ‘aether’ is
efficiently dragged by the sun and we now argue that this is indeed the case. To do this, it is useful to
work in the rest frame of the sun. Far from the sun, the aether is moving with constant velocity v ~ 1073,
but near the sun the velocity field will be distorted by the presence of the sun. By using the fluid picture
of the ghostone field, we estimate the effect on a fluid particle with speed v and impact parameter r. The
fluid particle will be a distance of order r away for a time At ~ r/v, so the change in the particle velocity

in the impulse approximation is

o Bs rBs

12
r2 v or (12)

where Rg is the Schwarzschild radius of the source. Thus, the change in the velocity of a fluid particle
becomes comparable to or greater than the initial velocity if r < r4rag, Where

Rs
Tdrag ™~ F ) (13)
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For our sun, raag ~ 10Rg, so the dragged region extends outside the solar radius.*
We require that the absolute value of the mass of the lump with the critical density p. and the size
L.« be at worst less than the solar mass:
pCL:rsnax S M@' (14)

This requirement gives the bound
M < 10% GeV. (15)

Since the high power of M (the Lh.s. oc M?) is involved in (14), a more stringent requirement on the
mass of the lump will not substantially improve the bound.

4.2 Twinkling from Lensing

We have argued that if M 2 10 MeV, then the Jeans instability fills the universe with regions of positive
and negative energy of size L 2 Lj ~ Mp;/M? with energy density p. ~ M%/M3,. This will happen
everywhere, in particular in the voids between galaxies. Any light that travels to us from far away will
therefore be lensed by these positive and negative regions. These positive and negative energy regions
move, because the local rest frame of the lensing regions is different from that of our galaxy, so the result
is that the observed luminosity of any point source will change with time. This is similar to the twinkling
of the stars in the night sky caused by time dependent temperature differences in the atmosphere. In
this subsection, we work out the bounds on the ghost condensate from this effect.

Suppose that the universe is filled with regions of positive and negative energy with size L and density
pe- A light ray traveling through such a region will lens by an angle

pcL?  MSL?
MF2’1 Mlél’l

A~ D~ (16)

If a light ray travels a distance d > L, then it will undergo N ~ d/L uncorrelated lensing events, so the
total angular deviation will be enhanced by a N/ random walk factor:
d\"* M°L2
Abior ~ | — —_—. 17
(1) 1
We see that the largest angular deviation comes from the largest L and largest d.

The size of L is limited by the time for the Jeans instability to form as in (8). If the source is the
cosmic microwave background, then d ~ Hy ' and we obtain

A15/2 M 15/2
Afcmp ~ ( ) ;

~ (18)
11/2

M H? 100 GeV

for the largest regions with the size L ~ L,,4,. The high power of M makes the precise experimental

limit on Afcyp irrelevant, and we obtain the bound

M <100 GeV. (19)

For M ~ 100 GeV, the size of the largest critical region is L ~ 10'? cm, approximately the radius of
the sun. The local velocity of these regions relative to our galaxy is of order 1072, so the time scale for
one of these regions to cross the line of sight is of order a day, which is therefore the time scale of the
variation.

If there is a distant astrophysical source that is observed to shine with very little time variation, it
may give a competitive bound. But given the high power of M involved, it seems difficult to improve on
this bound significantly.

4This radius is still much less than the orbital radius of Mercury.
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4.3 Supernova time-delay

Gravitational lensing considered in the previous subsection induces a time-delay for light-rays coming
from far distances. With this time-delay effect, observed supernovae should be older than they appear.
Thus, this effect would change the estimate of dark energy by observation of Type Ia supernovae. Since
the determination of the dark energy by supernovae observation is known to be consistent with the
WMAP data, we require that the time-delay is sufficiently shorter than the total time:
At 5  MSL2
— ~ (A0) ~ — 2 1. 20
[~ (80" ~ e < (20)
Note that the precise experimental limit on the At/t is irrelevant because of the higher power of M
involved in the L.h.s. From this we obtain the bound

M < 10% GeV. (21)

5 Summary

The usual Higgs mechanism gives a mass to a gauge boson in a theoretically controllable way by spon-
taneously breaking the gauge symmetry. Similarly, the ghost condensation gives a “mass” to the scalar-
sector of gravity by spontaneously breaking a part of Lorentz symmetry, the invariance under time
re-parameterization. It has been shown that the structure of low energy effective field theory of ghost
condensation is determined by the symmetry breaking pattern and does not depend at all on the way the
symmetry is broken. In this sense the low energy effective field theory of ghost condensation has nothing
to do with ghost.

The theory of ghost condensation opens up a number of new avenues for attacking cosmological
problems, including inflation, dark matter, dark energy and black holes. Finally, it has been argued that
the theory is compatible with all current experimental observations if the scale of spontaneous Lorentz
breaking is lower than ~ 100 MeV. Our current understanding of the dynamics of gravity in Higgs phase
is very immature. Most of its properties still remain unexplored.
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Abstract

The reheating of the universe after hybrid inflation proceeds through the nucleation
and subsequent collision of large concentrations of energy density in the form of
bubble-like structures moving at relativistic speeds. This generates a significant frac-
tion of energy in the form of a stochastic background of gravitational waves, whose
time evolution is determined by the successive stages of reheating: First, tachyonic
preheating makes the amplitude of gravity waves grow exponentially fast. Second,
bubble collisions add a new burst of gravitational radiation. Third, turbulent mo-
tions finally sets the end of gravitational waves production. From then on, these
waves propagate unimpeded to us. We find that the fraction of energy density today
in these primordial gravitational waves could be significant for GUT-scale models of
inflation, although well beyond the frequency range sensitivity of gravitational wave
observatories like LIGO, LISA or BBO. However, low-scale models could still produce
a detectable signal at frequencies accessible to BBO or DECIGO. For comparison,
we have also computed the analogous background from some chaotic inflation models
and obtained similar results to those of other groups. The discovery of such a back-
ground would open a new observational window into the very early universe, where
the details of the process of reheating, i.e. the Big Bang, could be explored. Thus, it
could also serve as a new experimental tool for testing the Inflationary Paradigm.

1 Introduction

Gravitational waves (GW) are ripples in space-time that travel at the speed of light, and whose emission
by relativistic bodies represents a robust prediction of General Relativity. Theoretically, it is expected
that the present universe should be permeated by a diffuse background of GW of either an astrophysical or
cosmological origin [1]. Fortunately, these backgrounds have very different spectral signatures that might,
in the future, allow gravitational wave observatories like LIGO [2], LISA [3], BBO [4] or DECIGO [5], to
disentangle their origin [1]. Unfortunately, the weakness of gravity will make this task extremely difficult,
requiring a very high accuracy in order to distinguish one background from another.

There are, indeed, a series of constraints on some of these backgrounds, coming from the anisotropies
in the Cosmic Microwave Background (CMB) [6], from Big Bang nucleosynthesis [7] or from millisecond
pulsar timing [8]. Most of these constraints come at very low frequencies, from 10718 Hz to 10~® Hz, while
present and future GW detectors (will) work at frequencies of order 1072 — 10® Hz. If early universe first
order phase transitions [9, 10] or cosmic turbulence [11] occurred around the electro-weak (EW) scale,
GW detectors could have a chance to measure the corresponding associated backgrounds. However, if
those processes occurred at the GUT scale, their corresponding backgrounds will go undetected by the
actual detectors, since these cannot reach the required sensitivity in the high frequency range of 107 — 10°
Hz. There are however recent proposals to cover this range [12, 13], which may become competitive in
the not so far future.

Cosmological observations seem to suggest that something like Inflation must have occurred in the very
early universe. Approximately scale-invariant density perturbations, sourced by quantum fluctuations
during inflation, seem to be the most satisfying explanation for the CMB anisotropies. Together with
such scalar perturbations one also expects tensor perturbations (GW) to be produced, with an almost
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scale-free power spectrum [14]. The detection of such a background is crucial for early universe cosmology
because it would help to determine the absolute energy scale of inflation, a quantity that for the moment
is still uncertain, and would open the exploration of physics at very high energies.

However, in the early universe, after inflation, other GWB could have been produced at shorter
wavelengths, in a more ’classical’ manner rather than sourced by quantum fluctuations. In particular,
whenever there are large and fast moving inhomogeneities in a matter distribution, one expects the emis-
sion of GW. At large distances from a source, the amplitude of the GW is given by h;; ~ GQZ-J- /ctr, with
Qi; the quadrupole moment of the mass distribution. The larger the velocity of the matter distribution,
the larger the amplitude of the radiation produced. However, because of the weakness of gravity, in order
to produce a significant amount of gravitational radiation, it is required a very relativistic motion (and
high density contrasts) in the matter distribution of a source. Fortunatelly, this is indeed believed to be
the situation at the end of inflaton, during the conversion of the huge energy density driving inflation
into radiation and matter, at the so-called reheating of the Universe [15], i.e. at the Big Bang.

Note that any background of GW coming from the early universe, if generated below Planck scale,
immediately decoupled upon production and, whatever their spectral signatures, they will retain their
shape throughout the expansion of the Universe. Thus, the characteristic frequency and shape of the
GWB generated at a given time should contain information about the very early state of the Universe
in which it was produced. Actually, it is conceivable that, in the not so far future, the detection of these
GW backgrounds could be the only way we may have to infer the physical conditions of the Universe at
such high energy scales. However, the same reason that makes GW ideal probes of the early universe —
the weakness of gravity — is responsible for the extreme difficulties we have for their detection on Earth.

In Refs. [16, 17] we described the stochastic background predicted to arise from reheating after hybrid
inflation. Here we will review the various processes involved in the production of such a background. In
the future, this background could serve as a new tool to discriminate among different inflationary mod-
els, since reheating in each model would give rise to a different GWB with very characteristic spectral
features. The details of the dynamics of preheating depend very much on the model and are often very
complicated because of the non-linear, non-perturbative and out-of-equilibrium character of the process
itself. However, all the cases have in common that only specific resonance bands of the fields suffer an
exponential instability, which makes their occupation numbers grow by many orders of magnitude. The
shape and size of the spectral bands depend very much on the inflationary model. If one translates
this picture into position-space, the highly populated modes correspond to large time-dependent inho-
mogeneities in the matter distributions which acts, in fact, as a powerful source of GW. For example, in
single field chaotic inflation models, the coherent oscillations of the inflaton during preheating generates,
via parametric resonance, a population of highly occupied modes that behave like waves of matter. They
collide among themselves and their scattering leads to homogenization and local thermal equilibrium.
These collisions occur in a highly relativistic and very asymmetric way, being responsible for the genera-
tion of a stochastic GWB [18, 19, 20, 21, 22] with a typical frequency today of the order of 107 — 10° Hz,
corresponding to the present size of the causal horizon at the end of high-scale inflation.

However, there are models like hybrid inflation in which the end of inflation is sudden [23] and the
conversion into radiation occurs almost instantaneously. Indeed, hybrid models preheat very violently,
via the spinodal instability of the symmetry breaking field that triggers the end of inflation, irrespective
of the couplings that this field may have to the rest of matter. Such a process is known as tachyonic
preheating [24, 25] and could be responsible for copious production of dark matter particles [26], lepto
and baryogenesis [27], topological defects [24], primordial magnetic fields [28], etc. In Ref. [25], it was
shown that the process of symmetry breaking in hybrid preheating, proceeds via the nucleation of dense
bubble-like structures moving at relativistic speeds, which collide and break up into smaller structures
(see Figs. 7 and 8 of Ref. [25]). We conjectured at that time that such collisions would be a very strong
source of GW, analogous to the GW production associated with strongly first order phase transitions [9)].
As we will show here, this is indeed the case during the nucleation, collision and subsequent rescattering of
the initial bubble-like structures produced after hybrid inflation. During the different stages of reheating
in this model, gravity waves are generated and amplified until the Universe finally thermalizes and enters
into the radiation era of the Standard Model of Cosmology. From that moment until now, this cosmic
GWRB will be redshifted as a radiation-like fluid, totally decoupled from any other energy-matter content
of the universe, such that today’s ratio of energy stored in these GW to that in radiation, could range

29



from Qg h% ~ 1078, peacked around f ~ 107 Hz for the high-scale models, to Q,h? ~ 107!, peacked
around f ~ 1 Hz for the low-scale models.

Finally, since the first paper by Khlebnikov and Tkachev [18], studing the GWB produced at reheat-
ing after chaotic inflation, there has been some developments. The idea was soon extended to hybrid
inflation in Ref. [19]. It was also revisited very recently in Ref. [20, 21] for the A¢* and m?¢? chaotic
scenarios, and reanalysed again for hybrid inflation in Refs. [16, 17], using the new formalism of tachyonic
preheating [24, 25]. Because of the increase in computer power of the last few years, we are now able to
perform precise simulations of the reheating process in a reasonable time scale. Moreover, understanding
of reheating has improved, while gravitational waves detectors are beginning to attain the aimed sensitiv-
ity [2]. Furthermore, since these cosmic GWBs could serve as a deep probe into the very early universe,
we should characterize in the most detailed way the information that we will be able to extract from
them.

2 Gravitational Wave Production

Our main purpose here is to study the details of the stochastic GWB produced during the reheating
stage after hybrid inflation (sections 2 and 3). Nevertheless, we also study more briefly the analogous
background from reheating in some chaotic models (section 4). Thus, in this section we derive a general
formalism for extracting the GW power spectrum in any scenario of reheating within the (flat) Friedman-
Robertson-Walker (FRW) universe. The formalism will be simplified when applied to scenarios in which
we can neglect the expansion of the universe, like in the case of Hybrid models.

A theory with an inflaton scalar field x interacting with other Bose fields ¢,, can be described by

1 1 R
L=— o+ =0,0,0"pq + —— — V (o, 1
50uX0"X + 5010a0"Pa + 17— = V(e X) (1)
with R the Ricci scalar. For hybrid models, we consider a generic symmetry breaking ‘Higgs’ field @,
with N, real components. We can take ®T® = % Y #2 = |¢|?/2, with a running for the number of Higgs’
components, e.g. N. = 1 for a real scalar Higgs, N. = 2 for a complex scalar Higgs or N, = 4 for a SU(2)
Higgs, etc. The effective potential then becomes

A 1
V(:x) =7 (162 = %)% + g>3|8]* + §u2x2 : (2)

For chaotic scenarios, we consider a massless scalar field ¢ interacting with the inflaton x via

1

V(X ¢) = 59" + V() (3)
with V() the inflaton’s potential. Concerning the simulations we show in this paper, we concentrate in
the N, = 4 case for the hybrid model and consider a potential V(x) = %X4 for the chaotic scenario.

The classical equations of motion of the inflaton and the other Bose fields are
1 ov - . 1 oV

X +3HY — =V +——=0 o +3Ho, — —=V2ps +-—— =0 4

XA 3HY = 5Vix+ 52 =0, o +3Hoa — — ¢+a¢a (4)
with H = a/a. On the other hand, GW are represented here by a transverse-traceless (TT) gauge-
invariant metric perturbation, h;j, on top of the flat FRW space ds? = —dt* + a®(t) (6;; + hij) da'da?,
with a(t) the scale factor and the tensor perturbations verifying d;h;; = hs;; = 0. Then, the Einstein
field equations can be splitted into the background and the perturbed equations. The former describe
the evolution of the flat FRW universe through

Jif o, 1 2, 1
T T Xt aaM0 dat 5 (Ve ?
3H> o 1 2y 1
s = 24 p(vx)z’ + @2 + ;(Vﬁba)z +2V(x, 9) (6)

where any term in the r.h.s. of (5) and (6), should b§0understood as spatially averaged.



On the other hand, the perturbed Einstein equations describe the evolution of the tensor perturba-
tions [35] as

.. . 1
hij + 3Hh;; — Ev%zj = 167G 11;;, (7)

with ;II;; = II;; = 0. The source of the GW, 1I;;, contributed by both the inflaton and the other scalar
fields, will be just the transverse-traceless part of the (spatial-spatial) components of the total anisotropic
stress-tensor

T,uu = [‘%X&zX + 8,u¢aau¢a + g#l,(ﬁ - <p>)] /a2, (8)

where L(x, ¢,) is the lagrangian (1) and (p) is the background homogeneous pressure. As we will explain
in the next subsection, when extracting the TT part of (8), the term proportional to g, in the r.h.s
of (8), will be dropped out from the GW equations of motion. Thus, the effective source of the GW will
be just given by the TT part of the gradient terms 0,x0, X + 0u¢a 0y Pa.

2.1 The Transverse-Traceless Gauge

A generic (spatial-spatial) metric perturbation dh;; has six independent degrees of freedom, whose contri-
butions can be split into [35] scalar, vector and tensor metric perturbations 6hi; = 1 04+ E 5+ F; j)+hij ,
with 0;F; = 0 and 0;hi; = hy; = 0. By choosing a transverse-traceless stress-tensor source 1l;;, we can
eliminate all the degrees of freedom (d.o.f.) but the pure TT part, h;;, which represent the only physical
d.o.f which propagate and carry energy out of the source (i.e. GW). Thus, taking the TT part of the
anisotropic stress-tensor, we ensure that we only source the physical d.o.f. that represent GW.

Let us switch to Fourier space. The GW equations (7) then read

.. 2

. k
hij (t, k) + 3th (t, k) + ﬁh” (t, k) = 167TG Hij (t, k) 5 (9)

where k£ = |k|. Assuming no GW at the beginnig of reheating (i.e. the end of inflation ¢.), the initial
conditions are h;;(t.) = hij(te) = 0, so the solution to Eq. (9) for ¢t > t. will be just given by a causal
convolution with an appropriate Green’s function G(t,t'),

t
hij(t, k) = 167TG/ dt’ G(t,t')IL; (t', k) . (10)
te
Therefore, all we need to know for computing the GW is the TT part of the stress-tensor, 1I;;, and the
Green’s function G(t',t). However, as we will demonstrate shortly, we have used a numerical method by
which we don’t even need to know the actual form of G(#',t). To see this, let us extract the TT part of
the total stress-tensor. Given the symmetric anisotropic stress-tensor T, (8), we can easily obtain the
TT part of its spatial components in momentum space, II;; (k). Using the spatial projection operators
Pij = 5ij - kikj, with kl = kz/k, then [36] Hij (k) = Aij_’lm(lz)Tlm (k), where
~ ~ ~ 1 ~ ~
Aijam(K) = (Pa(R) Py (k) = 5Py (R) P (K) ) (11)

Thus, one can easily see that, at any time ¢, k;I1;; (f{, t) = Hﬁ(f{, t) = 0, as required, thanks to the identities
Pijkj =0 and ijjm = Hm-

Note that the solution (10) is just linear of the non-traceless nor-transverse tensor T;; (8). Therefore,
we can write the T'T tensor perturbations (i.e. the GW) as

hij(t, k) = Aijim (K)wim (t, k), (12)
with u;;(¢, k) the Fourier transform of the solution of the following equation
1
’U,ij + 3HUU - EVQUU = 167G Tij . (13)

This Eq. (13) is nothing but Eq. (7), sourced with the complete T;; (8), instead of with its TT part,
IL;;. Of course, Eq. (13) contains unphysical (gauge)sci.o.f.; however, in order to obtain the real physical



TT d.of. h;j, we can evolve Eq.(13) in configuration space, Fourier transform its solution and apply the
projector (11) as in (12). This way we can obtain in momentum space, at any moment of the evolution,
the physical TT d.o.f. that represent GW, h;;. Whenever needed, we can Fourier transform back to
configuration space and obtain the spatial distribution of the gravitational waves.

Moreover, since the second term of the r.h.s of the total stress-tensor T;; is proportional to g;; =
dij + hij, see (8), when aplying the TT projector (11), the part with the §;; just drops out, simply
because it is a pure trace, while the other part contributes with a term —(£ — (p))h;; in the Lh.s of
Eq.(9). However, (L — (p)) is of the same order as the metric perturbation ~ O(h), so this extra term
is second order in the gravitational coupling and it can be neglected in the GW Egs. (9). This way, the
effective source in Eq. (13) is just the gradient terms of both the inflaton and the other scalar fields,

Tij = (vixvjx + vi(bavj(ba)/az' (14)

Therefore, the effective source of the physical GW, will be just the TT part of (14), as we had already
mentioned before.

We have found the commuting procedure proposed (i.e. the fact that we first solve Eq. (13) and
secondly we apply the TT projector to the solution (12), and not the other way around), very useful.
We are able to extract the spectra or the spatial distribution of the GW at any desired time, saving a
great amount of computing time since we don’t have to be Fourier transforming the source at each time
step. Most importantly, with this procedure we can take into account backreaction simultaneously with
the fields evolution.

In summary, for solving the dynamics of reheating of a particular inflationary model, we evolve
Egs. (4) in the lattice, together with Eqgs. (5)-(6), while for the GWs we solve Eq. (13). Then, only
when required, we Fourier transform the solution of Eq. (13) and then apply (12) in order to recover the
physical transverse-traceless d.o.f representing the GW. From there, one can easily build the GW spectra
or take a snapshot of spatial distribution of the gravitational waves.

2.2 The energy density in GW
The energy-momentum tensor of the GW is given by [36]

1

b = 5506 {

Opuhij O, hTY,, (15)
where h;; are the TT tensor perturbations solution of Eq. (7). The expectation value (...),, is taken
over a region of sufficiently large volume V = L3 to encompass enough physical curvature to have a
gauge-invariant measure of the GW energy-momentum tensor.

The GW energy density will be just p,,, = too, so

1 1 1 1

= —— — [ &xhij(t,x)hi(t,x) = ———
Pow = 39q s | CXNi(bxhi(tx) = o0 a7

d®k hy; (1, )R (k) (16)

where in the last step we Fourier transformed each h;; and used the definition of the Dirac delta. We can
always write the scalar product in (16) in terms of the (Fourier transformed) solution u;,, of the Eq.(13),
by just using the fact that A;j imAim,rs = Aijrs. This way, we can express the GW energy density as

1 N -
S / K2dk / 49 Aoy (R) ity (1, K)iif, (1, ). (17)

From here, we can also compute the power spectrum per logarithmic frequency interval in GW, normalized
to the critical density pc, as Qg = [ % Quw (f), where

1 dp k3 N
Q. (k) = —2Paw _ AQ Ay o (R) 0 (£, )il (£, Kk 18
)= e i [ 4081 @i () (110 (18)

We have checked explicitely in the simulations that the argument of the angular integral of (18) is
independent of the directions in k-space. Thus, whenever we plot the GW spectrum of any model, we
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will be showing the amplitude of the spectrum (per each mode k) as obtained after avaraging over all the
directions in momentum space,
Qs (K) = Ay (R (1K), (1, K
o () = g (i ()i (0 )i, (1,1)) (19)
with (f),,. = ﬁffdQ.

Finally, we must address the fact that the frequency range, for a GWB produced in the early universe,
will be redshifted today. We should calculate the characteristic physical wavenumber of the present
GW spectrum, which is redshifted from any time ¢ during GW production. So let us distinguish four
characteristic times: the end of inflation, ¢.; the time ¢, when GW production stops; the time ¢, when
the universe finally reheats and enters into the radiation era; and today, tg. Thus, today’s frequency fo
is related to the physical wavenumber k; at any time ¢ of GW production, via fo = (at/ao)(k:/27), with
ao and a¢, the scale factor today and at the time ¢, respectively. Thermal equilibrium was established
at some temperature 7)., at time ¢, > t. The Hubble rate at that time was M3H?2 = (87/3)p,, with
or = g-m2T*/30 the relativistic energy density and g, the effective number of relativistic degrees of
freedom at temperature T.. Since then, the scale factor has increased as a,/ao = (go.s/gr.s)">(To/T}),
with g; s the effective entropic degrees of freedom at time ¢;, and Ty today’s CMB temperature. Putting
all together,

1 1
() () e ()
Gr,s H,M, \a, ) 27
where we have used the fact that the physical wave number k; at any time ¢ during GW production, is
related to the comoving wavenumber k through k; = (a./a;)k with the normalization a, = 1.

From now on, we will be concerned with hybrid inflation, leaving chaotic inflation for section 4. Within
the hybrid scenario, we will analyse the dependence of the shape and amplitude of the produced GWB
on the scale of hybrid inflation, and more specifically on the v.e.v. of the Higgs field triggering the end
of inflation. Given the natural frequency at hand in hybrid models, m = v/\v, whose inverse m~' sets
the characteristic time scale during the first stages of reheating, it happens that as long as v < M, the
Hubble rate H ~ v/A(v?/M,,) is much smaller than such a frequency, H < m. Indeed, all the initial
vacuum energy pg gets typically converted into radiation in less than a Hubble time, in just a few m™!
time steps. Therefore, we should be able to ignore the dilution due to the expansion of the universe during
the production of GW, at least during the first stages of reheating. Our approach will be to ignore the
expansion of the Universe, such that we fix the scale factor to one, a = 1. As we will see later, neglecting
the expansion of the Universe for the time of GW production, will be completely justified a posteriori.

The system of equations that we have to solve numerically in a lattice for the hybrid model are

'Ulij - VQUZ'J' = 167G Tij (21)
X = VX + (¢°10]° +1*) x =0 (22)
éa - v2¢a + (92X2 + /\|¢|2 - m2) $a =0 (23)

with T;; given by Eq.(14) with the scale factor a = 1. We have explicitly checked in our computer
simulations that the backreaction of the gravity waves into the dynamics of both the inflaton and the
Higgs fields is negligible and can be safely ignored. We thus omit the backreaction terms in the above
equations.

We evaluated during the evolution of the system the mean field values, as well as the different energy
components. Initially, the Higgs field grows towards the true vacuum and the inflaton moves towards the
minimum of its potential and oscillates around it. We have checked that the sum of the averaged gradient,
kinetic and potential energies (contributed by both the inflaton and the Higgs), remains constant during
reheating, as expected, since the expansion of the universe is irrelevant in this model. We have also
checked that the time evolution of the different energy components is the same for different lattices,
changing the number of points N, the minimum momentum py,;, = 27/L or the lattice spacing a = L/N,
with L the lattice size. The evolution of the Higgs’ v.e.v. follows three stages easily distinguished. First,
an exponential growth of the v.e.v. towards the true vacuum. This is driven by the tachyonic instability of
the long-wave modes of the Higgs field, that makes thﬁgspatial distribution of this field to form lumps and



1
001 - “." - '"__‘"“_,N._._.:,‘,,..-_-.-J-'""‘"""‘"'"""":-".::I"""""""""""
Sle-0ap .~ & N turbulence 1
= ¥ bubble collisions B
@ “‘ : _total —
o growth gradient «......
potential |
Mo
1e-08 | ﬂ23 —
Pgw v=0.001 Mp
ng/]_O4 v=0.1 Mp
le-10 - Dgw/102 v=0.01 My ——
5 10 15 20 25 30 35 40 45

mt

Figure 1: The time evolution of the different types of energy (kinetic, gradient, potential, anisotropic
components and gravitational waves for different lattices), normalized to the initial vacuum energy, after
hybrid inflation, for a model with v = 1073 Mp. One can clearly distinguish here three stages: tachyonic
growth, bubble collisions and turbulence.

bubble-like structures [24, 25]. Second, the Higgs field oscillates around the true vacuum, as the Higgs’
bubbles collide and scatter off eachother. Third, a period of turbulence is reached, during which the
inflaton oscillates around its minimum and the Higgs sits in the true vacuum. For a detailed description
of the dynamics of these fields see Ref. [25]. Here we will be only concerned with the details of the
gravitational wave production.

The initial energy density at the end of hybrid inflation is given by po = m?v?/4, with m? = \v?, so
the fractional energy density in gravitational waves is

Paw 4t00 1 < . - >
= = hz h J R 24
00 v2m?2 87t Guv2m2 \ Y % (24)

where <h”h” > , defined as a volume average like < [ d*xhi;h, is extracted from the simulations as
v

A7

<hijiﬁ’j>v - 47” / dlogh k3 <Aij,lm(12)uij(t,k)u;m(t,k)> (25)

where wu;;(t,k) is the Fourier transform of the solution of Eq. (21). Then, we can compute the corre-
sponding density parameter today (with Q,.q h? ~ 3.5 x 107°)

Qr' d h2 SN . .k
aw = G mIV /dlogk K <Aij,lm(k)uij (t, k)“lm(t’k)>4 )

T

Q

which has assumed that all the vacuum energy po gets converted into radiation, an approximation which
is always valid in generic hybrid inflation models with v < Mp, and thus H < m = V.

We have shown in Fig. 1 the evolution in time of the fraction of energy density in GW. The first
(tachyonic) stage is clearly visible, with a (logarithmic) slope twice that of the anisotropic tensor IL;;.
Then there is a small plateau corresponding to the pg(iduction of GW from bubble collisions; and finally
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Figure 2: We show here the comparison between the power spectrum of gravitational waves obtained
with increasing lattice resolution, to prove the robustness of our method. The different realizations are
characterized by the the minimum lattice momentum (pmin) and the lattice spacing (ma). The growth
is shown in steps of mAt = 1 up to mt¢ = 30, and then in and mAt = 5 steps up to mt = 60.

there is the slow growth due to turbulence. In the next section we will describe in detail the most
significant features appearing at each stage.

Note that in the case that H < m, the maximal production of GW occurs in less than a Hubble time,
soon after symmetry breaking, while turbulence lasts several decades in time units of m~!. Therefore,
we can safely ignore the dilution due to the Hubble expansion, up to times much greater than those of
the tachyonic instability. Eventually the universe reheats and the energy in gravitational waves redshifts
like radiation thereafter.

To compute the power spectrum per logarithmic frequency interval in GW, Q,, (f), we just have to
use (18). We can evaluate the power spectrum today from that obtained at reheating by converting the
wavenumber k into frequency f. Simply using Eq. (20), with ¢,.s/go,s ~ 100, g, s ~ g, and ae ~ a, then

k
f=6x10""Hz ——— =5 x 10" Hz — oy (27)

VHDM,

We show in Fig. 2 the power spectrum of gravitational waves as a function of (comoving) wavenumber
k/m. We have used different lattices in order to have lattice artifacts under control, specially at late times
and high wavenumbers. We made sure by the choice of lattice size and spacing (i.e. kmin and kpax) that
all relevant scales fitted within the simulation. Note, however, that the lower bumps are lattice artifacts,
due to the physical cutoff imposed at the initial condition, that rapidly disappear with time. We have also
checked that the power spectrum of the scalar fields follows turbulent scaling after mt ~ O(100), and we
can thus estimate the subsequent evolution of the energy density distributions beyond our simulations.

3 Lattice simulations

The problem of determining the time evolution of a quantum field theory is an outstandingly difficult

problem. In some cases only a few degrees of freedom are relevant or else perturbative techniques are
35



applicable. However, in our particular case, our interests are focused on processes which are necessarily
non-linear and non-perturbative and involve many degrees of freedom. The presence of gravitational
fields just contributes with more degrees of freedom, but does not complicate matters significantly.

In the present paper we will use the so called classical approximation to deal with the problem.
It consists of replacing the quantum evolution of the system by its classical evolution, for which there
are feasible numerical methods available. The quantum nature of the problem remains in the stochastic
character of the initial conditions. This approximation has been used with great success by several groups
in the past [34, 24]. The advantage of the method is that it is fully non-linear and non-perturbative.

Our approach is to discretize the classical equations of motion of all fields in both space and time.
The time-like lattice spacing a; must be smaller than the spatial one a, for the stability of the discretized
equations. In addition to the ultraviolet cut-off one must introduce an infrared cut-off by putting the
system in a box with periodic boundary conditions. In this paper we have thouroughly studied a model
with g2 = 2\ = 1/4, but we have checked that other values of the parameters do not change our results
significantly.

3.1 Initial conditions

The initial conditions of the fields follow the prescription from Ref. [25]. The Higgs modes ¢y, are solutions
of the coupled evolution equations, which can be rewritten as ¢} + (k* — 7)¢ = 0, with 7 = M (¢t — t.)
and M = (2V)Y3m. The time-dependent Higgs mass follows from the initial inflaton field homogeneous
component, xo(t;) = xc(1 — Vm(t; —tc)) and xo(t;) = —x.Vm. The Higgs modes with k/M > \/7; are
set to zero, while the rest are determined by a Gaussian random field of zero mean distributed according
to the Rayleigh distribution

P d|¢r|dor, =
(ouldelds, = exp (1251 ) A2 e

with a uniform random phase 6, € [0, 27] and dispersion given by o7 = | fx|*> = P(k,7;)/k®, where P(k,T;)
is the power spectrum of the initial Higgs quantum fluctuations, computed in the linear approximation
in the background of the homogeneous inflaton. In the classical limit, the conjugate momentum gf)k(r) is
uniquely determined as ¢y, (1) = F(k, 7)¢r(7), with F(k,7) = Tm(i fx(7) £ (7)) /| fr(7)|?, see Ref. [25].

The rest of the fields (the inflaton non-zero modes and the gravitational waves), are supposed to
start from the vacuum, and therefore they are semiclassically set to zero initially in the simulations.
Their coupling to the Higgs modes will drive their evolution, giving rise to a rapid (exponential) growth
of the GW and inflaton modes. Their subsequent non-linear evolution will be well described by the
lattice simulations. In the next subsections we will describe the different evolution stages found in our
simulations.

3.2 Tachyonic growth

In this subsection we will compare the analytical estimates with our numerical simulations for the initial
tachyonic growth of the Higgs modes and the subsequent growth of gravitational waves. The first check
is that the Higgs modes grow according to Ref. [25]. There we found that

k| (t)[? = v® A(r) e BOK (29)

with A(7) and B(7) are given, for 7 > 1, as A(1) = %BF(T), and B(7) = 2(y/7 — 1), where
Bi(z) is the Airy function of the second kind. We have checked that the initial growth, from mt¢ = 6 to
mit = 10, follows precisely the analytical expression.

The comparison between the tensor modes h;;(k,t) and the numerical results is somewhat more
complicated. We should first compute the effective anisotropic tensor T;;(k,t) (14) from the gradients of

the Higgs field (those of the inflaton are not relevant during the tachyonic growth), as follows,

~ d3 —ikx
i, (k, £) = / e V36" V6 0] y (30)



where V;¢%(x,t) = [ @‘fﬁ iqi *(q, t) e~ After performing the integral in x and using the delta
function to eliminate q’, we make a change of variables q — q + k/2, and integrate over q. Finally, with
the use of fIij (k,t), we can compute the tensor fields,
t : / t

hij (k, t) = (167TG) /0 dtl Slnk(+t) ﬁi]‘, 60hij (k, t) = (167TG) /0 dt/ COS k(f — t/) ﬁi]‘. (31)
Using the analytic solutions one can perform the integrals and obtain expressions that agree surprisingly
well with the numerical estimates. This allows one to compute the density in gravitational waves, p., , at
least during the initial tachyonic stage in terms of analytical functions, and we reproduce the numerical
results. We will now compare these with the analytical estimates. The tachyonic growth is dominated
by the faster-than-exponential growth of the Higgs modes towards the true vacuum. The (traceless)
anisotropic strees tensor I1;; grows rapidly to a value of order k?|¢|? ~ 1073 m?v?, which gives a tensor
perturbation

1/2

|hijh """ ~ 167Gv* (mAt)*10~2, (32)

and an energy density in GW,
Do [P0 ~ 647GV? (MAL)?1076 ~ Gv?, 33
GW

for mAt ~ 16. In the case at hand, with v = 1073 Mp, we find p.y, /po ~ 107¢ at symmetry breaking,
which coincides with the numerical simulations at that time, see Fig. 1.

As shown in Ref. [25], the spinodal instabilities grow following the statistics of a Gaussian random
field, and therefore one can use the formalism of [41] to estimate the number of peaks or lumps in the
Higgs spatial distribution just before symmetry breaking. As we will discuss in the next section, these
lumps will give rise via non-linear growth to lump invagination and the formation of bubble-like structures
with large density gradients, expanding at the relativistic speeds and colliding among themselves giving
rise to a large GWB. The size of the bubbles upon collision is essentially determined by the distance
between peaks at the time of symmetry breaking, but this can be computed directly from the analysis of
Gaussian random fields, as performed in Ref. [25]. This analysis works only for the initial (linear) stage
before symmetry breaking. Nevertheless, we expect the results to extrapolate to later times since once a
bubble is formed around a peak, it remains there at a fixed distance from other bubbles. This will give
us an idea of the size of the bubbles at the time of collision.

3.3 Bubble collisions

The production of gravitational waves in the next stage proceeds through ‘bubble’ collisions. In Ref. [24]
we showed that during the symetry breaking, the Higgs field develops lumps whose peaks grow up to a
maximum value |¢|max/v = 4/3, and then decrease creating approximately spherically symmetric bubbles,
with ridges that remain above |¢| = v. Finally, neighboring bubbles collide and high momentum modes
are induced via field inhomogeneities. Since initially only the Higgs field sources the anisotropic stress-
tensor II;;, then we expect the formation of structures in the spatial distribution of the GW energy
density correlated with the Higgs lumps. In this sub-section we will give an estimate of the burst in GW
produced by the first collisions of the Higgs bubble-like structures.

As for the collision of vaccum bubbles in first order phase transitions [9], we can give a simple estimate
of the order of magnitude of the energy fraction radiated in the form of gravitational waves when two
Higgs bubble-like structures collide. A similar stimation is indeed presented in [42, 22]. In general, the
problem of two colliding bubbles has several time and length scales: the duration of the collision, At; the
bubbles’ radius R at the moment of the collision; and the relative speed of the bubble walls. The typical
size of bubbles upon collisions, is of the order of R ~ 10m ™!, while the growth of the bubble’s wall is
relativistic, see Ref. [25]. Then we can assume than the time scale associated with bubble collisions is
also At ~ R. Assuming the bubble walls contain most of the energy density, it is expected that the
asymmetric collisions will copiously produce GW.

Far from a source that produces gravitational radiation, the dominat contribution to the amplitude
of GW is given by the acceleration of the quadrupolg.}noment of the Higgs field distribution. Given the



energy density of the Higgs field, py, we can compute the (reduced) quadrupole moment of the Higgs
field spatial distribution, Q;; = [ d®z (z;2; — 228;;/3) pu(x), such that the amplitude of the gravitational
radiation, in the TT gauge, is given by h;; ~ (2G/r)Q;;. A significant amount of energy can be emitted in
the form of gravitational radiation whenever the quadrupole moment changes significantly fast: through
the bubble collisions in this case. The power carried by these waves can be obtained via (17) as

Pow = %/dﬁ <QUQ”> . (34)

Omitting indices for simplicity, as the power emitted in gravitational waves in the quadrupole approxi-
mation is of order P, ~ G(Q)?, while the quadrupole moment is of order @ ~ R°py, we can estimate
the power emitted in GW upon the collision of two Higgs bubbles as

P,

GW

Rop\>
~ G (R—B”> ~ Gp% R* (35)
The fraction of energy density carried by these waves, poyw ~ PowAt/R® ~ P, /R* ~ Gp3 R,
compared to that of the initial energy stored in the two bubble-like structures of the Higgs field, will be
Pew /pr = GpuR%. Since the expansion of the universe is negligible during the bubble collision stage, the
energy that drives inflation, py ~ m?v?, is transferred essentially to the Higgs modes during preheating,
within an order of magnitude, see Fig. 1. Thus, recalling that R ~ 10m~?!, the total fraction of energy
in GW produced during the bubble collisions to that stored in the Higgs lumps formed at symmetry
breaking, is given by

Pow 0.1Gpo R ~ (v/M,)?, (36)

Po
giving an amplitude which is of the same order as is observed in the numerical simulations, see Fig. 1. Of
course, an exhaustive analytical treatment of the production of GW during this stage of bubble collisions
remains to be done, but we leave it for a future publication.

3.4 Turbulence

The development of a turbulent stage is expected from the point of view of classical fields, as turbulence
usually appears whenever there exists an active (stationary) source of energy localized at some scale ki,
in Fourier space. The oscillating inflaton zero-mode plays the role of the pumping-energy source, acting
at a well defined scale ki, in Fourier space, given by the frequency of the inflaton oscillations. Apart from
kin, there is no other scale in Fourier space where energy is accummulated, dissipated and/or infused. So,
as turbulence is characterized by the transport of some conserved quantity, energy in our case, we should
expect a flow of energy from k;,, towards higher (direct cascade) or smaller (inverse cascade) momentum
modes. In typical turbulent regimes of classical fluids, there exits a sink in Fourier space, corresponding to
that scale at which the (direct) cascade stops and energy gets dissipated. However, in our problem there
is no such sink so that the transported energy cannot be dissipated, but instead it is used to populate
high-momentum modes. For the problem at hand, there exists a natural initial cut-off koue ~ A/2v,
such that only long wave modes within k < koyus, develop the spinodal instability. Eventually, after the
tachyonic growth has ended and the first Higgs’ bubble-like structures have collided, the turbulent regime
is established. Then the energy flows from small to greater scales in Fourier space, which translates into
the increase of kgyt in time.

When the turbulence has been fully established, if the wave (kinetic) turbulence regime of the fields’
dynamics is valid, the time evolution of the variance of a turbulent field f(x,t), should follow a power-
law-like scaling [43]

Var(f(t)) = (f(t)?) — (F(£))* o< t72P, (37)

with p = 1/(2N — 1) and N the number of scattering fields in a ‘point-like collision’. In Fig. 3 we have
plotted the time evolution of the variances of the Inflaton x and of the Higgs modulus ¢ = /)", ¢2, and
fitted the data with a power-law like (37), obtaining 38
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Figure 3: Variance of the Inflaton and the Higgs field as a function of time, the former normalized to
its critical value, the latter normalized to its v.e.v.. As expected in a turbulent regime, these variances
follow a power law ~ t~2P with p a certain critical exponent, although the slope of the Inflaton’s variances
evolves in time. The curves are produced from an average over 10 different statistical realizations.

Inflaton:  p; ' =5.1+0.2, [35:85]
Inflaton: p-! =9.03+0.03,  [350:2000]
Higgs: p;!=7.02+0.01,  [50:2000]

where the last brackets on the right correspond to the range in time (in units of m~1) for which we
fitted the data. As can be seen in Fig. 3, the slope of the Higgs field (in logarithmic scale), 2p,, ~ 2/7,
remains approximately constant in time, corresponding to a 4-field dominant interaction. However, the
slope of the Inflaton’s variance increases in time, i.e. the critical exponent p, of the Inflaton decreases,
until it reaches a stationary stage at mt ~ 100. We will not try to explain here the origin of such an
effective critical exponents as extracted from the simulations. We will just stress that we have checked
the robustness of those values under different lattice configurations (NN, pmin) and different statistical
realizations. Actually, when turbulence has fully developed, it is expected that the distribution function
of the classical turbulent fields, the inflaton and the Higgs here, follow a self-similar evolution [43]

n(k,t) = t="Pno(kt "), (38)

with p the critical exponent of the fields’ variances and v a certain factor ~ O(1), which depends on
the type of turbulence developed. Looking at (38), we see that the exponent p determines the speed
of the particles’ distribution in momentum space: given a specific scale k. that scale evolves in time
as ke(t) = ke(to)(t/to)?. In the simulations, we have seen that the evolution of the Higgs occupation
number follows Eq. (38) with p & 1/7, as expected from the Higgs variance, and v &~ 2.7. Whereas the
evolution of the Inflaton occupation number follows (38) even more accurately than the Higgs, with an
“effective” exponent (once the asymptotic regime is achieved) p &~ 1/5, and v ~ 3.9. In Figs. 4 we have
plotted the occupation numbers of the Higgs and the Inflaton, also inverting the relation of Eq. (38) in
order to extract the universal time-independent ng(k) functions of each field. As shown in those figures,
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Figure 4: Some snapshots of the evolution of the spectral particle occupation numbers of the Higgs and
the Inflaton fields at different times, each averaged over 10 statistical realizations. We multiply them by
k* so we can see better the scaling behaviour. In the upper right corner, we plot the inverse relation
of (38), no(kt™?) = t"Pn(k,t), also averaged over 10 realizations for each time. The scaling behaviour
predicted by wave kinetic turbulent theory [43], is clearly verified.

the distributions follow nicely the expected scaling behaviour. The universal functions ng(k) plotted in
Figs. 4 have been obtained from averaging over ten statistical realizations for each time.

The advantage of the development of a turbulence behaviour is obvious: it allows us to extrapolate
the time evolution of the fields’ distributions till later times beyond the one we can reach with the
simulations. Moreover, the fact that the turbulence develops so early after the tachyonic instability, also
allow us to check for a long time of the simulation, the goodness of the description of the dynamics of the
fields, given by the turbulent kinetic theory developed in Ref. [43]. We have fitted the averaged universal
functions ng(k) with expressions of the form k% ng(k) = P(k)e~@®) with P(k) and Q(k) polynomials in
k. There is no fundamental meaning associated with such a fit, but it is very useful to have an analytical
control over ng(k), since this allows us to track the time-evolution of n(k,t) through Eq. (38). Actually,
the classical regime of the evolution of some bosonic fields ends when the system can be relaxed to the
Bose-Einstein distribution. Since we cannot reach that moment, we can at least estimate the moment in
which the initial energy density gets fully transferred to the Higgs classical modes. Using Eq.(38) and
the fit to the universal ng(k) of the Higgs, we find that the initial energy density is totally transfered to
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Figure 5: Time evolution of the GW spectra from mt = 6 to mt = 2000. The amplitude of the spectra
seems to saturate after mt ~ 100, although the high momentum tail still moves slowly to higher values
of k during the turbulent stage.

the Higgs when (in units m = 1)
dk k3 7.565
/ — gz hnlkt) = —— ——— 4= (39)

where we have assumed that the Higgs’ modes have energy Ej(k,t) = kn(k,t). In our case, with A = 1/8,
the conversion of the initial energy density into Higgs particles and therefore into radiation is complete
by t ~ 6 x 10*m~'. Therefore, if we consider this value as a lower bound for the time that classical
turbulence requires to end, we see that turbulence last for a very long time compared to the time-scale
of the initial tachyonic and bubbly stages. Thus, if GW were significatively sourced during turbulence,
one should take into account corrections from the expansion of the universe.

In Fig. 5, we show the evolution of the GW spectra up to times mt = 2000, for a lattice of (N, pmin)
= (128,0.15). Tt is clear from that figure that the amplitude of the GW saturates to a value of order
Paw/Po ~ 2-1075. At mt ~ 50, the maximum amplitude of the spectra has already reached pg, /po ~
10~%, while at time mt =~ 100, the maximum has only grown a factor of 2 with respect to mt =~ 50.
From times mt = 150 till the maximum time we reached in the simulations, mt = 2000, the maximum of
the amplitude of the spectrum does not seem to change significantly, slowly increasing from ~ 2 - 1076
0 ~ 2.5-1075. Despite this saturation, we see in the simulations that the long momentum tail of the
spectrum keeps moving towards greater values. This displacement is precisely what one would expect from
turbulence, although it is clear that the amplitude of the new high momentum modes never exceed that of
lower momentum. In order to disscard that this displacement towards the UV is not a numerical artefact,
one should further investigate the role played by the turbulent scalar fields as a source of GW. Here, we
just want to remark that the turbulent motions of the scalar fields, seem not to increase significatively
anymore the total amplitude of the GW spectrum. Indeed, in a recent paper [22] where GW production
at reheating is also considered, it is stated that GW production from turbulent motion of classical scalar
fields, should be very supressed. That is apparently what we observe in our simulations although, as
pointed above, this issue should be investigated in a4ri1ore detailed way. Anyway, here we can conclude



that the expansion of the Universe during reheating in these hybrid models, does not play an important
role during the time of GW production, and therefore we can be safely ignore it.

4 Gravitational Waves from Chaotic Inflation

The production of a relic GWB at reheating was first addressed by Khlebnikov and Tkachev (KT) in
Ref. [18], both for the quadratic and quartic chaotic inflation scenarios. Recently, chaotic scenarios were
revisited in Ref. [20, 21]. Also very recently, Ref. [22] studied in a very detail way, the evolution of GW
produced at preheating in the case of a massless inflaton with an extra scalar field.

In Refs. [18] and [20], the procedure to compute the GW from reheating relied on Weinberg’s formula
for flat space-time [45]. However, in chaotic models, the expansion of the universe cannot be neglected
during reheating, so Weinberg’s formula can only be used in an approximated way, if the evolution of
the universe is considered as an adiabatic sequence of stationary universes. In Ref. [17], however, we
adopted a different approach that takes into account the expansion of the universe in a self-consistent
manner, and allows us to calculate at any time the energy density and power spectra of the GW produced
at reheating (see section 2). Using our technique, we will show in this section that we reproduce, for
specific chaotic models, similar results to those of other authors. In particular, we adapted the publicly
available LATTICEEASY code [31], taking advantage of the structure of the code itself, incorparating
the evolution of Eq. (7), together with the equations of the scalar fields, Eqs. (4), into the staggered
leapfrog integrator routine.

Here we will concentrate only in an scenario with a massless inflaton x, either accompanied or not by
an extra scalar field ¢. Such scenarios are described by the potential

A 1
Vix.9) = 7x" + 59°Xx7¢° (40)
Rescaling the time by and the physical fields by a conformal transformation as
a(7) x(7) a(r) ¢(7) a(r)
Xc\T) = —F/=—F— Oe(T) = —=—=, dT:—XO\/th7 41
T BT T By a0 )

then the equations of motion of the inflaton and of the extra scalar field, Eq. (4), can be rewritten in
terms of the conformal variables as

"

a
Xo — V3xe — —Xe+ (X2 +q92)xe =0 (42)
" 72 _ CL_N 2 —
(bc v ¢C a XC + QXC¢C - 07 (43)

where the prime denotes derivative with respect to conformal time. Since the universe expands as
radiation-like in these scenarios, a(7) ~ 7, so the terms proportional to a”/a in Eqgs. (42) and (43)
are soon negligible, as explicitly checked in the simulations. Thanks to this, the model is conformal to
Minkowski.

The parameter ¢ = g2/ controls the strength and width of the resonance. For the case of a massless
inflaton without an extra scalar field, we just set ¢ = 0 in Eq. (42) and ignore Eq. (43). However, in that
case, fluctuations of the inflaton also grow via parametric resonance. Actually, they grow as if they were
fluctuations of a scalar field coupled to the zero-mode of the inflaton with effective couplig ¢ = g?/\ = 3,
see Ref. [46]. Following Refs. [18] and [20], we set A = 1071* and ¢ = 120. Since this case is also computed
in [22], we can also compare our results with theirs. Moreover, we also present results for the pure Ay*
model with no extra scalar field, a case only shown in Ref. [18].

We begin our simulations at the end of inflation, when the homogeneous inflaton verifies xo ~ 0.342M,
and xo ~ 0. We took initial quantum (conformal) fluctuations 1/v/2k for all the modes up to a certain
cut-off, and only added an initial zero-mode for the inflaton, x.(0) = 1, x.(0)’ = 0. In Figs. 6 and 7, we
show the evolution of 2, during reheating, normalized to the instant density at each time step, for the
coupled and the pure case, respectively. In the case with an extra scalar field, the amplitude of the GWB
saturates at the end of parametric resonance, when the fields variances have been stabilized. This is the
beginnig of the turbulent stage in the scalar fields, wHB:h seems not to source anymore the production of
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Figure 6: The spectrum of the gravitational waves’ energy density, for coupled case with A = 10~'4 and
g*/A = 120. The spectrum is shown accumulated up to different times during GW production, so one
can see its evolution. At each time, it is normalized to the total instant density. This plot corresponds
to a N = 128 lattice simulation, from 7 = 0 to 7 = 240.

GWs, as already stated in Refs.[20, 22]. For the pure case, we also see the saturation of the amplitude of
the spectra, see Fig. 7, although the high momentum tail seems to slightly move toward higher values.

Of course, in either case, with and without an extra field ¢, in order to predict today’s spectral window
of the GW spectrum, we have first to normalize their energy density at the end of GW production to the
total energy density at that moment; then to redshift the GW spectra from that moment of reheating,
taking into account that the rate of expansion have changed significantly since the end of inflation, see
Eq.(20). In particular, the shape and amplitude of GW spectra for the case with the extra scalar field
coupled to the inflaton with ¢ = 120, seems to coincide with the espectra shown in Ref. [22]. On the
other hand, we also reproduce a similar spectra to the one shown in [18], for the case of the pure quartic
model. Thanks to the tremendous gain in computer power, we were able to resolve the ’spiky’ pattern
of that spectrum with great resolution. For the first time, it is clearly observed the exponential tail for
large frequencies, not shown in Ref. [18]. The most remarkable fact, is that we also confirm that the
peak structure in the GW power spectrum, see Fig. 7, remains clearly visible at times much later than
the one at which those peaks have dissapeared in the scalar fields’ power spectrum. So, as pointed out
in Ref. [18], this characteristic feature will allow us to distinguish this particular model from any other.

Let us emphasize that we have run the simulations till times much greater than that of the end of
the resonance stage, both for the pure and the coupled case. The role of the turbulence period after
preheating seems, therefore, not to be very important, despite its long duration. Apparently, the no-go
theorem about the suppresion of GW at turbulence, discussed in [22], is fulfilled. In Refs. [27, 48] it was
pointed out that gauge couplings or trilinear interactions could be responsible for a fast thermalization
of the universe after inflation (see also Ref. [49]), but as long as this takes place after the end of the
resonace stage, in principle this should not affect the results shown above.

5 Conclusions

To summarize, we have shown that hybrid models are very efficient generators of gravitational waves at

preheating, in three well defined stages, first via the tachyonic growth of Higgs modes, whose gradients
43



le-10 ¢

le-15¢

le-20

K/ X A2 10

Figure 7: The spectrum of the gravitational waves’ energy density, for the pure case, with A = 107,
Again, we show the spectrum accumulated up to different times during GW production, normalized to
the total instant density at each time. The plot corresponds to a N = 128 lattice simulation, from 7 =0
to 7 = 2000.

act as sources of gravity waves; then via the collisions of highly relativistic bubble-like structures with
large amounts of energy density, and finally via the turbulent regime (although this effect does not seem
to be very significant in the presence of scalar sources), which drives the system towards thermalization.
These waves remain decoupled since the moment of their production, and thus the predicted amplitude
and shape of the gravitational wave spectrum today can be used as a probe of the reheating period in
the very early universe. The characteristic spectrum can be used to distinguish between this stochastic
background and others, like those arising from NS-NS and BH-BH coalescence, which are decreasing with
frequency, or those arising from inflation, that are flat [50].

We have plotted in Fig. 8 the sensitivity of planned GW interferometers like LIGO, LISA and BBO,
together with the present bounds from CMB anisotropies (GUT inflation), from Big Bang Nucleosynthesis
(BBN) and from milisecond pulsars (ms pulsar). Also shown are the expected stochastic backgrounds of
chaotic inflation models like A¢?, both coupled and pure, as well as the predicted background from two
different hybrid inflation models, a high-scale model, with v = 1073Mp and A ~ g% ~ 0.1, and a low-scale
model, with v = 107°Mp and A ~ g? ~ 10~ !, corresponding to a rate of expansion H ~ 100 GeV. The
high-scale hybrid model produces typically as much gravitational waves from preheating as the chaotic
inflation models. The advantage of low-scale hybrid models of inflation is that the background produced
is within reach of future GW detectors like BBO [4]. It is speculated that future high frequency laser
interferometers could be sensitive to a GWB in the MHz region [12], although they are still far from the
bound marked with an interrogation sign.

For a high-scale model of inflation, we may never see the predicted GW background coming from pre-
heating, in spite of its large amplitude, because it appears at very high frequencies, where no detector has
yet shown to be sufficiently sensitive, unless the spectrum can be extrapolated to lower frequencies, where
there are interferometric detectors like BBO which could see a signal. On the other hand, if inflation oc-
cured at low scales, even though we will never have a chance to detect the GW produced during inflation in
the polarization anisotropies of the CMB, we do expect gravitational waves from preheating to contribute
with an important background in sensitive detectors like BBO. The detection and characterization of such
a GW background, coming from the complicated and4anostly unknown epoch of rehating of the universe,
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Figure 8: The sensitivity of the different gravitational wave experiments, present and future, compared
with the possible stochastic backgrounds; we include the White Dwarf Binaries (WDB) [47] and chaotic
preheating (A¢?*, coupled and pure) for comparison. Note the two well differentiated backgrounds from
high-scale and low-scale hybrid inflation. The bound marked (?) is estimated from ultra high frequency
laser interferometers’ expectations [12].

may open a new window into the very early universe, while providing a new test on inflationary cosmology.
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Holography and Entanglement Entropy

Tadashi Takayanagi'

Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Abstract
We review our recent formulation [1, 2] of computing entanglement entropy in a
holographic way. The basic examples can be found by applying AdS/CFT correspon-
dence and the holographic formula has successfully been checked in many examples
of conformal field theories. We also explain the covariant formulation of holographic
entanglement entropy which is closely related to the covariant entropy bound (Bousso
bound) in an interesting way.

1 Introduction

In gravitational theories, the degree of freedom which is contained in a given region A is not proportional
to the volume, but to the area of its boundary 0A. This is because if we put a lot of materials inside A,
then they eventually make a black hole and this gives the upper bound of the allowed entropy in A. In
this way, the property of the gravitational theory is rather different from the familiar systems described
by the law of quantum mechanics, where the entropy is extensive. This suggests that the true degree of
freedom in a d+2 dimensional gravity is actually equally described by that of a d+1 dimensional quantum
manybody system. This is known as the holographic principle [3]. This idea has been played crucial role
in the recent development of the string theory, especially in the context of AdS/CFT correspondence [4].
The AdS/CFT relates the d + 2 dimensional anti-de Sitter spacetime to a d + 1 dimensional conformal
field theory (CFT).

However, the holography in other spaces such as the de Sitter spacetime has not been studied well.
This is because there is no simple way to realize such spaces in string theory, though in principle we can
find (slightly complicated) examples for e.g. de-Sitter space [5]. Therefore it is intriguing and helpful
to explore a general principle of holography which may allow us to find the holographic dual for any
spacetime without relying on explicit examples in string theory. For this purpose, it is a nice idea to find
a universal physical observables by which we can formulate the holographic principle generally. Clearly,
the correlation functions, which are often quoted and studied in AdS/CFT, are not suitable for this aim,
since we need to specify which operators we consider and thus we need to know the precise spectrum or
field contents of the dual theory.

The purpose of this talk is to present a candidate of such a useful quantity. We claim that the
quantity called entanglement entropy, which can be defined in any quantum mechanical systems, is a
universal physical observable in holography. We will explain how the entanglement entropy in quantum
field theories (QFTs) is related a certain geometrical quantity in the dual gravity background. In the
first half, we assume that the spacetime is static for simplicity, where the entropy is time-independent. In
the latter half, we extend the result in the static case to the time-dependent backgrounds by presenting
a covariant formulation of holographic entanglement entropy. As will explain later, this construction has
an interesting connection to the covariant entropy bound known as the Bousso bound.

This article is organized as follows. In section 2, we will offer an basic definition and properties of
entanglement entropy. In section 3, we review the holographic calculation of entanglement entropy in a
static spacetimes. In section 4, we consider its generalization to time-dependent spacetimes by looking
at the covariant formulation. In section 5, we summarize the conclusions and discuss future problems.

1 E-mail:takayana@gauge.scphys.kyoto-u.ac.jp
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2 Definition and Properties of Entanglement Entropy

2.1 Definition

In order to define the entanglement entropy, we first divide a given quantum mechanical (manybody)
system into two parts (or subsystems) A and B. Accordingly, the total Hilbert space is factorized as

H=H,® Hp. (1)

A simple example is a spin chain, which is artificially divided into the left and right part of sites. Next
we introduce the reduced density matrix

pa = Trpp, (2)
for the subsystem A by tracing out Hp. p is the density matrix of the original system. Indeed, p4 is the
density matrix when we consider an operator which only depends on the information of H 4. Finally, the
entanglement entropy is defined as the von-Neumann entropy for p4 i.e.

Sa=—Trpalogpa. (3)

Notice that even if the total density matrix p is that of pure state (i.e. the entropy of p is vanishing),
still we get a non-vanishing entropy S4 > 0 (except that A and B are totally decoupled) since we traced
out B and this leads to some ambiguity of information, which is measured by the von-Neumann entropy
S4.

2.2 Basic Properties

Here we summarize the basic properties.

First of all, the entanglement entropy is not an extensive quantity and because of this it has a rather
different property than the familiar thermal entropy. But, if we consider the high temperature limit, the
entanglement entropy S4 includes a extensive part which is equal to the thermal entropy in A.

Let us assume that the total system is described by a pure state e.g. the system at zero temperature.
Then we can show S4 = Sp in a straightforwardly. However, this is violated when p is a mixed state.

It is also useful to consider the case where we divide the system in many parts. Especially assume
that the Hilbert space is factorized as H = Hy ® Hg ® Ho ® Hp. Then we can show the inequality
known as the strong subadditivity (see e.g. [6] for a review)

Sa+B+c + S8 < Satp + Spyc. (4)

This has been known to be the most strong constraint which the entanglement entropy should satisfy and
it can be derived from the positivity of the norm of Hilbert space. By setting B to zero, (4) is reduced
to the subadditivity Sqa1c <S4 + Sc. The strong subadditivity represents the concave property of the
von-Neumann entropy. For example, in [7], it has been shown that the strong subadditivity applied to
2D CFTs leads to the entropic version of the c-theorem.

2.3 Various Applications

The entanglement entropy has been played important roles in various areas in physics. First of all, it
is a crucial quantity in the research of quantum information theory and quantum computation. In this
context, the entanglement entropy measures the amount of quantum information [8].

Also recently it has been employed as a quantum order parameter in condense matter systems such
as a spin systems, quantum Hall liquid and so on [9, 10]. Especially, it is expected that it can distinguish
different quantum vacua such as the presence of anyons when the low energy limit is described by a
topological field theory. Notice that in such a topological theory, the correlation functions behave trivial
and are not useful. Also in the numerical simulation of quantum many body systems using the density
matrix renormalization?, the entanglement entropy measures the obstruction of the numerical simulation
by approximating the degree of freedom by finite size matrices. Thus we expect that it diverges at the
quantum phase transition point and this is the reason why the entanglement entropy plays the role of an
order parameter.

2Roughly speaking this is a quantum version of the method of compressing information.
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2.4 Entanglement Entropy in QFT and Area Law

Consider a QFT on a d + 1 dimensional manifold R; x N , where R; and N denote the time direction
and the d dimensional space-like manifold, respectively. We define the subsystem by a d dimensional
submanifold A C N at fixed time ¢t = tg. We call its complement the submanifold B. The boundary of
A, which is denoted by dA, divides the manifold N into two submanifolds A and B. Then we can define
the entanglement entropy S4 by (3). Sometimes this kind of entropy is called geometric entropy as it
depends on the geometry of the submanifold A. Since the entanglement entropy is always divergent in
a continuum theory, we introduce an ultraviolet cut off a (or a lattice spacing). Then the coefficient in
front of the divergence turns out to be proportional to the area of the boundary A of the subsystem A

as first pointed out in [11],

Sa=7- Arzzif/l) + subleading terms, (5)

where vy is a constant which depends on the system. This behavior can be intuitively understood since the
entanglement between A and B occurs at the boundary dA most strongly. This result (5) was originally
found from numerical computations [11] and checked in many later arguments.

The simple area law (5), however, does not always describe the scaling of the entanglement entropy in
generic situations. As we will discuss in details in the next subsections, the entanglement entropy of 1D
quantum systems at criticality scales logarithmically with respect to the linear size [ of A, Sx ~ §logl/a
where c is the central charge of the CFT that describes the critical point.

Before we proceed to further analysis of entanglement entropy, it might be interesting to notice that
this area law (5) looks very similar to the Bekenstein-Hawking entropy (BH entropy) of black holes which
is proportional to the area of the event horizon

Area of horizon

Spu = 1O ) (6)
where G is the Newton constant. Intuitively, we can regard S4 as the entropy for an observer who is
only accessible to the subsystem A and cannot receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an observer sitting in A, i.e., outside of the
horizon. Indeed, this similarity was an original motivation of considering the entanglement entropy in
QFTs [12, 11]. An important motivation of our holographic calculations of the entanglement entropy is
actually to explain this similarity from the holographic viewpoint.

2.5 Explicit Computations in 2D CFT

In order to find the entanglement entropy, we first evaluate tr p'y, differentiate it with respect to n and
finally take the limit n — 1 (remember that p4 is normalized such that tra pa = 1)

. otraph —1
Sa = Jm = "
o) n 9 n
= *%UAA PAln=1= *%IOgtrA Phln=1- (8)

This is called the replica trick. Therefore, what we have to do is to evaluate tra p'j in our 2D system.
The first line of the above definition (7) without taking the n — 1 limit defines the so-called Tsallis
n_1
entl"opy, Sn,Tsallis = trAlpff;L~ 3
This can be done in the path-integral formalism as follows. We first assume that A is the single

interval x € [u,v] at tg = 0 in the flat Euclidean coordinates (tg,z) € R%. The ground state wave

function ¥ can be found by path-integrating from ¢ty = —oo to tg = 0 in the Euclidean formalism
d(tp=0,2)=¢o(x)
¥ (éof) = [ D =59, 9)
tp=—00

t

1 [e3
3The Tsallis entropy is related to the alpha entropy (Rényi entropy) So = % through Sy Tsallis = i [e(1=®)Sa

1]. The @ — 1 and a — oo limits of the alpha entropy give the von Neumann entropy and the single-copy entanglement
entropy, respectively.
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Figure 1: (a) The path integral representation of the reduced density matrix [pa]s,¢_. (b) The n-sheeted
Riemann surface R,,. (Here we take n = 3 for simplicity.)

where ¢(tg,x) denotes the field which defines the 2D CFT. The values of the field at the boundary ¢
depends on the spacial coordinate x. The total density matrix p is given by two copies of the wave
function [p]%% = U (¢)¥(¢}). The complex conjugate one ¥ can be obtained by path-integrating from
tg = oo to tg = 0. To obtain the reduced density matrix p4, we need to integrate ¢y on B assuming
¢o(x) = ¢{(x) when = € B.

tp=

[oalsro- = (Z1)7 / " DS 16 (0(+0,2) = ¢4 (2)) - 6 ($(=0,2) —¢_(2)),  (10)

tp=—00 €A

where Z; is the vacuum partition function on R? and we multiply its inverse in order to normalize p4
such that tr4 pg4 = 1. This computation is sketched in Fig. 1 (a).
To find tr4 p’, we can prepare n copies of (10)

Palérior [PAlgydn (PG b s (11)

and take the trace successively. In the path-integral formalism this is realized by gluing {¢;+(z)} as
¢i—(x) = dit1)+(x) (i =1,2,---,n) and integrating ¢;; (x). In this way, tra p; is given in terms of the
path-integral on an n-sheeted Riemann surface R,, (see Fig. 1 (b))

Zn
traph = (Zl)*”/ D¢ e %) = (12)

(tm,x)ER, (Z1)"

To evaluate the path-integral on R,, it is useful to introduce replica fields. Let us first take n
disconnected sheets. The field on each sheet is denoted by ¢x(tg,z) (k=1,2,---,n). In order to obtain
a CFT on the flat complex plane C which is equivalent to the present one on R,,, we impose the twisted
boundary conditions

(€™ (w — ) = Prpr(w —w), G (w — v)) = dp1(w —v), (13)

where we employed the complex coordinate w = x + itp. Equivalently we can regard the boundary

condition (13) as the insertion of two twist operators 3, ™ and &, at w = u and w = v for each
(k—th) sheet. Thus we find

n—1

traph = [[(@5® (), ®w)). (14)
k=0
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When ¢ is a real scalar field, this is a non-abelian orbifold. To make the situation simple, assume
that ¢ is a complex scalar field. Then we can diagonalize the boundary condition by defining n new fields
O = %Zle e2milk/n g, They obey the boundary condition

qzk(e%i(w _ u)) — eQwik/nék(w o u)7 &k(e%ri(w o 'U)) _ e—27rik/n¢~5k(w _ ’U). (15)

Thus in this case we can conclude that the system is equivalent to n—disconnected sheets with two twist
operators 0y, and o_y/,, inserted in the k—th sheet for each values of k. In the end we find

n—1 1
traph = [[(orm@o_/m@) ~ (u— 0) T Lo B/ = () TEOU), (16)
k=0
where Ay, = —% (%)2 + %% is the (chiral) conformal dimension of oy, /,,. When we have m such complex
scalar fields we simply obtain
n—1 ]
tra pﬁ = H <Uk/n(u)0—k/n(v)> ~ (U - U)ig(nil/n)a (17)
k=0

setting the central charge ¢ = 2m.
To deal with a general CFT with central charge ¢, we need to go back to the basis (13). The paper
[13] showed that the result (17) is generally correct. The argument is roughly as follows. Define the

coordinate z as follows .

ZZ(:Z:Z) (18)

This maps R,, to the z-plane C. In this simple coordinate system we easily find (T'(z))¢ = 0. Via
Schwartz derivative term in the conformal map we obtain a non-vanishing value of (T'(w))g, . From that
(

1—n~2). Thus

£

result, we can learn that twist operators & in (14) have conformal dimension A, = 55

we find the same result (17) for general CFTs as follows from (14).
Applying the formula (8) to (17), we find* the famous result [14]

l
SA:E log

3 a’ (19)

where a is the UV cut off (or lattice spacing) and we set | = v — u.

By applying appropriate conformal maps, we can compactify a direction of the two dimensional flat
space. If we do so in the space direction, after some computations we find the entanglement entropy on
a circle with the length L [13] as follows

L
Sa= ¢ log ( sin ﬂ) , (20)

where [ < L is the length of the subsystem A.
On the other hand, if we periodically identify the (Euclidean) time direction, we get the result at
finite temperature T' = S~ [13]

Sa = Elog <5sinh 7Tl> . (21)

3 Holographic Entanglement Entropy for Static Spacetime

3.1 The Setup of Holography

As we have reviewed we can define the entanglement entropy S4 in any QFTs for each choice of the
boundary 0A. In this sense we always have infinite different quantities for a given QFT. Even though

4Here we neglect a constant term which does not depend on I, L and a.

52



in two dimensional CFT they can be analytically computed by using the conformal map method as
in [13], the calculations in higher dimensional QFTs or CFTs are generally complicated and difficult.
Nevertheless, we expect that the entanglement entropy play the role of order parameter of quantum
phase transitions and it is quite useful if we can compute this quantity explicitly in a strongly coupled
theories.

For this purpose, the holographic dual computation, if it exists, will be very useful because we expect
that a quantum physical observable in the QF T side corresponds to a certain classical geometrical quantity
in the dual gravity theory as is so in the AdS/CFT. Therefore we would like to consider the holographic
calculation of the entanglement entropy in QFTs in this section.

The arguments below are not necessarily restricted to the setup of AdS/CFT correspondence, but we
consider a rather general setup of the holography.

We will work in the general setup of holography where the (quantum) gravity in the bulk d + 2
dimensional spacetime M is dual to a QFT on its (d + 1) dimensional boundary 9M. If we stick to the
AdS/CFT correspondence, M is the asymptotically AdS spacetime and the gravity on M is dual to a
QFT with a UV fixed point defined on the boundary M.

We assume that the spacetime M is static to make the argument simple. We will later discuss
general time-dependent cases in the next section. Then we can express M as M = R; X N, where the d
dimensional manifold N represents the time slice and R, is the time direction. Also on the boundary we
have OM = R; x ON.

3.2 Holographic Entanglement Entropy

To define the entanglement entropy, we divide the time slice N into A and B as we explained before.
Since we are interested in the bulk gravity dual calculation, we would like to somehow extend this division
to the bulk spacetime M. Our principle is as follows; as is clear in the area law of entanglement entropy,
the boundary 0A is the most physically important object. So we extend 0A to a surface 4 in the entire
M such that 0v4 = 0A. Notice that this is a surface in the time slice N, which is a Euclidean manifold.
Of course, there are infinitely many different choices of v4. We claim that we have to choose the minimal
area surface among them. This is uniquely determined and we call this 4 below.

We are now in a position to present our holographic formula. We argue that the holographic entan-
glement entropy is simply given by ()

Area(ya
Sy = W7 (22)
where GS\?H) is the Newton constant in the gravity theory on M. The above formula is reminiscent of
the Bekenstein-Hawking formula of black hole entropy, though in our case 4 is no longer than a horizon.

Indeed, we can motivate our formula (22) from the following intuitive argument. The holography
relates the bulk gravity to a non-gravitational theory on its boundary. Thus we expect that a part of
the bulk corresponds to the information of a certain region in the boundary. In our setup, we relate
the information includes B in the boundary theory, whose amount is measure by S4, to the bulk region
defined by the one inside 4. The reason why we take the minimal area surface is that we are applying
the idea of the entropy bound and we are trying to find the most strict bound. This part will be discussed
in detail in the next section.

If we restrict to the AdS/CFT setup, we can formally derive the holographic formula (22) from the
bulk to boundary relation (GKPW relation) [15] as shown in [16]. As we have explained in the previous
section, the computation of Trp’;, whose derivative about n in the limit n — 1 leads to the entropy Sa,
is equivalent to that of the partition function on the n-copied of the original manifold with the cut along
OA. In other words, the manifold is defined by putting the negative deficit angle 27(1 —n) on the original
spacetime. Following the AdS/CFT, what we have to do is to extend this geometry on the boundary
toward the bulk region. We assume that the deficit angle surfaces extends to the entire the bulk AdS.
This is denoted by v4. Then the Ricci scalar behaves like a delta function

R =4n(1—-n)d(v4). (23)
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Then we plug this in the gravity action
1
Suis =~ | daTRYGREN) 4o (24)
167TG§§+2) M Ve

where we only make explicit the bulk Einstein-Hilbert action. Other parts which come from the boundary
terms and the other fields contributions do not affect our computation here.

The basic principle of AdS/CFT i.e. the bulk to boundary relation [15] equates the partition function
of CFT with the one of AdS gravity. Thus we can holographically calculate the entanglement entropy
S as follows

0
Sa=——logTrp}|n=1=

0 lumm] _ Area(a)
on

_= = —r 25
on 4GS 4G &
This reproduces our holographic formula (22). The action principle in the gravity theory requires
that v4 is the minimal area surface.
Finally we would like to point that this holographic formulation assumes the existence of non-trivial
minimal surfaces. In the spacetime with a warp factor as in AdS spaces, we expect this property. We
think this is an interesting constraint on the spacetime which has a holographic interpretation.

3.3 Many Evidences for the Holographic Formula

Since the above arguments are pretty formal and assume the AdS/CFT correspondence, we need to check
explicitly this claim by comparing both sides directly. Indeed, several different checks have been made
until now and they have turn out to be all successful. In this subsection we would like to give a very brief
overview of these agreements.

e The area law (5) known in QFT can be easily reproduced holographically. The warp factor in the
AdS space leads to the UV divergence of the dual CFT [1]. Since the leading contribution to the
area of v4 comes from the region near the boundary, it should be proportional to the area of the
boundary i.e. A. This leading divergence of the area clearly scales as ~ a~ (=1 for AdSq, o, which
indeed agrees with the area law.

e We find perfect agreements in the lowest dimensional case of the AdS3/CFT; setup [1]. In this
case v4 is a geodesic line which connects the two points which define the division into A and B.
It is also possible to show that the entanglement entropy at finite temperature can be reproduced
from the geodesics length in the BTZ black holes. These arguments will be reviewed in the next
subsection.

e Though in the higher dimension, it is not easy to calculate the entanglement entropy in QFTs ana-
lytically, still we can show the semi-qualitative agreements between the CFT and AdS calculations.
In particular, for the logarithmic terms of the entropy we can show the precise agreement as its
coefficient is proportional to a linear combination of central charges. For details, refer to the second
paper of [1].

e In the presence of a horizon, the minimal surface v4 tends to wrap the (apparent) horizon. Then
the wrapped part gives a extensive contribution to the holographic entanglement entropy. This
agrees with the fact that the entanglement entropy includes the thermal part and we know that
thermal entropy is dual to the black hole entropy which is given by the Bekenstein-Hawking area
formula. In other words, our holographic formula generalizes the black hole entropy formula.

e We can holographically derive the strong subadditivity (4) in a very simple way [17] (see also [6]).

e If we apply the holographic formula to the AdSs/CFT} setup, which comes from the near horizon
limit of 4D or 5D extremal black holes, then it reproduces the Wald entropy formula in the presence
of the higher derivative correction to the Einstein-Hilbert action [18].

e The holographic formula is nontrivially consistent with the covariant entropy bound (Bousso bound).
This will be discussed in the next section.
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3.4 Holographic Entanglement Entropy in AdS3;/CFT,

Here we present a detailed analysis of the holographic entanglement entropy in AdSs/CFT5. According
to AdS/CFT correspondence [4], the gravitational theories on this space are dual to 1 + 1 dimensional
conformal field theories with the central charge [19]

3R

c=—=0,
26

(26)

where Gg\?) is the Newton constant in three dimensional gravity. In the global coordinate, the metric of
AdS3 becomes

ds® = R?(— cosh? pdt? + dp? + sinh? pd?). (27)

At the boundary p = oo of the AdS3, the metric is divergent. To regulate relevant physical quantities

we need to put a cutoff pg and restrict the space to the bounded region p < pg. This procedure corresponds

to the ultra violet (UV) cutoff in the dual conformal field theory. If we define the dimensionless UV cutoff

§ (o< length), then we find the relation e” ~ §~!. In the example of the previous section, § should be
identified with

e’ ~ 5t =1L/a. (28)

Remember that L is the total length of the system and a is the lattice spacing (or UV cutoff). Notice
that there is actually an ambiguity about the O(1) numerical coefficient in this relation®.

In the global coordinate of AdSs (27), the 1+ 1 dimensional spacetime, in which the CFTy is defined,
is identified with the cylinder (¢,0) at the (regularized) boundary p = pg. Then we consider the AdS dual
of the setup of computing the entanglement entropy. The subsystem A corresponds to 0 < 6 < 27l/L
and we can discuss the entanglement entropy by applying our proposal (22). In this lowest dimensional
example, the minimal surface 4, which plays the role of the holographic screen [3, 20], becomes one
dimensional. In other words, it is the geodesic line which connects the two boundary points at § = 0 and
0 = 2wl/L with ¢ fixed (see Fig. 2) .

Then to find the entropy we calculate the length of the geodesic line v4. The geodesics in AdS 42
spaces are given by the intersections of two dimensional hyperplanes and the AdS;;s in the ambient
R?%*1 gpace such that the normal vector at the points in the intersections is included in the planes. The
explicit form of the geodesic in AdSs3, expressed in the ambient X € R22 space, is

= R «
X = ———=sinh(A/R) - Z+ R |cosh(A\/R) — —=sinh(A/R)| - ¥, 29
T sinh(\/R) (VR) = s sinb(\/ )| -7 (29)
where a = 1 4 2sinh? pg sin?(nl/L); = and y are defined by
Z = (cosh pgcost,cosh pgsint,sinh pg, 0),
¥ = (coshpgcost,cosh pgsint,sinh pg cos(27l/L), sinh pg sin(2wl/L)) . (30)

The length of the geodesic can be found as

Length = /ds = /d)\ = A, (31)

where A, is defined by

l
cosh(\,/R) = 1+ 2sinh? py sin? % (32)

Assuming that the UV cutoff energy is large e > 1, we can obtain the entropy (22) as follows (using

(26))

_ R 200 s 2 LY € po i T
SAfwlog (e sin” — fglog e sin—+ | (33)
4Gy

Indeed, this entropy exactly coincides with the known 2D CFT result (20), including the (universal)
coefficients after we remember the relation (28).

5However, this ambiguity does not affect universal quantities which do not depend on the cut off a and we will consider
such quantities in the later arguments.
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Figure 2: (a) AdSs space and CFT; living on its boundary and (b) a geodesics v4 as a holographic
screemn.

It may be useful to repeat the similar analysis in the Poincare coordinates of AdSs ds? = f—;(fdtQ +
dz? + dz?). We pickup the spacial region (again call A) —1/2 < x < /2 and consider its entanglement
entropy. We can find the geodesic line v4 between z = —[/2 and z = [/2 for a fixed time ¢

(z,2) = %(cos s,sins), (e<s<m—e). (34)

The infinitesimal € is the UV cutoff and leads to the cutoff zyy as zyy = % Since e” ~ z¢/z near the
boundary, we find z ~ a. The length of 74 can be found as

/2 d l
Length(v4) = 2R / S~ _9Rlog(¢/2) = 2Rlog - (35)

s s

Finally the entropy can be obtained as follows

g, = Leneth(ya) ey L (36)
4G 3 7a
This again agrees with the well-known result (19) as expected.

Next we consider how to explain the entanglement entropy at finite temperature 7 = ! from the
viewpoint of AdS/CFT correspondence. Since we assumed that the spacial length of the total system L
is infinite, we have /L < 1. In such a high temperature circumstance, the gravity dual of the conformal
field theory is described by the Euclidean BTZ black hole [22]. Its metric looks like

ds® = (r? —r2)dr? + 72 _r2 dr? + r?dp?. (37)
+

The Euclidean time is compactified as 7 ~ 7 + 2:+R to obtain a smooth geometry. We also impose the
periodicity ¢ ~ ¢+ 2m. By taking the boundary limit » — oo, we find the relation between the boundary
CFT and the geometry (37)
s = il < 1. (38)
L T4+

The subsystem for which we consider the entanglement entropy is given by 0 < ¢ < 27l/L at the
boundary. Then by applying our proposal (22), the entropy can be computed from the length of the
space-like geodesic starting from ¢ = 0 and ending to ¢ = 27l/L at the boundary r = co for a fixed time.
To find the geodesic line, it is useful to remember that the Euclidean BTZ black hole at temperature T'
is equivalent to thermal AdSs3 at temperature 1/7T. If we define the new coordinates

R R
r=rycoshp, 7=—60, p=—t, (39)
T+ T4+
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Figure 3: (a) Minimal surfaces y4 in the BTZ black hole for various sizes of A. (b) v4 and yp wrap the
different parts of the horizon.

then the metric (37) indeed becomes the one in the Euclidean Poincare coordinates with ¢ replaced by
it. Now the computation of the geodesic line is parallel with what we did just before. We only need to
replace sinh p and sint with cosh p and sinh¢. In the end we find (31) with A, is now given by

cosh ()]\;) =1+ 2cosh? 00 sinh? (7;) , (40)

where we took into account the UV cutoff e”® ~ 3/a. Then our area law (22) precisely reproduces the
known CFT result (21).

It is also intriguing to understand these calculations geometrically. The geodesic line in the BTZ black
hole takes the form shown in Fig. 3(a). When the size of A is small, it is almost the same as the one in
the ordinary AdSs. As the size becomes large, the turning point approaches the horizon and eventually,
the geodesic line covers a part of the horizon. This is the reason why we find a thermal behavior of the
entropy when [/ > 1ie. Sq ~ g—cﬁl The thermal entropy in a conformal field theory is dual to the black
hole entropy in its gravity description via the AdS/CFT correspondence. In the presence of a horizon, it
is clear that Sy is not equal to Sp (remember B is the complement of A) since the corresponding geodesic
lines wrap different parts of the horizon (see Fig. 3(b)). This is a typical property of entanglement entropy
at finite temperature as we mentioned in section 2.2.

Also as shown recently in [18], when A is very closed to the total system, v4 is divided into two pieces,
the circle which wraps the horizon and the one localized at the boundary. This leads the precise relation
between the entanglement entropy on the circle S4 and the BTZ black hole entropy Spp

lim (Sa(l) = Sa(L = 1)) = Sba, (41)

where again L is the total length of the boundary.

4 Covariant Holographic Entanglement Entropy and Covariant
Entropy Bound

4.1 Covariant Entropy Bound

So far we have only discussed static spacetimes. However, it is much more interesting to consider hologra-
phy in a time-dependent spacetime as eventually we would like to understand cosmological backgrounds
such as the de-Sitter space from a holographic viewpoint. Here we assume that there is a time-like
boundary where the metric diverges as is so in the time-dependent asymptotically AdS spaces.

In the previous argument, we assumed a time slice on which we can define minimal surfaces since
its signature is Kuclidean. However, in our time-dependent case there is no longer a natural choice of
the time-slices as we have infinitely many different ways of defining the time slices. Thus we need to
consider the entire Lorentzian spacetime. Then we are in a trouble since in Lorentzian geometry there is
no minimal area surface as the area vanishing if the surface extends in the light-like direction. In order
to resolve this issue, let us remember an analogous problem; the covariant entropy bound so called the
Bousso bound.
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In general, if we get heavy objects together in a small region and continue to bring another one into
the region, this system eventually experiences the gravitational collapse. Therefore we have a upper
bound of the mass and entropy which can be included inside of the surface ¥. The bound for the entropy
in flat space time is called the Bekenstein bound and it is given by

Area(Y)
Sy < eI (42)
where ¥ is a codimension two closed surface in the spacetime. It is also more interesting to generalize this
bound to any time-dependent backgrounds like the cosmological ones. This requires to find a covariant
description. It is obvious that the Bekenstein bound (42) is not covariant since the definition of the
entropy included inside ¥ is not covariant but depends on the choice of the time slice. The covariant
entropy bound was eventually formulated by Bousso [20] and it is given by

Area(X
Spiz) < 74(;1(\[ )- (43)

The light-like manifold L(X) is called the light-sheet of ¥. This is defined by the manifold which is
generated by the null geodesics starting from the surface ¥. We require that the expansion 6 of the null
geodesic is non-positive 6 < 0. In the flat spacetime, this is just a half of light-cone and the same is true
for the AdS spacetime as it is conformally flat. Then the quantity S;s) means the entropy which pass
through the light sheet L(X), which is covariantly well-defined. One more interesting thing of the Bousso
bound is that we can apply the bound even if the surface ¥ has boundaries, which is quite useful in the
holographic setup as we employ below.

4.2 Covariant Holographic Entanglement Entropy

Now we would like to return to our original question of the covariant holographic entanglement entropy.
Our final claim [2] is given by
Area(va(t
Sa(t) = 465}1\;“2())’ (44)
where 74 (t) is the extremal surface in the entire Lorentzian spacetime M with the boundary condition
Ova(t) = OA(t). The time t is the time on the time slice in the boundary M and there is no unique
way to extend it to the bulk spacetime M.

This covariant formula (44) has been originally motivated from the Bousso bound (43) in [2]. To see
let us remember the fact that the AdS/CFT correspondence with a UV cut off z > a can be regarded as
a brane-world setup (RS2 [21]). Since we assume that the cut off is close to the UV a << R, the gravity
on the d 4+ 1 dimensional brane theory is very weak as

Gl])\?/jane G%ﬂk zd (d — l)ad—l Gl])\q];lk G%Ak’
where we assume the standard metric
dz? i (x)dxide?
ds? = 2% +91(2$) T ax 7 (46)

z
where g;; is the metric on the brane.

Now we would like to ask what is the Bousso bound on the brane gravity theory (see fig.4 in the
simplest case of AdS;/CFT,). We expect that the brane theory with quantum corrections taken into
account is dual to the bulk gravity theory which is classical, based on the standard idea of AdS/CFT
correspondence. Therefore we argue that the quantum corrected Bousso bound on the brane can be
found as the classical Bousso bound on the brane. First we start with the setup of Bousso bound at
the boundary M. We pick up a (closed) surface 9% which separates a time slice into the subsystem A
and B such that 0A = 9%. Now we define the light-sheet for . We consider both the future and past
directed ones and call them OLT(3) and L~ (X). The reason why we put the symbol 9 is that we are
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_ Light-sheet L

Figure 4: The setup of Bousso bound applied to the AdS3/CFTy in the Poincare coordinate ds? =

}j—;(—dt2 + dz? + dx?). In this simplified case, the future Cauchy horizon H* coincides with the future
light-sheet LT (X). In the above figure we only write the future light-sheet and not the past one just for
simplicity.

interested in their bulk extensions L*(X). Again there are infinitely many different ways of extending
the boundary light-sheets toward the bulk. We define the surface ¥ by the intersection L™ (X) N L™ (X).
For each of such a X, we get the Bousso bound (43).

Here the condition of non-positive expansions of the null geodesics on the light-sheets i.e. §* < 0
come into play. If there were not this condition we can choose arbitrary > and we can take them to be
light-like. However, the condition is rather strong enough that the area of allowed ¥ takes a non-trivial
minimum and therefore we can define an analogue of the minimal surface in this Lorentzian spacetime.
The minimum of the area corresponds to the most strict Bousso bound for a given boundary surface 0%
or equally the choice of the subsystem A.

This minimum of the area occurs when the expansions on the two light-sheets are both vanishing
6* = 0. This condition is actually equal to the statement that the surface ¥ is an extremal surface again
called 4, which is defined by the saddle point of the area functional in the Lorentzian spacetime.

The final observation is that the quantum Bousso bound on the brane will be saturated by the
entanglement entropy. This is motivated by the fact that the entanglement entropy represents a thermal
entropy plus quantum corrections and that it is defined by assuming that the subsystem B is completely
smeared, which will be expected to lead to the maximal entropy allowed in the region. If we assume this,
then we immediately reach the holographic entanglement entropy formula (44).

Before we conclude, let us discuss an example where we can apply the above covariant formula. We
consider the AdS Vaidya solution

ds® = —(r® — m(v))dv? + 2dvdr + r2d¢?. (47)

This is the solution to the Einstein equation with the negative cosmological constant in the presence of
null matter whose EM tensor looks like Ty, = 5= dfgl()"). The null energy condition requires T}, > 0 and
thus we find that m(v) is a monotonically increasing function of the (light-cone) time v.

This background is asymptotically AdS3 and if we assume that m(v) is a constant, then it is equivalent
to the static BTZ black hole [22] with the mass m. Thus our background (47) describes an idealized
collapse of a radiating star in the presence of negative cosmological constant. The dual theory is expected
to be a CFT in a time-dependent background. The time-dependence comes from the time-dependent

temperature. We can now apply the covariant entanglement entropy formula (44) and in the end we find

2
Sa(v) =< 10g£+M

4
3 |los - ; ; (48)

as the expansion of small m(v). The null energy condition guarantees that this is a monotonically increas-
ing function of time. This shows that the entanglement entropy in this background is a monotonically
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increasing function of time as is so in the second law of the thermal entropy. We believe this behavior
of entanglement entropy in black hole formation processes is rather general. However, we would like to
stress that we are not claiming that the entanglement entropy is always increasing. For example if we
start with the system with maximally entangled, the entanglement entropy will decrease after a small
perturbation due to the de-coherence phenomenon.

We would also like to mention that if we stay with the brane-world setup we mentioned before and
consider the brane-world black hole, then the holographic formula (44) tells us that the quantum corrected
entropy of the black hole on the brane is equal to the entanglement entropy in the same theory as pointed
out in [23]. This is because the horizon of this black hole is actually an extremal surface.

5 Conclusions and Discussions

In this talk we have presented the holographic formula which computes the entanglement entropy in the
dual QFTs. It takes the form of the area law and can be regarded as a generalization of the Bekenstein-
Hawking entropy formula. We also gives a covariant formulation which is useful to analyze the holographic
dual of the time-dependent background.

There are many interesting future problems. We will mention a few of them here. One thing which
would hopefully be clear in near future is the question how much information the entanglement entropy
contains. Since we have infinitely many choices of the subsystem A, the entanglement entropy include
infinite amount of information. The natural question is whether the information of entanglement entropy
in a given QFT is enough to extract the metric of its holographic dual spacetime.

Another intriguing future problem is to understand any implications of holography in cosmological
background such as a de-Sitter space from the viewpoint of entanglement entropy. This will be directly
related to the understanding of the mysterious horizon entropy of de-Sitter space.
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Abstract

Observing gravitational microlensing events has become a powerful technique for
studying dark objects and the surface profiles of distant stars. The MOA II mi-
crolensing survey is a Japan-New Zealand collaboration that detects microlensing
events towards the Galactic Bulge and the Magellanic Clouds. A recently installed
1.8-m wide-field telescope, equipped with a large CCD camera, enabled us to make
high-cadence observations of most bulge microlensing events for the first time. This
new type of microlensing survey opened new vistas in the search for planets by mi-
crolensing, and also in the search for MACHOs. In this paper we review past obser-
vations and science of microlensing, and then describe the MOA II project and its
strategy.

1 Introduction

Gravitational microlensing is both a natural application of the general theory of relativity, and also
a potentially powerful tool in astronomy. The concept of gravitational lensing [1] was introduced by
FEinstein in 1936. In his paper, Einstein predicted two phenomena. One was the ”Einstein ring”. If two
stars are perfectly aligned on a line of sight, the rays of light from the more distant star are bent by
the gravitational field of the nearer star. As the bending angle is independent of the azimuthal angle,
the rays form a circular image, the so-called Einstein ring. If the stars are nearly aligned, a pair of
arcs is produced. However, Einstein said in his paper, ”Of course, there is no hope of observing this
phenomenon directly.” In spite of 70 year’s progress in observational technology, Einstein rings (or arcs)
are still difficult to observe. The resolution of the current largest optical interferometer VLTI (Very Large
Telescope Interferometer) is 2.2 msec. This may be compared with the diameter of the Einstein ring which
is typically less than 2 msec. To date, only one attempt has been made to directly resolve such an image
[2, 3], and this was not successful 2. The other phenomenon that Einstein predicted was magnification.
This is the apparent increase in brightness of the distant star caused by the gravitational lensing of the
nearer star, when the integrated light of the Einstein ring or arcs is detected. This phenomenon was also
thought to be difficult to observe. Einstein said ” Therefore, there is no great chance of observing this

1E-mail:abe@stelab.nagoya-u.ac.jp
2However, Einstein arcs and rings have been observed with aligned galaxies, for which the characteristic angle is of order
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Figure 1: Configuration and definitions of parameters of a single lens event.

phenomenon, even if dazzling by the light of the much nearer star B is disregarded.” However, modern
technology now permits us to observe hundreds of microlensing events annually through the magnification
effect.

The microlensing technique has been applied in a number of areas of astronomy. Because the effect
is independent of the luminosity of the nearer star (i.e., the lens star), the technique can be applied to
search for dark objects that are very difficult to detect by other means. Such dark objects might be,
for example, MAssive Compact Halo Objects (MACHOSs) [5], black holes [6], brown dwarfs, free-floating
planets, and extrasolar planets. Microlensing can also be used to probe the more distant star (i.e., the
source star). The magnification caused by microlensing depends sensitively on the angular separation
between the lens and source stars, especially when the separation is small and the magnification is high.
This enables the surface profile of a distant star to be resolved with remarkably high precision, allowing
its atmosphere to be probed [7] or, in one case, its shape to be determined [8].

The search for MACHOs using microlensing [9] was originally proposed by Paczytiscki. If the stars
in an external galaxy can be resolved, dark objects in the Halo in our galaxy may cause gravitational
microlensing of them. This could be detectable through a change of the brightness of a resolved star.
The magnification A(t) by a single lensing object is

u(t)? + 2

t) = 1
O O R W
where, u(t) is the projected distance between the source and the lens (see Fig.1),
u(t) = (ugnin + (UT(t - tO)/RE)2)1/27 (2)
Umin 1s the minimum wu(t), ¢y is the time of minimum, and Rg is the Einstein ring radius,
4GMD DDy,
RQE = c2 ’D = Ds ) (3)

where, G is the gravitational constant, M is the mass of the lens, ¢ is the velocity of light, and D;, D;s, Dy
are the distances between the observer and the lens, the lens and the source, the observer and the source,
respectively. The variation of the brightness with time, i.e. the light curve, is symmetric before and after
the peak (at tg) and it is achromatic. The timescale of the event is characterized by the Einstein radius
crossing time ¢ty = Rg/vp. Typical values of ¢ depend primarily on the masses of possible lenses, and
are estimated to be tg > 200days for black holes, 6 < tp < 150days for stars, 2 < tp < 6days for brown
dwarfs, and tg < 2days for planetary mass objects. As the time scales of most of events are expected to
be several days or more, most past microlensing surveys included only one or a few observations/night.

The probability for a microlensing event to occur is expressed by the optical depth 7. Here 7 is the
probability for microlensing to occur on a star at a given instant. If the mass density of the lensing
objects p(D;) is known, then 7 can be deduced from the relationship

Ps 4xrGD
T :/ 5 p(Dl)le (4)
0 €63
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Figure 2: Configuration of binary lensing projected to the lens (host star and a companion) plane. When
the source star is outside of the caustic (a), the number of images is 3. If the source star is on the caustic
(b), new images appear. If the source star is inside of the caustic (c), the number of images is 5.

Typical estimated values of 7 are ~ 1075, This implies that more than 10 stars must be monitored to
find microlensing events. Thus, observations must be carried out toward crowded stellar fields (Magellanic
Clouds, Galactic Bulge, or other galaxies), and wide-field surveys are necessary.

Using Paczynski’s scheme, first generation surveys were performed to search for any dark matter in
the form of MACHOs. These were conducted by MACHO (MAsive Compact Halo Object) [5], EROS
(Expérience pour la Recherche d’Objects Sombres) [10], and OGLE (Optical Gravitational Lensing Ex-
periment) [11]. Microlensing events towards the Large Magellanic Cloud (LMC) were reported by the
MACHO and EROS groups, and toward the Galactic Bulge by the OGLE group. Since then, more than
3,000 microlensing events have been discovered, mostly in bulge fields. As the number density of stars
in our Galaxy increases as the stellar mass decreases, the majority of microlensing events in the Galactic
Bulge are expected to be caused by lenses that are low-mass red dwarfs.

A large fraction of the stars in our galaxy have companions. Such binary stars are expected to act
as lenses for microlensing events too. But the magnification by a binary lens is complex compared with
that of a single lens. The rays of light are bent by the host and the companion stars and are folded by
each other. The magnification pattern on the source plane is divergent on closed lines named caustics.
If the source star passes over a caustic, the light curve is singular. The magnification caused by binary
lensing can be calculated by solving the lens equation,

0 (7] 6—1 5
B = <Q1|0|2 Q2|0_l|2) (5)
where, (3 is the source position vector projected onto the lens plane in units of Rg, 6 is the image position
vector, [ is the position vector of the companion (the host star is assumed at the origin), and ¢; and ¢o are
the mass ratio of the host star and the companion, respectively. Solutions [12] to Eq. 5 were obtained by
Scheneider and Weif. Recently, a simpler method [13] was devised by Asada. Figure 2(a-c) show images
for a binary configuration determined by Asada’s method. As seen in the figures, there are three images
when the source star lies outside the caustic. When the source star moves inside the caustic, the number
of images becomes five. Integrating over the images, the magnification of the lens may be calculated.
Alternatively, the Inverse-Ray Shooting (IRS) method may be used for binary and more complex lenses.
In the IRS method, rays of light generated by a hypothetical point source at the position of the observer
are traced through the lens to the source plane. The density of rays on the source plane represents the
magnification.

The light curve for binary lensing is generally quite complex and asymmetric. If the lens star has
a planet, the lens may be treated as a binary with a small mass ratio. The detectability of extrasolar
planets by gravitational microlensing was first treated in this manner[14]. The method is particularly
effective for finding planets in the ”lensing zone” which is an annular region from 0.6 to 1.6 Rg centred on
the lens star. In this region, the anomaly caused by a planet is amplified. Simulations show that planets
down to Earth-mass or less [15, 16] could be discoveéid in this region. A typical Einstein ring radius is



2—4AU in bulge microlensing events. This region corresponds to that occupied by the asteroid belt in our
solar system. As mentioned above, most Galactic Bulge microlensing events are caused by low-mass red
dwarfs, so planets orbiting such low-mass stars are the most common target of the microlensing method.
Planets may thus be detected by microlensing in very different regions from those explored by the radial
velocity and transit techniques.

In summary, the MOA II project aims to seek and identify a fraction of Galactic Dark Matter that
may exist in the form of MACHOs, and also to seek and identify extrasolar planets by gravitational
microlensing. The present paper is organized as follows. Our previous project, MOA I, is described in
Sec. 2, and extrasolar planets in Sec. 3. The MOA II project is introduced in Sec. 4. This includes
discussion of the observing strategy that is being used in MOA II. Finally, a summary is given in Sec. 5.

2 MOA 1 project

Japan-New Zealand collaboration MOA (Microlensing Observations in Astrophysics) project was started
in 1995. The observations were done toward Magellanic Clouds because the primary target was the
MACHO search. Due to the raising interest of extrasolar planet, observations toward Galactic bulge
were started later. The observations were performed with use of 61 cm B & C telescope in Mt. John
university observatory (170.°28'E,43.°59'S), New Zealand. The first CCD camera was MOA-cam1 which
had 9 1k x 1k TI chips. Large mosaic CCD camera MOA-cam2 [17] which had 3 2k x 4k SITe CCD
chips was installed in 1998. One of the advantages of Mt. John is its unique location. Mt. John is the
southernmost astronomical observatory in the world except for Antarctica. In winter (June and July),
the Galactic bulge passes close to the zenith at midnight. Due to the high latitude, the bulge observation
can be continued more than 13 hours. Mt. John is a good observation site for Magellanic Clouds too.
Due to the high latitude, Magellanic Cloud don’t set. Observations can be done anytime in clear nights.

In spite of the small aperture, MOA I obtained a number of scientific results: measurement of optical
depth toward Galactic bulge [18], measurements of the atmosphere [19] and the shape [8] of a distant star,
period-luminosity relation of long-period variables in LMC [20], Candidate of extrasolar planet transits
[21], etc. The highlight of MOA T is discovery of the first extrasolar planet with microlensing [22]. We
will mention this discovery in Sec. 3. The MOA I microlensing alert was started in 2000 and continued
until 2005. The numbers of alerts were 13-74 alerts/year. After 10 years MOA I survey, MOA II took
over microlensing survey.

3 Extrasolar planets

Finding planets outside of the solar system is one of the most exciting issues in current astronomy. Since
first discovery [23] of extrasolar planet orbiting around a sun-like star, more than 200 planets [24] have
been discovered. Most of them were discovered with radial-velocity method which detects periodic change
of radial velocity of the host star caused by the planet. As this method is more sensitive to massive close-
in planets, most of the planets discovered are massive or close-in planets. Discovery of a number of
close-in giant planets named "hot Jupiters” raized discussions [25] wheter our solar system is special or
not. However this question is hard to answere because access to low-mass wide orbit planets have been
very difficult.

Looking back to our solar system, eight planets are orbiting around the sun. They can be categorized
into three types: rocky (terrestrial) planets, gas giants (Jovian planets), and icy (uraniun) planets. Inner
four planets (Mercury, Venus, Earth, and Mars) are rocky planets which have solid rocky surfaces. Jupiter
and Saturn are gas giants which don’t have solid surface and covered with hydrogen and helium gases.
Outer two planets (Uranus and Neptune) are icy planets which have solid ice surfaces.

The standard model of the planet formation is the core-accretion model [26]. In this model, dusts in
the protoplanetary disk are coagulated then formed kilo-meter size planetesimals. The main component
of the dusts is expected to be silicates at inside and ice at outside (less than melding point). Thus the
core of the planets are formed with rocks at inside and ices at out side. The planetesimals are collide each
other and form larger objects named protoplanets. Planets are formed by giant collisions of protoplanets.
At the final stage of planet formation, the cores of planets at right outside of the ”snow line” absorb the
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Figure 3: A result of a simulation [27] of the core-accretion model. Planet mass vs. semi-major axis.
Red points represent gas giants, blue points are icy planets, and green points are rocky planets.

gas around them and gas giants are generated. This model succeeded to explain our solar system very
well. A number of simulation studies have been made with this model. Figure 3 shows one of the results
[27] of the simulation for a sun-like star. As shown in the figure, there are a number of rocky planets
inside of the snow line (~ 2 — 3AU) and icy planets in the outside. However, access to the low-mass
rocky or icy planets was very difficult with conventional planet search. To confirm core-accretion model
at extrasolar planetary system, new method has been necessary.

As we have mentioned, the microlensing planet search [14] was proposed by Mao and Paczyriscky in
1992. But the real discovery was difficult. After several pioneering attempt, the first extrasolar planet
with microlensing [22] was discovered in 2003 by MOA I and OGLE. Anomaly in the light curve was
discovered in OGLE 2003-BLG-235/MOA 2003-BLG-053 microlensing event. Figure 4 shows the light
curve of OGLE 2003-BLG-235/MOA 2003-BLG-053. From the detailed analysis of the light curve, the
mass ratio of the planet and the host star was determined to be 0.003970 504+ and separation to be
1.120 + 0.007. To determine absolute values of the masses and the separation, determination of the
distance to the lens system is necessary. As the determination of the distance from the observations is
very difficult, the first estimate was done using stochastic method with a Galactic model. The obtained
values were about 1.5M; for the planet mass and about 3AU for the separation. In 2006, Hubble
Space Telescope observed [28] the motion of the host star, then the proper motion and the distance
were constrained. Using this constraint, the planet mass and the separation were better determined to
be 2.6'_"8:§M 7 and 4.3J_r3:2AU , respectively. The microlensing planet search is thought to be potential
method to discover down to earth-mass planet or less [15, 16]. But the first discovery was still a giant
planet.

4 MOA II project

The MOA 1II project was started in 2002. New telescope which has 1.8-m aperture was installed in Mt.
John Observatory in 2004. Figure 5 shows the 1.8-m telescope and the dome. To achieve very wide field
of view, a prime focus optics with a parabolic primary mirror and four corrector lenses was adopted (see
Fig. 6). This optics was effective to make wide-field telescope in a limited cost, because making primary
mirror become much easier than short-focal length Ritchey-Crétien optics and no secondary mirror was
needed. A new CCD camera named MOA-Cam3 [29] which has 10 2k x 4k E2V CCD chips was installed
at the focal point. Figure 7 shows MOA-cam3 CCD camera. This system has strong advantages compared

66



'1;'—I —: §MDA T

B 1% =OGLE 7
12-%F ] —
E -
g i
B o
E Q
5
(B) —
Ahch e G- & i
k= 1 | 1 11 | 1 1 1 | 1 1 1 | 1 T | L1 11 I L1 1 1 I L1 11 I 11
2820 2840 2860 28E0 2830 2835 2840 2845
HLIDD - 2450000 HLITD - 2450000

Figure 4: Discovery of first extrasolar planet with microlensing. The light curve of the microlensing
event OGLE 2003-BLG-235/MOA 2003-BLG-053 [22] is shown. Two sharp peaks are caused by caustic
crossing.

to past and on-going microlensing surveys. Table 1 shows comparison of the performances of microlensing
surveys. The field of view was 2.2degree? which is about 6 times wider than that of OGLE. This wide
field of view enabled us to take new observation strategy: high-cadence observation. There are two kinds
of strategies in microlensing planet search: high magnification and high-cadence observations for all of the
events. The difference of the strategies is due to the shape of the caustics of the planetary microlensing.

Figure 8 shows a magnification pattern of a planetary lensing. There are two kinds of caustics in
the planetary lensing: central caustics and planetary caustics. The central caustics are always around
the host star, thus the anomaly by the central caustics always appear [30] around the peak of high-
magnification event. On the other hand, planetary caustics are hard to predict where they are. That
means predicting anomaly is impossible for the planetary caustics. To detect anomaly caused by central
caustics, watching peaks of high-magnification events is a clear very efficient strategy because observers
can be concentrated into limited number of events and limited time. Once such event is discovered, no
large CCD cameras are required. There are four major groups in microlensing observations: OGLE,
MOA, PLANET/ROBOnet, and uFUN. In these groups, OGLE and MOA have large CCD cameras and
working on microlensing event surveys. As the primary target is to find microlensing events, most of the
telescope times are used for the microlensing survey. The other groups PLANET/ROBOnet and pFUN
are working on follow-up observations of the events discovered by OGLE and MOA. These observations
are done in target of opportunity base and no large CCD camera is used. Thus their observations are
concentrated around the peaks of high-magnification events and specific target events they are interested
in.

Table 1: Comparison of microlensing surveys

MACHO EROS | OGLE MOATI | MOA II

Aperture (m) 1.27 1.0 1.3 0.61 1.8
FOV (deg?) 0.5 0.938 | 0.325 1.27 2.18
Site Australia Chile Chile NZ NZ
Status Finished | Finished | Active | Finished Active

In spite of the effectiveness of the high-magnification strategy, this method is thought to be inefficient
to find low-mass planets. The size of the central caustic is proportional [31] to the mass ratio ¢ and
shrinks quickly with the mass ratio decrease. On th87other hand, the size of the planetary caustics are



Figure 5: MOA II 1.8 m telescope at its opening ceremony.

Primary mirror
Corrector

Figure 6: Optics of the MOA I telescope. A simple prime focus with a parabolic primary mirror and for
corrector lenses was adopted.
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Figure 7: A large CCD camera MOA-cam3. The effective area is 12cm x 15¢m.

-0.4

-0,2

0.2

0.4

Figure 8: A magnification pattern of a planetary lensing. The host star is at origin, and the separation
of the planet is 1.4 (outside of this figure). The mass ratio is 0.01. The small wedge shape caustic (left)
is the central caustic and a large diamond shape caustic (right) is the planetary caustic.
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Figure 9: Light curves of a central caustic event (a) and a planetary caustic event (b). The anomaly
by a central caustic always appear around the peak of a high-magnification event. The anomaly by a
planetary caustic is hard to predict.

proportional [32] to the square root of the mass ratio. Anomaly shrinks both in time and change of
brightness as the size of the caustic decrease. Thus finding planetary caustics are expected to be more
efficient than finding central caustics. However, finding planetary caustic is more difficult because there
is no prediction of anomaly to appear. Taking strong strategy such as high magnification is impossible
to find planetary anomaly. Simply watching most of the events almost uniformly in time is only possible
strategy. In this scheme, wider field of view is more efficient because higher-cadence observation can be
done for most of the microlensing events.

The MOA 1I observation has started in 2005. The observations are being done for the 22 Galactic
bulge fields. The exposure time is 60 seconds each. These 48 degree? are scanned every one hour. To
find very short anomaly caused by low-mass planet, central 2 fields are observed every 10 minutes. A real
time analysis is beeing done to find microlensing events on time. To find microlensing events efficiently,
a Difference Image Analysis (DIA) [33] is used in the real time analysis. The MOA II microlensing alert
system has started in 2006 for the Galactic bulge fields. The number of events were 168 in 2006 and 488
in 2007.

In 2005, an exciting microlensing event OGLE 2005-BLG-390 [34] was occurred. Figure 10 shows the
light curve of this event. As seen in the figure, a small bump appeared on a single lens curve. From
detailed analysis of the light curve, the bump is found to be caused by a low-mass planet. The mass of the
planet was estimated to be 5.5752 Mg, and the separation to be 2.6702 AU, where Mg, is the mass of the
Earth. At that time, it was the lowest mass planet discovered outside of the solar system. The host star
was a low-mass (M = 0.227027My) M dwarf. Combined with the separation, the surface temperature
was estimated to be ~ 50K, a cool icy planet. It is the first discovery of extrasolar icy planet. MOA II
succeeded to observe second peak caused by the planetary caustic. That means the MOA II wide-field
survey itself can be a powerful follow-up observation for most of the microlensing events. The discovery
of the low-mass planet shows possibilities of discovery of Earth-mass planet with microlensing in near
future.

In spite of the microlensing surveys by MACHO and EROS groups, the fraction of MACHOs in the
Galactic halo is still not well determined and a controversial issue in the dark matter problems. In 2000,
the MACHO group reported [35] that the fraction of MACHOs is 20% for a typical halo model with a 95%
confidence interval of 8%-50%. Although some of them were found to be variable stars, the reanalysis
[36] of the data showed that the MACHO fraction is still 0.16 £ 0.06. On the other hand, EROS group
reported a microlensing event in LMC previously. However they reported later that the events are not
due to the microlensing but a variable star. They analyzed all of their LMC data and concluded that they
have no candidate and set an upper limit [37] to the MACHO fraction. Figure 12 shows the final result of
EROS group and that of MACHO group for comparison. As shown in the figure, there are discrepancies
between EROS and MACHO results although a common small allowed region around 0.2 < M < 1.0
and 0.05 < f < 0.1. In addition, there are lots of discussions about the locations of the lensing objects:
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Figure 10: Discovery of first extrasolar icy planet. Light curve [34] of the microlensing event OGLE
2005-BLG-390 is shown.
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Figure 11: Extrasolar planets discovered with radial velocity and microlensing. The planet masses vs.
the orbital separations are shown. The red crosses are discoveries with radial velocity method. Green
squares are discoveries with microlensing. The brown triangles show solar system planets. The green
circle is the planet discovered in OGLE 2005-BLG-390.
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lensings by MACHOs or lensing by LMC stars.

One of the aims of the MOA II project is to solve the MACHO problem and obtain well constrained
value of the MACHO fraction. There are several advantages in MOA II to study MACHOs compared
to other groups. The larger aperture enables us to observe more stars then to obtain more statistics
of the microlensing events. The wide field of view enables us high-cadence observations to obtain well
sampled light curves. Well sampled light curves are useful to discriminate background supernovae as
well as variable stars. The locations of the lensing objects can be expected to be inferred from detailed
analyses of the light curves if the parallax or finite source effect takes place. Well sampled light curves are
useful for such analyses too. The high-sampled data around the peak of microlensing events are useful
to find finite-source effects. From the analyses of finite-source effects, distances to the lens objects can
be constrained. Durations of anomalies caused by finite-source effect are expected to be several hours to
several days. In the past surveys, observations have been limited to a few times per night. Detecting short
anomalies have been difficult. We are observing 14 LMC fields and 2 SMC fields in 300 second exposure
time each. The central three fields are being observed every 30 minutes, while other fields are observed
a few times every night. The MOA II survey is expected to obtain high sampled well constrained results
in the MACHO problems.

5 Summary

Thanks to progress made in recent years in modern CCD technology, microlensing observations have
become a powerful tool in astronomy. Observations of microlensing have been applied to seek dark
objects and to probe distant stars. The first planet detection by microlensing was made jointly by MOA
I and OGLE. Following this discovery, the method has matured and become a powerful method for
planet hunting. Observations with the 1.8-m MOA II telescope commenced in 2005 using the MOA-cam3
CCD camera. Its wide field of view is being utilized to carry out high-cadence observations towards
the Galactic Bulge and the Magellanic Clouds. This observational strategy has opened new channels for
planet discovery, including the discovery of low-mass planets. The discovery of a 5.5 Earth-mass planet in
OGLE 2005-BLG-390 event confirmed the efficacy of the high-cadence strategy. In the MACHO search,
high-cadence observations toward the LMC and the SMC are expected to impose strict constraints on
the fraction of MACHOs in halo of our galaxy.

The MOA 1II project is supported by the Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT), the Japan Society for Promotion of Science (JSPS), and the Marsden Fund of New
Zealand.
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Dynamics of Plasma around Black Hole

and the Relativistic Jet Formation
— Power of GRMHD simulations —

Shinji Koide'

! Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan

Abstract
We review the topics of the relativistic jets in the universe and plasma around the
black hole, which was presented in our talk at JGRG17. Expecially, we emphasize the
power of general relativistic magnetohydrodynamics (GRMHD) numerical simulations
in analyzing the physics of relativistic plasmas around the black holes.

1 Introduction

Superluminal motions have been observed from active galactic nuclei (AGNs), such as the elliptical galaxy
MB8T and the classical quasar (QSO) 3C273 [1, 2]. The apparent speed of the superluminal motion from
MR8Y7 is vap = (5 ~ 6)c, where ¢ is the light speed. These motions are explained by the propagation of
blobs which are directed almost toward us with the Lorentz factor larger than vap/c. This is believed to
be an evidence of the relativistic jet ejected from AGNs. The scale of this kind of jets reaches to several
Mega light-years.

In out galaxy, superluminal motions were also observed from radio objects such as GRS1915+105 [3].
The apparent speed of this superluminal motion is several times light speed, and then the velocity of the
jet is estimated to be (0.8 — 0.9)c. These objects are called micro-quasars (micro-QSOs). The scale of
this jets is several light-years. Recently, observations suggest that gamma-ray bursts (GRBs) also include
the relativistic jets. The Lorentz factor of this jet is several hundreds and its scale is several light-years
[4].

In spite of the drastic differences of the Lorentz factors and the scales of the relativistic jets, their
formation mechanism may be common. That is, at the footpoint of the relativistic jet, a rapidly rotating
black hole exists, and the drastic phenomena in the disk around the black hole cause the relativistic jet
[5]. However, the distinct mechanism of the jet, that is, the acceleration of the plasma near the black hole
to the relativistic regime and the collimation of the relativistic plasma flow, has not been confirmed yet.
A number of mechanisms have been proposed until now. These mechanisms are classified by the kinds
of driven force of the jet: the forces are magnetic force, radiation pressure, and gas pressure. Recently,
the magnetic mechanism has been considered most promising among them, because it can explain both
the acceleration and collimation of the jet at once. Here we concentrate on the feature with respect to
the magnetic mechanism of the jet formation. To investigate the magnetic mechanism of the relativistic
jet formation around the black hole, we have to consider the interaction between the plasma and the
magnetic field around (near) the black hole. The simplest approximation of the plasma in the magnetic
field around the black hole is given by the ideal general relativistic magnetohydrodynamics (GRMHD)
equations. The ideal GRMHD equations are constituted by the general relativistic conservation laws of
particle number, momentum, and energy, and the general relativistic Maxwell equations with zero electric
resistivity. Here, we usually use the adiabatic equation of state, which is not so good approximation of
the relativistic plasmas [6].

At early stage, the GRMHD was studied analytically with the assumptions of the steady-state and
the axisymmetry of the plasma and magnetic field around the black hole [7]. The equations consist of
the poloidal wind equation (Bernoulli equation) and the MHD equilibrium equation of magnetic flux
surfaces (Grad-Shafranov equation). Recently, the equations were solved within the approximation of
special relativistic poloidal wind equation and the region far from the black hole [8]. The solution shows
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clearly that the parabolic collimation relativistic jet whose Lorentz factor is several tens can be formed.
However, it does not clearly show the solution around the footpoint of the relativistic jet near the black
hole. Generally speaking, it is difficult to solve the GRMHD equations analytically in the neighborhood
of the black hole to the infinity. Here, the numerical method becomes demanded because it provides
the solution of the whole region from the closed vicinity of the black hole to the infinity consistently.
Within the ideal GRMHD, the numerical technique similar to that of nonrelativistic MHD is applicable
[9, 10, 11], and this has caused the rapid development of GRMHD simulations recently.

2 GRMHD numerical simulations

To present the power of the GRMHD numerical simulations for analysis of the relativistic plasma around
the black hole, we show two topics with respect to the energy extraction from the black hole through the
magnetic field and the formation of the relativistic jet from the black hole magnetosphere.

2.1 Energy extraction from rotating black hole through magnetic field

We performed numerical GRMHD simulations of rather simple system of the initially uniform rare plasma
and the uniform strong magnetic field around the rapidly rotating black hole whose rotation parameter is
a = 0.99995 [12, 13]. The numerical simulations showed that the magnetic field lines across the ergosphere
are twisted by the frame-dragging effect quickly. The twist of the magnetic field lines propagates along
the magnetic field lines as torsional Alfven waves. Through the torsional Alfven waves, the electromag-
netic energy is emitted from the ergosphere powerfully. The energy-at-infinity of the plasma decreases
and eventually it becomes negative. The negative energy-at-infinity corresponds to the negative mass.
When the plasma with the negative energy-at-infinity falls into the black hole, the energy of the black
hole swallowing the negative energy-at-infinity plasma reduces. This process clearly shows the energy
extraction from the black hole through the magnetic field. This process is called “MHD Penrose process”
[14] because it extracts the black hole energy through the negative energy-at-infinity of the matter, like
the Penrose process [15]. To realize the negative energy-at-infinity, the plasma have to get the angular
momentum opposite to the that of the black hole, like the Penrose process. The total angular momentum
is conserved, and thus the redistribution of the angular momentum is needed to realize the negative
energy-at-infinity. The Penrose process uses the particle fission to redistribute the angular momentum,
while in the MHD Penrose process, the magnetic tension redistributes the angular momentum. It is noted
that the Blandford-Znajek mechanism [16] uses the negative electromagnetic energy-at-infinity, while the
MHD Penrose process uses the negative energy-at-infinity of plasma [13].

2.2 Relativistic jet formation

This is the one of the main subjects of the GRMHD numerical simulations. In the case of initially
uniform magnetic field, the whole plasma falls into the black hole along the magnetic field, while the
electromagnetic energy propagates outwardly along the magnetic field lines. This shows the uniform
magnetic field severely forms the jet from the ergosphere, at least without the disk around the black hole.
This is because the centrifugal force can’t accelerate the plasma outwardly effectively. In the case of the
split monopole type 1nitial magnetic field, the relativistic outflow is formed due to the centrifugal force
[17]. The frame-dragging effect of the rapidly rotating black hole whose rotation parameter is a = 0.99995
twists the magnetic field lines across the horizon. The magnetic field lines are shaped like a propeller
screw. The rapidly rotating propeller screw accelerates the plasma around the black hole outwardly
effectively. The Lorentz factor reached to 2.0 in the numerical simulation at ¢ = 6.57g, where 75 is a
unit of time, which is defined as the Schwarzschild radius rg divided by the light speed ¢. This type of
outflow formation was also shown in the nonrelativistic MHD calculations of the system consisted of a
central star, an accretion disk, and magnetic field across the disk with both the analytical and numerical
methods [18, 19, 20]. The relativistic outflow shown by the GRMHD simulation is not collimated and
does not become a relativistic jet. The split monopole magnetic field forms the relativistic outflow, but
not the relativistic jet. The jet formation depends on the magnetic configuration around the black hole
sensitively.
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Next we performed the simulations with more realistic magnetic configurations. Generally speaking,
the dynamo effect in the accretion disk creates the closed magnetic field lines. Such a closed line of force
is unstable for magnetorotational instability [21]. The inner part of the magnetic field line falls into the
black hole, while the outer part of the line of force shifts outwardly. Then the magnetic field line bridges
between the ergosphere and the disk. Such a “magnetic bridge” between the ergosphere and the disk may
be plausible around the black hole. We performed the GRMHD simulations with the magnetic bridge
between the ergosphere and the disk around the rapidly rotating black hole as an initial condition (Fig.
1) [22]. The numerical results showed that the magnetic bridge is twisted by the frame dragging effect
rapidly and the magnetic pressure in the magnetic bridge increases quickly. The large gradient of the
magnetic pressure blows off the plasma near the black hole and the outflow is collimated by the magnetic
tension to form the jet eventually. Similar type jet formation was found in the non-relativistic MHD
simulations of the system with a star, disk, and the dipole magnetic field [23]. Unfortunately, the velocity
of the jet shown by the GRMHD simulation is (0.5 — 0.6)¢, i.e., sub-relativistic. Recently, longer-term,
larger-scale GRMHD simulations were performed by McKinney [24]. They showed that in the large scale
(~ 10%rg), the relativistic low-density jet is formed, whose Lorentz factor is 5 ~ 7.

3 Summary and future prospects

In this report, we review the numerical results of GRMHD briefly. Especially, we focused on two topics:
the energy extraction from the rotating black hole and the magnetically driven formation of the relativistic
jets. The former confirms the realization of the MHD Penrose process [12, 13] and the latter clarified the
detailed structure of the magnetically-driven relativistic jet formation [24]. Here we briefly mention the
future prospects of the GRMHD simulations for each astrophysical object.

1. AGN jets, micro-QSO jets: In these objects, the radiation can not be neglected. To include this
effect, we have to develop the numerical technique of “radiation GRMHD”. The electron-positron
pair creation/annihilation is also important, and the other atomic processes should be considered.

2. GRB jets: With respect this type of jet, the radiation and the atomic processes are important,
especially the neutrino creation/annihilation is important when we consider a collapsar as a model
of the progenitor [25]. The self-gravity of the disk around the black hole should also be considered.
To include this effect, we have to solve the Einstein equations [26].

In the point of the plasma physics, we have to consider the electric resistivity. In the “resistive”
GRMHD, magnetic reconnection is properly calculated. The magnetic reconnection may cause crucial
phenomena near the black hole, e.g., the magnetic reconnection in the ergosphere may extract the rota-
tion energy of the black hole [27]. The other effect of the plasma such as the Hall effect may be important.
To include these effects, we have to use the generalized Ohm’s law or general relativistic two-fluid ap-
proximation instead of the GRMHD. The beak-down of the GRMHD approximation near the black hole
will be examined with these new numerical methods.
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From Gravity Probe B to STEP:
Testing Einstein in Space
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Abstract

I summarize the history, current status and preliminary findings of the Gravity
Probe B (GPB) mission, which seeks to make the first direct measurements of the
geodetic and frame-dragging effects predicted by Einstein’s theory of general relativ-
ity. I then discuss the planned Satellite Test of the Equivalence Principle (STEP),
which will test the underlying assumption of Einstein’s theory, the equivalence of
gravitational and inertial mass. STEP will place important constraints on theories
that seek to go beyond general relativity, such as unified field theories based on higher
dimensions (string theory) and theories of dynamical dark energy (quintessence), both
of which predict the existence of new fields that may violate the equivalence principle.

1 Background to the Gravity Probe B Experiment

By coincidence, the successful launch of Gravity Probe B on 20 April 2004 (Fig. 1) came exactly 100 years
after the earliest published accounts of frame-dragging experiments, by August Foppl in Munich in 1904
[1]. Foppl, working as he was before general (and for that matter special) relativity, was investigating the
possibility of a coupling between the spin of the Earth and that of a pair of heavy flywheels whose rotation
axis could be aligned along either lines of latitude or longitude (Fig. 2). He was probably inspired by
earlier experiments of countrymen Immanuel and Benedict Friedlaender (1896) involving torsion balances
in the vicinity of spinning millstones, and by the writings of Ernst Mach, who famously speculated in
1883 that water in a spinning bucket might not exhibit the effects of centrifugal force “if the sides of the
vessel increased in thickness and mass until they were ultimately several leagues thick.” A sufficiently

Figure 1: Launch of Gravity Probe B

1E-mail:overduin@relgyro.stanford.edu
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August Foppl Foppl's experimental setup

Figure 2: Experiments in frame-dragging before general relativity

massive bucket, in other words, might carry the local inertial frame of the water around with it. Mach’s
Principle, as this idea came to be known, has proved to be of limited scientific value (Ref. 1 lists 21
different formulations of it in the literature, some mutually contradictory). Nevertheless Gravity Probe B
(GPB) can be seen as a modern-day realization of Mach’s proposal with an earth-sized bucket and the
role of water played by orbiting gyroscopes more than a million times more sensitive than the best inertial
navigation gyros on earth.

Albert Einstein was strongly influenced by Mach’s ideas, and his early attempts at gravitational
field theories all exhibited frame-dragging effects. It is somewhat surprising, therefore, that he did not
attempt to work out the Machian implications of general relativity himself. That was left to Hans
Thirring and Josef Lense (1918), after whom the general relativistic frame-dragging effect is often named.
(In a nice reversal of the usual course of events, Thirring had wanted to build an improved Foppl-type
experiment and only reluctantly settled for doing the theoretical calculation after he was unable to obtain
funding [1].) The terms “frame-dragging” and “Lense-Thirring” are sometimes used interchangeably with
“gravitomagnetic”, based on the close analogy between Maxwell’s equations and a subset of Einstein’s
field equations in the low-velocity, weak-field limit [2]. Such analogies did not begin with general relativity;
their existence was already suspected in 1849 by Michael Faraday, who designed experiments to search
for “gravitational induction.” The terminology must be used with care, however; for just as in ordinary
electrodynamics, the distinction between gravitomagnetic and gravitoelectric is frame-dependent, and
other phenomena besides frame-dragging are at least partly ”gravito-electromagnetic.” An example is
the geodetic effect, which involves the transport of angular momentum through a gravitational field and
was already studied two years before the Lense-Thirring effect by Willem de Sitter (1916). He showed
that the earth-moon system would precess in the field of the sun, an effect now called the solar geodetic
effect (although “heliodetic” might be more descriptive). De Sitter’s calculation was extended to rotating
test bodies such as the earth by Jan Schouten (1918) and Adriaan Fokker (1920), and the solar geodetic
effect is now sometimes referred to as the de Sitter or Fokker-de Sitter effect.

These effects became widely known when they were mentioned by Arthur Eddington in his textbook
of 1924. The idea of attempting to observe them with terrestrial gyroscopes was briefly considered in
the 1930s by P.M.S. Blackett, who discarded it as impractical [3]. Technological progress during World
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Figure 3: Genesis of Gravity Probe B

War II, however, brought the problem back into the realm of possibility. An advertisement for a new
“cryogenic gyroscope” in the December 1959 issue of Physics Today stimulated Leonard Schiff to revisit
some earlier calculations involving tests of Mach’s Principle and led to his elegant re-derivation of both
the geodetic and frame-dragging effects in the form now known as the Schiff formula:

joll
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where M, I and S refer to the mass, moment of inertia and angular momentum of the central body and
r and ¥ are the orbital radius and instantaneous velocity of the gyroscope. In a nice example of scientific
synchronicity, essentially the same results were arrived at independently months earlier by George Pugh,
a researcher at the Pentagon who also contributed the ingenious suggestion of shielding an orbiting
gyroscope from non-gravitational disturbances inside a drag-free satellite.

Frame-dragging arises due to a spin-spin interaction between the gyroscope and rotating earth, anal-
ogous to the interaction of a magnetic dipole with a magnetic field. In a polar orbit 642 km above the
earth, it causes a gyroscope’s spin axis to precess in the east-west direction by 39 milliarcsec/yr, an angle
so tiny that it is equivalent to the angular width of the object Pluto as seen from earth. The geodetic
effect is somewhat larger; it arises partly as a spin-orbit interaction between the spin of the gyroscope and
the “mass current” of the moving earth in the gyro rest frame. This is the analog of Thomas precession
in electromagnetism. The spin-orbit interaction accounts for one-third of the total geodetic precession;
the other two-thirds are not gravito-electromagnetic in origin, but arise due to space curvature around
the massive earth (an effect sometimes referred to as the “missing inch” [2]). In a 642 km polar orbit,
the geodetic effect causes a gyroscope’s spin axis to precess in the north-south direction by 6606 mil-
liarcsec/yr, an angle comparable to that subtended by the planet Mercury as seen from earth. The
measurement of precessions this small would eventually pose immense technical and scientific challenges,
an obstacle which fortunately did not deter Schiff (a theorist), Bill Fairbank (a low-temperature experi-
mentalist) and Bob Cannon (a gyroscope specialist) when they met one sunny afternoon in 1960 in the
Stanford university swimming pool to discuss the idea seriously for the first time (Fig. 3). GPB received
its first NASA funding in March 1964.

2 The Gravity Probe B Mission and Preliminary Results

In concept the experiment is simplicity itself: a gyroscope, a readout mechanism to monitor its spin axis,
and a telescope to compare this axis with the line of sight to a distant guide star (Fig. 4). In practice GPB
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Figure 4: Gravity Probe B concept

grew into one of the most complex experiments ever flown, requiring at least a dozen new technologies
that did not exist when it was conceived. Among these are the world’s roundest and most homogeneous
gyroscope rotors and a suspension system operating to levitate and maintain them within microns of their
housings over a dynamic range of eleven orders of magnitude in force. A novel readout scheme based
on the superconducting London moment was developed using ultra-sensitive superconducting quantum
interference device (SQUID) magnetometers. Expandable nested lead shields were employed to reduce
the ambient magnetic field. New techniques were invented to spin up the gyros, reduce vacuum pressure
and remove charge buildup on the rotors. Perturbing forces were suppressed by a drag-free control system
whereby any one of the gyroscopes could be isolated as an inertial “plumb line”; the rest of the spacecraft
was made to follow its motion by means of helium boiloff vented through a revolutionary porous plug
and specially designed thrusters. (This porous plug has since proved vital to other NASA missions
including COBE, IRAS, WMAP and Spitzer.) The resolution of the onboard telescope, fastened to the
gyro assembly by a novel quartz bonding technique, was enhanced by means of a beam splitter and image
dividers. Non-inertial motions of the guide star, IM Pegasi, were compensated by the use of long-baseline
radio interferometry to monitor its position relative to distant background quasars.

Once in orbit, GPB underwent an initial orbit checkout phase, which lasted until 27 August 2004
and has been described in detail elsewhere [4]. The science phase which followed lasted until 14 August
2005 (or 353 days, just under the original goal of one full year). The final post-flight calibration phase
then continued for a further 46 days until there was no longer enough liquid helium to maintain the
experiment at cryogenic temperatures. Fig. 5 shows one year’s worth of preliminary north-south data.
The predicted geodetic effect is already seen in the unprocessed gyro data to an accuracy level of 1%.
Table 1 shows the general relativistic predictions in both the north-south (NS) and east-west (EW)
directions compared to preliminary GPB results[5] (all figures in milliarcsec/yr). These numbers should
be regarded as preliminary. As might be expected in an experiment that goes six or more orders of
magnitude in gyro drift rate beyond anything that has gone before, two unexpected factors have cropped
up to complicate the data analysis. First, it became apparent during the science phase of the mission
that there were variations in the polhode rate of the gyros (polhode motion had been expected, but
its period had not been expected to change appreciably over the mission lifetime, given characteristic
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Figure 5: Seeing general relativity directly

gyro spin-down periods on the order of 10,000 years). It is critical to understand and model these
polhode variations in order to combine the data from successive orbits and thereby reduce the noise as
far as possible within the limits inherent in the SQUID readout system (roughly 1 milliarcsec in 5 hrs).
Second, misalignment torques (torques proportional to the angle between the spacecraft roll axis and the
line of sight to the guide star) appeared during the post-flight calibration phase that were larger than
expected. These classical torques must also be understood and modeled, because they can mimic the
desired relativity signal. Both factors have been traced to larger-than-anticipated electrostatic patches on
the gyroscopes. The misalignment torques are due to interactions between these patches and similar ones
on the gyro housings, and the time-varying polhode periods are caused by the fact that these interactions
extract energy from the spinning rotors, albeit at a rate that would be imperceptible were the rotors not
so perfect. (The energy loss amounts to ~ 10713 W, four orders of magnitude below the loss due to heat
radiation of ~ 1072 W for rotors at 2.2 K.) A current worst-case upper bound on systematic error due
to both factors together is 97 milliarcsec/yr in both directions (Table 1) [5]. However this will go down
significantly. In expectation of the unexpected, GPB was designed to take various kinds of “redundant”
data, and these are now proving their worth. In particular trapped-flux modeling is allowing the data
analysis team to reconstruct the behavior of the gyro rotors in real time. This, in combination with more
sophisticated method of data analysis, is expected to yield accuracies close to those originally envisioned
for the experiment. Final results are to be announced in 2008.

Table 1: Preliminary GPB results (initial year-long 4-gyro average [5])

(Terrestrial) Solar Guide star Net predicted Observed
geodetic geodetic  proper motion (Q2¢Rr) (Qobsa)
NS -6606 +7 +28+1 —6571£1 —6578 £ 9 (1o)
EW -39 -16 -20+1 -75+1 —87+9 (1o)

The final results from GPB will constitute a sixth and seventh test of general relativity, supplementing
the three “classical tests” (gravitational redshift, perihelion precession and light deflection), the Shapiro
time delay, and the spin-down of the binary pulsar in accordance with expectations based on the emission
of gravitational radiation [6]. They will strengthen constraints on metric theories as possible extensions
of general relativity, by placing new independent limits on the parameter v of the Parametrized Post-
Newtonian (PPN) formalism [7]. (In principle the GPB data can also constrain a second PPN parameter,
the preferred-frame parameter «, but this effect is probably too small to be observed.) They may also
impose new constraints on a wide variety of other “generalizations of general relativity.” Examples are
theories involving torsion (Hayashi and Shirafuji 1979 [8] and Halpern 1984 [9]; see Mao et al. 2006 [10]
and Flanagan et al.[11]), extra dimensions (Overduin and Wesson 1997 [12]; see Liu and Overduin 2000
[13]) and violations of Lorentz invariance (Bailey and Kostelecky 2006 [14]; see Overduin 2008 [15]).
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STEP

Figure 6: STEP concept: Galileo’s free-fall experiment in orbit

3 Satellite Test of the Equivalence Principle

By contrast with GPB, which has carried out two new tests of predictions of general relativity, STEP
will probe the underlying foundation of Einstein’s theory, the (local) equivalence of gravitational and
inertial mass. The equivalence principle (EP) originated in Newton’s clear recognition (1687) of the
strange experimental fact that mass fulfills two conceptually independent functions in physics, as both
the source of gravitation and the seat of inertia. Einstein’s “happiest thought” (1907) was the realization
that the local equivalence of gravitational and inertial mass tells us something very deep about gravity:
it tells us that the phenomenon of gravitation does not depend on the properties of matter (for it can
be transformed away by moving to the same accelerated frame, regardless of the mass or composition
of the falling object). Rather, the phenomenon of gravity must spring from the properties of spacetime
itself. Kinstein eventually identified the property of spacetime that is responsible for gravitation as its
curvature. General relativity, our currently accepted “geometrical” theory of gravity, thus rests on the
validity of the EP. But it is now widely expected that general relativity must break down at some level,
in order to be united with the other fields making up the standard model (SM) of particle physics. It
therefore becomes crucial to test the EP as carefully as possible.

Historically, there have been four distinct ways of testing equivalence: (1) Galileo’s free-fall method,
(2) Newton’s pendulum experiments, (3) Newton’s celestial method (his dazzling insight that moons and
planets could be used as test masses in the field of the sun) and (4) E6tvos’ torsion balance. Of these,
(3) and (4) are by far the most exact: the celestial method now makes use of lunar laser ranging to place
limits on the relative difference in acceleration toward the sun of the earth and moon of 3 x 10713 [16],
and similar constraints come from modern state-of-the-art torsion balance experiments [17]. But both
these methods are subject to fundamental limitations (modeling uncertainties and seismic noise) and it
is unlikely that they will advance significantly beyond the 10713 level. STEP is conceptually a return to
Galileo’s free-fall method, but one that uses a 7000 km high “tower” that constantly reverses its direction
to give a continuous periodic signal, rather than a quadratic 3 s drop (Fig. 6). A free-fall experiment
in space has two principal advantages over terrestrial torsion-balance tests: a larger driving acceleration
(sourced by the entire mass of the earth) and a quieter “seismic” environment, particularly if drag-free
technology is used. These and other factors will enable STEP to improve existing constraints on EP
violation by five to siz orders of magnitude, from ~ 10713 to 10718,
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The STEP design calls for four pairs of concentric test masses, currently composed of Pt-Ir alloy, Nb
and Be in a “cyclic condition” to eliminate possible sources of systematic error (the total acceleration
difference between A-B, B-C and C-A must be sero for three mass pairs AB, BC and CA). This choice
of test-mass materials is not yet fixed, but results from extensive theoretical discussions in the 1990s
suggesting that EP violations are likely to be tied to three potential determinative factors that can be
connected to a general class of string-inspired models: baryon number, neutron excess and nuclear electro-
static energy [18, 19]. The test masses are constrained by superconducting magnetic bearings to move in
one direction only; they can be perfectly centered by means of gravity gradient signals, thus avoiding the
pitfall of most other free-fall methods (unequal initial velocities and times of release). Their accelerations
are monitored with very soft magnetic “springs” coupled to a cryogenic SQUID-based readout system.
The SQUIDs are inherited from GPB, as are many of the other key STEP technologies, including test-
mass caging mechanisms, charge measurement and UV discharge systems, drag-free control algorithms
and proportional helium thrusters using boiloff from the dewar as propellant (Fig. 7). Prototypes of key
components including the accelerometer are in advanced stages of development. STEP is to be submitted
for NASA Phase A study as a Small Explorer (SMEX)-class mission in early 2008.

Theoretically, the range 10718 < Aa/a < 10713 is an extremely interesting one. This can be seen
in at least three ways. The simplest argument is a dimensional one. New effects in any theory of
quantum gravity must be describable at low energies by an effective field theory with new terms like
B(m/mqa) + O(m/mqc)? where 3 is a dimensionless coupling parameter not too far from unity and
mqg is the quantum-gravity energy scale, which could be anywhere between the grand unified theory
(GUT) scale mgut ~ 1016 GeV and the Planck scale mp; ~ 1012 GeV. In a theory combining gravity
with the SM, m could plausibly lie anywhere between the mass of an ordinary nucleon (mpyc ~ 1 GeV)
and that of the Higgs boson (myg ~ 100 GeV). With these numbers one finds that EP-violating effects
should appear between (muue/mp1) ~ 1071 and (my/mgut) ~ 10714 — exactly the range of interest.
This makes STEP a potential probe of quantum gravity [20].

The dimensional argument, of course, is not decisive. A second approach is then to look at the
broad range of specific theories that are sufficiently mature to make quantitative predictions for EP
violation. There are two main categories. On the high-energy physics side, EP violations occur in many
of the leading unified theories of fundamental interactions, notably string theories based on extra spatial
dimensions. In the low-energy limit, these give back classical general relativity with a key difference:
they generically predict the existence of a four-dimensional scalar dilaton partner to Einstein’s tensor
graviton, and several other gravitational-strength scalar fields known as moduli. In the early universe,
these fields are naturally of the same order as the gravitational field, and some method has to be found
to get rid of them in the universe we observe. If they survive, they will couple to SM fields with the
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same strength as gravity, producing drastic violations of the EP. One conjecture is that they acquire
large masses and thus correspond to very short-range interactions, but this solution, though widely
accepted, entails grave difficulties (the Polonyi or “moduli problem”) because the scalars are so copiously
produced in the early universe that their masses should long ago have overclosed the universe, causing it
to collapse. Another possibility involves a mechanism whereby a massless “runaway dilaton” (or moduli)
field is cosmologically attracted toward values where it almost, but not quite, decouples from matter; this
results in EP violations that lie in the same range as that identified above and can reach ~ 107 [21].
Similar comments apply to another influential model, the TeV “little string” theory [22]. The second
category of specific EP-violating theories occurs at the opposite extremes of mass and length, in the field
of cosmology. The reason is the same, however: a new field is introduced whose properties are such
that it should naturally couple with gravitational strength to SM fields, thus influencing their motion in
violation of the EP. The culprit in this case is usually dark energy, a catch-all name for the surprising but
observationally unavoidable fact that the expansion of the universe appears to be undergoing late-time
acceleration. Three main explanations have been advanced for this phenomenon: either general relativity
is incorrect on the largest scales, or there is a cosmological constant (whose value is extremely difficult
to understand) — or dark energy is dynamical. Most theories of dynamical dark energy (also known as
quintessence) involve one or more species of new, light scalar fields that could violate the EP [23]. The
same thing is true of new fields that may be responsible for producing cosmological variations in the
electromagnetic fine-structure constant o [24].

In all or most of these specific theories, EP violations are predicted to appear in the STEP range,
107 < Aa/a < 10713, To understand the reasons for this, it is helpful to look at the third of the
arguments alluded to above for regarding this range as a particularly rich and interesting one from
a theoretical point of view. This line of reasoning shares some of the robustness of the dimensional
argument, in that it makes the fewest possible assumptions beyond the SM, while at the same time
being based upon a convincing body of detailed calculations. Many authors have done work along these
lines, with perhaps the best known being that of Carroll in 1998 [25], which we follow in outline here.
Consider the simplest possible new field: a scalar ¢ (as motivated by observations of dark energy, or
alternatively by the dilaton or supersymmetric moduli fields of high-energy unified theories such as string
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theory). Absent some protective symmetry (whose existence would itself require explanation), this new
field ¢ couples to SM fields via dimensionless coupling constants [y (one for each SM field) with values
not too far from unity. Detailed but standard calculations within the SM (modified only to incorporate
¢) show that these couplings are tightly constrained by existing limits on violations of the EP. The
current bound of order Aa/a < 10712 translates directly into a requirement that the dominant coupling
factor (the one associated with the gauge field of quantum chromodynamics or QCD) cannot be larger
than Sqop < 107%. This is very small for a dimensionless coupling constant, though one can plausibly
“manufacture” dimensionless quantities of this size (e.g. a?/167), and many theorists would judge that
anything smaller is almost certainly zero. Now STEP will be sensitive to violations as small as 1078, If
none are detected at this level, then the corresponding upper bounds on Sqcp go down like the square
root of Aa/a; ie., to Bocp < 1079, which is no longer a natural coupling constant by any current
stretch of the imagination. For perspective, recall the analogous “strong CP” problem in QCD, where
a dimensionless quantity of order 1072 is deemed so unnatural that a new particle, the axion, must be
invoked to drive it toward zero. This argument does not say that EP violations inside the STEP range
are inevitable; rather it suggests that violations outside that range would be so unnaturally fine-tuned
as to not be worth looking for. As Ed Witten has stated, “It would be surprising if ¢ exists and would
not be detected in an experiment that improves bounds on EP violations by 6 orders of magnitude” [26].
Only a space test of the EP has the power to force us to this conclusion.

The fundamental nature of the EP makes such a test a “win-win” proposition, regardless of whether
violations are actually detected. A positive detection would be equivalent to the discovery of a new
force of nature, and our first signpost toward unification. A null result would imply either that no such
field exists, or that there is some deep new symmetry that prevents its being coupled to SM fields. A
historical parallel to a null result might be the Michelson-Morley experiment, which reshaped physics
because it found nothing. The “nothing” finally forced physicists to accept the fundamentally different
nature of light, at the cost of a radical revision of their concepts of space and time. A non-detection of
EP violations at the 1078 level would strongly suggest that gravity is so fundamentally different from
the other forces that a similarly radical rethinking will be necessary to accommodate it within the same
theoretical framework as the SM based on quantum field theory.

STEP should be seen as the integral “intermediate-scale” element of a concerted strategy for funda-
mental physics experiments that also includes high-energy particle accelerators (at the smallest scales)
and cosmological probes (at the largest scales), as suggested in Fig. 8. Accelerators such as the Large
Hadron Collider (LHC) may provide indirect evidence for the existence of new fields via their missing-
energy signatures. Astronomical observatories such as the SuperNova Acceleration Probe (SNAP) may
produce direct evidence of a quintessence-type cosmological field through its bulk equation of state. But
only a gravitational experiment such as STEP can go further and reveal how or whether that field couples
to the rest of the standard model. It is at once complementary to the other two kinds of tests, and a
uniquely powerful probe of fundamental physics in its own right.
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Properties of Rotating Black Holes
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ds* =(1-20)7"dr* + r2dQ* - (1-21)d?’,
dQ* = d6* +sin’ 6dg’.

Eddington - Finkelstein Coordinates
s* = —dt’* +dx’ +dy* +dz* + 22 (dr + dt)’,

= Minkowski metric + 22 (dr + dt)*.




The search for a rotating generalisation of
Schwarzschild

It was known that the field outside any isolated spherically
symmetric gravitational source must be Schwarzschild. This is time
independent, although its interior can collapse to a “singularity”
inside the event horizon.

For 40 years Relativists searched for a rotating generalisation, a
spinning black hole.

The obvious approach was to assume the exterior field to be
rotationally symmetric and time independent. This eliminates two out
of the four coordinates in Einstein’s equations, leaving (r,z).

The equations where put into many elegant and beautiful forms
(particularly by Papapetrou) but no rotating solution was found.

Some additional assumption was needed.

*Petrov studied the algebraic form of the curvature tensor for
an empty Einstein space (the conformal tensor) and showed
that it is characterized by four null eigenvectors at each point.
If these are written as spinors,

k*=0%k™ then |k[’=0 = k" =¢"c’

Alexey Z. Petrov *The conformal tensor corresponds to a completely
(e symmetric four index spinor and its eigenvectors satisfy,

A_B_C_D
W peps 676 ¢ =0.
*This is a quartic equation for the ratio of the two components of the null spinor.

*It was observed that almost all known solutions of Einstein’s equations were
“Algebraically Special”, i.e. two of the eigenvectors coincided.

Let’s look for “Algebraically Special” solutions of the empty Einstein equations!
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Ivor Robinson Andrzej Trautman

They made the further assumption that the null vector was a gradient.
This lead to the Robinson-Trautman metrics in 1962.

ds* =r*P7(dx’ +dy*) - 2dudr-[Aln P -2r(In P)  Jdu* - ——=

AA(In P)+12m(In P),, —4m,, =0, A=P*(3;+0))

STILL NOT ROTATING!

Previous attempts to find most general
Algebraically Special metric

Ilvor Robinson continued his study of the most general algebraically
special space-times. This would be completed later.

In 1962-3 a group centred in Pittsburgh announced that they had
solved the complete problem and that there was there was only a
fairly non-interesting generalisation of Schwarzschild, NUT space.

| had been studying the same problem and was very surprised at
this result. lvor Robinson told me later that he and and Andrzej
Trautman also disbelieved it.

A preprint containing the proof was sent to Alfred Schild and Alan
Thompson at the University of Texas in Austin. | was also there at
that time, and was in the same small apartment building as Alan.

Neither Alan nor Alfred could see anything wrong with the paper.
Alan then gave it to me to see why there were no interesting
algebraically special Einstein spaces.




Examining the paper
| thumb through the paper to see where this surprising result came from —
which equation told them that the search was futile.

| find a simple equation that seemed to be the key to their result,

| do not know what A is but this equation seems to be the crux of their
argument, so | look back to see where it came from and find that it cannot be
true. The coefficients must sum to zero because of the “Bianchi Identities” .

| rush next door and tell Alan that the conclusions are false. We calculate the
first of the three terms and find that it is incorrect. The equation now reads

| then calculate the correct field equations for Algebraically Special spaces.
This is announced at a conference in New York. The author of the original
paper says “Yes, but the second coefficient was a misprint. The equation is

| say “OK, then the third must be wrong!” Alan and | calculate it that night and
find that the correct equation is

14+24-34A=0 = [0 =0

Examining the paper
| thumb through the paper to see where this surprising result came from —
what equation told them that the search was futile.

| find a simple equation that seemed to be the key to their result,
24+ A-24A=0 = A=0

I do not know what A is but this equation seems to be the crux of their
argument, so | look back to see where it came from and find that it cannot be
true. The coefficients must sum to zero because of the “Bianchi Identities” .

| rush next door and tell Alan that the conclusions are false. We calculate the
first of the three terms and find that it is incorrect. The equation now reads

A+A-24=0 = 0=0!
| then calculate the correct field equations for Algebraically Special spaces.
This is announced at a conference in New York. The author of the original

paper says “Yes, but the second coefficient was a misprint. The equation is

| say “OK, then the third must be wrong!” Alan and | calculate it that night and
find that the correct equation is

24+ A4-34=0 = 0=0!




Path to Kerr Solution

Assumed algebraically special. Five of the Einstein equations were solved and
the metric was then written

ds® = (r* + 2*)P(dedZ) - 2(dr + Wdc + WdZ )(du + Ldc + LdZ)

+2(—%K+r(lnP),u +%)(du+Ld§ +Ldg)’,

L
d=9.-La,, 2=%P (0L - L),
K =2P7Re[d(dLnP-L,)], W =-(r+iZ)L, +idZ.

({1

The metric’s dependence on the radial coordinate, “r”, is given explicitly. When
P is chosen to be 1 the remaining field equations are

M =1Im(99dL),
d(m+iM)=3(m+iM)L,,
d,[m—Re(d00L)]=| 9 0L .

Arbitrary Killing vector

Any Killing vector (infinitesimal symmetry) can be written as

K =ad_+ad. +Re(a, )(ud, —ror)+Va,,
where a=a(), V=V(g,93).

Where a general coordinate system is being used, not necessarily one
where P=1.

The coordinates can be chosen so that




Assumed independent of time. Now the equations are getting better, but no general
solution has been found It is interesting to note that if ds,? is any time-independent
solution then so is

2myr
P’ +3?

ds® = ds; +

(du+ Ldc + LdZ)*.

where m, is a constant.

Assume axially symmetry. This reduces the field equations down to
ordinary differential equations which can be solved.

The space-time now depends on four real numbers, or parameters. These
characterise the metric completely. Getting near!!

Since | am looking for a physically interesting space-time | require the
space to be Minkowski space (special relativity) at large distances. Two
parameters are removed.

This leaves a solution with only two parameters, (M, a).

Kerr metric in Kerr-Schild form

The metric is rather nasty in the coordinates originally used to find it, but it
can be put into the simple Kerr-Schild form,

2GMPF

4 2 ¢
r+az

ds’ =dx* +dy’ +dz’ - c*dt’ +

2 2 2
X +y

> >+ =1
r +a

When a = 0 the metric reduces to Schwarzschild with mass M.

DOES IT ROTATE WHEN “a” IS NONZERO?

| tell Alfred Schild, the director of the “Gravitational Research Centre” in
Austin, that | am going to my office to calculate the angular momentum of
the last remaining hope. He says “Fine, | am coming too!”

Alfred sits in an armchair smoking his pipe while | chain smoke cigarettes
and calculate.




The first thing to do was to expand the metric in inverse powers of R, the
usual radial distance form the origin,

ds’ =dx* +dy* +dz° —dt’ + 2TM(a't +dR)

- 4}% D (xdy - ydn)(dt+dR) + O(R™).

Now if is an infinitesimal coordinate transformation, then
the metric changes by [EXssiaE R . |f we choose

a,dx" = —MaR*(xdy- ydx) =
da,dx" = -2MaR *(xdy - ydx)dR,

Then the asymptotic metric becomes

ds> =dx’ +dy* +dz* -dr* + 2TM(a’t +dR)

_ 4;‘{ 4 (xdy - ydndt+ OR™).

The leading terms in the linear approximation for the gravitational field
around a rotating body were well known. The contribution from the angular
momentum vector, J, is

4R e,

i

J X7 dx"dt

At this point | turned to Alfred, puffing away in his armchair, and said

“It rotates with angular momentum Ma about the z-axis. The parameter a is
the angular momentum per unit mass.” We then went out to celebrate.




Kerr metric in Kerr-Schild form

2GMPF

2,0 4 2_2
)

ds’ =dx’ +dy’ +dz" -c*dr’ +
c’(r+az

(k. dx")",

k,dx* = cdt+=dz + —T— (xdx+ ydy) - —4— (xdy - ydx),
a

2 2 2
r r-+a ro+

Where the “radial” function r is given by

Event Horizons for Kerr Black Hole

Singular Ring

By Fulvio Melia




Quasars

In the late 1950s many strange radio sources were discovered. Hundreds
were discovered, and then in 1960 3C 48 was shown to have an optical
counterpart, a faint blue “star” with an anomalous spectrum. John Bolton
thought that it had a large redshift, but this was not believed by others.

In 1962 the closest quasar, 3C 273, was occulted by the moon. Cyril Hazard
and Bolton took observations allowing Marteen Schmidt to identify it.

When he observed its spectrum he realised it was that for hydrogen, red-
shifted, and so quasars were identified as galactic objects.

If they were as far away as their redshifts implied, then they were far too
energetic for all “reasonable” explanations.

Possible explanations: antimatter, white holes, ....

First Texas Symposium on Gravitation and Astrophysics

In December 1963 a meeting is arranged in Dallas Texas to discuss the newly
discovered and highly energetic objects in the sky. These will later be called
“Quasars”, short for “QUASI-stellAR radio sources”. At least 300 astronomers/
astrophysicists and 50 Relativists attend.

There are many theories presented but none that have broad appeal.

Hoyle and Burbidge suggest a giant star with the mass of at least a million
suns. Even this does not produce enough energy to power the observed
quasars. Black holes are mentioned but the non-rotating Schwarzschild metric
is far too unlikely.

On hearing that Roger Penrose is going to give a talk on my solution, | tell the
organisers that that is my pleasure, and then | give a 10-15 minute talk
explaining its geometry, including its double event horizon, and that it rotates.

The astronomers are totally uninterested and ignore my talk.

Papapetrou screams at them that he and others have worked for 30 years to
find this metric and that they should listen. They ignore this.




Kerr-Schild metrics

Around Christmas 1963, after the First Texas Symposium in Dallas, | spend a
morning investigating whether there are other Algebraically Special spaces that have
the Kerr-Schild form. There seem to be a large class that depend on a “function of a
complex variable” and include the Kerr rotating solution but none of the others are of
physical interest so | just leave them on my desk.

Jerzy Plebansky, a very well-known Polish relativist visits Austin for Christmas. Alfred
Schild holds one of his excellent parties for Jerzy. During this | hear them mention
their interest in spaces of the Kerr-Schild form (that name had not been invented at
that time, of course).

| say “I think | know of a large group of those, but the result was not checked and
may be rubbish”.

Alfred and | retire to his office and do a small calculation that shows that any metric
of this type has to be Algebraically Special.

Next day we redo my original calculations, verifying that they were correct.

We subsequently add an electromagnetic field to the problem, and find that there is a
natural charged version of Kerr, the Kerr-Newman charged black holes. This is also
discovered by Ted Newman by testing various ways that charged Schwarzschild
(Reissner-Nordstrom) and Kerr might be amalgamated!

The Kerr-Schild metric can be parameterised so that

ds’ = -dt’ +dx’ +dy’ +dz* + Ak’
k =(du+Ydc +YdZ +YYdv)/(1+YY)
U=z+t, v=t—-z, ¢=x+Iiy.

If the metric satisfies Einstein’s equations,

A =2mRe(2Y ), Y’C+2zY-¢c+F(Y)=0.

The only asymptotically non-singular, let alone flat, example is the original
Kerr metric where the arbitrary function, F(Y) = - 2iaY.

Y’C+2(z—-ia)Y -¢ =0.

This equation has branch points on the ring where the discriminant is zero,

C+(z-ia)’=0 = xX*+y° =0, z=0.




There are two roots for this equation,

_ rg P +iarz
" z+r)(r—ia)’ ot gt
_ re r +iarz

2 (z-r)(r+ia)’

This is a quadratic equation for r2 with ONE positive root for r2 and
therefore ONE positive root for r.

The coefficient of k2 in the metric is

2mr’

4

A=2mRe(2Y )=+
" ( ’g) rt +a’z?

Charged Kerr Schild

We could not prove that the congruences had to be geodesic, so
we assumed that. The congruences are then same as in the
uncharged case. Th electromagnetic field depends on two
functions. We could not solve the remaining equations unless we
put the first to zero, leaving an arbitrary analytic function,

A =2mRe(2Y,) -l (V)[21,] .

The electromagnetic potential is

[ =d|PQWZ +PZ)k ++(xdY + xdY)
x= Py ((Y)dY, (Y constant).

The simplest of these metrics is the Kerr-Newman metric.




The metric can be parametrised so that

ds’ = -dt* +dx* +dy* +dz" + Ak?,
k=(du+Ydc +YdZ +YYdv)/(1+YY)

U=z+t, v=t—-z, ¢=x+Iy.

If the metric satisfies Einstein’s equations,

A =2mRe(2Y,), Y’C+2zY-¢c+F(Y)=0.

The only asymptotic example is the original Kerr metric where the
arbitrary function, F(Y), is quadratic in Y.

Afterwards

It is proved a few years later by David Robinson, another New Zealander, that
there are no other spinning black hole solutions. All properties of the star are
lost when it collapses, except for its mass, angular momentum and electric
charge. John Archibald Wheeler coined the phrase “Black Holes have no hair”
to express this.

Do Black Holes really exist? Probably. We appear to be seeing millions or more
black holes in the universe. It may be that every galaxy formed around a Black
Hole that was created soon after the “Big Bang”. We do not know whether this is
so, but Black Holes have something to do with the formation of galaxies.

Are Black Holes truly represented by the Kerr solution? Yes, but only in the limit
as they age. We can never see a Black Hole collapse inside its event horizon.
For us, it is always just on the verge of doing so.

The most famous example is at the centre of our own galaxy. It is Sagitarius A*
and is around 4,000,000 times as heavy as the Sun. Astronomers expect to be
able to photograph it within the next ten years.




Black Hole passing in front of a galaxy
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Stars circling Black Hole at Galactic Centre
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Unravelling Einstein’s Secrets

Professor Roy Patrick Kerr
University of Canterbury, New Zealand

Newton’'s Theory of Gravitation

The inverse square law: The force between two bodies is proportional
to the product of their masses and inversely proportional to the
square of the distance between them.
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If one of the bodies moves then an immediate change is felt
across the universe. This means the speed of gravitational
signals is infinite. Newton thought that this was ridiculous, but he
could not think of a good alternative




1905 - Special Relativity
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Lorentz Grossman

The velocity of light, c, is the same for all observers.
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The equations of physics are the same for all.

No signal travels faster than light.

Newton’s theory says gravitation acts instantaneously.

Newton’s theory is inconsistent with Special Relativity

General Relativity
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Albert Einstein Marcel Grossmann David Hilbert

“Matter and energy curve space and time”

G" = 8nGT"

The geometry of space-time determines the motion of all bodies in it. The

quickest path between two space-time events is called a geodesic and this
is the equivalent of a straight line in Euclidean space. As the Earth moves

around the sun it thinks that it is moving on a straight line!




The first test of General Relativity

The Perihelion of Mercury: It was already known that if Newton’s
theory was replaced with one that was consistent with special
relativity so that there was no longer instantaneous action at a
distance, then half of the precession could be explained.

As soon as Einstein had formulated his theory he calculated the
motion of small bodies (the planets) around a much larger central
body (the sun). He did not need an exact solution for the
gravitational field around the sun, although Schwarzschild’s solution
appeared soon afterwards

When this was applied to Mercury’s orbit the calculated precession
was in agreement with the previous experimental results, 43" per
century!

This result was enough for Einstein to have complete faith that his
theory was correct.

Solar System

43 sec/century
aphelion * perihelion

The place where a planet is furthest from the sun is called the
“perihelion”.

In Newton'’s theory this remains the same, orbit after orbit.

It was observed that the perihelion of the planet Mercury advances by
43” (43 seconds of arc) per century, and so it rotates completely around
the sun every 3,000,000 years.

The same is true for the other planets but the effect is much smaller




Second Test: Bending of Light

* .
T g

Einstein’ theory predicted that light passing close to a massive body
would curve towards it. This amounts to 1.75” close to the sun.
The only time that photographs can be taken successfully near the
sun is during a solar eclipse so the observations had to wait for a
suitable moment. This did not occur until after World War 1.

Bending of Light around the Sun

« Light bending by a strong gravitational field was not a
new idea. In 1801 J. Soldner had pointed out that
Newtonian gravity predicts that starlight will bend around
a massive object, but the effect is only half that predicted
by General Relativity and calculated by Einstein.

Sir Arthur Eddington organised two of the most famous
scientific expeditions in history to observe this bending
during a solar eclipse in 1919. He led the first of these to
Principe in Africa and sent a second to Sobral in Brazil,
in case it was raining at the first site. In fact, the weather
was bad in Principe but Eddington was still able to take
some useful photographs.

Agreement with Relativity, disagreement with the Newtonian alternative




A reproduction of one
of the negatives taken
by Eddington's group
using the 4-inch lens at
Sobral, in Brazil. The
positions of several
stars are indicated with
bars. WWhen compared
to other photographs
taken of the same
region of the sKky, it
became apparent that
those closest to the rim
of the Sun appeared to
have shifted slightly.

A modern example of light-bending . There is a Quasar behind the bright galaxy in
the centre of the picture, but 5 times further away. lts light forms an “Einstein ring”.

This bending of light is being used to study the universe. The amount of distortion of
images tells us about the total mass in any region. This is the best evidence for the
existence of dark matter clustered around galaxies formed from standard matter.

Question: Does dark matter clustering cause ordinary matter to collect around it




The Schwarzschild Solution

Within a year of Einstein proposing his theory, Professor Karl

Schwarzschild constructed a metric that was to be the most

important solution of Einstein’s equations for the next 40+ years.
~+ It gave the gravitational field outside a “spherically symmetric”
/j body, i.e. one that looks the same from all directions.

1873-1916 dr +7°(d0” +sin’0d¢*) ‘%

There was something strange happening at what is called the Schwarzschild
radius where the factor in brackets is zero. The sphere with this radius is called
the event horizon.
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At first it was thought that the metric was “singular” on this sphere, i.e. that the
curvature became infinite as one approached it.

Eddington Coordinates

In 1924 Sir Arthur Eddington showed that the Schwarzschild
solution is not singular at the Schwarzschild radius. He did
this by changing to a new set of coordinates,

ds® = dx* + dy® +dz* = dt* + 29M (gr 4 cdr)?
- @c2

1882-1944

When the mass is zero the last part vanishes and the metric is that for flat space,
the space-time of special relativity. This is usually called the Minkowski metric.

The only singular point for this metric is at the centre where the radius, r, is zero.

This simple form of Eddington will appear again in this talk. For historical reasons
it is now called the Kerr-Schild form,

ds® = flat space + A(




The dreaded “Black Hole™ appears!

Eddington showed that the event horizon is well behaved but there is
something strange happening there.

A spaceship can approach as close as it likes to this surface and still escape
from the gravitational field of the central body, but if it ventures inside the event
horizon then there is no return. It is drawn rapidly to the central singularity.

For a normal body such as the earth or the sun, the event horizon would be
deep inside. However, it is then a meaningless concept as Schwarzschild gives
the gravity outside, and not on the inside of the physical object.

If the Earth and the Sun were to collapse to black holes then the radii of their
event horizons would be 1cm and 3km respectively.

The density of the Sun as it collapsed inside its event horizon is
20,000,000,000,000 kg per cubic centimetre, denser than a Neutron star.

The Sun is 300,000 time heavier than the Earth. The density of the Earth as it
collapsed inside its event horizon would therefore be

1,800,000,000,000,000,000,000,000 kg per cubic centimetre.

It cannot happen!

The search for “rotating Schwarzschild”

The gravitational field outside any non-rotating spherical star must be
that found by Schwarzschild. This field is constant in time, even though
the matter inside may evolve.

If the star collapses inside its “event horizon” it becomes a black hole.
No object or message can be sent from the inside to the outside of this
sphere.

All bodies in the universe rotate. Although it may be only small, nothing
is ever absolutely still. Schwarzschild is a beautiful solution but nature
likes rotation. Furthermore, as a body collapses it rotates faster.
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The search for a rotating generalisation of
Schwarzschild

Physicists wondered whether a spinning object could form a Black
Hole or whether the spin would make the event horizon disappear.

For 40 years they searched for a black hole solution of
Einstein’s equations.

For simplicity, the star was assumed to be rotationally symmetric
(like a normal bottle or glass) and unchanging with time.

The equations were then put into many elegant and beautiful forms
but no rotating solution was constructed.

Some additional assumption was needed.

+ Alexey Petrov was a Russian who studied
general properties of the curvature in an
Einstein space (such as our universe!)

For almost all known physical solutions of
Einstein’s equation, including that of
Schwarzschild, the curvature had a special
property. They were all “Algebraically
Special’.

This property also seems to be true for the
gravitational field far from any source.

Alexey Z. Petrov (1910-71)

1960: Let’s look for “Algebraically Special”
solutions of the empty Einstein equations!




OV W LR I

Ivor Robinson Andrzej Trautman

They made a further assumption, leading to
the Robinson-Trautman metrics in 1962.

ds> = r*P?(dx” +dy*) - 2dudr -[Aln P - 2r(In P), -2m(u)/ rldu’
AA(InP)+12m(InP) , —4m,, =0, A=P (0 + ai)

STILL NOT ROTATING!

Previous attempts

Ivor Robinson continued his study of the most general Igebraically
special space-times. This would be completed later.

In 1962-3 a group centred in Pittsburgh announced that they had
solved the complete problem and that there was there was only a
fairly non-interesting generalisation of Schwarzschild, NUT space.

| had been studying the same problem and was very surprised at
this result, as were Ivor Robinson and Andrzej Trautman.

A preprint containing the proof was sent to Alfred Schild and Alan
Thompson at the University of Texas in Austin. | was also there at
that time, and was in the same small apartment building as Alan.

Neither Alan nor Alfred could see anything wrong with the paper.
Alan then gave it to me to see why there were no interesting
algebraically special Einstein spaces.




Examining the paper
| thumb through the paper to see where this surprising result came from —
what equation told them that the search was futile.

| find a simple equation that seemed to be the key to their result,

24+ A-24=0 gives A=0!

| do not know what A is but this equation seems to be the crux of their
argument, so | look back to see where it came from and find that it cannot be
true. The coefficients must sum to zero because of the “Bianchi ldentities” .

| rush next door and tell Alan that the conclusions are false. We calculate the
first of the three terms and find that it is incorrect. The equation now reads

A+A-24=0 gives 0=0!

| then calculate the correct field equations for Algebraically Special spaces.
This is announced at a conference in New York. The author of the original
paper says “Yes, but the second coefficient was a misprint. The equation is

A+24-24=0 gives 4=0!

| say “OK, then the third must be wrong!” Alan and | calculate it that night
and find that the correct equation is

24+ A-34=0 gives 0=0!

Path to Kerr Solution

Assumed algebraically special. This reduces the ten Einstein equations to
five, and the metrics dependence on the radial coordinate, “r’, is known.
However, the equations are much worse than those of Robinson and
Trautman so something else is needed.

Assumed independent of time. Now the equations are getting better, but they
are still intractable.

Assume axially symmetry. This reduces the field equations down to ordinary
differential equations which can be solved.

The space-time now depends on four real numbers, or parameters. These
characterise the metric completely. Getting near!!

Since | am looking for a physically interesting space-time | require the space
to be Minkowski space (special relativity) at large distances. Two parameters
are removed.

This leaves a solution with only two parameters, (M, a).




Kerr metric in Kerr-Schild form

The metric is rather nasty in the coordinates originally used to find it, but |
realise that it can be put into the simple Kerr-Schild form,

3
ds* =dx’> +dy* +dz* - c’dt’ +2Gi

When a = 0 the metric reduces to Schwarzschild mass with mass M

DOES IT ROTATE WHEN “a” IS NONZERO?

| tell Alfred Schild, the director of the “Gravitational Research Centre” in Austin,
that | am going to my office to calculate the angular momentum of the last
remaining hope. He says “Fine, | am coming too!”

Alfred sits in an armchair smoking his pipe while | chain smoke cigarettes and
calculate. Finally, | announce

YES!!

Kerr metric in Kerr-Schild form

3
s’ = d’ + dy> +d” —2di +—2MT (g axey
c(r* + azzz) “

k,dx" = cdt + = dz + —— (xdx + ydy) ——— (xdy - ydx),
+a *+a

r r

Where the “radial” function r is given by




Event Horizons for Kerr Black Hole

By Fulvio Melia

First Texas Symposium on Gravitation and Astrophysics

In December 1963 a meeting is arranged in Dallas Texas to discuss the newly
discovered and highly energetic objects in the sky. These will later be called
“Quasars”, short f or “QUASI-stellAR radio sources”. At least 300
astronomers/astrophysicists and 50 Relativists attend.

There are many theories presented but none that have broad appeal.

Hoyle and Burbidge suggest a giant star with the mass of at least a million
suns. Even this does not produce enough energy to power the observed
quasars. Black holes are mentioned but the non-rotating Schwarzschild metric
is far too unlikely.

On hearing that Roger Penrose is going to give a talk on my solution, | tell the
organisers that that is my pleasure, and then | give a 10-15 minute talk
explaining its geometry and that it rotates.

The astronomers are totally uninterested and ignore my talk.

Papapetrou screams at them that he and others have worked for 30 years to
find this metric and that they should listen. They ignore this.




Kerr-Schild metrics

Around Christmas 1963, after the First Texas Symposium in Dallas, | spend a
morning investigating whether there are other Algebraically Special spaces that have
the Kerr-Schild form. There seem to be a large class that depend on a “function of a
complex variable” and include the Kerr rotating solution but none of the others are of
physical interest so | just let them lie.

Jerzy Plebansky, a very well-known Polish relativist visits Austin for Christmas. Alfred
Schild holds one of his excellent parties for Jerzy. During this | hear them mention
their interest in spaces of the Kerr-Schild form (that name had not been invented at
that time, of course).

| say “I think | know of a large group of those, but the result was not checked and
may be rubbish”.

Alfred and | retire to his office and do a small calculation that shows that any metric
of this type has to be Algebraically Special.

Next day we redo my original calculations, verifying that they were correct.

We subsequently add an electromagnetic field to the problem, and find that there is a
natural charged version of Kerr, the Kerr-Newman charged black holes. This is also
discovered by Ted Newman by testing various ways that charged Schwarzschild
(Reissner-Nordstrom) and Kerr might be amalgamated!




Afterwards

It is proved a few years later by David Robinson, another New Zealander,
that there are no other spinning black hole solutions. All properties of the
star are lost when it collapses, except for its mass, angular momentum and
electric charge. John Archibald Wheeler coined the phrase “Black Holes
have no hair” to express this.

Do Black Holes really exist? Probably. We appear to be seeing millions or
more black holes in the universe. It may be that every galaxy formed around
a Black Hole that was created soon after the “Big Bang”. We do not know,
but Black Holes have something to do with the formation of galaxies.

Are Black Holes truly represented by the Kerr solution? Yes, but only in the
limit as they age. We can never see a Black Hole collapse inside its event
horizon. For us, it is always just on the verge of doing so.

The most famous example is at the centre of our own galaxy. It is called
Sagitarius A* and is around 4,000,000 times as heavy as the Sun.
Astronomers expect to be able to photograph it within the next ten years.

Black Hole in front of a spiral galaxy

This is the picture of a nearby Black Hole and a distant galaxy. It is a spiral
galaxy with a central bulge, just like ours, seen side on. Of course, no such
event has actually been photographed. It is just a computer simulation.

Notice how the light from the galaxy bends around the back of the Black Hole.
It gets very complicated as the Black Hole crosses in front of the galaxy.
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Stars circling Black Hole at Galactic Centre
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This is a series of real photographs of the stars circling the Black Hole at the
centre of our very own galaxy. The star coming in from the top left on a
cometary orbit takes 13 years to circle the Black Hole. It has now been
observed for one complete orbit. From these orbits the mass of the central
object has been calculated to be almost 4,000,000 times the mass of our Sun.




Black hole production at the LHC

Hirotaka Yoshino?

! Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7

Abstract
In the TeV gravity scenarios, black holes are expected to be produced at the Large
Hadron Collider (LHC) in CERN. In this article, we review the current status of the
theoretical studies on this issue. After a brief overview, we explain our studies on the
apparent horizon (AH) formation in high-energy particle collisions.

1 Introduction

Almost a decade ago, scenarios in which the Planck energy M, could be O(TeV) were proposed [1].
In these scenarios, our 3-dimensional space is a brane floating in large extra dimensions, and gauge
particles and interactions are confined on the brane. Since the TeV scale energy will be reached by the
Large Hadron Collider (LHC) in CERN, we have a possibility to observe quantum gravity phenomena by
experiments. Specifically, in the collision with the energy much higher than the Planck scale, the black
hole production is expected [2]. Since the LHC is planned to begin operation in 2008, the black hole
production at the LHC is a very timely topic. In this article, we review the theoretical studies on this
issue. We give a brief overview in the next section. In Sec. 3, we focus attention to our studies on the
apparent horizon (AH) formation in high-energy particle collisions.

2 Brief overview

The LHC is designed so that protons collide with the center-of-mass energy 14 TeV. In the collisions, the
partons interact with each other and black holes could be produced in these processes. If a black hole is
produced, it emits mainly the gravitational wave and become a stationary higher-dimensional Kerr black
hole (the balding phase). Then, the black hole will evaporate by the Hawking radiation (evaporation).
The particles emitted in this process can be observed by the detectors such as the ATLAS. In the final
phase of evaporation, the quantum gravity effects may become important (the Planck phase). Let us
look at these issues one by one.

2.1 Production rate

The black holes with mass (few)M,, are expected to exist, since its gravitational radius is larger than the
Planck length. Then the trans-Planckian collision is expected to cause the gravitational collapse if the
impact parameter is smaller than the gravitational radius rp,(1/7s) of the parton-pair system. Thus the
parton-parton cross section for the black hole production is estimated as o;j_p(7s) ~ 7[rn(v/75)]%. In
order to obtain the proton-proton cross section for the black hole production, one should multiply the
parton distribution functions and take the sum over all possible parton pairs:

ooy-n(rms) = 3 / dr / % @) fy (r/2)osan (). 1)

Based on this calculation, the black hole production rate is expected to be 1Hz in the most optimistic
estimate [2]. We remark that the production rate depends on the effect of balding and the black hole
threshold mass. Also, the value of o, should be estimated by a direct calculation. The topics in
Sec. 3 are related to these issues.

1E-mail:hyoshino@phys.ualberta.ca
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2.2 Balding phase

Once a black hole is produced, it decays through several phases. The first phase is the so-called balding
phase. In this phase, the produced black hole emits gauge and gravitational radiations and eventually
becomes a stationary higher-dimensional Kerr black hole. The gravitational radiation is expected to
be larger than the gauge radiation. The characteristic time scale is estimated from the quasinormal
frequency as tpaiging ~ M, ' (M JM,)Y/(P=3) where D is the spacetime dimensionality.

Since the radiations carry part of the system energy and angular momentum, the final mass and
angular momentum of the black hole is determined by the amount of the radiations. For this reason, the
study of the balding phase is important in order to estimate the distribution of the mass and angular
momentum of produced black holes. However, because of the highly nonlinear nature of high-energy
particle systems, the study of this process is very difficult even numerically. So far there are no reliable
estimates of the amount of radiations, although several attempts have been made including the interesting
one by Pretorius [3].

2.3 Evaporation

The produced black hole evaporates by the Hawking radiation. The evaporation phase is further divided
into two phases: the spin-down phase and the Schwarzschild phase. In the spin-down phase, the angular
momentum of the black hole is extracted by emission of spin particles. After that, the black hole is
Schwarzschild-like and the emission becomes almost isotropic. The characteristic time scale is estimated
as tevaporation ~ szl(M/Mp)(D’l)/(D*?’), which is larger than t,aging for M > M),. The energy spectrum
of emitted particles are almost thermal and the temperature is Ty = (D —3) /47, (M). Since the number
of brane fields is much larger than that of the bulk fields, the black hole radiates mainly on the brane [4]
(though there are several subsequent discussions on this issue).

The emitted particles can be detected at the LHC. If the 10TeV mass black hole is produced, the
signals have the following features: (i) ~ 50 quanta with energy 150-200 GeV; (ii) Large transverse
momentum; (iii) ~ 10% hard leptons and ~ 2% hard photons. The S/N ratio of lepton and photon
events is very large, and it makes the detection easier. In fact, the ATLAS group demonstrated that the
detection of black hole events is relatively easy by constructing the event generator [5].

We comment on the studies of the greybody factors. Because of the curvature scattering, part of the
emitted particles is absorbed by the black hole and the spectrum differs from that of the black body.
These effects were studied by many authors. The greybody factors of the Schwarzschild black hole were
numerically calculated for both brane fields and bulk gravitons [6]. The greybody factors of the Kerr
black hole were studied by full numerical calculations for brane fields [7]. Thanks to their studies, the
temporal evolution of the evaporation can be calculated quite accurately. The recently constructed event
generator takes account of the effects of these greybody factors [8]. Note that the greybody factor of the
Kerr black hole for bulk gravitons is left as a remaining problem.

2.4 Planck phase

As the black hole evaporates, the mass decreases and becomes close to the Planck mass M,,. In this phase,
the quantum gravity effects may become important. Currently there are no reliable predictions for this
phase since we have no theory of quantum gravity. Rather, we can able to learn the dynamics of quantum
gravity from the experiments. This opens up an interesting possibility to construct the quantum gravity
theory based on the experiments. If this is the case, we might be able to resolve e.g. the information loss
problem.

3 Studies on the apparent horizon formation

Now, we turn to the studies on the apparent horizon (AH) formation in high-energy particle collisions
by ourselves. Motivation for our studies is as follows. In Sec. 2.1, the parton-parton cross section for the
black hole production is assumed to be o;;_.pn = 7[rn(2p)]?, where p denotes the energy of each incoming
particle. Since this is just the order estimate, the realistic cross section will be o;;_pn = F;;(D)w[rn(2p)]?,
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where F;;(D) depends on the characters of the incoming particles such as charges and spins as well as
the dimensionality D. It is necessary to obtain the reliable cross sections by direct calculations.

The AH is defined as a closed (D — 2)-dimensional spacelike surface whose outgoing null geodesic
congruence has zero expansion. Assuming the cosmic censorship, the AH existence is the sufficient
condition for the black hole formation when the null energy condition is satisfied. Therefore, the AH
is a good indicator for the black hole formation. We studied the AH formation in the grazing collision
of Aichelburg-Sexl (AS) particles [9, 10]. The charge effect and the effects of spin and duration were
discussed in [11] and [12], respectively. We briefly review these studies one by one.

3.1 Aichelburg-Sexl particle collision

In [9, 10], we studied the AH formation in the collision of AS particles with the impact parameter b, using
the (D > 4)-dimensional general relativity. By using the AS particles, we ignored charges and spins of
incoming particles, the brane tension and the structure of extra dimensions. By numerically calculating
the cross section oay for the AH formation, we found a lower bound on o;j_.ph.

The AS particle is a simple massless pointlike particle whose metric for D > 5 is

167Gp
(D — 4)QD,3TD74 ’

ds® = —dudv + Z da? + ®(r)s(u)du?, ®(r) = (2)

where r := />, 27 and the particle is located at » = 0. The gravitational field is distributed in the
transverse plane to the motion, and it propagates at the speed of light along u = 0. We can set up the
collision of two AS particles by just combining two metrics, since they do not interact before the collision.
In this spacetime, the two incoming waves propagate along u = 0 and v = 0, and collide at u = v = 0.
The locations of particles in the transvese plane are x; = (£, 0, ...,0), where b is the impact parameter.

The equation and the boundary conditions for determining the AH on the slice v < 0 = v and
v < 0 = u were derived by Eardley and Giddings, and they solved the AH analytically in the case D = 4
[13]. Unfortunately, their method could not be applied to the higher-dimensional cases, and myself and
Nambu [9] developed a numerical code to solve this problem. In Ref. [10], myself and Rychkov improved
this result by solving the AH on a different slice, u > 0 = v and v > 0 = u. The results of these two
works are summarized as follows:

D 1 5 6 7 8 9 10 11
oyn/mr7(2p) 9] | 0.65 1.08 1.34 1.52 1.64 1.74 1.82 1.88
oyr/mr7(2p) [10] | 0.71 1.54 2.15 2.52 2.77 2.95 3.09 3.20

These values give the reliable lower bounds on ;.4 for the case of AS particle collisions. In addition,
using the area theorem, we could find the lower bound May on the mass of final state of the produced
black hole Mgy by calculating the AH area (i.e. Mgy > Man). Man has the tendency to decrease as the
impact parameter b and the dimensionality D are increased. Our results were used in e.g. [14] in order
to improve the estimate of the black hole production rate at the LHC. Specifically, they compared the
two cases My = 2p and My = May. The result is that the two estimates of the black hole production
rate differ by a factor 103108, indicating the importance of the studies on the balding phase.

3.2 Charge effect

In [11], myself and Mann discussed the effect of electric charge on the AH formation. In that paper, we
ignored the confinement of electromagnetic fields on the brane. Namely, using the higher-dimensional
classical Einstein-Maxwell theory, we introduced the charged version of the AS particle as the particle
model as the first step. We studied only the head-on collision cases for simplicity.

The metric of the charged AS particle is similar to Eq. (2), but the function ®(r) has the correction
term due to the charge:

167Gp 167%(2D — 5)!!1Gvq?

) = D= hap a1 (D-3)2D - T)(2D — 4D ®)
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where ¢ is the D-dimensional charge and « is the Lorentz factor. Since the correction term is negative,
it is expected that the charge makes the AH formaton difficult. In fact, we solved the AH analytically
and found that the condition for the AH formation is roughly given as v¢?> < Gp?. This is rewritten as
aCP~4(M,/m)(M,/p) < 1 with the fine structure constant «, the brane thickness C, in the unit of the
Planck length, and the rest mass m. This condition cannot be satisfied at the LHC, and our result might
indicate that the black hole production rate is highly suppressed by the charge effect. However, in the
regime where the AH formation is prohibited in this model, the QED effects are found to be important
by evaluating the so-called classical radius. Therefore, further improvement is required to obtain the
definite conclusion.

3.3 Effects of spin and duration

In [12], myself, Zelnikov and Frolov discussed the effects of spin and duration on the AH formation
using the gyraton model [15], which represents the gravitational field of a spinning radiation beam pulse.
Although the gyraton is a classical model, it can be regarded as a toy model of the quantum wavepackets
with spin. For simplicity, we considered only the head-on collision in four dimensions.

The gyraton metric is given by

ds?® = —dudv + dr® + r2d¢? — 8Gpxp(u)log rdu? + 4G Jx;(u)dudg, (4)

where J is the angular momentum (spin) and the last term causes the repulsive gravitational field around
the center. x,(u) and x;(u) are the functions normalized as [ x,(u)du = [ x;(u)du = 1, which specify
the energy and angular momentum distributions. The characteristic width of x,(u) and x;(u) is the
duration L of the gyraton. Using this model, we studied the AH formation numerically, and found that
the condition for the AH formation is roughly expressed as L ~ r,(2p) and J < 0.4pr,(2p). By assuming
L to be the Lorentz contracted proton size ~ 1.5 x 10~*fm and J to be h/2, the above two conditions
are satisfied at the LHC. Therefore the spin effects might not have such a significant effect for the black
hole production rate, though it could be changed by a factor.
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Abstract
Within the framework of f(R) gravity where f is an arbitrary function of the Ricci
scalar, we obtain a surface term for action which allows initial-value formulation
with Dirichlet boundary conditions. Based on the action principle, we find match-
ing conditions for two spacetimes across a codimension-one brane/shell, which are
generalisation of the Israel junction conditions in the Einstein gravity.

1 Introduction

Recent trends in studies of gravitation have been strongly motivated by the progresses in string theories,
where we are urged to face some of the essences of the fundamental theories; Here one is higher dimen-
sionality of the universe, while another is non-linear curvature corrections to the Einstein gravity. It is an
urgent task to construct viable models in which those two aspects are appropriately taken into account.

For that purpose, we shall here consider D-dimensional spacetimes on which the following higher-
curvature action for gravity is defined:

Sg = ;/M V=9f(R), (1)

where f is an arbitrary function of the Ricci scalar R. The idea of braneworld [1] is a simple way to
extend the theory to higher dimensions without giving rise to immediate inconsistencies, where matters
are confined in a lower-dimensional object, called brane. We shall focus on a particular case of codimension
one, where the matter energy—momentum tensor can be written as

Top = Sab(s(y)7 (2)

where y is the Gaussian coordinate normal to the brane.

Prior to more general analyses, the concept of “Einstein limit” provides some clue to the problem,
in which “f(R) — R” is brought about. In such a limit, the theory is naively expected to recover the
ordinary Einstein gravity, however, an obstacle arises since the Einstein limit is not a smooth limit; To
illuminate this, first vary the action with respect to the metric to find the fourth-order field equation

F/(R)Gan + 5(RS'(R) = F(R)gan + (g0~ VaVi) ' (R) = Su5(3). Q

where we took brane into account as the matter source. Assuming continuity of metric and R, integration
of the field equation across the brane leads to the following jump conditions

—f'(R)[Kap — Kva] T + £ (R) [0y R " Yap = Sa,  [K]T = [R]T =0, (4)

where 74 is the metric induced on the brane and K,y is the extrinsic curvature. [A]T = Aly=t+0—Aly=—0
means jump across the brane. We see that the continuity imposed on K remains no matter how the
theory approaches Einstein, where f’ — 1, f” — 0, thereby claiming a discrepancy between this and the
usual Israel junction conditions [2].

Puzzled by this phenomenon, at least we can imagine the importance of serious investigation into
junction conditions in f(R) gravity. The remainder of this article is dedicated to developing matching
condition for f(R) gravity theories in a rigorous manner.
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2  First-order action for f(R) gravity

We start with an initial-value formulation of the f(R) gravity since the matching conditions for spacetimes
will be given as boundary conditions at a given surface. As a rigorous way to find all the dynamical degrees
of freedom and necessary boundary conditions, we employ canonical formulation of f(R) gravity. For the
time being we concentrate on vacuum gravity. We will discuss coupling to matter in the next section.

2.1 Equivalent scalar—tensor theory

We introduce two scalar fields p and ® related by an algebraic constraint ® = f’(p), and use them to
rewrite the f(R) action in the following way

1
5g=§/ V=9(®R — p® + f(p)). (5)
M
In vacuum, this action gives coupled equations of motion for g, and ®

1
q)Gab + 5(,0‘1) - f(p))gab + (gabD - vavb)q) = 0;
R—p=0.

(6)

As this form is of Brans—Dicke-type scalar—tensor theory, it is clear that there is an additional scalar
degree of freedom in gravity other than metric. It is easily seen that these field equations are combined
to give the original fourth-order field equation (3).

2.2 Surface term via (D — 1) + 1 canonical decomposition

Suppose that the spacetime M is foliated by a one-parameter family of hypersurfaces {£,} labeled by a
coordinate y and that the spacetime boundary 9 M is for convenience identified as one of those constant-y
surfaces ¥,,. We discuss within the portion corresponding to y > yo. We denote the unit vector normal
to 3, as n“, by which the metric induced on ¥, is given as v, = gap — €ngny, Where € = nn® = £1
for the cases the normal is spacelike and timelike, respectively. The signature of n, is chosen so that it
directs to the direction of increasing y. We define the extrinsic curvature of ¥, by Kap = 74°Veny. Then
we decompose the metric together with the lapse N(> 0) and the shift N* as

Gapdz®da® = v, (Ndy + dz?)(N°dy 4 da’) 4 eN2dy?. (7)

By the Gauss relation, the action is represented by quantities that are totally parallel or perpendicular
to the hypersurfaces:

S, = %/ VIIN(®R — e®(K, K — K?) 4 2¢K9,® — 200 — p® + f(p))
M
(8)
— 6/ \/jgva((bKna — ®a” — Evaq))v
M

where and hereafter the bar represents (D — 1)-dimensional quantities, and where a® = n®Vyn?, 9,, =
n*V,, and O = V,V®. To cancel the second derivative along the normal direction, we have to add a

surface term
Se=-c [ Vhlek 9)
oM

Then we get an action that contains normal derivatives only up to first order.

2.3 Boundary conditions in vacuum

Now canonical formulation for f(R) gravity is ready. The result® tells that we have two dynamical
variables {74, ®} with canonical conjugate momenta

= QM (—R(K® — Ky™) +7"0,®), mo =ey/|1|K, (10)

IWe defer its full result until our accompanied paper [3].
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respectively. In vacuum, we find variation of the action on-shell to be

5(Sy +5y) = — / (18 + 765D, (11)
oM

which vanishes if the fields satisfy Dirichlet conditions at the boundary.

3 Coupling to matter on a boundary and junction conditions

Next we take into account matters on the boundary dM which couples to gravitational fields 74, and
®. In presence of matter on the boundary, variations of the matter action Sy, [Yas, ®] give rise to source
terms; The variational principle tells that we have boundary conditions
pibyg O 0
oM =G TeloM = Seg

(12)

Now we move to the braneworld picture where two spacetimes M and M_ are matched at the
boundary. In both of the portions we use the common unit normal vector n* by choosing its signature
so that it directs from M_ to M. The notion [---]* means jump across the boundary such as [A]* =
Alopm, — Aloam_. Then we find the junction conditions for the jumps of the canonical momenta, which
are conveniently rearranged into the following expression

S—oF S+ (D—2)oF
OIK )t = — - P =" 1
[ ab]f <Sab D_1 ’7ab> ) [an ]7 D_1 5 ( 3)
where 53 55
-2 1
Sap = €—— ;n, F=e——". (14)
VTR Vi 02
It is seen that the Israel junction condition is recovered only when
S
OF = —— 1
D2 (15)

is satisfied by the matter on the boundary.

4  Conformal equivalence

A well-known fact for Brans—Dicke-type scalar—tensor theories is that a suitable conformal transformation
takes to a particular frame in which the gravitational theory appears to be familiar Einstein—scalar theory.
To see this, let us introduce another scalar field defined by

D-1
D -2

¢ = In ®, (16)

where we assume ® > 0, and perform the following conformal transformation
Gab = 672¢/ (Dil)(Dimgab- (17)

Then the action is given in terms of the Einstein-frame variables as

1 _ — o
=5 [ VEaR= @0 -2 (o)~ [ VRIK + Suliun (18)
M oM
with the scalar potential given in terms of f

_pf'(p) = f(p)

V(o) = W7

(19)

131



where p is parametrically defined to satisfy ¢ = % In f/(p). Thus the following junction conditions
are obtained

~ ~ S - = 1 55m['$/ab7 ¢]
+ _ _ +_ _ - ZFmllab 7l
[Kab]_ = (Sab D— 27ab> ) [an(b]_ € h/‘ 5¢ ) (20)
where 55
~ -2 m
ab — 6\/—7’?(5’?“}. (21)

Therefore the set of junction conditions in the original frame (13) has been shown to be equivalent to the
familiar Israel conditions plus a jump condition for 9,,¢, which were utilised in, e.g., [5].

5 Summary

We showed that the Brans—Dicke-type action supplemented by a surface term

1
Se=3 [ VEEOR=pp i) = [ RleK (22)

allows well-defined initial-value formulation for the equivalent f(R) gravity with Dirichlet conditions
imposed on the boundary.
In presence of a brane, the junction conditions in this frame were given as

S—oF
D-1

S+ (D-2)9%F

m) L (Bt = 2T (23)

B[Kup)T = —( Sap —
[Kap] ™ <Sb D1

where Sy and F' were defined in (14).
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Abstract

We explored several properties of dynamical black holes in Einstein-Gauss-Bonnet
gravity. In the present paper, we assume that the spacetime is pseudo-spherically
symmetric and the Gauss-Bonnet coupling constant is non-negative. Depending on
the existence or absence of the general relativistic limit, solutions are classified into
GR and non-GR branches, respectively. Assuming the null energy condition on matter
fields, we show that a future outer trapping horizon in the GR branch possesses the
same properties as that in general relativity. In contrast, that in the non-GR branch
is shown to be non-spacelike with its area non-increasing into the future. We can
recognize this peculiar behavior to arise from a fact that the null energy condition
necessarily leads to the null convergence condition for radial null vectors in the GR
branch, but not in the non-GR branch. The energy balance law yields the first law
of a trapping horizon, from which we can read off the entropy of a trapping horizon
reproducing Iyer-Wald’s expression. The entropy of a future outer trapping horizon
is shown to be non-decreasing in both branches along its generator.

1 Preliminaries
The action in n(> 5)-dimensional spacetime is given by

1
- 2k2

S / [R — 20 + a(R? — 4R, R™ + Ryuupo R™7) | + Smatter, (1)

where the natural volume element is omitted. Here, R and A are the n-dimensional Ricci scalar and the
cosmological constant, respectively. Spatter in Eq. (1) is the action for matter fields and k,, := /871G,
where G,, is the n-dimensional gravitational constant. In four-dimensional spacetime, the Gauss-Bonnet
term does not contribute to the field equations since it becomes a total derivative. o with the dimension
of length-squared is the coupling constant of the Gauss-Bonnet term. We assume « > 0 throughout this
paper, as motivated by string theory. The gravitational equation derived from the action (1) is

G,uu + OlH;w + Ag,uu = H?LT[JV? (2)

where G, := R, — gWR/Q is the Einstein tensor and

H,, =2|RR,, — 2R, R, — ZRO"BRWVL; + RILQBVRMM} — %gW(R2 — 4R, R* + R,,,c R*P7) (3)
and T),, is the energy-momentum tensor of matter fields. The field equations (2) contain up to the second
derivatives of the metric and linear in that term.

Suppose the n-dimensional spacetime (M", g,,) has symmetries corresponding to the isometries of
an (n — 2)-dimensional constant curvature space (K™ 2,+;;), which we call pseudo-spherical symmetry.
Namely, the line element is written by the direct product as

Guvdatda” = gap(y)dydy® + 1% (y)7yij (z)dz'd, (4)

where a,b=0,1; 4,7 = 2,...,n — 1. Here r is a scalar on (M?, go) with 7 = 0 defining its boundary, and
7;; is the unit metric on (K™~2,;;) with its sectional curvature k = £1,0. We assume that (K™ 2,;;)
is compact. Then the trapped region is expressed simply as the region where (Vr)? < 0.

1E-mail:nozawa@gravity.phys.waseda.ac.jp
2E-mail:hideki@cecs.cl
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The generalized Misner-Sharp mass [1] is a scalar function on (M2, g,;) with the dimension of mass
such that
(n—=2)Vii

m = Ml{—ﬁr”_l + 7" 3k — (Dr)?] + ar"°lk — (DT)Q]Q}7 (5)

where & := (n — 3)(n — 4)a, A := 2A/[(n — 1)(n — 2)], D, is a metric compatible linear connection on
(M?, gup) and (Dr)? := g% (D,r)(Dyr). VF_, is the area of the unit (n —2)-dimensional space of constant
curvature. The quasi-local mass is defined by the quasi-local geometrical quantity on the boundary of
a spatial surface and dependent only on the metric and first derivatives. The equations in the following
analysis can be transcribed in a comprehensible form by using the quasi-local mass. The definition reduces
to the Misner-Sharp mass when A = 0 [3], which characterizes the local nature of spherically symmetric
spacetime [4].

Here we recapitulate basic properties that the quasi-local mass exhibits [2]. First, our geometrical
definition is physically justified in that it is rederived as an integral of energy flux. Let us define the
Kodama vector K* = —e*”V,r, from which K* is timelike in the trapped region. The existence of
a timelike vector field irrespective of a highly dynamical setting is a direct consequence of the pseudo-
spherical symmetry. Straightforward calculations show that V,K* =0, GV K, =0 and H*'V K, =
0. Using these facts, we can show that the integral of the Kodama current, J#, yields our quasi-local
mass:

m = _/ J“n“’ JH = _T#VKVa (6)
b))

where 3 is some spatial region without an inner boundary and n* is its future-directed unit normal. It
can be also derived by the locally conserved energy flux, from which the quasi-local mass is recognized
as a total amount of energy enclosing the spatial surface [2].
The second criterion that we may recognize it as a well-defined mass is that whether it satisfies the
first law. This is indeed the case. Define the pressure and the Bondi-flux localization as
1

P=—oT%  ¢"= T°,D"r + PD"r, (7)

then the variation of m is written by manifestly satisfactory form
dm = Ay,dz® + PdAV, (8)

where A = VF ,r"=2 and V = V¥ ,r"~1/(n —1). It follows from the unified first law (8) that m = M =
const.. In the case of k + (Dr)?/2& # 0 and (Vr)? # 0, the Kodama vector K* becomes hypersurface-
orthogonal and then the spacetime is locally isometric to the Boulware-Deser-Wheeler solution (Birkhoff’s
theorem). In the asymptotic regions (asymptotically flat region at spatial infinity and asymptotic anti-de
Sitter region), the values of quasi-local mass converges to the constancy representing the total energy
of the system. If we assume the dominant energy condition and under some technical assumptions, the
quasi-local mass shows monotonicity and positivity properties. All of the above properties supports the
physical interpretation of our definition of quasi-local mass. We summarize the fundamental properties
of the quasi-local mass in Table 1.

Table 1: Properties of the quasi-local mass.
k=1 k=0 k=-1

Unified first law Yes Yes Yes
Higher-dim. ADM mass Yes n/a n/a
Monotonicity Yes Yes Yes
Positivity Yes See [2] See [2]

2 Dynamical black holes

By utilizing the quasi-local mass, we investigate the nature of trapping horizons (especially, future outer
trapping horizons since we are mainly focusing our attention to the dynamical nature of black holes).
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Black-hole formation typically entails the trapped region, from which even the outgoing null rays are
converging. This is the local characterization of dynamical aspects of black holes. We investigated the
nature of trapping horizons, which is the (n — 1)-dimensional surface foliated by marginal surfaces. Let
6+ be two expansions associated with null vectors orthogonal to K™~ 2. For the black-hole spacetimes,
future (- < 0) outer (64, < 0) trapping horizons are relevant, in which case the trapping horizon is
located at 64 = 0.

Now noting that (Dr)? is proportional to #,6_, the local nature of spacetime is encoded in quasi-local
mass. But it is quadratic in 6,6_ unlike general relativistic case so that two branches appear by solving
(5) inversely

r2 8Kk2am ~
0.0_ x—-k——1|(1 1 n 4aAN | .
TP T es ( qE\/ Ty ) )

We call GR-branch (the upper sign) and non-GR branch (lower sign) according to their general relativistic
limit. Thus the nature of trapping horizons are very sensitive to branches. It follows from (9) that the
trapping horizons are absent in the case of k& = 0,1 for non-GR branches and r < v2a& (r > v/2a)
regions with & = —1 for the GR (non-GR) branch. Whether the region is trapped or not is judged by
the inequality of the quasi-local mass. The value of quasi-local mass

(n=2)Vir n—3 ak* < o,
my = T’rh k + ? — ATh . (10)

at trapping horizon r = r is naturally regarded as the mass of trapping horizon. Let us consider a
spacetime containing a trapping horizon. The quasi-local mass satisfies the Penrose inequality m > (<)my,
for the GR (non-GR) branch under the dominant energy condition. For k = 1 and A < 0 case, this
inequality gives more severe lower and upper bound than mere positivity.

Now it is well known fact that Killing horizons exhibit thermodynamical nature. To derive the
formulae of black-hole thermodynamics, we have made full use of the stationarity conditions. Hence,
it is not clear in dynamical situations that how these laws are altered. But for the case of trapping
horizons (and especially for the pseudo-spherically symmetric case), similar laws seem to be valid. Taking
the Kodama vector as a substitute of horizon-generator, we found that the trapping horizons exhibit
thermodynamical properties as for Killing horizons, irrespective of its highly non-stationary situations.
The symmetric derivative of the Kodama vector along itself reduces to

1
Ya, (11)

rK2 2a
KbD(bKa) = _"2 (1 + T—Q[k — (Dr)Q])
Eq. (11) reveals that ¢® vanishes if K¢ is a Killing vector on (M?, g.3), implying that K* = K%(9/dx®)*
is a hypersurface-orthogonal Killing vector on (M",g,,). This fact also lends support to the physical
interpretation of 1. Since 1), K® = T,, K®K" on the trapping horizon where D% = K¢ holds, v° is
not in general proportional to K in a dynamical setting. Then the surface gravity of a trapping horizon
should be defined by KbD[bKa] = kg K,. Thus we have

1 1

krn = =D%r = —=* D, K, (12)
2 2

where the evaluation is performed on the trapping horizon. Transform the unified first law and project

onto the generator of trapping horizon, we have the first law of the trapping horizon

Apod'z = ’%Hd’ [A (1 + Wﬂ : (13)

n

where d’ is the derivative along the trapping horizon. From the first law, we can read off the entropy of
the trapping horizon as

STH =

Vi [1 L 2An—2)(n— 3>0"“] . (14)

4G, re

This coincides with Iyer and Wald’s definition of dynamical black-hole entropy, which has several plausible
properties among other things. Their entropy is independent of the potential ambiguity of the Lagrangian
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and associated with a Noether charge. Moreover, it agrees with a non-stationary perturbation of the
entropy of a stationary black hole and reduces to the entropy of a stationary black hole in the stationary
case.

The first and second piece in the entropy expression corresponds to the one quarter of the area the
deviation from the general relativistic case. We can show that under the null energy conditions, the area
of future outer trapping horizon is non-decreasing (non-increasing) along the generator of the trapping
horizon for the GR (non-GR) branch, whereas its entropy is non-decreasing in both branches. One
may wonder why the non-GR branch shows the counter-intuitive behaviors. This peculiarity is best
understood as follows. Let k* be radial null vector. The field equations and our definition of quasi-local
mass combine to give

8KkZam -
+R, kFEY 1 n 46A = k2T, K"K . 15
‘ % Py AR "

Ti

This equation shows that the null convergence condition violates if the null energy condition is strictly
satisfied.

It also follows from (15) and Raychaudhuri’s equation that under the null energy condition, an outer
(inner) trapping horizon in the GR branch is non-timelike (non-spacelike), while it is non-spacelike (non-
timelike) in the non-GR branch. The timelike nature for the non-GR branch is also counter-intuitive since
light rays emanating from a point on the trapping horizon can propagate into both sides, which does not
capture the idea that the black hole should be a region of no escape. This can be again recognized as the
‘divergence condition’ is satisfied for the non-GR branch.

For concreteness, let us consider the Hawking evaporation of a black hole, in which the null energy
condition is violated. A black hole in the GR branch continues to lose its mass and reduce its area. In
other words, the signature of a trapping horizon becomes non-spacelike and shrinks. Whereas in the non-
GR branch, a black hole defined by a future outer trapping horizon increases its size as it “evaporates.”
A fundamental cause of this arises from the sign flip in Eq. (15) for a radial null vector k*, which makes
the non-GR-branch solutions quite eccentric. But we have not explicitly shown whether this sign change
is special to radial null vectors or an artifact of our spacetime ansatz (4).

To conclude we sum up the upshots obtained in [5] in Table 2.

Table 2: Properties of the future trapping horizon under the null energy condition. Each quoted term
denotes that it has the meaning of time evolution only if the trapping horizon is null, since the area and
entropy laws are formulated along the generator of the trapping horizon.

GR branch non-GR branch
future outer future inner future outer future inner
signature non-timelike non-spacelike non-spacelike non-timelike
trapped side future exterior interior past
area law “non-decreasing” non-increasing non-increasing “non-decreasing”
entropy law “non-decreasing” non-increasing non-decreasing “non-increasing”
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Abstract

We consider a six-dimensional axisymmetric Einstein-Maxwell model of warped
braneworlds. The bulk is bounded by two branes, one of which is a conical 3-brane
and the other is a 4-brane wrapped around the axis of symmetry. The latter brane is
assumed to be our universe. The 3-brane folds the internal two-dimensional space in
a narrow cone, making sufficiently small the Kaluza-Klein circle of the 4-brane. An
arbitrary energy-momentum tensor can be accommodated on this ring-like 4-brane.
We study linear perturbations sourced by matter on the brane, and show that weak
gravity is apparently described by a four-dimensional scalar-tensor theory. The extra
scalar degree of freedom can be interpreted as the fluctuation of the internal space vol-
ume, the effect of which turns out to be suppressed at long distances. Consequently,
four-dimensional Einstein gravity is reproduced on the brane.

1 Introduction

Probably one of the most interesting recent developments in particle physics and cosmology has been the
idea of braneworlds. Models with extra dimensions are motivated theoretically, as in superstring the-
ory, which is a very promising approach to unification, requiring ten spacetime dimensions. Braneworld
scenarios are further motivated by their phenomenologically interesting aspects. Among them are the
possible effect of having the fundamental scale as low as the weak scale and some modification of the grav-
ity law on submillimeter scales [1], both of which are accessible by experiments. So far five-dimensional
(5D) Randall-Sundrum-type braneworlds [1] have been the most extensively studied examples, whereas
more recently there has been growing interest in six- or higher dimensional models. In the present paper
we will be focusing on 6D braneworlds with Maxwell fields. Since two extra dimensions are enough to
admit flux-stabilized compactifications while keeping the setup as simple as possible, such brane models
allow us to explore some of the interesting features which would be less easily addressed in more string
theoretical settings. Perhaps the simplest exact solution of this type of warped braneworlds has been
constructed in [2]. Codimension two branes are often considered in the above approaches, and they are
unfortunately associated with the problem of the localization of matter. Namely, a strict codimension two
defect does not allow for arbitrary energy-momentum tensor localized on it. Gravitational aspects of such
higher dimensional braneworlds have not been explored thoroughly yet because of this fact. The hybrid
Kaluza-Klein / Randall-Sundrum construction of [3] evades this problem by assuming that our universe
is a 4-brane in six dimensions, with one of the spatial directions compactified on a circle. Refs. [4, 5, 6, 7]
also exploit essentially the same idea to resolve codimension two singularities. The specific model we
consider in this paper is most closely similar to that of [3], but not exactly the same. In [3] the bulk with
axisymmetry closes regularly at the point where the axial Killing vector vanishes. In contrast, ours does
not, permitting a conical singularity there, corresponding to a tensional 3-brane. The conical 3-brane can
fold the internal 2D space in a narrow cone, yielding a small Kaluza-Klein circle of the 4-brane wrapped
around the symmetry axis. (For this idea we are indebted to [8].) To study in more detail the behavior of
weak gravity sourced by matter in the braneworld, we provide a rigorous treatment of metric and matter
perturbations in this paper. We use the technique of [9], which was originally developed for studying
linear perturbations in the Randall-Sundrum model and was developed by [4, 6] in the context of 6D
brane models.

1E-mail:tsutomu@gravity.phys.waseda.ac.jp
2E-mail:takamizu@gravity.phys.waseda.ac.jp
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2 The model

Our 6D bulk is described by the Einstein-Maxwell action. In our setup the bulk cosmological constant
may be positive or negative or zero, and so we write Ag = eé—g, e = +1, 0. The 6D field equations derived
from the above action and they admit the following bulk solution [3]:
M g, .N 2 v, g2 [ 48 2 2
gMNdx dz™ = f ﬂuud$”d$ + l % + ﬁ f(f)d@ 9 (1)

where f(&) := —e£? + g% - 2—2. Only the (£6) component of the field strength is nonvanishing, given by
Feg = 2\/5% £r- Let & be the positive zero of f(£). We consider the region in which § > & and f(£) > 0.

More specifically, & is the largest positive zero of f(&) for € = —1. For € = 0, we have & = (¢/u)'/3. ITn
the e = 1 case, & is the second largest positive zero, and we consider the region £, < & < &1, with & being
the largest zero. Accordingly, we have a deficit angle § = 27 [1 — 8f/(£0)/2], corresponding to a conical
20 =21 [1 — W} As in [3], one may impose 8 = 2/ (&),
leading to the regular geometry without a 3-brane. In the present paper, however, we do not do so and
allow for a conical deficit. We follow the construction of [3] and add a ring-like 4-brane at a point &, > &,
which is assumed to be our universe. The brane action is given by Sprane = [ d®z\/=7 (=X + L), where
A is the tension of the 4-brane and L, is the matter Lagrangian. We denote by -4 the induced metric
on the brane. Let M be the spacetime in which £ ranges from &y to .. We impose Zs symmetry about
&,, and glue M and a copy of M together at £ = £,. In so doing we assume that the metric and Fjsn
are continuous across the brane.® The first derivative of the metric is subject to the Israel conditions.

We now consider a vacuum brane. In this case the Israel conditions determines the brane position as

3-brane placed at & = &, with tension &

2\ 1/3
& =2 (g_u) . Since our brane model includes one Kaluza-Klein direction, we must impose that the

circumference of the ring, C = 273(+/f, is not too large (say C < 1076 cm), whereas if the scale of the
“braneworld compactification” is as large as £ ~ 1072 cm it will be particularly interesting. Clearly, this
can be achieved by requiring 8+v/f« < 1. In other words, if the tension of the conical brane is fine-tuned
to be very close to the critical value, k20 ~ 2w, the bulk will look like a narrow sliver with a small
Kaluza-Klein circle. The required fine-tuning is 1 — ’;i: ~ %. We will keep using the conical brane to set
the boundary of the system.

. ]¢5 5a3e8
We can express the parameters 1 and ¢? in terms of & and &,: p = —em%?_—s, ¢ = —655%35,

o= 2—0 Note that the above expression is valid only for € # 0. Introducing the new coordinate z := £/&,

we write f = £2f(z), where f(z) := —e¢ (z2 + ﬁz% — 52?; ziﬁ) The background solution apparently
depends on &j, but it can be eliminated by performing an appropriate coordinate rescaling. Thus, it
turns out that the background configuration in the € # 0 models is characterized by two parameters, «
and the 3-brane tension o. We see that (1 <) a® < 8/5 for ¢ = +1 and a® > 8/5 for e = —1. If a is
very close to 2/5'/2, we have a large circumference, C o |a — 2/5/3|~1/2. Large o also tends to give
a large Kaluza-Klein radius, C o« a. Therefore, in what follows we will assume o ~ O(1) but not too
close to 2/5'/3. The special case with € = 0 (a® = 8/5) should be considered separately. Since the 6D
cosmological constant vanishes, the typical compactification scale is given solely by the Maxwell field:

252 _ 2),—8 2 &t
KUF? = (24/05)27° ~ 1/L5, where (g := 3.

where

3 Linear perturbations

Let us now analyze linear perturbations on the brane model. We are interested in a length scale much
larger than the circumference of the ring, and hence we focus on perturbations homogeneous in the 6-
direction. Linear perturbations are split into scalar, vector, and tensor modes under the Lorentz group
in the external spacetime. Here let us consider scalar and tensor perturbations. (Vector modes are of
no particular interest.) For the transverse and traceless tensor perturbation, h,,, the Einstein equations

3We impose the same boundary condition as in [3] for the Maxwell field. This is different from [4, 5, 6], in which Fsn
is discontinuous at the 4-brane due to the Stiickelberg term included in the brane action.
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simply give (§4 f h:W)/—G-EQEQDhW = 0, where O := n*¥9,,0,.. For the scalar perturbations, it is convenient
to employ the 6D longitudinal gauge. The (uv), (££), and (00) components of the Einstein equations

are combined to give two basic equations as " + 2 (fTI + %) Q+...=0and V' + %\I" +...=0.

The remaining variables are obtained from & = ¥ + Q and A4y = 2{3/63_5; [f (€Y 4+2Q) + £ (Q + 20)].
We now proceed to discuss boundary conditions. At the point where the geometry pinches off, £ = &,
we impose some regularity conditions on the perturbations. For the tensor mode, we require that both
h,. and h;“, are regular at £ = &. The regularity conditions for the scalar modes are fQs, = 0 and
(fQ) +2f'¥|e, = 0. The perturbed field strength in the Gaussian-normal gauge must be continuous at
& = &, Since we are assuming the Z, symmetry across the ring, it leads to the condition d Ag. + Aj,. = 0,
where the equation is written in terms of the 6D longitudinal gauge perturbations and hence includes the
brane bending mode ¢ = {(x). In the 6D longitudinal gauge, the location of the brane is perturbed in
general: &, — & + ((z). We now investigate the long-distance behavior of weak gravity on the 4-brane.
Using the Israel condition we can put the bulk equation of motion and the boundary condition into a
single equation with a source term:

Ohyy = (€411,,) + €60, = =8u,6(6 - &), (2)
where we define S, = 2062\/f.r? (T,“, — %T/\)"yw) + 40%2£2¢ ., We use the standard Green function

method to solve Eq. (2). The Green function is explicitly given by Gg = — [ %eik'(x—x/) > Mg%m’

where u;(§) are a complete set of eigenfunctions of

(€' fu))’ = ~ECmiu. 3)
The eigenfunctions must be normalized. We are mainly interested in the long-range gravity on the brane
and hence the zero-mode solution of (3) is the most important. Setting m2 = 0 and integrating once,

we obtain uj = ¢4 f71U, where U is an integration constant. However, from the regularity condition
at £ = & we must impose U = 0. Therefore, the zero-mode solution is given by uy = L~! = constant.

The normalization is determined as L = £1/2(¢3 — &). The zero-mode truncation of the Green function

leads to ﬁ/w o —#D*SM,,. _NOW we would like to compute the Ricci tensor R,(ﬁ,) of the 4D metric G =
E21(1+2V,)nu + hyy]. Here U, is the metric perturbation in the Gaussian-normal gauge, which is related

252
to the longitudinal gauge quantities. We write R,(fly) = —%\Z\hlw — Qi;fgw - é—inyDC— (20,0, + 1, 0) T,

where we defined T := U, — i—iff( . Finally, we can evaluate

— 1—-21
Rfflu) ~ HAQL (T;w - iT)\ 'Yw/) - (Qauau + nuuD) T, (4)
where Tq, := CTyyp is the energy-momentum tensor integrated along the #-direction, and we defined
2 .2
the 4D Newton constant as k3 := % Thus, we see that the first three terms help to recover a 4D

gravitational theory. However, brane gravity looks different from Einstein gravity at this stage because of
the additional scalar degree of freedom encoded in Y. It should be stressed here that the brane bending
mode is crucial for reproducing the 4D tensor structure. The role of the brane bending here is the same
as that of the Randall-Sundrum braneworld [9], and it has been shown that the same mechanism works
in a slightly different setup of 6D braneworlds [4, 6].

Let us evaluate the effect of Y. For /20 = 0 we have the exact solutions, where four integration
constants ¢q(x),-- - etc. are to be determined by the boundary conditions. In general cases with T, # 0
we have nonzero integration constants. From the regularity conditions, one can express c3 and ¢4 in terms

of ¢; and co. Th ite ¢ in t f d F 0 we find T = E=8)E+860) o
1 2. Then, we can write ¢ in terms of ¢; and ca. For € # 0 we find T = Serer - C(x),

where ¢ := 8¢3c; — co. Using the Israel conditions, we finally arrive at
1— —
T = F(a) K2 <§T,\)‘ - T;) , (5)

where F(a) := — 15502 (5a® — 8)(a® + 8). Egs. (4) and (5) imply that the effect of T is suppressed on
scales much greater than v/F£. For a ~ O(1), the coefficient v/F is not large, so that the critical scale
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may be given by ¢. The critical scale becomes large for @ > 1, but this is not the case we are considering.
In the € = 0 case, a straightforward computation can be similarly done and the effect of T is negligible
on scales much greater than ¢y. To illustrate the geometrical interpretation of the scalar mode Y, we
compute the perturbations of the internal space volume and the circumference of the brane. It then turns
out that 6V o 0C o ¢é. Namely, T (x ¢) can be interpreted as the perturbations of the internal space
volume and the circumference of the ring. It is reasonable that standard 4D gravity is recovered when
the matter fields on the brane do not perturb the internal space much.

So far we have seen that the zero-mode sector of perturbations can reproduce standard 4D gravity on
the brane. Basically, the effect of discrete Kaluza-Klein modes are Yukawa-suppressed, and hence we can
safely neglect these massive modes at long distances. In this subsection, we compute the mass spectrum
of the Kaluza-Klein modes for completeness. To do so we rewrite Eq. (3) in terms of z and f(z), so

— 22
that we would like to solve dilz [24 f(z )d“} +v22%u; =0, V2 = mgf , supplemented with the boundary
0

conditions. For € = 0 we replace £2 in 12 by ¢2. In the case of ¢ = 0 we have analytic solutions for the
Kaluza-Klein mode functions. The Kaluza-Klein mass spectrum can be calculated from the boundary
condition and we can find 1/1 ~ 742, vp ~13.6, v3 =~ 19.7, -+ +. The Kaluza-Klein masses measured by an
observer on the ring are v;{ (50/5*) ~ (0.855 x 1/18_ In the case of € # 0 we compute the mass spectra
fully numerically. As before the Kaluza-Klein masses measured by an observer on the ring are v;¢~ a1
We are considering the case with o ~ O(1), and so we have m; /&, > 1.

4 Summary

We have considered a warped braneworld in six dimensions. The background is given by the model
of [3] with a slight modification, in which our universe is assumed to be a 4-brane wrapped around the
axisymmetric internal space. Since the codimension of the brane is one, this construction allows for
localized matter on the brane. We have performed a linearized perturbation analysis in order to study
the long-distance behavior of weak gravity sourced by arbitrary matter on the brane. We have found that
there are two scalar modes, ¢ and T, relevant to brane gravity. The first one, (, describes the shift of the
brane position and plays an important role in recovering the tensor structure of 4D gravity. The mode T
encodes the fluctuation of the volume of the internal space (or that of the circumference of the 4-brane)
and signals a scalar-tensor theory of gravity. However, the effect of T was shown to be suppressed on
scales greater than ¢ (or {y). Discrete Kaluza-Klein modes are Yukawa-suppressed at long distances.
Thus, we have successfully obtained standard 4D gravity on the brane. The hybrid braneworld does
not eliminate the hierarchy problem with relatively “large” extra dimensions, because one of the extra

dimensions will be quite small compared to the other. Indeed, we find M3, = (Mg)eC 2;;\_/30 (Mg)ec.

(For ¢ = 0, we find M2, = 2(M{)¢sC/+/15.) The circumference of the ring must be C < 10716 cm. Thus,
for £ <1072 cm we get the fundamental scale Mg > 107 GeV.
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General Relativity and Gravitation
Bulk dominated fermion emission on a Schwarzschild background
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Abstract
Using the WKBJ approximation we obtain semi-analytic expressions of the absorption
probability for Dirac fermions on a higher dimensional Schwarzschild background. We
then relate the absorption probability to the absorption cross-section, and then use
these results to plot the emission rates. Our results lead to the interesting conclusion
that for d > 5 bulk fermion emission dominates brane localised emission.

Introduction

Large extra-dimensional scenarios [1] have led to the somewhat striking prediction that black holes (BHs)
may be observed at particle accelerators such as the LHC [2]. However, in order to suppress a rapid proton
decay quarks and leptons need to be physically separated in the higher dimension(s). Such models are
generically called split fermion models [3, 4]. Note that in supersymmetric versions of this idea the
localizing scalars and bulk gauge fields will also have fermionic bulk superpartners.

In a previous work we applied conformal methods, which allowed us to separate the Dirac equation
on a higher dimensional spherically symmetric background, to discuss the quasinormal modes (QNMs)
for Schwarzschild BHs [5]. In this work we used this same method to calculate the greybody factors [6]
and emission rates for Dirac perturbations on a d-dimensional Schwarzschild background by writing the
background as:

ds* = = f(r)dt® + f 7 (r)dr® +1%dQ%_ (1)

TH d—3
with f(r)=1-— (—) and where the horizon is at r = rg.
T

After the conformal transformation [5], the Dirac equation separates into a time-radial part and a
(d —2)-sphere. Moreover, the radial part reduces to a Schrodinger-like equation in the tortoise coordinate
Ty

( & +V1>G:E2G, (2)

)
dr?

where dr = f(r)dr., and the potential is given by Vi (r) = /@2% —l—/@f% [@} , with k = £+ %. Note that
the above potential reduces to the brane-localized results when we set k = £ + 1, and therefore provides

an alternate derivation of the brane localized potential.

Absorption probabilities via the WKBJ approximation

In a recent work by two of the authors [7] we applied the intermediate WKBJ approximation (up to first
order) to evaluate the absorption probability of a graviton to a static BH. The WKBJ approximation
can, however, be applied at all energies (including low energy) as has been discussed in reference [8].
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Low Energy WKBJ

In terms of the WKBJ approximation, in general, it will be convenient to make a change of variables to
x = Er [7). Writing E2Q(z,) = E? — V; the Schrédinger equation, equation (2), takes the form:

(+a)c- )

The low energy absorption probability corresponds to the probability for a particle to tunnel through
the potential barrier. The result to first order in the low energy WKBJ approximation is given by:

2 da!
o J(@)
where 71 and x5 are the turning points, Q(z1 2) = 0. This approximation is valid for V4 2 E? and as long

as we can solve for the turning points in V;(z) = E?. Note that we can numerically integrate equation
(4) for each energy E to obtain the absorption probability as a function of E.

AB)P = exp [—2 QW) . (1)

Intermediate Energy: 3rd Order WKBJ

An adapted form of the WKBJ method can be employed to find the QNMs, or the absorption probability
(which we are primarily interested in here), when the scattering takes place near the top of the potential
barrier. In the following we shall use the same notation as reference [9], where we have confirmed their
results to fourth order. However, for the purposes of this work, we shall consider only up to and including
third order, in which case we express the absorption probability as:

1
2

A (E)]" = 11250 (5)
where S(E) has been defined in reference [5].

It should be noted that as we go to higher orders the approximation becomes valid for lower energies.
However, as can be seen from figure 1, even orders in the intermediate WKBJ method drop back down to
zero for large energy. For this reason we shall work to third order in our calculations, as odd orders have
the nice property that |A|?> — 1 for large energy. Note also that the WKBJ approximation, in general, is
accurate for larger angular momentum channels, whereas the Unruh approach [10] is valid for only the
lowest angular momentum channels and e < 1 (namely small BHs). However, it is interesting to note
that although the low energy WKBJ result does not agree exactly with the Unruh result, they both tend
to zero for € — 0. On the other hand, unlike the Unruh result, the low energy WKBJ is valid for energies
up to € ~ O(1), where it matches onto the intermediate WKBJ. For a more in depth discussion of this
method see references [5].

High Energy

For high energies the absorption probability tends to unity, and the cross-section reduces to that of the
classical cross-section, see reference [7]. However, as discussed in reference [8], there will always be small
corrections to the large energy limit. A high energy WKBJ approach can be applied in this limit, but for
the purposes of this current study it will be sufficient to use |A,(F)|?> = 1.

Emission Rates

The emission rate for a massless fermion from a BH is related to the cross-section by a d*~ 'k dimensional
momentum integral times a fermionic thermal temperature distribution:

di1k
- , 6
ZUAE TH+1(27T)d 1 (6)
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Low Energy WKBJ

Figure 1: Plots of the absorption probability, via various schemes, for d = 7 and the first two angular
momentum channels: £ =0 (left) and £ =1 (right). Note the Unruh result is only valid for ¢ < 1.

where Ty is the Hawking temperature, o g are the greybody factors and the sum is a generic sum over
all angular momentum and momentum variables. We were able to relate the greybody factor to the
absorbtion probability by considering the results of reference [11]:

_ L (Y s (7)
ONE = 20,5 \E - at .

In the above we have used D, as the degeneracy. Given that the angular integration over the momentum
for a massless field (|k| = E) leads to the Jacobian [d¢'k = [Q4_2E?"2dE, the fermion emission
rate can be expressed solely in terms of the absorption probability. However, as the sum over  is for
K== (% — 1)7 ig, + (g + 1) and since the integrand depends only on the absolute value of x, we shall
sum for k > 0 and multiply by a factor of two. Therefore, after changing variables to e = Erg, and using

the fact that the Hawking temperature is Ty = (d — 1)/(4nry ), we obtain:

21 £
dEdt  mry = e 41

Dy|Ag(e)]? . (8)

Results and Conclusions

We have calculated the total power by integrating over e, see equation (8). The results are shown in
Table 1. From these results we find that for d > 5 the emission is predominantly into the bulk. Note that
in order to obtain convergence in equation (8) we must choose some value of K. > €, and to ensure
this we have taken K, = 34 + g.

Dimension d 5 6 7 8 9 10
dEpuik/dt 0.0579 | 0.1771 | 0.3380 | 1.4731 | 3.56403 18.2606

dEbrane/dt 0.0708 | 0.1172 | 0.204 | 0.3435 | 0.554892 | 0.860165

Seman/dt | 08181 | 1.5109 | 1.6587 | 4.2880 | 6.42292 | 21.9019
brane/dt

Table 1: A comparison of the bulk and brane-localised power spectrum up to d = 10, where we have
changed units from rg to M and set M = 1.

Our results for the Hawking emission rate of a massless Dirac field on a bulk d-dimensional Schwarzschild
background, using the method we developed in reference [5], conclude that fermions are mainly emitted
into the bulk for d > 5, as we have shown, see Table 1, which is in contrast to the scalar field case and for
bulk to brane photons [12]. This is an example contrary to the conjecture that BHs radiate mainly on the
brane [13]. Furthermore, bulk dominated fermion erriiigion is also consistent with the original motivation



for split-fermions, namely that of a suppression of a rapid proton decay [3]. Note that these results also
agree qualitatively with our work for the QNMs on such a background [5], where the BH damping rate
was found to increase with dimension.

We have also highlighted how semi-analytic results can be obtained by considering different versions of
the semi-classical WKBJ approximation, where we also compared this to the low energy analytic results
derived from the method first developed in reference [10], see figure 1. Note also that in a recent work
these methods have been used to investigate the effect of brane tension on bulk fermion emission, with
the result that QNMs were damped by the tension of the brane [14].
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Abstract

We consider a brane world in an arbitrary number of dimensions without Z> symmetry
and derive the effective Einstein equation on the brane, where its right-hand side is
given by the matter on the brane and the curvature in the bulk. This is achieved
by first deriving the junction conditions for a non-Z> symmetric brane and second
solving the Gauss equation, which relates the mean extrinsic curvature of the brane
to the curvature in the bulk, with respect to the mean extrinsic curvature. The
latter corresponds to formulating an explicit junction condition on the mean of the
extrinsic curvature, analogue to the Israel junction condition for the jump of the
extrinsic curvature. The derived equation is a basic equation for the study of Kaluza-
Klein brane worlds in which some dimensions on the brane are compactified or for a
regularization scheme for a higher codimension brane world, where the Kaluza-Klein
compactification on the brane is regarded as a means to regularize the uncontrollable
spacetime singularity created by the higher codimension brane.

1 Introduction

String theory suggests that our universe is not four dimensional but, rather, a submanifold (brane)
embeded in a higher-dimensional spacetime (bulk). In particular, Randall and Sumdrum (RS) [2, 3]
proposed an interesting brane world model. The RS model assumes a codimension-1 brane with Zs
symmetry embeded in the bulk with a negative cosmological constant. However, to reconcile a higher-
dimensional theory with the observed four-dimensional spacetime, the RS model is not sufficient. Since
string theory suggests that the number of bulk dimensions is 10 or 11, the corresponding number of
codimensions is 6 or 7. Therefore, we must consider a higher-codimension brane world. But a higher-
codimension brane world has the serious problem that the brane becomes an uncontrollable spacetime
singularity due to its self-gravity, except possibly for a codimension-2 brane world, which may give a
reasonable cosmology. Thus it is necessary to develop a regularization method to realize a reasonable
higher-codimension brane world.

For the above-stated purpose, we focus on a specific regularization scheme, which we now describe.
Let us consider a codimenion-(g 4+ 1) brane in an n-dimensional spacetime. We regularize this brane by
expanding it into ¢g-dimensions, so that it becomes a codimension-1 brane with ¢ compact dimensions on
the brane. Note that the resulting codimension-1 brane will not have the Z; symmetry. This regulariza-
tion scheme is essentially the same as the Kaluza-Klein (KK) compactification of ¢ spatial dimensions on
the brane, which is called the KK brane world.

In this paper, partly to give a framework for the KK brane worlds and partly as a first step to formulate
the above-mentioned regularization scheme for brane worlds of arbitrary codimension, we consider a
codimension-1 brane world in an arbitrary number of spacetime dimensions without Z; symmetry and
derive an effective Einstein equation on the brane, which is a generalization of the effective Einstein
equation on the brane with Z5 symmetry derived by Shiromizu, Maeda and Sasaki [4].

The work most relevant to the present one is that of Battye et al., [5] in which the non-Z5 symmetric
brane world is investigated. They study the junction condition in detail and point out that the effective
Einstein equation has terms involving the mean of the extrinsic curvature across the brane which are not
explicitly expressed in terms of either the matter on the brane or the curvature in the bulk. Then, they
focused their investigation on a spatially homogeneous, isotropic brane. Our purpose here is to solve
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this problem and express the effective Einstein equation solely in terms of the matter on the brane and
the curvature in the bulk, and also to present a straightforward generalization in which the number of
spacetime dimensions of the bulk is extended from 5 to n.

Thoughout the paper, we use square brackets to denote the jump of a quantity across the brane and
angled brackets to denote its mean. For an arbitrary tensor A (with tensor indices suppressed), we define
A=At —-A, (A= %(.A+ + A7), where the superscript + denotes the side of the brane from which
the normal vector n? points toward the bulk.

2 Pre-effective Einstein equation on the brane

We counsider a family of (n—1)-dimensional timelike hypersurfaces (slicing) in an n-dimensional spacetime
and identify one of them as a brane (i.e., a singular hypersurface). We denote the bulk metric by gan
where M = 0,1,---,n — 1. We denote the vector field unit normal to the hypersurfaces by n™. Then the
induced metric ypsn on the hypersurfaces is given by vpny = gy v —nayny. The metric WA B = VAC gcn
acts as a projection operator, projecting bulk tensors onto the brane. Here, the Gauss equation gives

Rab - fab + KKab - KaCKbc 5 (1)

where Rgpeq is the (n — 1)-dimensional Riemann curvauture, K,y is the extrinsic curvature on the brane.
For convenience, we introduce the tensor F,; defined by

n—3

1 1
Fab = Rasvivy + ——=RepYPYab — ——=Rab + Eab » (2)
2 n—2 n—1

where R apcp is the n-dimensional Riemann curvature and &, is the projected Weyl curvature on the

brane, defined by £, = Cacppn®nP~y2vf. Using the fact that the brane induced metric satisfies the

junction condition [v,] = 0, the Gauss equation can be decomposed into two equations,

(Rot) = Ry = {(Fan) + (K] Kan] — [KE)Es]) + () (o) — () (o), 3)
[Rab] = 0 = [Fap] + (K)[Kap] + [K](Kap) — 2(K (%) [Kp)e] , (4)
where we use the relations between the jump and mean symbol(),[]. We can construct the effective

Einstein equation on the brane without any symmetry. For convenience, we decompose the F,;, and Ky,
into trace and traceless parts, Fqp = %’Yab + wap, Kap = %’Yab + o4p, respectively. The effective
Einstein equation is derived from the mean of the Gauss equation (3). Inserting the Israel junction
condition [6] ([Kvap — Kap] = Ii%n)Tab = /@(Qn)(—)\'yab + Tap)) into it, we obtain

2

- _ K
Gab = =Mt + K1y Tab + =5 Sap + (Qab) = (02 00c) (5)

where the each terms is defined by

n—3

2 _ 4
Fln-1) = I =gy "™ (6)
i =3 1, (n=2)(n=3) o 1 .

A= 2(n71)<]:>+ 2I€(n71))\+ 3n 172 (K) 2(0 Woed) s (7)
T 7’2 n—32 c n—2 wd
R KT s KT M )
n—3
() = o) + 2K o) o)

The first term A on the right-hand side of Eq. (5) represents the effective cosmological constant. We note,
however, that this quantity may not be constant in general, as is clear from its expression in Eq. (7).
The second and third terms are contributions from the energy-momentum tensor on the brane and its
quadratic term, which are the same as in the Zs symmetric case [4]. The fourth traceless term, (Qg),
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which is traceless by definition, is an extension of the £, term in the Zs symmetric case. Finally, the last
term is a new term, which has no analog in the Z5 symmetric case. As is clear from its definition, this
term arises from the square of the mean extrinsic curvature (K,;), and it vanishes only if the traceless
part of (K ;) is zero. The above effective Einstein equation, (5), is completely general in the sense that no
symmetry has been imposed. However, it is useless, except in the Zs symmetric case, because it depends
strongly on the unknown mean extrinsic curvature (K,p). In order to make it meaningful, it is necessary
to express (Kgp) in terms of geometrical quantities in the bulk (i.e., the bulk metric and curvature) and
the brane energy-momentum tensor.

3 The mean extrinsic curvature (K )

The equation we solve is (4),
_[j:ab] = 2K%n)7c(ac<Kb)c> + <K>[Ka ] . (10)

where we use the Israel junction condition and for convenience we introduce the “hatted” energy-
momentum tensor:

(n—3)A—r1 -

AaEa_ a:Ta_
Tab Tab 2(%—2) Yab b

1 _
mT%b- (11)
Here we seek a general solution without particular assumptions concerning the brane energy-momentum
tensor. Our method consists of two parts. First, we obtain the trace of the mean extrinsic curvature
(K) by introducing the inverse of the hatted tensor 7,;. Second, with (K) known, we rewrite the second
Gauss equation as a matrix equation for (Kgp). This matrix equation can be solved by using the tetrad
(more precisely, the vielbein) decomposition of 74,. Using this strategy, we obtain the general solution
for the mean extrinsic curvature.

1, (n — 3) (7~ 1)4e[Fue] T
2 K - _Z 1\ c _ 1
K(n) (Kab) 5 (77 )a [ Fbe] + 3 —3)2 — 7y (L)) 120 T 5 (77 ab
1 .
_E 7(1)7(3)[ Aol (12)
— —e, ey’ |w .
) 75 b 1¥(@H0G)

where (771),, is a inverse matrix of the “hatted” energy-momentum tensor 7,; and ét(f) is a local Lorentz
frame in which the hatted tensor 7, is diagonalized. We refer to this as the junction condition for the
mean of the extrinsic curvature, which is a counterpart to the conventional junction condition for the
jump of the extrinsic curvature, Israel junction condition [6]. We also note that this result is valid only if
we have 7;) + 7(;) # 0 for all possible pairs of (i) and (j). We need a special treatment in the case that
any of the demonimators are zero.

4 Effect of (K,;) on the brane

Low energy limit

We conjecture that the low energy regime, where |7,5| < A, Einstein gravity is recovered on the brane.
For this reason, we believe that the contributions of the wq, and S,p terms become negligibly small. To
examine this, let us consider the solution for the mean extrinsic curvature up to O(7%, wqp). In this case,
the inverse of the hatted energy-momentum tensor is given by

n —

Then (K,p) can be readily obtained as

o Fun) = 5t {5 (72 = (0= 207} + O (1)
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Using this, the effective Einstein equation becomes

_ _ LE
Gab = —ALE’Yab + H?nfl) Tab + O(szv wab)’ (15)
where
. b -3 , . (n-(n- 3P
_ 79 _ 16
e K A T VS C (16)

n)
(n—2)(n — 3)[F]?
SH?n)(n —1)2)2

= 5= g o e

ALE n—3 n—3 2))\)2+

(17)
Thus, Einstein gravity is recovered. However, in contrast to our naive expectation, the contribution of

the mean extrinsic curvature gives rise to new correction terms from the bulk, both to the gravitational
constant and to the cosmological constant, which are not necessarily constant.

5 Conclusion

We considered a general codimension-1 brane in an arbitrary number of dimensions without Z5 symmetry
and we obtained expressions for both the jump and the mean of the extrinsic curvature in terms of the
bulk curvature tensor and the brane energy-momentum tensor. With this result, we derived the effective
FEinstein equation on the brane in its most general form, which is a generalization of the Shiromizu-
Maeda-Sasaki equation [4] to the case in which Z5 symmetry does not exist. The derived effective
Einstein equation has a new term arising from the mean extrinsic curvature, and this new term leads to
the appearance effectively anisotropic matter on the brane.

Thus, our result is a basic equation for the hybrid brane world scenario, in which some spatial
dimensions on the brane are Kaluza-Klein compactified. Also, it provides a basis for higher codimension
brane worlds in which a higher codimension brane is regularized by a codimension-1 brane with extra
dimensions on the brane compactified to an infinitesimally small size.
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Abstract

We derive the low energy effective theory on a brane in six-dimensional chiral su-
pergravity. The conical 3-brane singularities are resolved by introducing cylindrical
codimension one 4-branes whose interiors are capped by a regular spacetime. The
effective theory is described by the Brans-Dicke (BD) theory with the BD parameter
given by wpp = 1/2. The BD field is originated from a modulus which is associated
with the scaling symmetry of the system. If the dilaton potentials on the branes
preserve the scaling symmetry, the scalar field has an exponential potential in the
Einstein frame. Based on the effective theory, we discuss a possible way to stabilize
the modulus to recover standard cosmology.

1 Introduction

Recently, much attention has been paid to six-dimensional supergravity. The most intriguing property
of six-dimensional supergravity is that the four-dimensional spacetime is always Minkowski even in the
presence of branes with tension. A 3-brane with tension induces only a deficit angle in the six-dimensional
spacetime and the tension does not curve the four-dimensional spacetime within the brane. This fea-
ture is called self-tuning and it may solve the cosmological constant problem. This is the basis of the
supersymmetric large extra-dimension (SLED) proposal.

In this paper, we derive a four-dimensional effective theory for the modulus in six-dimensional super-
gravity with resolved 4-branes by extending the analysis of Ref. [1] which studied the low energy effective
theory in the Einstein-Maxwell theory. Arbitrary matter and potentials for the dilaton on 4-branes are
allowed to exist. We use the gradient expansion technique to solve the six-dimensional geometry assum-
ing that the deviation from the static solution is small. Using this method, it is possible to solve the
non-trivial dependence of the bulk geometry on the four-dimensional coordinates. It is also possible to
study whether we can reproduce sensible cosmology at low energies or not. We also study the possibility
to stabilize the modulus using the potentials for the dilaton on the branes along the line of Ref. [2]. A
detailed discussion is done in a much longer paper [3].

2 Basic equations

The relevant part of the supergravity action we consider is

4 M* 1 M*
_ 6 2 2,—¢ ¢
- V=g l|"R- = _SF%et - 1
5= [ doay=g | TR - T 00 - (Rt et )
where ¢ is the dilaton, M is the fundamental scale of gravity, (0¢)? := g™V oy ¢pOn ¢, F? := Fpyn FMN,
and Fyny = O An —On Ay is the field strength of the gauge field Aps. For the moment we are interested
in solving the 6D bulk equations of motion. In Sec. 4 we will add two 4-branes (at positions y = y4)

I E-mail:tsutomu@gravity.phys.waseda.ac.jp
2E-mail:Frederico.Arroja@port.ac.uk
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and L; denotes the different bulk curvature scales on either sides of the branes. We start with the
axisymmetric metric ansatz

d _
gundzMdzN = L2e*M®) W) + (22222 £(4)d0? + 20b,,(y, 2)dBdat + a®(y) b, (y, T)dztdz”, (2)

where capital Latin indices numerate the 6D coordinates while the Greek indices are restricted to the 4D
coordinates. The evolution equations along the y-direction are given by

1 17 U
W(FQMF M 86" F2> , (3)

L N ) ) 1 A
no,K7 + KK =°R} — e *"°D;°D"e*®) — 9,60 ¢ — 4—L%e¢5; -
where n¥ = e=*\/f/Ly, Kﬂ’; is the extrinsic curvature of y = constant hypersurfaces, K is its 5D trace,
SR 7 is the 5D Ricci tensor and °Dj, is the covariant derivative with respect to the 5D metric. Here, i = p
and 6. The Hamiltonian constraint is

a7 (PP = 31 ) 0 — 200,07 + (00 + 75, (@

R+ KK/ —K*=—
and the momentum constraints are °D, (Kﬂ" - 511"[() = = Fum F"™nye ? + D¢ nvd, ¢, where n, =

e*L;/+/f. The Maxwell equations are given by Vs (e ?FMY) = 0, where V/ is the covariant derivative
with respect to the 6D metric. The dilaton equation of motion is Vay VM ¢ + Sz F?e™? — -1ze? = 0.
I

3 Gradient expansion approach

In this section we will use the gradient expansion method to solve the 6D bulk equations. We assume
that the length scale £ is of the same order of L;. The small expansion parameter is the ratio of the

bulk curvature scale to the 4D intrinsic curvature scale, ¢ = ¢*|R|. We expand the various quantities
_ (0) (1
as by = hyy(2) +ehfi) (y,2) + 10 = 0O + 290 o0 6= 6O 4 e .- Ky =K +e K7
(0 ) (0) (1)
K =K +eK) +--- [Fyg =Fy9 +cFy +

3.1 Zeroth order solutions

The zeroth order solutions are obtained as a(y) = /¥, f(y) = + ( y+£L— %) A(z) = L0(2), 9O (y,2) =

)
®(z), 00 (y,z) = —Iny—®(z), Fyo= M%%ed’(o)‘w(o) = M?{f5, where pu and ¢ are integration constants.

3.2 First order equations

The 4D traceless part of the evolution equations is found to be

o, (¥ VIK!) = e *yLiR}, (5)

(1) (1)
where we defined K} :=K,” —(1/4)6,/ K} and

v 1 v v 1 v 2 3 v 1 v 2
:Ru—zéuR—<DMD $— 6./D @)—5[7)“@7) 10,/ (D) |, (6)

where D?*® := h**D,D,® and (D®)? := h**D,®D,P. The general solution to the above equation is
given by
o®/2

3 1
K. = 2\/_L1]R§ t 577 C(x), (7)
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where the traceless tensor C,’(z) is the integration “constant” to be fixed by the boundary conditions.
€
Now we define convenient quantities J := n¥9,¢(!) + 1 K* and
e 3;((; +1((; o M o (O LNy YV /2 400 _ \Fﬁ (
2f 2y MACL;\/T Lr y

The evolution equations for these variables can be derived using the above basic equations. With some
manipulation one arrives at

[
—

(8)

y (y2\/?j) = 5 ‘P/zyL[ [R+D2<I>+ (D®) } (9)
Oy (?f\/?lc)

The two equations have the same structure as that of Eq. (5). The general solution for each evolution
equation contains one integration “constant” which will be determined by the boundary conditions.

1
Zeq’/QyL[ [R - 3D%® — ;(19@)2} : (10)

4 Junction conditions and effective theory on a regularized brane

The action of each brane is taken to be
Sane = = [ @277 |V(0) + VOO - edp) @S —edh)| + [Pov=iln, )

where g;; is the induced metric on the 4-brane, V' (¢) and U(¢) are the couplings to the dilaton, and £,
is the Lagrangian of usual matter localized on the brane.

The jump conditions for the Maxwell field are [[ MFMNe’d’]] = —eU(ONY — eAp), while for
the dilaton field we have [[nMayg]] = [dV + 14055 — e4)(0'S —eA;\)] , where [F]],, =
lime o (Fly,+¢ — F|y,—¢). Here and hereafter in this section all the quantities are evaluated at the posi-
tion of the brane under consideration. The Israel conditions are given by HK 2 =07 K H = —7=T, ’Etot)
where

v 7 1 1 1., A A v
Tflion) = —VO5 +U | (0% — e4;)(8"E —eA”) — 55,2 (053 — eA)(07S — eAA)} +T7, (12)

and T[f’ represents the matter energy-momentum tensor.

4.1 Zeroth order

The zeroth order junction conditions relate several parameters with each other, and the detail of the
parameter counting of the configuration is found in Ref. [2].

The classical scaling symmetry is preserved by the special choice of the potentials V' (¢) = ve?/?, U(o) =
ue~%/2. In the following, we assume that at the zeroth order, the potentials are given by these scale-

invariant ones. Then we expand the potentials as follows: V (¢) = V(?) (¢(?)4¢ (V(l) () + dV((O)) gzﬁ(l)) U(op) =

U© () 4 (U(l)(qﬁ(o)) + %qﬁ(l)) , where VD (¢(9)) and UM (4(9)) stand for the deviations from the
zeroth order potentials.

4.2 First order

The 4D traceless part of the Israel conditions at first order is given by

(1] =~ (13)
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where Ty :=1T7,” — (1/ 4)6M”T/\’\. The 4D trace part of the Israel conditions reduces to

K] = T3 — 1AV, (14)

& 2
where we defined AV = V1 () + JUM (p0) 7 (n - eA§°>)

The (66) component of the Israel conditions and the dilaton jump condition are combined to give

1 ., 1 d 1

TN =53 Te — 37235 AY) ~ 53V (15)

Using Eqgs. (13) and (14) together with the solution for K,” and K in terms of R and ®, we end up
with the effective equations

v 1 v v v A 3 v 5 v H
e® <Ru [qt] - §5u R[q"] - Qi +6,/ P — §<I>;,l<1>* + 16" <I>;Aq>,x>
2
_ 2 (T _wmvter) L 022 (T KT s
=2 (T, -AV"o;) + e (T, -2V ), (16)
2
where the 4D gravitational couplings are defined as k% := %Zzﬁ, with £2 = /¢ fnyN Lydy, ; denotes a

covariant derivative with respect to the induced metric q;'[,, = aih,w, R, [q"] is Ricci tensor computed

from ¢}, and the potential integrated along the §-direction is defined as AV = 2rly/fe®/2AV.
The first order equations for J give the equation of motion for &:

; Iy S G- d —— — 2K [(—n d ——\
(e®)), = % (TF—TZM?%(AVU—LIAW) +Z—2% <T>\)‘—T99+2%(AV ) — 4AV ).(17)

5 Conclusions

In this paper, we derived the low energy effective theory in six-dimensional supergravity with resolved
4-branes. The gradient expansion method is used to solve the bulk geometry. The resultant effective
theory is a Brans-Dicke theory with the Brans-Dicke parameter given by wpp = 1/2. If we choose the
dilaton potentials on the branes so that they keep the scaling symmetry in the bulk and if we tune their
amplitudes then there is no potential in the effective theory and the modulus is massless.

Our effective theory allows us to discuss cosmology with arbitrary matter on the brane. As the
BD parameter is given by 1/2, it is impossible to reproduce realistic cosmology without stabilizing the
modulus field. As it was suggested by Ref. [2], it is easy to generate a potential for the modulus ® with a
minimum by breaking the scaling symmetry from the dilaton potentials on the branes. Then it is possible
to reproduce GR at low energies.
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Abstract

We study Newtonian cosmological perturbation theory from a field theoretical point
of view. We derive a path integral representation for the cosmological evolution of
stochastic fluctuations. Our main result is the closed form of the generating functional
valid for any initial statistics. Moreover, we extend the renormalization group method
proposed by Mataresse and Pietroni to the case of primordial non-Gaussian density
and velocity fluctuations. As an application, we calculate the nonlinear propagator
and examine how the non-Gaussianity affects the memory of cosmic fields to their
initial conditions. It turns out that the non-Gaussianity affect the nonlinear propa-
gator. In the case of positive skewness, the onset of the nonlinearity is advanced with
a given comoving wavenumber. On the other hand, the negative skewness gives the
opposite result.

1 Introduction

The large scale structure in the universe has evolved from primordial fluctuations according to the grav-
itational instability. In the standard scenario of the structure formation, the primordial fluctuations
are created quantum mechanically during the inflationary stage in the early universe. After exiting the
horizon, the fluctuations are evolved linearly; which is well described by relativistic linear perturbation
theory. Eventually the fluctuations re-enter into the horizon. After that, it is sufficient to treat the
evolution of fluctuations by means of Newtonian gravity. Due to the Jeans instability, at some point,
the density fluctuations become nonlinear. In this stage, usually we resort to the N-body simulations.
However, since the numerical simulations are time consuming, the analytical calculation of the nonlinear
evolution is still desired. The standard perturbative expansion method is developed for this purpose. In
the quasi-nonlinear regime, the perturbative approach was successful. To obtain more accurate results,
however, the non-perturbative analytic method would be necessary.

Recently, Crocce and Scoccimarro have developed a new formalism to study the large scale struc-
ture [1]. They described the perturbative solution by Feynman diagrams and identified three fundamental
objects: the initial conditions, the vertex, and the propagator. They have found that the renormalization
of the propagator is the most important one. Based on this finding, they have observed that, due to the
rapid fall off of the nonlinear propagator, the memory of the cosmic fields to their initial conditions will
be lost soon in the nonlinear regime.

Following their work, Matarrese and Pietroni reformulated the cosmological perturbation theory from
the path integral point of view and developed the renormalization group (RG) techniques in cosmology [2,
3]. Matarrese and Pietroni have applied their formalism to the baryon acoustic oscillations (BAO) which
takes place around the scale k ~ 0.1Mpc ™! [4]. On these scales, the nonlinear effects are relevant [5,
6]. They have found that the renormalization group method is useful to predict the BAO feature.
Crocce and Scoccimarro have used their graphical approach to discuss BAO and found the renormalized
perturbation approach gives a good agreements with results of numerical simulations [7]. This result is
further confirmed by Nishimichi et al. [8].

These authors have discussed only the Gaussian initial conditions. Recently, however, it has been
realized that the primordial non-Gaussianity can be produced in the inflationary scenario. If so, it is im-
portant to give a renormalization group formalism for the non-Gaussian initial conditions. Conventionary,
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the non-Gaussian curvature perturbation @ is characterized by the following form
®(x) = By (x) + fnr (@ (x) — (27)), (1)

where @, is the Gaussian field and fxr, is the parameter to represent a deviation from the Gaussianity.
There are several possible observational tests to constrain the non-Gaussianity. The most stringent limit
comes from WMAP and the result is —58 < fyr < 134 [9]. Planck and other tests will give a more
stringent limit or detect the non-Gaussianity [10].

The purpose of our paper [11] is therefore to extend the analysis by Matarrese and Pietroni to the
non-Gaussian initial conditions. Starting from the generating functional of the multi-point functions, we
derive the path integral representation of the cosmic evolution of the cosmic fields. In contrast to the
previous work, the non-Gaussianity is incorporated into the field theoretical scheme. In particular, we
obtain the formula for the generating functional which allows us to use the Feynman diagram method
to calculate various statistical quantities characterizing the large scale structure in the universe. We also
derive the RG equation for the effective action. As an application, we calculate the nonlinear propagator
and examine if the memory of the cosmic fields to their initial conditions has the tendency to be kept by
the non-Gaussianity or not.

2 Basic equations for cosmic fields

In this section, we review the standard Newtonian cosmological perturbation theory. Here, we consider
the Einstein-de Sitter universe for simplicity. Of course, it is possible to extend our analysis to other
cosmological models.

First of all, let us consider the homogeneous cosmological background spacetime. Taking the conformal
time and assuming the flat space, we can write down the metric

ds* = a*(r) [—dr® + 6;dz’dz’] . (2)
The cosmological scale factor a is determined by solving FRW equations

H = @cﬂpo , H' = —ﬁcﬁpo ) (3)
3 3
where py is the averaged density field and we have defined H = da/dr/a = a’/a.
Now, let us consider the inhomogeneous distribution of the matter. The evolution of the total matter
density is determined by the gravity including the effect of cosmic expansion. The actual density p(x, T)
is deviated from the averaged density po(7) Let us define the density fluctuation as

5(x,7) = LT —polm) _ / ok, T)e " . (4)
po(T)
It obeys the equation of continuity and the peculiar velocity v is determined by the Euler equation in
the presence of gravitational potential ¢. The gravitational potential itself is governed by the Poisson
equation. Thus, equations of motion for the cosmic fields, §, v, and ¢, are given by
a6 ov 3
—+V-[(14+6)v]=0 — V)v=-V V2= 1?6 . 5
AV A1V =0, S HVE( V) v=-V6, V=i 5)
On large scales, the assumption that the peculiar velocity is irrotational would be valid. Then, defining
§ = V - v, we obtain the relation v(k,7) = ikf(k,7)/k?. After eliminating the gravitational potential,
we obtain equations of motion in the Fourier space where the index a = 1,2 and n = loga(7)/ai, denotes
the e-folding number. The initial scale factor a;, can be taken arbitrarily.

(0ab0n + Qap) 0k, 1) = €"Vabe(k, =P, =) 26 (P, M) e (a, 1), (6)

1
Y121k, P, q) = §5D(k +p+a)aP,q) =112k, q,p), Y202k, p,q) =dpk +p+q)B(p,aq), (7)

(kD)= (ohm) 2= ( 5 ap): ®

¢a(k,T)
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where other components are zero, the index a = 1,2 and n = loga(7)/ai, denotes the e-folding number.
The initial scale factor a;, can be taken arbitrarily. Here, we have used the Einstein’s sum rule

o~k )y (k,0) = / hipa (—k, 0) oy (K, 0) . (9)

From now on, we should understand this convention is used when the same wavenumber vector appear
twice in the same term.

3 Path Integral Representation and Renormalization Group

What we are interested in are the statistical quantities characterizing the large scale structure in the
universe. The statistics of primordial cosmic fields ¢,(k,0) are determined by the initial probability
functional Py, (k,0)]. To calculate desired quantities, we need to solve the nonlinear evolution equations
and obtain the solution as a function of the initial fields. Namely, we have the statistics and the dynamics
to be considered. More precisely, we want to calculate

<expi/dnJa(—k,n)%(k,n;@(k,O))>

:/dgaa(k)O)P[(pa(kao)] eXpi/dUJa(—kﬂ?)SOa(kﬂ?;@a(kao)), (10)

where Plp,(k,0)] is the general probability functional for the initial field ¢, (k,0) and ¢4 (k, n; ¢4 (k,0))
is the solution of Eq.(6) with the initial condition ¢, (k,0). This is a generating functional for multi-point
correlation functions. Here, we shall combine the statistics and the dynamics in a unified framework.
This can be achieved by the field theoretical path integral method. It is the path integral representation
of the problem which can be used to perform the non-perturbative approximation.

Intrducing an auxiliary field x(k,7), a generating function can be written as the path integral repre-
sentation;

20 81] = [ Douth Dol et N exp i [ ()L,
+i [ ang.impation +i [ anko( k(o] (1)
where
CTxa0,0)] = 27 (= xa(~, 0) Puxa (I, 0)

i

+gBabc (ki1, k2, k3) xa(—ki,0)xs(—k2,0)xc(~ks,0) + - ) . (12)
From the field theoretical point of view, C[x,(k,0)] can be regarded as the boundary action on the

initial hypersurface n = 0. In this sense, the field x,(k,0) is associated with the initial conditions.
Then, using the generator of the connected Green functions,

W1, K] = —ilog Z[J,, K] , (13)
we can get
52w 82w W
21 Py = —i———  Gap = — 271 Bupe = ——— . 14
(@) Pap = —igmss s Gav = =55 s (21) Bae = 55525 (14)

The idea of the renormalization group introduced by Matarrese and Pietroni is as follows. First, we
introduce a filter function with the UV cutoff X in the P% and BY,_. This defines a fictious theory where

abe*

the linear perturbation theory works well. We denote various quantities in the cutoff theory with the suffix
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A, for example like as Pu, x. When this cutoff scale A goes to infinity, the original theory is recovered.
As X becomes large, nonlinear effects are incorporated gradually. This process can be expressed by the
renormalization group equation. Then, we obtain

@m3/' < W oW oW )

OWy = — [ dnednydrPap.00(ng)d +1

AW 3 | DradmOnParx0ma)dtm) \ S s oy T S (—pu) 5K (pm)
(2)?

+ 5 /dnadnbdnca,\Babc,A(PhP2,P3)5(77a)5(77b)5(77c)
BW oW 2w

X +1 + (cyc.]a, b, c
<6Ka(p1,n)aKb<p2,n>6Kc(p3,n> Z(éKa(pl,m STy oa Mok (oo T (el D)
ow w w )

0K, (p1,1) 0Ky (P2, 1) 0K.(p3,n)

Using this equation, we can obtain the renormalized propagator equation as

(15)

82Wh
Ja(_k7 na)(SKb(kI) 77a)

(27r)3/ 54

= dne.dngOrP.q.20(n.)d

{ 2 ] DrednadrPeand(1)00a) 5y S e 0K (= pya)0 Ka(py1a)
(2"

5 / dnednqdneOxBege,x(P1, P2, P3)0(1:)0(14)0(1e)

Wy }
X 4+ e
6Ja(_k7 nu)(SKb(kla na)(SKC(_p17 Wa)‘SKd(—P% nu)éKE(_piﬁa nu)

i+ = —0(k — K")OrGapr (k3 1a7)

_|_

(16)
Jo=0,K,=0

Solving this equation under some approximations [11], we find that the modes in the range k >

_1
0.1(1+ 2)Mpc™" or k > 0.03¢52 (1 + 2)3/2Mpc™" seems to have already lost the memory to the initial
conditions.
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Leptogenesis from two flat directions

Kohei Kamada ' and Jun’ichi Yokoyama,
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Abstract

We investigate Affleck-Dine mechanism when multiple flat directions have large values
simultaneously. We consider in detail the case when both LH, flat direction and
H, H, flat direction with non-renormalizable superpotential work. We find that initial
value is determined completely by the potential and there are no ambiguities how two
flat directions are mixed. Moreover there is CP-violation even for large H which is
due to A-term and cross coupling in F-term and lepton asymmetry is generated just
after the end of inflation. There is no suppression factor m3/2/Hosc in the net lepton-
to-entropy ratio.

1 Introduction

The Affleck-Dine (AD) mechanism [1] is one of the most promising scenarios among many models of
baryogenesis that account for the origin of the observed baryon asymmetry of the universe. Especially
a model of AD mechanism that Dine et al. developed [2] is very effective in the inflationary regime and
many authors [3, 4, 5] have analyzed this model energetically.

Their analyses restricted only in the case where the configuration of flat direction can be parameterized
in terms of one complex scalar field. There are, however, many flat directions even in the minimal
supersymmetric standard model (MSSM), some of which carry B — L charge but others do not. (Lepton
asymmetry can be converted to baryon asymmetry through the sphaleron effect [6], which violates B + L
at the electroweak scale, where B and L are baryon and lepton charges respectively.) Therefore it is
very important which flat direction, if any, is selected as the AD field. Moreover, there are multiple flat
directions which do not give rise to any F-term in the renormalizable limit. Such directions can get large
values at the same time and we can no longer parameterize them by one scalar field. If some of them
carry B — L charge and others do not, the degree of the mixing of multiple flat directions directly affects
the net baryon asymmetry. It is not trivial whether the simple one-field analysis is applicable in such a
case.

Previously, Senami and Yamamoto [7], and Enqvist et al. [8] have considered the case where multiple
flat directions have large values in the MSSM and its extensions. However, their evaluation of the potential
was insufficient and in particular they did not care how multiple flat directions mix. The purpose of
this talk is to investigate how multiple flat directions mix and to evaluate the resultant baryon/lepton
asymmetry.

2 Model

We adopt a non-renormalizable superpotential of the form [7],

oW =

;fwj (LiH,)(L;iHy) + ;—ﬁ(Hqu)(Hqu)’ .

in addition to the lepton sector of the renormalizable superpotential of MSSM. Here M is some cut-off
scale, Ari; and Ag are coupling constants. We choose a basis which Ar;; is diagonal and assume that
AL22,AL33 > Ag ~ Ap11 = Ar. Note that this superpotential gives neutrino mass when Higgs field that
couples up-type quark gets a nonvanishing expectation value,

_ ALi 9
e, = 207, ®)

1 E-mail:kamada@resceu.s.u-tokyo.ac.jp
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To realize inflation, we introduce an inflaton sector besides the MSSM sector. Coupling between the
inflaton sector and the MSSM sector arises only with the gravitational strength in the supergravity scalar
potential,

p 3
V = eR/MG <DiWK”DjW* - —2|W|2> , (3)
Mg,
where Mg is the reduced Planck mass. We also introduce non-minimal Kahler potential,
5K = Lo |T1%|pa? and 0K = b—“l|¢a|2 +h.c. (4)
M2, Me ’

in addition to the canonical terms, where ¢, is scalar fields of MSSM and I is the inflaton, and a, is real,
b, is complex parameter. We assume the F-term of inflaton dominates the universe during inflation.

By neglecting heavier leptons [7] (Hereafter L represents lightest lepton L;) and restricting dynamics
of scalar fields along flat directions, we can parameterize scalar fields as

L= (3) H, = <f6“> Hy = (;) : (5)

without loss of generality. The resultant potential for v, h, and hg during inflationary era becomes

V(v hasha) = Y (mg = caH?)|¢al’

a=v,hy,hq
AL 5 DY SN L D VR L D VRN
+ MV hu_}_ﬁhuhd ﬁhuhd + MU}LU
AH

A
+ [—L(aLH + Ang/g)l/th + h.C.:| + [ (agH + Ang/g)hZhi +h.c.| +Vp, (6)

oM 2M
Vo =(g> + 9”)(Iv]* = [hul® + |hal®)* (7)

where ¢,’s are real and ar, Ar,ag and Apy are complex parameters with their magnitude presumably of
order of unity. Here we also introduce the effect of SUSY breaking from hidden sector in terms of m,,
the soft mass of scalar field ¢,, and m3/,, the gravitino mass. Terms including the Hubble parameter H
arise due to the coupling of flat direction to the F-term of the inflaton Fy ~ H;pr Mg.

Inflaton oscillation era follows the inflationary era. In this era, a part of the potential of scalar fields
change as

Ar

AL

212 2,212

2MaLHV hi +h.c. — 72/‘5MHinfaLH v°h;, +h.c. (8)
)\H /\H

where H;,; is the Hubble parameter in the inflationary era and & is a numerical parameter of order of
unity that depends on the inflation model. This change of potential is due to the change of time average
of Fr. Moreover, thermal plasma from inflaton decay emerges and the potential for scalar fields acquires
thermal correction [4].

3 Instability of one flat direction

Next we examine the necessity of considering multiple flat directions in the inflationary era. The mass
terms of scalar fields are

—(ey + o) H|v? — (cu + ca) H? | ha*. (10)

Here we neglect soft terms from hidden sector and set the D-flat condition Vp = 0. When the initial
values are set near the origin, and if ¢, + ¢, > 0 and ¢, + ¢4 < 0, hq stays at the origin and we can take
the one flat direction description. However, if ¢, + ¢, > 0 and ¢, + ¢4 > 0, not only v but also hy stay
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away from the origin and we can no longer take the description. Moreover, even if only LH, direction
is selected in the beginning, H; is unstable at the origin for large parameter region. We can see this
by evaluating the eigenvalues of mass matrix for H; around the local minimum of LH, flat direction
parameterized as v = h, = ¢ ~ \/((c, + cu)/2)Y/2HM /)L, , The eigenvalues of this matrix are

A2 1/2
(ﬁ) lp|* — caH? £

(11)

<)\L)\H

A H 2 Ay H
L6l + Relan) agrlof? )+ (Im(aH>H—M|¢|2)]

2
As a consequence, if ¢q4 or |ag] is a little larger than unity, for example, hy is unstable around LH,, flat
direction with a wide range of parameters. Therefore, considering multiple flat directions is more natural
than one flat direction.

4 Dynamics of scalar fields and leptogenesis

In this section, we describe the motion of scalar fields and esti-
mate number asymmetry of scalar fields-to-entropy ratio. Here
we consider only homogeneous mode and neglect fluctuations
around it because the curvature of the potential is much larger 300 - 1
than the Hubble parameter and quantum fluctuation is suffi-
ciently suppressed in this case.

In the Friedman universe scalar fields ¢, obey the equation
of motion,

200 | g
100 | «

ov
2o

We analyzed the dynamics of three scalar fields in the inflation-
ary era (H = H;ny = const.) and in the inflaton oscillation era
(H = (2/3)t!) numerically. a0l |

In the inflationary era, scalar fields fall into one of potential s s s s s s s
minima like one field case [2] if the number of e-fold is large el patof scalr e g
enough. Moreover we find the potential minima is unique except
for the gauge freedom (Fig.1) although the potential is very
complicated. As a consequence, in this model there remains no
pre inflationary information.

Next we turn to the inflaton oscillation dominant era. We
take the final value of scalar fields in the inflationary era as their
initial value in the inflaton oscillation dominant era. In this era,
the equation for angular motions of scalar fields becomes

ba +3Ho, + 0. (12)

Imaginary part of scalar fields (/H;x;)
o
T
4
L

-200 1

Figure 1: The value of scalar fields at
the end of inflation, the real part (hor-
izontal axis) and the imaginary part
(vertical axis) after gauge transforma-
tion. Red crosses represent v, blue
x’s represent h,, and green stars rep-
resent hgy. The parameters: ¢, =

9%0, 4 e?? ov

0.8,cy = 1.0,c4 = 1.2, M/, = 1.2 x

02 " O sl 00, U9 10%Hins, My = 15 X 10°Hin, a1, =
e/, ag = i. Initial values are cho-
where 6, is the phase of ¢, and we define sen randomly in the range 0.01H;, ~
2 100.0Hn -
z=In(t/ty), t;= SHins (14)

Potential minima in the angular direction change just after the end of inflation because of the change
of potential (8), (9). Therefore, scalar fields acquire angular momenta, in other words, number asym-
metry at once and some of their values oscillate without damping. The value of number asymmetry per
comoving volume is fixed when the rotation around the origin, which is due to mass term or thermal
potential[5], starts. Moreover, because the potential for the phase of h, vanishes rapidly, the value of
number asymmetry per comoving volume of h, is fixed much earlier than other fields. The net value of
number asymmetry to entropy ratio is evaluated as

Ny (hy) larcmy| (9« \ TRM . wing)
~ 1
1) 1) o 0L (22 ) T sin(02) (15)
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for v(hg) (The number asymmetry of v is the lepton
asymmetry), and
(5:)
g*s

for h,, where 5f;f is the effective phase of oscillation of
¢, at the time of number asymmetry fixing. There is no
suppression factor mg/,/H,s. which is emerged in Ref.5.
We see this feature by numerical calculation (Fig. 2).

TrM

%(t) ~ lar| + |an| .
G

. B
s 36 sin(d

eff)’ (16)

5 Conclusion

We have demonstrated two important results about
Affleck-Dine leptogenesis via multiple flat directions with
non-renormalizable superpotential and vanishing renor-
malizable F-term. First, when multiple flat directions
have negative Hubble induced masses, we can no longer
parameterize flat directions in terms of one complex
scalar field and multi-dimensional motion of scalar fields
must be considered. Moreover, scalar potential has
unique minimum except for gauge freedom and phase
inversion. Therefore the degree of the mixing of flat di-
rections is determined only by the shape of the potential
without ambiguities and initial values of dynamics of post
inflationary are deterministic. Thus AD mechanism via
multiple flat directions, there remains no pre inflationary
information if inflation lasts long enough.

Second, there are CP-violation term even for large
H which is due to cross coupling of scalar fields in non-
renormalizable F-terms and the Hubble induced A-terms.
Although the Hubble induced A-terms decreases rapidly

T T T
3e-10 | 1
9 2e10 | i
< A
> N
£ le-10
c
3 0
é -le-10
=]
Z -2e10
-3e-10

Time:z=In(t/ty)

Figure 2: Time evolution of lepton asymme-
try and number density of Higgs fields par co-
moving volume. Horizontal axis is time and
vertical axis is lepton number density par co-
moving volume divided by entropy par co-
moving volume at the time when reheating
is finished. Red solid line is lepton asymme-
try, green dashed line is number density of
h, and blue dotted line is that of hy. The
parameters : ¢, = ¢, = ¢q = 1.0, Hijpy =
1.0 x 103[GeV], M/A;, = 1.0 x 10*2[GeV]
, M/ g = 1.5 x 10%22[GeV] , a; = e27/3
ag = i, & = 8, and reheating temperature
Tg is 5.0 x 10%[GeV].

after the end of inflation, they can give the angular momentum scalar fields. Therefore lepton asymmetry
is generated just after the end of inflation. In particular, there is no suppression due to thermal effect
[3]. Net lepton entropy ratio does not have suppression factor ms s/ Hose.
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Cosmology of Supersymmetric Axion Models

Kazunori Nakayama, !

Institute for Cosmic ray Research, University of Tokyo, Kashiwa 277-8582, Japan

Abstract
We derive general cosmological constraints on supersymmetric extension of axion
models, in particular paying careful attention to the cosmological effects of saxion. It
is found that for every mass range of the saxion from O(1) keV to O(10) TeV, severe
constraints on the energy density of the saxion are imposed. Together with constraints
from axino, we obtain stringent upper bounds on the reheating temperature.

1 Introduction

Although the standard model in particle physics has achieved great successes, there still remain some
theoretical problems. One is the strong CP problem, and another is the gauge hierarchy problem. In
other words, these problems indicate the existence of the physics beyond the standard model.

A promising solution to the strong CP problem was proposed in the 1970’s by Peccei and Quinn [1].
They introduced an anomalous U(1) symmetry, called PQ symmetry, which is spontaneously broken at
some energy scale F,. From astrophysical and cosmological arguments, F, is constrained as 10 GeV <
F, <10'2 GeV. A coherent oscillation of the axion, which is a pseudo-Nambu-Goldstone boson associated
with spontaneous breaking of PQ symmetry, can be the cold dark matter of the universe for F, ~
1012 GeV.

On the other hand, supersymmetry (SUSY) is also well-motivated from particle physics point of
view. First, SUSY provides a solution to the gauge hierarchy problem. Due to the symmetry between
a scalar and fermion, radiative corrections to the Higgs scalar mass squared are canceled and quadratic
divergent quantity disappears. Thus the weak scale becomes stabilized against the radiative correction,
which explains why the Higgs mass should be around 100 GeV, as indicated by electroweak precision
measurements at LEP. Next, the running of the gauge coupling constants are modified in SUSY, which
realizes the gauge coupling unification at the energy scale ~ 2 x 10'6 GeV. Thus Grand Unified Theory
(GUT) is naturally realized in the framework of SUSY.

Therefore the combination these two paradigms, the SUSY axion model, has many attractive features.
However, cosmology of SUSY axion model is highly non-trivial. In SUSY axion model, the axion forms a
supermultiplet, which contains a scalar partner called sazion and fermionic superpartner, called axino [2].
Their interaction is suppressed by the PQ scale, and hence they are long-lived particles (or become stable
for the axino). Such a long-lived particle has a potential to affect the cosmological evolution scenario
like the gravitino [3]. In the present work, we have studied the cosmology of SUSY axion models, in
particular paying careful attention to the effects of the saxion (see Ref. [4] for a detail).

2 Properties of Saxion

The saxion corresponds to a flat direction which does not feel the scalar potential, which is preserved by
U(1)pq symmetry and the holomorphic property of the superpotential in SUSY limit. Thus the saxion
obtains a mass only from SUSY breaking effects, and hence the saxion mass (my) is naturally expected
to be of order of the gravitino mass (ms,5). The gravitino mass ranges from O(1) keV to O(10) TeV
depending on SUSY breaking models, such as gauge-, gravity- or anomaly-mediated SUSY breaking
models. Here we regard the saxion (gravitino) mass as a free parameter within the above range.

Now we turn to the cosmological effects of the saxion. For cosmological arguments, it is important to
know the production mechanism and decay modes.

1E-mail:nakayama@icrr.u-tokyo.ac.jp
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Saxions are produced in the early universe in two ways. One is thermal production, where scattering
processes of particles in thermal bath produce saxion. The other is the coherent oscillation. Because the
saxion is a scalar field, it has large energy density with an initial amplitude s; in the form of Bose-Einstein
condensate. The former contribution, in terms of the saxion-to-entropy ratio, is given by

2
o\ (TP) i m, Tr 1012 GeV
(?) ~ 10X 1077 GeV (1 GeV) 105 GeV F, (1)

for TR S Tp ~ 109GeV (F,/101GeV)?, where T denotes the reheating temperature of the universe
after inflation. For Ty 2 Tp, saxions are thermalized and its abundance is given by (ps/s)(™")
1.0 x 1073 GeV(ms/1 GeV). The coherent oscillation contribution is estimated as

Ps (©) 1 S; 2 _9 TR Fa 2 S; 2
— =-T ~21x1 — 2
(s) g F (Mp> A0 GV (T Gev ) \T0m Gev ) \ 7, @)

for I'; < mg where I'; denotes the decay rate of the inflaton. For I'; > mg, Tr in the above formula should

be replaced with T, which is the temperature at which the saxion oscillation begins. Importantly, both

contributions are proportional to Tk for wide parameter regions, and hence cosmological constraints on

the saxion abundance are rephrased by the upper bound on Tk.

Next let us investigate the saxion decay modes. First, the saxion can decay into two axions (s — 2a).
We can estimate the decay rate of the saxion into axions as

P md

I'(s — 2a) ~ 6ar 2

~

(3)

where f =Y. ¢?v?/F? with the VEV of the i-th PQ scalar field v; and its PQ charge ¢;. If f ~ 1 as in
many cases including the case with only one PQ scalar, this is the dominant decay mode of the saxion [5].
Then the lifetime is given by

1 °( F ?
7o ~ 1.3 x 10%f 2 sec ( GeV> ( - ) . (4)

Ms 1012 GeV

As for the cosmological arguments, it is important to know whether the main saxion decay mode is into
axions (f ~ 1) or not (f ~ 0), because such a decay mode does not affect BBN or CMB.
On the other hand, the saxion also decays into ordinary particles. For the KSVZ axion model, the
saxion decays into two gluons through one-loop process with a decay rate given by
2 .3

ag ms

(5)

for my; 2 1 GeV. The decay rate into two photons is given by

2.2 3
R™ORy Mg

51273 F2'

[(s = 27) ~ (6)
where £ is a model dependent constant of O(1).

For the DFSZ axion model, the saxion decays into fermion-anti-fermion pair. The decay rate into
down-type quarks d; (i = 1,2,3) is represented as

- 3 2x 2 mMdi 2 4m?. 3/2
r did;) = — | ——— o ! 11— —4 , 7
o) = (o) e (5) (- 5) g
where x = tan 8 = (H,,)/(Hg). Decay rate into up-type quarks wu; (i = 1,2, 3) is similar,
3 2071 \? Mai \ 2 4m?2, 3/2
r i) = | —0—— o = 1—— .
(s = wi) T <x+x—1) mn (Fa> ( m2 ) (8)

Although those decay modes into ordinary particles may be sub-dominant if f ~ 1, only such a small
fraction of the saxion decay may significantly affect cosmology, as we will see in the next section.
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3 Cosmological Constraints

Now we briefly summarize various cosmological constraints on the saxion abundance.

Effective number of neutrinos : Decay products of the saxion increase the radiation energy density
of the universe. Such extra radiation contributions accelerate the Hubble expansion and changes the
predictions of BBN, CMB anisotropy and structure formation etc. In terms of the effective number of
neutrino species, AN, < 1 must hold. Note that this constraint is relevant for the decay mode s — 2a
[6], even if T, < 1 sec.

Big-Bang nucleosynthesis : Decay produced photons or hadrons may significantly affect BBN for
Ts 21072 sec [7]. For 1072 sec S 75 < 102 sec, the main effect is p «» n conversion due to injected pions,
which results in *He overproduction. For later injection, the main effect is photo (hadro)-dissociation of
light elements, for radiative (hadronic) decay modes.

Cosmic microwave background : For 1, 2 10° sec, injected radiations can not reach chemical equilib-
rium because double-Compton scattering processes are ineffective. Then the extra radiations distort the
blackbody spectrum of CMB. The distortion is characterized by a chemical potential p or Compton-y
parameter, which is constrained by the COBE FIRAS measurement [8].

Diffuse X(7y)-ray background : For 74 2, 10'3 sec, the decay produced photons contribute to diffuse
X(y)-ray background [9]. But such a contributions are constrained from the observations of ASCA,
HEAO1, COMPTEL, EGRET. This gives a stringent bound on the saxion abundance.

Reionization : For 7, 2 103 sec, depending on the photon energy and decay epoch, the decay-
produced photon may escape the “transparency window”, where photons can freely propagate the universe
without interacting with intergalactic medium (IGM) [10]. If this is the case, decay-produced photons
ionize the IGM and change the reionization history of the universe which results in too large optical depth
to the last scattering surface to be consistent with the WMAP three year observaton.

Present matter density limit : If the saxion lifetime exceeds the present age of the universe, the energy
density of the saxion itself contributes to the total matter density of the universe, Q,,h2.

LSP overproduction : If the saxion is heavy enough to decay into SUSY particles, the non-thermally
produced LSPs emitted by the saxion decay must not be overproduced [11]. Otherwise the LSPs give too
large contribution to the matter density of the universe. Here we assume for m, 2 1 TeV, such decay
modes are open, and also the annihilation cross section of the LSP is small so that they do not annihilate
with each other after the non-thermal production.

Gravitino and Axino overproduction : As is well known, gravitinos are produced through scattering
of particles in thermal bath. The resulting abundance is proportional to the reheating temperature Tg
[12]. For mg/, < 100 GeV, the gravitino is stable and it contributes to the matter density of the universe.
Similarly, axinos are also produced efficiently. Its abundance is also proportional to Tg [13]. (Here we
assume the axino mass mg is equal to the gravitino mass.) Thus both set the upper bound on Tkg.

In Fig. 1 we summarize the upper bound on the reheating temperature including all the above men-
tioned constraints. Four panels correspond to different models. Upper left : KSVZ with f = 1, upper
right : KSVZ with f = 0, lower left : DFSZ with f = 1, lower right : DFSZ with f = 0. We can see that
for almost all the saxion mass, the reheating temperature is severely constrained.

4 Summary

In this work, we have derived general cosmological constraints on SUSY axion models. It is found that the
reheating temperature is severely constrained, compared with the bound from usual gravitino problem.

This has some implications on SUSY axion models. Because the reheating temperature is severely
constrained, it is rather difficult to produce the correct amount of baryon asymmetry. In particular,
thermal leptogenesis using right-handed neutrinos suffers from the low-reheating temperature. One pos-
sibility to generate baryon asymmetry is using Affleck-Dine mechanism. In fact, it can create a correct
amount of baryon asymmetry even for such a low-reheating temperature [14]. Also, the present dark
matter can be accounted for by the axion condensate or the axino. For an unstable axino, the neutralino
LSP produced either thermally or non-thermally may also be the dark matter candidate.

As a final remark, the axion induces an isocurvature fluctuation with an amplitude proportional to
the inflation scale. Hence a low-scale inflation model such as new inflation should be assumed [15].
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Figure 1: Upper bounds on the reheating temperature Tx for each model with F, = 10!?2 GeV [4]. The
initial amplitude of the saxion is assumed to be s; ~ F,.
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Abstract

We compute the non-Gaussianity of the curvature perturbation generated by ekpy-
rotic collapse with multiple fields. The transition from the multi-field scaling solu-
tion to a single-field dominated regime converts initial isocurvature field perturba-
tions to an almost scale-invariant comoving curvature perturbation. In the specific
model of two fields, ¢1 and ¢2, with exponential potentials, —V; exp(—ci¢;), we cal-
culate the bispectrum of the resulting curvature perturbation. We find that the
non-Gaussianity is dominated by non-linear evolution on super-Hubble scales and
hence is of the local form. The non-linear parameter of the curvature perturbation is
given by fnr = 50? /12, where c¢; is the exponent of the potential for the field which
becomes sub-dominant at late times.

1 Introduction

Recently, there has been progress in generating a scale-invariant spectrum for curvature perturbations
in the ekpyrotic scenario with more than one field, which we will refer to as the new ekpyrotic scenario
[1, 2, 3]. If these fields have steep negative exponential potentials, there exists a scaling solution where
the energy densities of the fields grow at the same rate during the collapse. In this multi-field scaling
solution background, the isocurvature field perturbations have an almost scale-invariant spectrum, owing
to a tachyonic instability in the isocurvature field.

The multi-field scaling solution in the new ekpyrotic scenario can be shown to be an unstable saddle
point in the phase space and the late-time attractor is the old ekpyrotic collapse dominated by a single
field [4]. But the transition from the multi-field scaling solution to the single-field-dominated solution
also provides a mechanism to automatically convert the initial isocurvature field perturbations about the
multi-field scaling solution into comoving curvature perturbations about the late-time attractor [5].

On the other hand, the non-Gaussianity of the distribution of primordial curvature perturbations in
the inflationary scenario has been extensively studied by many authors (see e.g. [6] for a review). Thus,
as a natural extension of the study performed in [4, 5], in this paper [7] we compute the non-Gaussianity
of the primordial curvature perturbations generated from the contracting phase of the multi-field new
ekpyrotic cosmology.

2 Model and Homogeneous dynamics
We first review the model and the background dynamics of the new ekpyrotic cosmology with multiple

scalar fields. During the ekpyrotic collapse the contraction of the universe is assumed to be described by
a 4D Friedmann equation in the Einstein frame with n scalar fields with negative exponential potentials

BH2 =V +) 5%, where V= = Ve, (1)
J J

1E-mail:mizuno@resceu.s.u-tokyo.ac.jp
2E-mail:Kazuya.Koyama@port.ac.uk
3E-mail: vernizzi@ictp.it
4E-mail:David. Wands@port.ac.uk
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and we take V; > 0 and set 87G equal to unity. From now on, for simplicity, we concentrate our attention
on the case of two fields. In this case, it will be easier to work in terms of new variables,

1t g1 — g2

IR

The potential can then be simply re-written as

(2)

m‘*_‘

(3)

(6%}

1
V=-U(x)e ®, with U(x)=W e (er/e2)ex 4y, 6(02/01)@(7 = = Z
J

<

It can be shown that U(x) has a minimum at xy = xo and the multi-field scaling solution corresponds
to the classical solution along this minimum x = xg, while ¢ is rolling down the exponential potential.
It is worth noting that the potential for x has a negative mass-squared mi = 9?V/0x?: = 2V < 0
around x = xo which makes the multi-field scaling solution unstable. Furthermore, the x field evolution
is nonlinear, with the cubic interaction being given by

where ¢ = ——=, (4)

which becomes important when we consider the non-Gaussianity later in this paper. Another important
solution is the single-field dominated scaling solution which is also appeared in the old ekpyrotic scenario.
In this paper, we consider the case in which the background evolves from the multi-field scaling solution
to the ¢o-dominated scaling solution without loss of generality.

3 Statistical correlators and d N-formalism

In the two-field new ekpyrotic cosmology, the isocurvature fluctuations acquired by the field y during
the multi-field scaling regime, play a crucial role to generate a scale-invariant spectrum of perturbations.
On the other hand, the fluctuations of the field ¢ are negligible on large scales, because of its very blue
spectral tilt. Thus, in the following we neglect dp fluctuations. To relate the non-Gaussianity of the
scalar field fluctuations to observations, we need to calculate the three-point functions of the comoving
curvature perturbation ¢. In order to do that, we can use the § N-formalism [8, 9]. In the § N-formalism,
the comoving curvature perturbation ¢ evaluated at some time t = t; coincides with the perturbed
expansion integrated from an initial flat hypersurface at ¢t = ¢;, to a final uniform density hypersurface
at t = ty, with respect to the background expansion, i.e.,

C(tfvx) = 5N(tf>tivx) = N(tf7tivx) - N(tfvti) ) (5)

with
ty tr
N(tg, ti,x) = H(x,t)dt, Nty t;)= H(t)dt, (6)
ti 123
where H(x,t) is the inhomogeneous Hubble expansion. We will choose the initial time ¢; to be during
the multi-field scaling regime. Furthermore, since ¢ is unperturbed, § N can be expanded in series of the

initial field fluctuations dy;. Retaining only terms up to second order, we obtain

1
ON = N,Xz'(SXi + §N7X1'XL'(6X1')2 ) (7)
where N, denotes the derivative of N with respect to x.
The bispectrum of the curvature perturbation ¢, which includes the first signal of non-Gaussianity, is
defined as

(Gier Gies Gacs) = (2m)26P (Y ") Be (b, ko, is) (8)
J
where the left hand side of Eq. (8) can be evaluated by the d N-formalism using Wick’s theorem,
1
<<k1 (ks <k3> = N,?;(i <5Xik1 OXiks 5Xik3> + §N,2X,i N yixi <5Xik1 OXiks (6Xi * 6Xi)k3> + perms. (9)
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In the above equation, a star x denotes the convolution and we have neglected correlators higher than
the four-point.

Observational limits on the non-Gaussianity of the primordial curvature perturbations are usually
given on the nonlinear parameter fy defined by

3
§fNL = Hj kj Be

- 3 2
S ) jkj 47r473<

(10)

where P; is the power spectrum of the curvature perturbation (. If the non-Gaussianity is local, one can
write ¢ as

6N = (¢ + ngLC% : (11)

where (7 is a Gaussian variable.

4 Non-Gaussianities

We consider the situation in which x; is perturbed on the ¢t = ¢; hypersurface, while H; assumes on this
hypersurface a constant value. This is justified by the fact that the ¢ = ¢; hypersurface is flat and since
X is an isocurvature field its fluctuations do not affect the local Hubble expansion. Furthermore, we
assume that the transition into the single-field-dominated scaling solution at the time ¢ = t7, happens
instantaneously on the hypersurface x = xr = const., where Hy is perturbed.

Under these assumptions, the expansion N defined by Eq. (6) can be split into

tr ty

N= [ Hdt+ | Hdt, (12)

ti tr

where t; is set sufficiently later than the transition time ¢7. In Eq. (12), the first integral is over the
multi-field scaling evolution and the last integral is over the ¢o-dominated phase.

The first term on the right hand side of Eq. (12) can be expressed as —(1/¢)In(H;/Hr), where
€ = ¢?/2, while the second term becomes —(1/es) In(Hr/Hy), where €2 = ¢3/2. Then, for a fixed ¢; and
t¢, the expansion N can be expressed as

2
N = a2 In|Hr| 4+ const., (13)

which depends only on the parameter c;, besides the transition time tp.
During the multi-field scaling regime, the linear evolution equation of x on large scales is given by

X+3Hx+mlx=0. (14)

Including the cubic self-interaction V(%) given in Eq. (4), the large scale evolution equation for x in
the multi-field scaling regime becomes

. . 1.
X+3Hx+m>2()< = —icmiXQ. (15)

The above evolution equation can be solved perturbatively. Given the solution to the linear equation
(14), i.e., x1 o< H, the growing-mode solution for y is

1 1
X =X+ ZEX% =aH + ZEQ2H27 (16)

where « is a constant parameter whose value distinguishes the different trajectories and shown to be
close to Gaussian. Then, the simplest way to compute fy, is to calculate the 6 NV corresponding to the
fluctuation da, i.e.,

1
SN = N 0 + in(aa)? ) (17)
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In order to compute N, and N oo we want to use Eq. (13), and for this we need to know how Hyp varies
as a function of « at the transition from multi-field scaling to single-field ¢o-dominated scaling solution.
Inverting Eq. (16) (to leading order in éy) gives

a= % (1 - iéx) . (18)

Assuming as in the linear case that the transition corresponds to a critical value of the tachyon field
X = X, on the transition surface (constant x7) we have from (18) that v oc H;,' and hence we find

200 1 (6o
5N=—20‘+2<0‘) : (19)
Aa A&\«
which means 9 1 5 1
No=-22"  Npo=—=—. 20
“ Aa’ e 2 a2 (20)
Taking da to be a Gaussian random variable and comparing with Eq. (11) with ¢; = —2da/(c3a) we

obtain the nonlinear parameter for the curvature perturbation after the transition:

5Naa 5 o
= — = —c7.
6 N2, 12!

N (21)

5 Conclusion

In this paper we have studied the nonlinear evolution of perturbations in the multi-field new ekpyrotic
cosmology. We have studied the simplest model based on two fields with exponential potentials and
considered the specific scenario in which the nearly scale-invariant comoving curvature perturbation is
generated by the transition from the multi-field scaling solution to the single-field dominated attractor
solution. We have applied the d N-formalism, which is widely adopted to study the non-linearity of
the primordial curvature perturbation. We find that after the transition to the single-field attractor
solution the non-Gaussian parameter fyr = 5¢7/12, where —V; exp(—ci¢1) is the potential of the field
¢1 which becomes subdominant at late time. Since the non-Gaussianity is mainly generated by the
nonlinear super-Hubble evolution, it is of the local form, and the nonlinear parameter is k independent.
Since ¢? must be large, in order to generate an almost scale invariant spectrum, the non-Gaussianity is
inevitably large. Thus, the model is strongly constrained by observational bounds on the spectral index
and non-Gaussianity.
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Abstract
Considerable and ongoing effort is made to identify promising scalar field candidates
in string theory to drive a cosmological period of inflation. At stake is the possibility
that fundamental string parameters could be encoded in observables such as the CMB
perturbation spectrum. In this contribution, we hold a concrete model of string
inflation (KKLMMT) up against WMAP3 and discuss the constraints obtained.

1 Introduction

In recent years, the hope of embedding cosmological inflation into superstring theory has been put on more
solid grounds. While they remain challenging, issues such as moduli stabilization are better understood,
and scenarios for both open and closed string mode inflatons have been constructed. With its tight relation
to observables of current and future CMB experiments, inflation could provide the decisive missing link
between string theory and observation. We investigate if the WMAP3 data provides constraints on the
parameters of one particular (open string) scenario, known as the KKLMMT model of brane inflation
[1]. To this end, we identify its cosmological parameters and how they relate to the underlying string
geometry, followed by a comparison to the WMAP3 data using numerical integration of the perturbations
and MCMC methods [2] (see also [3]).

2 Setting the stage in string theory

The KKLMMT inflaton field ¢ = +/T3r corresponds to the distance r between a D3 and an anti-D3
brane in a 10d supergravity background. T3 denotes the brane tension, T3 = 1/[(27)3gsa'?], with string
coupling gs and o’ = [2 the string length squared. To understand the dynamics of ¢ and calculate its
potential, one has to start from the 10d action of type IIB superstring theory and find solutions for the
metric and all n-forms. A supergravity metric ansatz reads ds? = h=/2(r)g,, dz*dz” + h'/2(r)ds?, i.e.
a 4d extended space-time (along the worldvolume of the branes) and six compactified dimensions. The
function h(r) is called the warp factor. For the 6d section, the choice of interest (in view of the desired
cosmological outcome) is dsZ = dr? + r2ds2Tl,1, with ds2TL1 the conifold metric [4]. To enforce “warping”
on Ty 1, non-vanishing background fluxes (which are characterized by an integer number N [5]) are given
to certain n-forms. This geometry is called the Klebanov-Strassler (KS) throat, defined by the throat’s
bottom ry, edge r,, (where it is glued into the rest of the 6d manifold), and a dimensionless parameter
v, measuring the relative size of the 5d conifold base. The KS throat is a an explicit example?, but one
may consider generic “warped throats” which appear in many flux compactifactions.

The (heavy) anti-D3 brane is embedded at ry within this deformed background; its presence adds a
small warp factor perturbation dh(r, 7). The (light) D3 brane probes the resulting geometry: Inserted
at r1 > ro (far from the bottom, but below the edge 7, ), it experiences gravity and Ramond-Ramond
interactions with the anti-D3 through closed string modes. The radial inter-brane distance r = r; —rg
is interpreted as the inflation field ¢ (up to normalisation), and its potential V'(¢) is calculated from the
Coulomb-like force in the limit r >> I5 [1]. Inflation proceeds while the D3 approaches the anti-D3, hence
¢ decreases. At a critical @srg, when the branes’ proper distance equals lg, a tachyon (the lightest open
string mode) appears, and V(¢) calculated from closed mode exchange is no longer valid. The two branes
then annihilate in a complex process followed by the reheating era.

lorenz@iap.fr
2where notably v is fixed at v = 16/27
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The resulting effective four-dimensional action for the inflaton field ¢ in this model reads

S:—i/R\/—_gd‘lx—/
2K

where k = 87/m2,, and T(¢) = T3/h(¢) is the position-dependent brane tension. h(¢) includes the
anti-D3’s perturbation and follows from the 10d Einstein equations. T'(¢) represents an upper bound on
the field’s velocity; while ¢2 < T(¢), one may expand the squareroot to obtain an action with standard
kinetic term. The true field dynamics, however, are given by the stringy DBI expression in (1). A tool to
quantify the DBI impact is the “Lorentz factor” (¢, ) = [1 — ¢2/T(¢)]~ /2, with v ~ 1 in the standard
phase, and v > 1 when the stringy kinetic term is crucial [6]. In the expansion of (1), it is easy to identify
the potential (using the explicit form of h(¢), see [1]):

T(¢) \/1 + %@gwamam +T(¢)| V—gd'z, (1)

4 4
Vo) =2T(0) = — Jﬁ il [1 - (g) ] @)

The last expression is obtained for ¢ > p. This potential is characterized by the overall scale of inflation
M, and the relative scale p for ¢. Hence, together with ¢, (below which the evolution must start) and
¢strg (where brane annihilation sets in), they give a set of four parameters. On the microscopic level,
however, (M, j, ¢y, Pstrg) derive from the stringy quantities (gs, o/, M, v, N)3.

3 The standard inflation viewpoint and stringy aspects

Starting at some initial value p < ¢in < ¢, the inflaton moves across a period of standard inflation on
the very flat potential (2). The slow-roll approximation can be used until the field reaches ¢; in usual
inflation, this means the end of accelerated expansion?. There are, however, new stringy ingredients
in the picture of (1): The kinetic term of ¢ is DBI, and hence Friedmann and Klein-Gordon equations
are different from standard (though they reduce to the usual ones for v =~ 1). In particular, inflation
may continue after ¢, the inflaton eventually reaching (from a certain ¢, ,, onwards) an ultrarelativistic
regime where v > 1. An analytical solution in the DBI dominated regime exists [2], which, however, is
not inflating. This leaves the question if a significant amount of inflation is produced in the transitory
regime ¢, < ¢ < ¢, which would affect the matching of today’s scales to those during inflation. Access
to this regime is through numerics only, and ¢, and ¢, are in fact of the same order, the number of
e-folds produced inbetween typically being O(1). Hence, in the pure KKLMMT scenario, DBI dynamics
do not significantly prolong inflation.

The second important point concerns the end of inflation: We do not forcibly have ¢eng = o,
since inflation really ends at ¢srg, the onset of mutual brane annihilation. ¢ge is calculated from
the background parameters® (gs, M, v, N). Since ¢. is known analytically, too, it is possible to express
their ratio ¢c/dstrg = f(gs, M,v,N), i.e. as a function of background parameters. ¢gg could therefore
lie “on either side” of ¢., meaning that in some cases @end = Psirg While slow-roll still holds. Since
f(gs, M,v,N') depends on the scale M, fixed from normalization to COBE (which, in turn, needs a ¢epnq
as an input), only the contour ¢./¢srg = 1 (at fixed gs) can be traced unambiguously® in the parameter
plane (Inv, In V), see figure 1. Depending on the choice of gs, some (Inv, In N) belong to the region where
Gend = Pstrg, OF Where dend = ¢e. There exists, however, a rescaling of (N, v, gs), illustrated by the lower
panel in figure 1, that allows to remove the g dependence. In the rescaled parameter space (Inz,1lnv),
the contour ¢c/¢strg = 1 is unique.

We now turn to intrinsic parameter restrictions. First, consistency requires that the volume of the
KS throat must not exceed the total volume V%! of the 6d compactification [7]. Since V'3l enters
into the calculation of the 4d Planck mass, this constraint can be re-written as a condition relating mp
to (N, v,gs,’). This condition is a straight line with universal slope and o’-dependent offset, cutting

3where pt = ¢3 /N, M* = dn2vpd /N

4More precisely, we can distinguish @e, , Pe, (the end of inflation vs. the end of slow-roll), where we find ¢e, > @, .
5Note that the dependence on o’ cancels out.

6COBE normalization is possible analytically when ¢eng = ¢e, see [2].
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Figure 1: Upper panel: ¢ = ¢sirg in the
plane (InN, Inv), using COBE normaliza-
tion with N, = 50. The dotted line cor-
N — rrr——————— responds to gs = 0.1, dashed to 1072 and
o ] wp 1 dotted-dashed to 107°. The area enclosed
= ] is the region where ¢ > ¢sirg. The gs-
e dependence can be absorbed by rescaling
o e ] -wr 1 the parameters. Lower panel: ¢ = @gsirg

c S 1 (universal for all values of gs) in the plane
bt o L R (Inz, Inv), where x = 4mwg, N /v and v =

30 -z0 -10 o 10 20 30 -10 o 30 40 50

10 20
mv In (4mg,¥/v) 1}/ (47795)2 .

n [v/(4mg,)%)

through the (Inz,Inv) plane”. Second, we focus on the case where inflation takes place in one throat:

We require ¢i, < ¢, and the throat has to be “long enough” to accommodate ~ 60 e-folds of inflation.
In the region where ¢enqg = ¢e, this condition is another straight line, again with universal slope but an
a’-dependent offset. Where ¢end = @strg, the shape of this condition has to be found numerically.

4 MCMC results

The KKLMMT model has four “cosmological” parameters (M, pt, ¢strg, @yy ), to which we add the di-
mensionless parameter R for the reheating era®. The most suitable set for MCMC sampling, however,
is [log (101°P,) , log(v/kw), log(v/Edyy ), 10g(dstrg/ 1), In R], where P, is the amplitude of the scalar pri-
mordial spectrum at a given observable wavenumber k.. Therefore, one has to implement the above
restrictions as priors for these quantities. The numerics impose a lower limit of \/ku > 1073, For a
detailed discussion of all priors, see [2].

We now briefly present the results of our MCMC comparison. First, one can show that the KKLMMT
model reproduces ACDM parameters such as e.g. Qp, Qam, Ho, as well as the correct perturbation ampli-
tude and spectral indices. Second, figure 2 shows the mean likelihoods (ML) and marginalized probability
distributions (MPD) for the sampled primordial parameters [log(y/kp),log(v/koyy, ), log(dstrg/ 1), In R].
An interesting feature of the panels for log(v/ku),log(y/k¢,., ) is the difference between ML and MPD:
The ML’s are uniform because in the explored prior range, these parameters do not improve the fit to
the data, while the drop in the MPD’s shows that log(y/ku) < 1.1 at 95% confidence level (CL). These
shapes are explained by volume effects in the multi-dimensional parameter space due to strong correla-
tions. log(dstrg/p) and In R, on the other hand, are directly constrained by the data: log(dstrg/p) < 1.4
and In R > —38 at 95% CL. Third, we can derive the corresponding distributions of the remaining pa-
rameters: log(y/kM) and P, are directly related, as is log(4m?v) to u and M (see figure 2). In addition,
the 2d probability distribution obtained without marginalising over log(+/ku) is shown, illustrating the
strong correlations. In particular, the numerically motivated lower prior \/ku > 1073 directly translates
into an upper (lower) limit for log(4w2v) [log(v/&M)]. The respective other end of these distributions,
however, is “physical” and gives the 95% CL constraints log(v/kM) < —2.9 and log(47%v) > —8.5.

Do these probability distributions hold restrictions for fundamental string parameters, e.g. gs? We
know that (M, /1, Pstrg, ¢y ) really derive from the five quantities (gs, @', M, v, '), hence additional as-
sumptions are necessary. In [2] this approach was explored, yielding a non-trivial degeneracy between
N, gs and v at a certain o/. However, the corresponding MPD would not allow any quantitative restriction
on these parameters.

5 Conclusions

A general result of this work is that, in principle, it seems possible to constrain stringy parameters from
cosmology. However, the accuracy of present data does not suffice to break the degeneracies. Moreover,

"See figure 6 of [2].
8The definition of (and prior on) R is discussed in [2].
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Figure 2: Left: MPD (solid lines) and ML (dotted lines) for the sampled primordial ACDM-KKLMMT parame-
ters. Right: MPD and ML for M/mp; and v. On the very right are the 1o- and 20-contours of the 2d posteriors
obtained without marginalising over log(y/ku). The 2d probability is proportional to the point density while the
colormap traces correlations with the third parameter.

one must not underestimate the strong theoretical prior that comes with any attempt at cosmological
model building in string theory, since the testable inflationary quantities derive from fundamental (e.g.
geometric) choices for the background.

In [2], we presented the first complete MCMC analysis of the pure KKLMMT model, considering g
and o' as free parameters. We also suggest how to systematically scan the parameter space for arbitrary
gs,&’. The data favour those cases where inflation occurs in the usual slow-roll way, i.e. inflation ends
at ¢. and not earlier at brane annihilation. This is because gena = @strg > ¢ would push ng — 1, while
preserving a low level of gravitational waves (see [2]). A weak limit on v, i.e. on a parameter of the 6d
compactification, is also obtained: logv > —10 at 95% CL.

The choice of the pure KKLMMT scenario [1] comes with a considerable caveat: All moduli are
considered stabilized, and various additional contributions to V(¢) are assumed to conspire in such a
way as to only leave the Coulomb term (2). Recently, these contributions became calculable [8], and
their general cancellation is unlikely. In practice, the full potential should be of the form V(¢) =
Vpp(o) + m2¢? + ..., leading to a completely different inflaton evolution and notably rendering the
DBI phase important. The next step would be to include these terms in our analysis, at the expense of
introducing additional parameters.
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Abstract

We reconstruct the primordial curvature fluctuation spectrum from the cosmic mi-
crowave background temperature anisotropy spectrum of the Wilkinson Microwave
Anisotropy Probe 3-year data by the maximum likelihood matrix inversion method
which can potentially reproduce possible fine structure in the primordial spectrum.
In the reconstructed primordial spectrum, the prominent oscillatory features found
previously on the scales of the top and foot of the first Doppler peak are mildly
smoothed except for the peaky structure on &~ 750Mpc which might be a true signal
of deviation from a featureless spectrum.

1 Introduction

The cosmic history during the inflationary stage of the early Universe is recorded in the primordial fluctu-
ation spectrum which can be revealed by modern cosmological observations. In particular, the anisotropy
spectrum of the cosmic microwave background (CMB) contains a great deal of such information. With
the high quality data provided by the Wilkinson Microwave Anisotropy Probe (WMAP) mission and
the clear linear perturbation theory, which relates the primordial spectrum to the observational CMB
anisotropy spectrum, we can probe the shape of the primordial spectrum with good accuracy.

Since the first release of the WMAP data [1, 2, 3, 4, 5], it has been argued that the CMB temperature
anisotropy spectrum have non-trivial features such as oscillatory behaviors on intermediate scales and
lack of power on the largest scales already claimed before WMAP [6, 7]. Although some of the glitches and
bites seen in the WMAP 1-year anisotropy spectrum have disappeared in the 3-year anisotropy spectrum
[8, 9], still anomalous structure is observed and not well-understood. Those anomaly cannot be explained
by a simple powerlaw primordial spectrum that is a generic prediction of conventional inflation models,
hence they may have some implication for our understanding of early Universe. WMAP team managed to
parametrize the primordial spectrum by decomposing it into ad hoc band-powers, but existence or non-
existence of fine structure is still uncertain because it is beyond the scope of parameter fitting method.
To evaluate the significance of such fine structure, we apply more flexible non-parametric method.

2 Maximum likelihood matrix inversion method

We introduce the maximum-likelihood matrix method to reconstruct the primordial power spectrum
P(k). Temperature anisotropy is decomposed into the coefficients of spherical harmonics as,

2 0) = 3 Yo (). (1)
l,m

A theoretical angular power spectrum Cp is the ensemble average of their norm which is related to P(k)
via a radiation transfer function X, (k),

Co = (Jagm|?) = %/dlnk K P(k) (;‘Ziki) _ 2)
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We define the primordial spectrum as the initial spectrum of curvature fluctuation, P(k) = {|®(0, k)|?).
The probability distribution of a harmonic coefficient for a given P(k) obeys to Gaussian statistics of a
complex variable,

Plapm| P(k)] F%éexp<'“g') (m #0), (3)

Plaw [P(] = == (— 2l ) . (4)

Hence the probability of realizing a sky (i.e. a set of harmonic coefficients) is the product of them.

Plaen}|P(R)] = T Plaem|P(k)] = e “®L, (5)

£, m>0

Here, following Tocchini-Valentini et al.[10, 11], we assume that P(k) should be a sufficiently smooth
function. As the prior for P(k) we adopt

P [P(k)] x exp [—e/dk % (W) 1 = ¢~ <RIP()] (6)

where € is a parameter[10, 11]. According to the Bayes theorem, the conditional probability of P(k)
under the condition that each ay,, takes some observed value reads,

{aen} P(R)] P [P(K)]

P IP(E){amm)] = 2 (7)

P [{aem}]
The most probable primordial spectrum is obtained by solving the following equation as
)
2 (z[P(k P(k)]) = 0.
5p0m (20 + RIP(H]) =0 (®)

We can interpret £[P(k)]+€eR[P(k)] as the action of a forced oscillator rolling around C¢%*, which assures
that the reconstructed P(k) restores the observation.

In our numerical treatment, we adopt the adiabatic initial condition and fiducial cosmological pa-
rameters found by the WMAP team [9] to calculate the transfer function. We incorporate the angular
spectrum data from £,,;, = 10 to £,,4, = 800 and perform the reconstruction in the wave-number range
ask = 1.13x 1072 Mpc~! ~ 2.06 x 10~! Mpc~! which is divided into about 6000 bins, though the reliable
range is limited only to the scales between 2.10 x 1073 Mpc~! and 2.73 x 1072 Mpc~! or equivalently
between £ = 30 and ¢ = 390. The actual inversion formula is modified to include noise contribution and
uncertainty from incomplete sky coverage. We employ the appropriately chosen e(= 4 x 10=*Mpc~!) so
that the resolution is as fine as possible while the power is positive on any scale. Test calculations using
mock samples show that this method returns a smoother power spectrum than the original one, if latter
has non trivial features. For implementing the inversion scheme, we employ the routines of CMBFAST
code [12] to calculate the transfer functions.

3 Reconstructed primordial spectrum

The reconstruction maps also the cosmic variance on the anisotropy spectrum into k-space. Therefore we
have to be careful about error estimation for extracting the reliable information of inflation dynamics.
In order to incorporate observational errors, we employ Monte-Carlo method to calculate the covariance
matrix of the reconstructed power spectrum K;;. Producing 10000 anisotropy spectra from x? distributed
random numbers whose mean is the central value of the observational anisotropy spectrum and variance
agrees with the diagonal element of the covariance matrix of Cy, we obtain 10000 realizations of P(k).
In the angular power spectrum, the dimension of persisting information of the primordial spectrum is
fewer than £,,,, due to smoothing by the convolution with the transfer function. To extract the mutually
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Figure 1: Primordial spectrum P(k) reconstructed from the three-year WMAP data and its band-power
decomposition where the vertical axis is normalized in the same way as that of CMBFAST code. The
dashed curve represents the solution of the reconstruction formula. Each data point indicates the ampli-
tude of diagonalized mode S defined in the text. The associated vertical bar is its expected dispersion
and horizontal bar is 1o width of the window matrix estimated by Gaussian fitting. The solid line drawn
around the middle height is the best-fit powerlaw spectrum.

independent degree of freedom and estimate the reliable error bars, we disentangle this correlation by
diagonalizing the covariance matrix [13]. We define a window matrix W by

(K'72);
Wij = =x —— (9)
Y=t (K2)im
K~1/2 represents the inverse square root of K defined as the unitary transform of diag(/\fl/Q, )\;1/2, )

where \;’s are the eigenvalues of K. Convolving P, (k;) with this window function, we define a new
statistical variable S, (k;) as

N
Sa(ki) = > Wij Pa(ky), (10)

whose correlation matrix is diagonal and reads

(Sa(ki)Sa(kj)) o = (Salki))a (Ss(ki)) 5

= (WK'W);; = lZ(K_m)im] Jij (11)

m=1

where P, (k;) represents the value of the reconstructed power spectrum at k& = k; in the a-th realization
and (()) represents the average of 10000 realizations.

Fig.1 is the result of band power analysis of WMAP 3-year data. In this graph i-th data point
indicates the value of

N
(Salki)ha = 3 Wis {(Palki)a

and the vertical error bar represents the variance

1/2 N !
(200, — GSatk?] " = [zm—w)m] |
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Here k; is the location of the peak of the i-th line of the window matrix W;;. The horizontal bar, on the
other hand, indicates the width of the window matrix. On most scales, the reconstructed band-powers
agree with the best-fit power-law quite well. However, we find a prominent peak around kd ~ 125, or
equivalently the length scale of ~ 750Mpc, which would be a true signal of deviation from a simple
power-law spectrum. It deviates from the best-fit power-law at about 4o significance level. To evaluate
the statistical significance of this deviation, we performed Monte Carlo simulation. Producing 10000
mock realizations of C; whose ensemble is supposed to be the best-fit power-law model, we apply our
reconstruction procedure to each Cy to collect the statistics of reconstructed band powers. We find that
the statistical distribution of reconstructed band powers agrees with Gaussian distribution. We repeated
the same analysis with the different value of ¢ many times, and in most cases observed the similar
peak with similar statistical significance. We have also reconstructed power spectrum using the cosmic
inversion method [14, 15, 16, 17, 18] and found a similar peak in the band power analysis at a slightly
smaller wave-number with a larger statistical significance ~ 50.

4 Summary

In conclusion, we have reconstructed the power spectrum of primordial curvature perturbation and found
a severe deviation from the best-fit power-law in a narrow band around kx ~ 0.009Mpc~'. The probability
that such a deviation is realized in a simple power-law fluctuation is expected to be less than 10, and
this provides an interesting challenge to theories of generation of fluctuations.
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Abstract
We give a concise formula for the non-Gaussianity of the primordial curvature per-
turbation generated on super-horizon scales in multi-scalar inflation model without
assuming slow-roll conditions.

1 Introduction

Non-Gaussianity of the primordial curvature perturbation is a potentially useful discriminator of the ex-
isting many inflation models [1]. PLANCK [2] is expected to detect the primordial non-Gaussianity if the
so-called non-linear parameter, fyr,, which parameterizes the magnitude of the bispectrum, is larger than
3 ~ 5 [1]. Hence it is important to theoretically understand the generation of non-Gaussianity. Standard
single slow-roll inflation model predicts rather small level of the non-linear parameter, fyy,, suppressed
by the slow-roll parameters. In this article, we give a useful formula for calculating the non-linear pa-
rameter in the multi-scalar inflation models including the models in which the slow-roll approximation
is (temporarily) violated after the cosmological scales exit the horizon scale during inflation. Current
observations do not exclude such models.

2 formulation

In this section, we derive a formula for calculating the non-linear parameter in the multi-scalar inflation
models including the models in which the slow-roll approximation is (temporarily) violated after the
cosmological scales exit the horizon scale during inflation [4, 5], based on d N formalism [3]. We use the

unit Mgl = (87G)~" = 1. We consider a N'-component scalar field whose action is given by

= —/d‘*w——g [%hug“”amfauqs% Vo), (1] =1,2,N),

where g,,,, is the spacetime metric and hy; is the metric on the scalar field space. In the main text, we
restrict our discussion to the flat field space metric hy; = d;; to avoid inessential complexities due to
non-flat field space metric. Extension to the general field space metric was given in our paper [5]. We
define ! (i = 1,2) as

d
I— gl J Y 1
L1=9 , ¥y dN(b’ ()

where dN = Hdt with H and ¢ being the Hubble parameter and cosmological time, respectively. Namely,
we take e-folding number, N, as a time coordinate. For brevity, hereinafter, we use Latin indices at the
beginning of Latin alphabet, a, b or ¢, instead of the double indices, I, i, i.e., X® = X/. Then, the
background equation of motion for ¢® and Friedmann equation are respectively

. |4 VI
9 =Pl with Bl = B == (4 3 ) 2
2V
H2 = 67[ , (3)
— Pap2r

1 E-mail:shu@tap.scphys.kyoto-u.ac.jp
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with VI = §17(0V/0¢!) and a1 = 61549

In the dN formalism [3], the evolution of the difference between two adjacent background solutions
determines that of the primordial curvature perturbation on super-horizon scales. Here, we use the word
”perturbation” to denote the difference between two adjacent background solutions. In this subsection,
we analyze the time evolution of the perturbation and relate the result to the curvature perturbation.
The solution of the background equation (2) is labelled by 2/ integral constants A*. Let us define §p® as
the perturbation, do*(N) = p*(A 4+ 6\, N) — ¢*(X; N), where A is abbreviation of A% and §A\® is a small
quantity of O(d). For the purpose of calculating the leading bispectrum of the curvature perturbation, it
is enough to know the evolution of §o%(N) up to second order in §. For later convenience, we decompose

(1) (2) (1) (2)
dp® as dp® = 6¥°* + %5@“, where §¥® and §¥® are first and second order quantities in §, respectively.
. . L. .
Evolution equation for §¢® is given by
d

(1>a a (1) 3 a —
0PN = P4 (N)SY (N) , with P9 =

oFa
L PN

(4)

() . . . . .
Here ¢(N) represents the unperturbed trajectory. Formally, solution of this equation can be written as

00" (V) = A%(N, N)SRP (M) (5)
LGN, NY) = PLN)AS(N,NY) ()

with the condition A% (N, N) = Aﬁ (N,N) = §1,6,”. Evolution equation for 550 is given by

2530 (N) = PRNISEN) + Qi (N)FE(N)SE(N) , with @, =

0?Fe

o : (7)
090 |, Q)

Let us choose the integral constants \* as the initial values of ¢* at N = N,, namely, A\* = ©%(NV,).

Then we have §p%(N,) = 6A*. Hence (5(42)“(N ) vanishes at N,. Under this initial condition, the formal
solution of Eq. (7) is given by

) N ey €N
SBN) = [ aNA (NN QL (NP (8)
N.

According to the 6N formalism, the curvature perturbation on large scales evaluated at a final time,
N = N, is given by the perturbation of the e-folding number between an initial flat hypersurface at
N = N, and a final uniform energy density hypersurface at N = .. Let us take N, to be a certain time
soon after the relevant length scale crossed the horizon scale, H~!, during the scalar dominant phase
and N, to be a certain time after the complete convergence of the background trajectories has occurred.
At N > N, the dynamics of the universe is characterized by a single parameter and only the adiabatic
perturbations remain. Then, the e-folding number between N, and N, can be regarded as the function
of the final time N, and ¢®(N,), which we denote N (N, ¢(N,)). Based on §N formalism, the curvature
perturbation on the uniform energy density hypersurface evaluated at N = N, is given by

1
((Ne) 2 6N (Ne, p(Ny)) = Naub? + §Nab*5<p‘i5<p’i +o (9)

where 6% = §¢®(N,) represents the field perturbations and their time derivative on the initial flat
hypersurface at N = N,. Here we also defined N, = N, (N.) and Nype = Ngp(Ny) by
_ON(N., ) _ NN,

Na(N) = —F5 . s Nab(N)

=— , (10)
U P 5 S P

evaluated at N = N,. It is well known that the curvature perturbations on an uniform density hyper-

surface, ¢, remain constant in time for N > N,. Hence, ((N.) gives the final spectrum of the primordial
perturbation. Let us take Ng to be a certain late time during the scalar dominant phase. Then we have

1
C(Nc) = 5N(N0a SO(NF‘)) = NaF&P?«" + §NabF5‘P%‘5(PIIJ~" +e (11)
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where d¢% = 0p*(NF), Nor = No(Np) and Ngyr = Ngp(Np). During the period with N, < N < Np,
we can use the solutions for 6 given by Egs. (5) and (8). Using these solutions, we obtain the relations;

Now = Ny Al (Np, Ny, (12)
Nf
Naps = NearAS,(Np, NAY(Np, N, + 2/ dN'N.(N"Q%,.(N")A% (N, N,)A%(N', N,) (13)
N,
with
No(N) = Nyp A (Ng, N). (14)

Using above basic equations, we derive a formula for the non-linear parameter fy; by making use of the
0N formalism. We first give the definition of fyr. It is defined as the magnitude of the bispectrum of
the curvature perturbation (,

6
Be(ky, ko, kz)Zg(QfNﬁ Pe (k1) Pe(k2) + Pc(ke) Pe(ks) + Pe(ks)Pe (k)| (15)
w
where P is the power spectrum of (. The definitions of P and B, are, respectively,
(Ciy Ckn) = (k1 + ko) P (K1) (16)
<Ck1 Ckng3> = 5(k1 +ko + k3)BC (kla ko, k3) : (17)

Equation (15) restricts the form of the bispectrum. The bispectrum in general does not take that simple
form. In fact, sub-horizon perturbations of fields give different k-dependent form of the bispectrum. How-
ever, the sub-horizon contribution to the bispectrum is suppressed by the slow-roll parameters evaluated
at the time of horizon exit. In contrast, the super-horizon evolution always gives the bispectrum in the
form of Eq. (15) independent of the number of fields (see below). If fyr 2 1, which is an interesting case
from the observational point of view, then the contribution due to super-horizon evolution dominates the
total bispectrum. We assume that the slow-roll conditions are satisfied at NV = N,. Then, to a good
approximation, ¢!, becomes a Gaussian variable with its variance given by (5¢! §p{, oc 677, and

becomes function of !. Differentiating ¢ ~ —VVI, we have
viv, V!

The higher order terms are also suppressed by the slow-roll parameters. Hence, d¢, is Gaussian as well
as 0!, to a good approximation. Then, we can write down the variance of 62 as

H\’
as b\ ~, Aab *
(0p%0py) ~ A (271_ > . (19)

At the first order both in the field perturbation and slow-roll limit, the matrix A = Afj‘-] can be written
as

IJ_<IJ IJ _ 4I1J _ _IJ IJ_ 1 KJ
Ajy=0"", Ajy = Ay = €7, Agy=ee (20)

where
i[OV V()
L Ve V() 1o=Fn.)

Since €/ = O(e,n), we find that (3¢, 6pd,) and (0ph,6p4,) are suppressed by the slow-roll parameters.
Using these equations, to the leading order, the non-linear parameter is written as

(21)

6 Na*Nb*ch*AacAbd
“fyp = 5
5 (NouNy AT)
1 Ne
RTACTIE NabFG“(NF)@b(NF)Jr/ dN'N(N")Q 0, (N)OU (N (N') |, (22)
a* ‘i N,
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where
O%N) = A"(N, N,)A® Ny, | (23)

and ©% = ©%(N,). As we mentioned before, we have neglected the non-Gaussianity from the sub-horizon
contributions in deriving Eq. (22). Eq. (22) shows that, aside from N, and Nupr 2, fyz is completely
determined by the quantities N,(N) and ©%(N). These quantities obey the following closed differential
equations,

4
dN
First, we solve N, (V) backward till N = N, under the initial conditions N,(Nr) = Nyr. Then we solve

©%(N) forward till N = N under the initial conditions ©%(N,) = A% N,.. Substituting these solutions
into Eq. (22), we obtain fyr,.

N(N) = =Ny (N)P4(N) , =L 07(N) = PY(N)E"(N) . (24)

3  Summary

In this article, Based on the § N formalism, we have derived a useful formula for calculating the primordial
non-Gaussianity due to the super-horizon evolution of the curvature perturbation in multi-scalar inflation
without imposing slow-roll conditions. This formula can apply for the inflation models with general field
space metric, hyy, as long as super-horizon contributions are concerned. Generally, when one calculates
the non-Gaussianity of the curvature perturbations, one has to solve the second order perturbation
equations. In doing so for a multi-scalar inflation, there appear tensorial quantities with respect to the
indices of the field components. Our formalism reduces the problem to calculate the non-linear parameter
fnr to solving only first order perturbation equations for two vector quantities. This reduces O(N?)
calculations to O(N') ones where A is the number of the scalar field components. Hence our formalism
has a great advantage for the numerical evaluation of fyr in the inflation model composed of a large
number of fields. We have not discussed the possibility of large non-Gaussianity, here. However, in
our paper [5], we have studied the primordial non-Gaussianity in double inflation model as an example
that violates slow-roll conditions by using our formalism. We found that, although fx defined for the
curvature perturbation on a constant Hubble hypersurface exceeds 1 for a moment around the time when
the slow-roll conditions are violated, the final value of fyr is suppressed by the slow-roll parameters
evaluated at the time of horizon exit. We have shown that this can be understood even analytically in
the 0V formalism. This result is straightforwardly extended to more general double inflation model and
N -flation model.
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The interrelation between the generation of large-scale
electric fields and that of large-scale magnetic fields
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Abstract
We study the interrelation between the generation of large-scale electric fields and
that of large-scale magnetic fields due to the breaking of the conformal invariance
of the electromagnetic field in inflationary cosmology. It is shown that if large-scale
magnetic fields with a sufficiently large amplitude are generated during inflation, the
generation of large-scale electric fields is suppressed, and vice versa.

1 Introduction

Magnetic fields with the field strength ~ 107G on a 1-10kpc scale have been observed in galaxies of all
types, galaxies at cosmological distances, and clusters of galaxies (for a detailed review, see [1]). Moreover,
the field strength of magnetic fields in clusters of galaxies is estimated at 10~7-1075G and the scale is
estimated at 10kpc—1Mpc scale. The origin of these magnetic fields, in particular magnetic fields in
clusters of galaxies on a coherence scale as large as ~Mpc, is not well understood yet. Although galactic
dynamo mechanisms have been proposed to amplify very weak seed magnetic fields up to ~ 10~%G, they
require initial seed magnetic fields to feed on. Furthermore, the effectiveness of the dynamo amplification
mechanism in galaxies at high redshifts or clusters of galaxies is not well established.

Although various generation mechanisms of seed magnetic fields have been proposed, it is difficult
that these mechanisms generate the magnetic fields on megaparsec scales with sufficient field strength
to account for the observed magnetic fields in galaxies and clusters of galaxies without requiring any
dynamo amplification.

The most natural origin of such a large-scale magnetic field is electromagnetic quantum fluctuations
generated in the inflationary stage [2]. This is because inflation naturally produces effects on very large
scales, larger than Hubble horizon, starting from microphysical processes operating on a causally con-
nected volume. Since the Friedmann-Robertson-Walker (FRW) metric usually considered is conformally
flat and the classical electrodynamics is conformally invariant, the conformal invariance of the Maxwell
theory must have been broken in the inflationary stage in order that electromagnetic quantum fluctu-
ations could be generated at that time. Hence various conformal symmetry breaking mechanisms have
been studied [2, 3, 4].

It follows from indications in higher-dimensional theories including string theory that there can exist
the dilaton field coupled to the electromagnetic field. Moreover, there can exist non-minimal gravitational
couplings between the scalar curvature and the electromagnetic field due to one-loop vacuum-polarization
effects in curved spacetime. These couplings break the conformal invariance of the electromagnetic field.
Such a coupling of non-trivial background fields that vary in time to the electromagnetic field is very
interesting as the generation mechanism of large-scale magnetic fields with a sufficiently large amplitude.
In Ref. [5], therefore, the present author and Sasaki studied the evolution of the electromagnetic field
in a very general situation in which the conformal invariance is broken through the coupling of the
form IF,, F*¥ where I can be a function of any non-trivial background fields that vary in time, and
F., = 0,A, —0,A, is the electromagnetic field-strength tensor. Here, A, is the U(1) gauge field. In
this case, not only large-scale magnetic fields but also large-scale electric fields can be generated during
inflation. The conductivity of the universe in the inflationary stage is negligibly small because there are
few charged particles at that time. Hence electric fields can exist during inflation.

1E-mail:bamba@phys.kindai.ac.jp
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In the present paper [6] we consider the interrelation between the generation of large-scale electric fields
and that of large-scale magnetic fields during inflation due to the breaking of the conformal invariance of
the electromagnetic field through a coupling with non-trivial background fields that vary in time.

2 Conformal symmetry breaking of the electromagnetic field

We consider the following model action:
1
S = /d4m\/—g (—ZIF,“,F’“’> , (1)

where g is the determinant of the metric tensor g,,, and I is an arbitrary function of non-trivial back-
ground fields at the moment.
From the action (1), the equation of motion for the electromagnetic field can be derived as follows:

1
———0, |\/—gIF*| =0. 2
We assume the spatially flat FRW space-time with the metric

ds® = —dt* + a*(t)dx* = a*(n)(—dn® + dx?), (3)

where a is the scale factor, and 7 is the conformal time. We consider the evolution of the U(1) gauge
field in this background. Its equation of motion in the Coulomb gauge, 87A;(t,z) = 0, and the case
Ap(t,x) =0, reads

" I\ . 13
Ai(t)m)+ <H+ 7> Ai(tvm)_ﬁAAi(t)m)zov (4)
where H = a/a is the Hubble parameter, and a dot denotes a time derivative, = = 9/9¢. Moreover,

(3) .
A = 0'0; is the flat 3-dimensional Laplacian.

Next, we consider the evolution of the U(1) gauge field in generic slow-roll inflation. Here we shall
quantize the U (1) gauge field A, (¢, z). It follows from the model Lagrangian in Eq. (1) that the canonical
momenta conjugate to A, (t,x) are given by

7T0:0, ﬂi:[a(t)Ai(t,ilI). (5)
We impose the canonical commutation relation between A;(t, ) and m;(t, ),
ek kik;
Ai t,m , T4 t, = Z/ elk'(m_y) (61 - = ]> y 6
[Ai(t,2), 7 (t,y)] 2n) i 2 (6)

where k is comoving wave number and k = |k|. From this relation, we obtain the expression for A;(t, z)
as

Ai(t, ) :/ﬁaw (b0, 0)ei (K, 0) Ak, )™= + b1 (k, 0)e (k, o) A* (I t)e %= || (7)

where €;(k, o) (o = 1,2) are the two orthonormal transverse polarization vectors, and b(k, o) and bf(k, o)
are the annihilation and creation operators which satisfy

[B(k,a),iﬁ(k',a')] = 0,8k — k), [é(k,a),i)(k',a')] - [BT(k,a),BT(k',a')] - 0. (8)

It follows from Eq. (4) that the mode function A(k,t) satisfies the equation

A(k,t) + <H + §> A(k,t) + ];—zA(k,t) =0, (9)
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and that the normalization condition for A(k,t) reads

i

Ak, t)A*(k,t) — A(k, t)A* (k,t) = Ta" (10)
Replacing the independent variable ¢ by 1, we find that Eq. (9) becomes
Il
A" (kym) + 7 A'(k,m) + k> A(k,n) =0, (11)

where the prime denotes differentiation with respect to the conformal time 7.

We are not able to obtain the exact solution of Eq. (11) for the case in which I is given by a general
function of 7. In fact, however, we can obtain an approximate solution with sufficient accuracy by
using the Wentzel-Kramers-Brillouin (WKB) approximation on subhorizon scales and the long-wavelength
approximation on superhorizon scales, and matching these solutions at the horizon crossing n = n; =~
—/k [5]. As a result, we find that an approximate solution for |A(k,n)|* at late times is given by

R 1
A(k,n) = C(k +Dk/ ——dij, 12
(k,m) (k) + D(k) . T (12)
C(k) = Lz (11'+ik1> /nR #dﬁ e thn (13)
m 2 K I (ﬁ) n="nk ,
D(k) = L pe (11' —+—z'k:I) e~ tkn (14)
V2k 2 =
3 Evolution of large-scale electric and magnetic fields
The proper electric and magnetic fields are given by
EPP(t @) = a LByt @) = —a 'Ai(t, @) (15)
Biproper(t,m) = ailBi(t,{L‘) = a’zeijkajAk (t, m) R (16)

where E;(t,x) and B;(t, ) are the comoving electric and magnetic fields, and €, is the totally antisym-
metric tensor (€123 = 1).

Using Egs. (12), (15) and (16), and multiplying quantities in Fourier space by the phase-space density,
47k3 /(27)3, we obtain the energy density of the large-scale electric and magnetic fields in the position
space

[DE)P K1

pe(Lyn) = AT (17)
o (L) = OB 1. (18)

on a comoving scale L = 27/k, respectively.

In order to study the property of generation of large-scale electric and magnetic fields more clearly, we
consider the case in which the coupling function of non-trivial background fields to the electromagnetic
field, I, is given by a specific form as follows:

1) =1 (1) | (19)

s

where 1), is some fiducial time during inflation, I is the value of I(n) at n = 75, and « is a constant. In
this case, the ratio of the energy density of the large-scale electric fields to that of the large-scale magnetic
fields is given by

(20)

- aH

pe(L,n) a2+4( k )2“
pp(L,n) —  4C ’

183



where C is a constant of order unity. Since we here consider the superhorizon scale, k/(aH) < 1, from
Eq. (20) we see that if « > 0, pg(L,n) > pr(L,n), and that if « < 0, pg(L,n) < pr(L,n). Hence,
if large-scale magnetic fields with a sufficiently large root-mean-square (rms) amplitude are generated
during inflation, the generation of large-scale electric fields is suppressed, and vice versa. This result
holds true for the case in which I is given by an arbitrary function of non-trivial background fields. From
Egs. (17) and (18), we see that pg(L,n) o< 1/I(n) and pp(L,n) o I(n). If large-scale magnetic fields with
a sufficiently large amplitude are generated during inflation, the value of the coupling function I must be
extremely small in the beginning and increase rapidly over time during inflation [5]. In such a case, from
the above relations we see that the generation of large-scale electric fields is suppressed.

It follows from Egs. (15) and (16) that if the amplitude of the U(1) gauge field A;(¢, ) varies in
time, electric fields are generated; on the other hand, if the amplitude of A;(¢,x) varies in terms of space
coordinates, magnetic fields are generated. When the amplitude of A;(¢,x) greatly varies in time, the
relative difference of the amplitude of A;(¢,x) at each of the space-coordinate points becomes very small
because the amplitude of A;(t,x) greatly grows (or decays) at all the space-coordinate points equally. It
follows from the relation A'(k,n) = —D(k)/I(n), which is derived from Eq. (12), that this situation is
realized if the value of I decreases rapidly in time during inflation. On the other hand, when there can
exist the large relative difference of the amplitude of A;(¢, ) at each of the space-coordinate points, the
variation of the amplitude of A;(t, ) in time must be small. This is because the relative difference of
the amplitude of A;(t,z) at each of the space-coordinate points is dissipated by the large variation of the
amplitude of A;(¢,x) in time. This situation is realized if the value of I increases rapidly in time during
inflation. Thus, increasing I which favors the small variation of the amplitude of A;(¢,«) in time leads
to stronger magnetic fields and vice versa.

Consequently, in this scenario there does not exist the possibility that both large-scale electric and
magnetic fields with a sufficiently large amplitude are generated simultaneously. Hence large-scale mag-
netic fields with a sufficiently large amplitude can be generated during inflation without being inconsistent
with the fact that the sum of the energy density of the generated electric and magnetic fields during in-
flation should be smaller than that of the inflaton. Furthermore, when large-scale magnetic fields with a
sufficiently large amplitude are generated during inflation, the amplitude of the large-scale electric fields
generated is very small. Hence the large-scale charge separation and additional fluctuations in the cosmic
plasma, which could be generated during reheating due to the large-scale electric fields and which might
make the evolution of the universe anisotropic, can be hardly generated. Consequently, this generation
scenario of large-scale magnetic fields from inflation is consistent with the standard evolution of the
universe suggested from the observation of the cosmic microwave background (CMB) radiation.

4 Conclusion

In the present paper [6] we have considered the interrelation between the generation of large-scale electric
fields and that of large-scale magnetic fields due to the breaking of the conformal invariance of the
electromagnetic field through the coupling IF? in inflationary cosmology. As a result, we have shown
that if large-scale magnetic fields with a sufficiently large amplitude are generated during inflation, the
generation of large-scale electric fields is suppressed, and vice versa.
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Non-Gaussianity from a single field inflation during non
slow-roll regime

Yoshiharu Tanaka! and Misao Sasaki?
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Abstract
We estimated the bispectrum of curvature perturbations in the Starobinsky model
in which a single inflaton field has a potential where there is a sudden change in its
slope, and temporarily undergoes non slow-roll regime just after passing the change
spot, by using the non-linear solution for curvature perturbations, constructed in
gradient expansion. Then, we found that large non-Gaussianity may be produced in
the model.

1 Introduction

It has been understood from the observations of CMB anisotropies that early universe must have under-
gone inflationary era. As CMB observations become more accurate, we will come to know abundance
of informations about the inflationary era. As one among the observations, it has been studied if there
exists the deviation of Gaussian statistics in the CMB fluctuations, i.e. non-Gaussianity. Measuring the
non-Gaussianity is important because it plays a role to give much informations probably to distinguish
inflation models. Due to the expectation, non-Gaussianity in many models has been studied. Though
many authors have investigated non-Gaussianity in single field or multi fields models, there are not so
many works, considering models in which slow-roll conditions are violated. It was claimed in Ref. [3]
that enhancement or damping of curvature perturbations on superhorizon scales can be occurred in such
a non slow-roll model. However, since such features are still studied only in linear theory, it might be
worth studying them in non-linear theory, and then non-Gaussianity.

At this work, we consider the Starobinsky model, a single scalar field inflation in which slow-roll
condition is violated temporarily in Einstein gravity, and use the nonlinear solutions of metric for single
scalar system, which are constructed in gradient expansion [2], to evaluate the nonlinear consequences
from non slow-roll regime. And finally we calculate the bispectrum in the model. In this approach based
on gradient expansion, we consider only fluctuations on superhorizon scales, and don’t deal with nonlinear
evolutions on subhorizon scales.

2 Non-linear solutions in gradient expansion

Here, we present the non-linear solutions which are constructed in the existence of a minimal coupling
single scalar field, in gradient expansion.
The metric is expressed as

ds? = (—a® + ByB")dt? + 2B;daidt + a2 (t) 2R 5, (¢, 2F)da' da? | (1)

where a and 3 (3' = ~¥ B;) are the lapse function, shift vector respectively, det(%;;) = 1, and the
function a(t) is the scale factor of a fiducial homogeneous and isotropic background universe.
The stress-energy tensor for a minimal coupling single scalar field is expressed as

Ty = VbV~ 5000(V* 0Vt + 2V (6). @

We have general and non-linear solutions for o and R which satisfy the Einstein equations in a minimal
coupling single scalar field model as follows [2],

1E-mail:yotanaka@yukawa.kyoto-u.ac.jp
2E-mail:misao@yukawa.kyoto-u.ac.jp

185



' Coav ot av
a = 1+ 2af§53 |:(2)C(xk) (Za(b + % . a(t )dt ) + (2)D(xk)d¢:| , (3)
t
R = (O)R—‘r/ (o — 1)Hdt', (4)
ty

where ()R and (3)D (the number indexes (0) and (2) indicate the leading-order and the next-order in
gradient expansion, for the quantities attached by them ) are arbitrary functions of the spatial coordinates
(i.e. integration constants), i is actually arbitrary, but we take it to be the time at a few e-foldings after
horizon crossing by choosing ()R, é is indeed (O)QB(t) which satisfies the (local) Friedmann equations,
and C(z*) is defined as

o - 8(0)f " (DiDjeR/2) — (g) f* (9) Ryye® R/ (5)
2 487rG65<0>R/2aﬁ¢2(0) (th) .

For simplifying the problem, we ignore tensor modes, set (g fi; = d;;, and have

(2)0 _ 282(0)R + 6ijai.(O)R6j(0)Re—2(o)R (6)
247Gy,

From Egs. (3), (4) and (6) , we obtain

. av v Yog H dV
—2)R " " ] D /.
e <2a¢+d¢ N a(t")dt > —F/t)c 35 (2) —d¢dt (7)

R=@R+ /t ap i 220 R+ 00 R R
© " 127Ga> 3P

3 Application of the nonlinear formalism

We shall estimate the bispectrum in a specific model, the Starobinsky model, using the nonlinear solution
which we showed in the previous section. We briefly introduce the model below.

3.1 The Starobinsky model

In the Starobinsky model, a single scalar field has a potential in which there is a sudden change in its
slope. The potential is described as

[ Vet A(b—do)  for é> oo,
V(¢)‘{VE+AR¢—¢§> for < gy, ()

where Ay, A_ and ¢ are assumed to be positive so that the scalar field evolves from a large positive
value of ¢ toward ¢ = 0. Then, assuming the de Sitter approximation 3H? = 2V}, the scalar field ¢ in
the (local) Friedmann spacetime satisfies

(-4 for ¢ > ¢o,
3H$ = { (A (A - AL)eaHEw) for ¢ < go, Y

where tg is the time at which ¢ = ¢g. Thus the scalar field slow-rolls at ¢ > ¢g, and violates the
slow-roll condition temporarily at ¢ < ¢o. The evolution is decelerated if Ay/A_ > 1, or accelerated if
A, /A_ <1, compared to the slow-roll evolution.
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3.2 Matching after horizon crossing

To determine the integration constants in Eq. (7), we consider a matching at a few e-foldings after horizon
crossing, of quantum fluctuation in linear theory and the nonlinear solution. We refer the detail of the
matching to Ref. [4] and avoid the argument here. After the matching, the integration constants are
determined as follows,

0? 02
127Ga2d?2  (aH

+
(O)R = [1 + )2] (o)Rg_I ) s (10)

where here (O)Rg) is defined in real space, and represents linear quantum curvature perturbations (O)jo)

for t;, < to and (O)Rg) for t, > to. And (2)D is determined as follows,

D_ 3H2K(+) B K 3H? 1+£ B 6H2 i_i -1 (11)
&=~ 8nGaiA2  2a2H?) |a3AL A_ Ay \d} a} ’

where K(+) is defined as

K =202 0 RE)) (e 20RE — 1) 4 610,y R 0 o) RY e 20 R (12)

By substituting Eq. (9) into Eq. (7) and evaluating the integrals in Eq. (7), it can be seen that in the
case that ty < t; non-linear evolution doesn’t occur. So, non-Gaussianity isn’t generated on superhorizon
scales in the case, and we focus only on the case that to > ;. Substituting Eqgs. (10) and (11) into Eq. (7),
and expanding the resulting formula w.r.t. )R to second order of it, we obtain the final amplitude (at
t = 00) of curvature perturbations in Fourier space,

+) 2 o) PEPE 5 ) o) P
Ryt =00) = RG)+T{-2kRH)} + T{4/Wk ORI RGL(—k + K +K()13)
d3k/d3k// ) )
- / Wéia‘k”k'”<0>R§fﬁf<o>73§fﬁ~5(*k HRHKRN
where we supposed that ty > ¢, R = [ (SST’)%Rke“"X, (O)Rg) = (g;’)cg (O)Rgﬁeik'x, (O)Rgﬁ = \/;:;7%,
and T is defined as T' = ﬁ (2—1“ — ) where ko = aoH.

3.3 Bispectrum

We define the bispectrum Bg by the three point functions as follows,

< RiRioRi, > = (2m)°Br(ky, ka, k3)d® (kg 4+ kg + k3), (14)
where < - - - > represents an ensemble average of - - -. We assume < Ry >= 0. Thus, there is no discon-
nected part for < Ry, Ri, Ry, >, and < Ry, Ri, Rk, > equals to a connected part, < Ry, Ri, R >e-

We also assume that (O)Rg)

to leading order,

is a Gaussian variable. Thus, the three point correlation function of Ry is

4
(2m)?
2

_W&jkik%@) (ks + k1 + ka)| o) RS Ploy RS, > + perms} .

< RigRigRig >e = T (b 4+ 13)5 (ks + ka + ka) o) R, [2li0) R, I + perms  (15)

The two point correlation function of (O)ng) is written as < (O)Rgﬁ(o)Rgﬁ, >= (271')3|(0)R(J12 12603 (k +
K') = (21)% Pr (k)6 (k 4+ k’). From Eqs. (14) and (15), we have
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Br =T 4(’% + k§)|(o)73g]21|2|(0)7€gk)2|2 + perms (16)
_251'1"151 ké\(oﬁﬁ?ﬁ |2|(0)R(J122 \2 + perms} .
Next, we define the k-dependent fyj as

3
iV

Br = —ngL(kl,kz,kg)Z i (Pr(k)k)%. (17)

3

[+
i=1

From Egs. (16) and (17), we obtain

Ar 2 | 1.2\2.3
A_ 2(k; + k3 )k k; - kik3
fnr(ke, ko, ks) ( ) Z M _ Z i S 17 I (18)

o 3 2 2
DV L PO T ko i gAkds 0
Evaluating this equation roughly, we have
Al (kZ + k%)
ki,ko, k ~ —=—-1 — 1 1
fyro(ki, ke, ks) <A >; w2 (19)

As you can see from this equation, considering the fact that ,’z—o < 1, we may have |fyr| > O(1) in case
that ﬁ—f >> 1. As k; approaches to kg, fyr becomes larger, and maximum just at k; = ky. The maximum
value is characterized by ﬁ—f. Thus, non-Gaussianity for the fluctuations which exit horizon just before

to, may be large if ﬁ—j is larger than unity. It should be noted that the sign of fy is always minus. One
the other hand, non-Gaussianity for the fluctuations which exit horizon after ¢y is not produced at all.

4 Conclusion

We calculated the bispectrum in the Starobinsky model, in which a single scalar inflaton field has a

potential where there is a sudden change in its slope, and undergoes non slow-roll regime temporarily

just after passing the field value where the change occurs, by using non-linear solutions which were

obtained in Ref. [2]. We found that as curvature fluctuations exit horizon scales at time (¢t < to) earlier
Ay

than ¢ = ¢y, their non-Gaussianity becomes larger and maximally ~ — (I — ) Then, we emphasize

that the sign of fyr is minus. On the other hand, for curvature fluctuations which exit horizon scales
after tp, non-Gaussianity is not produced at all. The Starobinsky model is indeed a toy model of non
slow-roll ones. Thus, we guess that what we found here may also be seen similarly in other non slow-roll
models.
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Simulating relativistic binarieswith Wi sky
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Abstract
We report about our first tests and results in simulating the last phase of the coalescence and
the merger of binary relativistic stars. The simulations were performed using ouv\boddy
and mesh refinement through t@ar pet driver.

1 Introduction

Despite the presence of numerous works in the literature [1, 2, 3, 4, 5], the relatiistig neutron star problem

still poses a fundamental challenge in general relativity and in theoretical and observational astrophysics, as well as
in numerical relativity. Furthermore, binary systems of compact objects are considered one of the most important

sources for gravitational-wave emission and are thought to be at the origin of some of the most violent events in

the Universe: (shorty-ray bursts.

Among the additional motivations that make this problem so interesting, there is surely the investigation of
gravitational waves, of their consistency with Einstein’s theory and of their detectabilty in the now-operating
gravitational-wave detectors. Detection of gravitational waves from relativistic-star binaries will provide a wide
variety of physical information on the component stars, including their mass, spin, radius and equation of state.

As said, the study of relativistic-star binary systems is also finalized to the understanding of the origin of some
type of v-ray bursts, because the short rise times of the bursts imply that their central sources have to be highly
relativistic objects [6]. After the observational confirmation thatay bursts a have cosmological origin, it has
been estimated that the central sources powering these bursts must provide a large amount of difiétgrgs)
in a very short timescale, going from one millisecond to one second (at least for a subclass of thenshoslled
~-ray bursts). It has been suggested that the merger of relativistic-star binaries could be a likely candidate for the
powerful central source. The typical scenario is based on the assumption that a system composed of a rotating
black hole and a surrounding massive disc is formed after the merger. If the disc had a masklis, it could
supply the large amount of energy by neutrino processes or by extracting the rotational energy of the black hole.

In our previous work [7, 8, 9, 10], we have described how we can perform - with our\dftideky, mesh
refinement (through th€ar pet driver [11]) and without excision - accurate three-dimensional relativistic simu-
lation of rotating relativistic-star collapse and how we can extract the (weak) gravitational signal emitted until and
past the newly formed black-hole ring-down phase. We have now started to apli¥ite&y code to investigate
the binary problem (where the gravitational-wave signal is expected to be much stronger) and we report here our
initial setup.

Hereafter, unless explicitly shown otherwise for convenience, we use a system of units incwhich =

2 Basic equations and their implementation

TheWhi sky code solves the general-relativistic hydrodynamics equations on a three-dimensional numerical grid
with Cartesian coordinates [12]. The code has been constructed within the frameworkG@Hcahas Com-
putational Toolkit (see [13] for details). While tiéact us code provides at each time step and on a spatial
hypersurface the solution of the Einstein equatiohs = 877,,,, whereG,, is the Einstein tensor arifl,, is

the stress-energy tensor, Mki sky code provides the time evolution of the hydrodynamics equations, expressed
through the conservation-equations for the stress-energy té#&a@nd for the matter current densify*

V. T =0, V.t =0. 1)
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Figure 1: LEFT: Comparison of the Hamiltonian constraint violatfor three resolutions. The spacing for the
finest grid of the three resolutions &r®16M, 0.02M and0.025. RIGHT: conservation of baryon mass.

Details on the system of field equations we use are given in [14] and in the pr&Viosky articles [7, 8, 9,

10]. The code is designed to handle arbitrary shift and lapse conditions, which can be chosen as appropriate for a
given spacetime simulation. More information about the possible families of spacetime slicings which have been
tested and used with the present code can be found in [14, 15].

The singularity-avoiding properties of the above gauge choices have proved equally good both when using ex-
cision, as we did in [7] and [8], and when not using excision. In the latter case, these gauge choices are essential to
“freeze” the evolution in those regions of the computational domain inside the apparent horizon, where the metric
functions experience the growth of very large gradients. Furthermore, in this case a small additional dissipation in
the metric and gauge terms is also necessary to obtain long-term stable evolutions [9].

An important feature of th&hi sky code is the implementation of @nservative formulation of the hy-
drodynamics equations [16, 17, 18], in which the set of equations (1) is written in a hyperbolic, first-order and
flux-conservative form of the type ‘

dea+ 09 (a) = s(a) , 2

wheref(?)(q) ands(q) are the flux-vectors and source terms, respectively [2]. Note that the right-hand side (the
source terms) must not depend on derivatives of the stress-energy tensor.

Additional details on the formulation we use for the hydrodynamics equations can be found in [2]. We stress
that an important feature of this formulation is that it has allowed to extend to a general-relativistic context the pow-
erful numerical methods developed in classical hydrodynamics, in particular High-Resolution Shock-Capturing
schemes based on exact [19, 20, 21] or approximate Riemann solvers (see [2] for a detailed bibliography). Such
schemes are essential for a correct representation of shocks, whose presence is expected in several astrophysical
scenarios.

3 Initial data and evolution

As initial data for relativistic-star binary simulations we use the ones produced by the group working at the Obser-
vatoire de Paris-Meudon [22, 23]. These data, which we refer to also &etidon data, are obtained under the
simplifying assumptions of quasi-equilibrium and of conformally-flat spatial metric. These initial configurations
are computed using a multi-domain spectral-method code n&r@BENE, which is a free software under the
GNU General Public License; a specific routine then converts from spherical coordinates to a Cartesian grid of the
desired dimensions and shape.

Except where explicitly indicated, the simulations we discuss here refer to evolutions of equal-mass irrotational
initial data having the following properties: initial orbital period T=3.395 ms; rest mass of &fgtar 1.625M;
gravitational mass of a staW/ = 1.456M/; radius of a star R=13.68 km; coordinate distance between stellar
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Figure 2: LEFT: Time evolution of the proper distance betweenntiagimum-rest-mass-density points of the
stars. RIGHT: Time evolution of the maximum of the rest-mass density, in the case of a prompt formation of black
hole (dotted line) and in the case of the formation of an oscillating relativistic star.

centres 45km = 414, = 0.19)\,,, = 3.4 R; compactness of a star M/R = 0.14; ratio of the polar to the equatorial
radius of a star 0.93; polytropic exponéhi= 2.

We performed evolutions with 8 refinement levels. In the case of the highest-resolution simulation, the finest
grid covered only the interior of the stars, with a resolutiorMaf ~ 0.016 M and the coarsest one had the outer
boundary at~ 175M. This is still work in progress, but the presently available data for the initial part of the
time evolution seems to suggest that these resolutions are sufficient for reliable evolutions, as the time evolution
of the rest mass also shows (right panel of Fig. 1). The rest mass should in principle be constant and the data
represented in the figure indicate that the violation of the conservation, due to numerical errors, is less than 0.1%,
until horizon formation, when this measure ceases to be meaningful. The convergence rate of the code for this kind
of simulations, as measured through the norm of the Hamiltonian constraint violation, is 1.5. This is also shown in
the left panel of Fig. 1.

One positive remark we can make at this point is that in our evolutions for the above-mentioned initial data
we can follow the orbit of the stars for several periods, before the beginning of the plunge, as is shown in Fig. 2,
which reports the time evolution of the proper distance between the maximum-rest-mass-density.@othes (
centres) of the stars. Such a proper measure shows an approximately constant decrease of the distance, only slightly
modulated by residual eccentricity. At the time of the beginning of the plunge, at atogné ms, the proper
distance between the stars is about 5 times the total initial ADM mass of the system. During the merger, the stars
bounce shortly before collapsing as a single object to a black hole. This phase is illustrated in the figure by the
spikes present between 6.5 and 8 ms. Even if for space reasons it is not reported in the present article, we can also
simulate the ring-down phase of the newly formed black hole and extract the complete gravitational-wave signal.

The right panel of Fig. 2 shows the time evolution of the maximum of the rest-mass density. This illustrates
two very different possible outcomes of the merger, namely the prompt collapse to a black hole, about 1 ms after
the merger, and the formation of a compact object without (apparent) horizons. Such a compact object oscillates
violently, emitting a persistent gravitational radiation of amplitude similar to the one emitted during the last phases
of the coalescence. After dissipative effects (depending strongly on the equation of state) like shock heating and
gravitational-radiation emission reduce the pressure and the angular momentum of the compact star, a delayed
collapse to black hole is possible. Indeed, we observe this behaviour in some simulations now under investigation
(not reported here).

In the near future, we plan to carry out a detailed study of relativistic-star mergers, investigating in particu-
lar the different dynamics and gravitational waveforms obtained with different initial data (masses) and different
equations of state.

| want to thank Luciano Rezzolla for discussions and suggestions on the manuscript. The computations were
performed on the clusters at the Albert Einstein Institute.
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Abstract

We propose the numerical scheme to solve the Grad-Shafranov equation which rep-
resents stationary, axisymmetric and force-free electromagnetic field. In this article,
firstly, we briefly surmmaraize the scheme to solve the Grad-Shafranov equation given
by [1][2]. Then, we describe our numerical scheme. In our scheme, treatment of the
light surface and the symmetry axis are improved from the method given by [1][2].

1 Introduction

It is widely believed that there is a supermassive black hole in the center of active galactic nuclei( AGN’s)
and it works as an engine of AGN. The mechanism of energy generation is roughly divided into two
categories. One is due to a release of the gravitational energy of accreting matter, and the other is due to
an extraction of the rotational energy from accretion disks or central rotating black holes. As the way to
extract the rotational energy of the black hole, Penrose process, super-radiance, and Blandford-Znajek(B-
Z) mechanism[3] are known. In paticular, B-Z mechanism is believed to play an important role in the
jets formation in AGN’s. Because the efficiency of energy extarction by B-Z mechanism would depend on
the configuration of magnetic field around the black hole, it is important to study the electromagnetics
around the black hole.

In this study we consider stationary, axisymmetric, and force-free magnetospheres, in which B-Z
mechanism is shown. The configuration of magnetosphere is determined by only one equation called the
Grad-Shafranov(G-S) equation. This equation is a quasi-linear second-order eliptic partial differential
equation, and has the singularity called the light surface. Due to this singularity, it is difficult to solve
the G-S equation in the domain including the light surfce. Recently Contopoulos et al.[4] proposed a
method to solve the G-S equation for pulsar magnetospheres. After that, Uzdensky extended this method
to black hole cases.

In this article we will briefly summarize the method to solve the G-S equation given by [1][2], and
describe our numerical scheme. Through this article we use the geometrical units ¢ = G = 1.

2 The Grad-Shafranov equation

Here, we consider stationary, axisymmetric, and force-free magnetospheres around a Kerr black hole. In

Boyer-Lindquist coordinates (t,r, 8, ¢), the metric of the Kerr black hole geometory is given by

2M 4Marsin® 0 2 Asin® 0

ds? = — (1 - ;) d* — T D dndg + Poar® 1 pPde? + S22 dg?, (1)
p p A p
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where p? = 12 + a®cos? 0, A =12 — 2Mr + a?, and A = (r? + a?)? — a®?Asin?0. M and a are mass and
spin parameter of the black hole, respectively. In order to describe the electromagnetic process around a
Kerr black hole, we use ZAMO formalism introduced by Macdonaldand and Thorne[5]. In this formalism,
the electric and magnetic fields are measured by zero-angular-momentum observers(ZAMOs). Because
four-velocities of ZAMOs constitute the normal vector fields to the spacelike hypersurfaces labeled by ¢,
this formalism is equivalent to the 3+1 dcomposition of the Maxwell equations. The intrinsic geometry
of a spacelike hypersurface labeled by ¢ is given by
2 .2
ds3gim = hijdz'da? = %er + p2do* + %d& (2)
where 4, j,... runs over the three spatial coordinates (r,0, ¢).

Under the assumptions that the magnetosphere is stationary, axisymmetric and force-free, electric
and magnetic fields can be expressed in terms of three scalar functions, ¥(r,8), I(¥), and Qp(¥), which
have the physical meanings of the total magnetic flux, the total current, and the angular velocity of the
magnetic field lines, respectively. The G-S eqution is a partial differential equation for ¥(r,6),

D ; (QF — w) dQF ; 167’(’2[ dl
D;{ — D'V ———D;YD'V + ——— =
' (OZTD2 >+ a av ' RP=CRT 0 ®)

where o = Ap? /A, w? = Asin?0/p?, w = 2Mar/A, and D = o® — (Qp — w)?w?.[5] D; is the derivative
oparator associated with h;;. This equation is a quasi-linear second-order elliptic partial differential
equation. From (3), it is easy to see that, in general, this equation has two kinds of singular surface. One
is the event horizon defined by A = 0, and the other is the so-called light surface defined by D = 0.

3 Numerical scheme to solve the Grad-Shafranov equation

3.1 Iterative method

Due to the light surface singularity, it is difficult to obtain a smooth solution of the G-S equation in
the domain including the light surface. Recently, Contopoulos et al.[4] proposed an iterative method to
obtain a smooth solution. They constructed the numerical scheme to solve the pulsar equation which
corresponds to the G-S equation in the Mikowsiki back ground. Uzdensky extended this method to a
black hole case [1][2]. We will briefly summarize his method(for details, see [1][2]) in this section.

To solve the G-S equation, Uzdensky defined the diffusion equation

%\f = f(r,0)(LHS — RHS), (4)
where
B DA D DAsin 6 02 02
dl dQr )
_ _ 277 _ 270 . 7
RHS = 167 Id\If (Qp —w)w 70 DY D"W. (5)

The function f(r,0) is an artificial multiplier introduced to accelerate convergence Eq.(4). We set bound-
ary conditions and an initial condition, and specify I and Q. We solve Eq.(4) numerically as a Cauchy
problem. Since ¥ would be expected to satisfiy 0; ¥ = 0 after the sufficient time evolution, we obtain a
solution of the G-S equation by solving Eq.(4). However, we have to treat the light surface singularity
appropriatly to obtain a smooth solution in the domain including the light surface. At the light surface,
we obatin the regurality conditon as

dl ) dQ) .
~16n°1 0| = DiDD'W|is + (U — w)de—\;Di\PD’\MLS. (6)
LS

In Uzdensky’s method, Eq.(6) is treated as an equation which determine T j—é,. Then, the numerical
procedure to solve the G-S equation given by Uzdensky is as follows:
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1. We choose an initial traial magnetic flux function Wi,;i(r,8), and set boundary conditions on the
boundary of computational domain.

2. By solving Eq.(6), we obtain the initial current distribution I %.
3. By solving Eq.(4), we obtain next time step magntic flux function ¥(d¢,r,0).
4. We use ¥(8t,r,0) to determine new 4L

We repeat steps 2-4 until 0, ¥ = 0.

3.2 New Method

The method given in [1][2] does not guarantee that the values of 92¥ and 95 ¥ are continuous across the
light surface. To obtain a smooth solution of the G-S equation, we construct the numerical scheme which
guarantee the finiteness of 92¥ and 93 ¥ acrross the light surface in section 3.2.1. In section 3.2.2, we
introduce the boundary condition at the polar axis, § = 0, which is the symmetry axis. We choose the
boundary condition at the polar axis such that total magntic flux ¥ and its derivative 0y W vanish there.

3.2.1 Condition at the light surface

As a first step for our study, we assume the constant angular velocity of magnetic field lines, i.e.,.Qp =
constant. There are two light surfaces in the black-hole spacetime. On one light surface, we determine
I j—é,. Another light surfce is treated as the boundary of numerical domain.

In order to guarantee that 9?¥ and 85\11 are continuous across the light surface, we rewrite Eq.(3) as

A sin 6 OV N
o ) —=0 7
p? " + p? 9<sin9>+D ’ @
; s dl
N = (D;D)(D"¥) + 167 IE' (8)
At the light surfce, N and D are vanishing, we see that
N O.N
I N O . 9
roris D 0pD | ©)
Then, Eq.(7) at the light surfce is given by
A sin 6 Op U 0N
=02V 0 =0 10
prr s+ p? ’ (sin9> LS+ 0D |1 g 10)

3.2.2 Boundary condition at the polar axis

The coditions W(r,0) = 0 and 9p¥(r,0) = 0 imply that ¥ behaves as ¥ oc 6? near the symmetry axis.
Thus we rewrite W(r, ) as U(r,0) = sin® 0¥ (r, 0). Substituting this into Eq.(7), we obtain the factorized
G-S equation

A

02

2 - N

- 2y N
T 2T T Dein?e

A 1 A
PV + =050 + ———— 11
T + P2 (4 + P2 tan 0 ( )
To avoid the singurarity at the symmetry axis, ¥ = 0 at & = 0 should hold. This is a boundary
condition on ¥ at the symmetry axis.

The diffusion equation to solve the factorized G-S equation (11) is

A 1 3 . 2. N
OV =020 4+ R0 4+ —2 90 — S0+ — 12
t p2 r +p2 (7] +p2tan9 0 p2 +D7 ( )
A .1 .20 16721 dI
N =2=0,D0,V + —8yD [ 9p¥ + —— —_ 13
RO (9 +tan9>+sin20d\11 (13)
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At the light surface and the symmetry axis 8 = 0, we solve the following equations

o0 = %83\1/ + %85@ + m@gﬁl — p%‘i/ + g:g at the light surface
and .
aﬁ:%aﬁ@+%a§@-%@+% at 6 =0,
respectively.

4 Summary

We proposed the numerical scheme to obtain a smooth solution of the G-S equation for the case of
Qp = constant. In our scheme, treatment of the light surface and the symmetry axis are improved from
the method given in [1][2]. We have already constructed the numerical code, and we will report numerical

solutions by this code in near future.
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Abstract
Using the Kerr-Schild formalism to solve the Einstein-Maxwell equations, we consider
the superradiance in the black hole-disk system, which may work as a mechanism to
illustrate a disk licated on the equatorial plane. In this paper, we illustrate the
energy extraction from the black hole and the energy transport to the disk, using
a specific example. As a result, we obtain the disk illumination by the black hole
superradiance.

1 Introduction

It is widely believed that there exists a rotating black hole surrounded by a disk in the central region of
high energetic astrophysical objects, such as active galactic nuclei (AGNs), X-ray binary systems, and
gamma-ray bursts (GRBs). However, in this view, recent observation of extremely broad and red-shifted
Fe Ka line emission from a nearby Seyfert 1 galaxy [1] cannot be explained. To explain the observed
spectrum a very steep emissivity profile is required. This result motivate us to consider the energy
transport from the black hole to the disk in the disk-black hole systems.

It is important to consider magnetic fields in the processes of disk radiation, jet production, and so on.
As was emphasized in [2, 3], if a black hole is magnetically connected with a disk, the energy and angular
momentum fluxes can be transported between them along the magnetic field lines through a mechanism
analogous to the Blandford-Znajek effect [4]. The energy supply to an accretion disk due to spin-down
of a rapidly rotating black hole will enhance the disk radiation [5, 6]. Then this may be relevant to the
observational result.

Though it is possible to construct stationary magnetospheric models representing the magnetic con-
nection (e.g., see [7, 8, 9] for vacuum and force-free models with disk currents), the stability of such a
configuration is not confirmed. In fact, recent numerical simulation of general relativistic magnetohydro-
dynamics (GRMHD) rather claim that the magnetic connection should be disrupted to produce open field
lines threading the event horizon and extending to infinity [10, 11, 12]. Such a change of configuration
of magnetic field lines can develop turbulent disturbances in the inner magnetospheric region, and the
Poynting flux of strongly disturbed electromagnetic fields may propagate toward the equatorial plane to
illuminate the disk surface. The subsequent dissipation of the supplied electromagnetic energy inside the
disk should contribute to a disk heating. Hence, as a possible mechanism of energy transport to the disk
we would like to pay our attention to the process of disk illumination caused by persistent excitation
of electromagnetic disturbances in the black hole-disk system. However, using the superradiance, the
process of energy transport to the disk have been never studied.

2 Superradiance in the black hole-disk system

In general, the injected electromagnetic disturbances should be scattered away to infinity, or absorbed by
a black hole. Here we are not interested in the scattered outgoing part. We rather consider absorption
by a thin disk, which corresponds to the boundary condition that the energy flux is transported to the
equatorial plane both from the upper side and from the lower one. Of course, the exact analysis based on
GRMHD is required to study the time evolution of electromagnetic fields in black hole magnetospheres.

1 E-mail:kobayashi@gravity.phys.nagoya-u.ac.jp
2E-mail:onda@gravity.phys.nagoya-u.ac.jp
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Nevertheless, we focus on the analysis of the vacuum Maxwell equations under the disk boundary condition
as a first step to approach the problem of disk illumination. This is because our main purpose is to
reveal the superradiance effect in Kerr background geometry which transports the energy from a central
black hole to “a surrounding disk”. If there exists no disk, the efficiency of superradiance of vacuum
electromagnetic waves to amplify the energy radiated away to infinity well-known [13]. We expect that
such an amplification can also occur in the process of disk illumination, by which a hot spot may appear
on the disk surface near the inner edge.

3 Kerr-Schild formalism

To treat vacuum electromagnetic fields in the disk-black hole system, it is convenient to use the Kerr-
Schild formalism [14] for solving the Einstein-Maxwell equation. If this formalism is applied to obtain
electromagnetic perturbations on Kerr background, it is known that all the field components are simply
derived by two arbitrary complex functions ¢ and ¢ [15], where arbitrary complex functions ¢ and ¢ are
function of Y = e’ tan(6/2) and 7 =t + r + iacosf. Here, t and ¢ denote the time and the azimuthal
angle in Kerr-Schild coordinates.

We consider some constraints to ¢ and ¢, which will be useful to see clearly the superradiant energy
transport in the disk-black hole system. Recall that superradiant modes with frequency w have the form
f(r,0)eim9=«t " if no disk boundary exists. This motivate us to assume that the ¢ is written by the

form 4 S
’(/)(Y, 7_) = ,(/}()()7 X = e WY — e—u;.rr-i—up‘can(0/2)7 (1)

Next, to impose the similar constraint on ¢, let us consider an energy flux vector £# defined in the

Boyer-Lindquist frame as
e =T, (2)

where T}, is the stress-energy tensor of electromagnetic field. Considering energy extraction on the
horizon, we impose the constraint on ¢ written by
_ ,—twT - N\ ’l/}’X
o(Y,7)=e€ [(rg + ia)iw + 1] ==, (3)
TH
where rpy is the horizon radius. This means that the energy extraction may be more efficient at an
intermediate region between the pole and the equator, producing a hot spot on the disk surface slightly
apart from the horizon through the propagation of the Poynting flux. For example, we obtain the
electromagnetic component written by Boyer-Lindquist coordinate system as follows

Fr = Re (7“ + ijcos )2 % ZTH(:")—(i—wifcos 0) K, 9)] ’ o
Fio = Re|- (r T:ﬁﬁw * ry(r +ii:f:fs 9) SinaK(r’ 0)] , ?
Fi, = Re _QTH(iﬁijCOS 9) K, 0)} ’ v
Fpp = Re - i((f—t z’ZQC)oSsiI;)iw le(iiieifé)s(@) Ko 9)} 7 "
fro = Relg TZJ iff e . x - arHJﬁfcos DR 9)] ’ ¥
Fro = A szin 0 Re ™™ (T‘)—(Flifcos 6) K, 0)] ’ Y

where A = (r? 4+ a?)? — 2Mr, K(r,0) = (r — rpy) + iscos (1 — w/Q(r)), Qr) = a/(rryy) + a2, and then
Q1 = Q(rygp) is the angular velocity of the black hole.
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4 Disk boundary conditions

In the Kerr-Schild formalism, the electromagnetic fields are described by the only two arbitrary complex
functions. It is well-known that any complex function which is not a constant cannot be regular every
where on the complex plane. We will assume the existence of a branch cut in v placed on the complex
X-plane, which corresponds to the existence of a disk current on the equatorial plane § = 7/2. This
means that the components Fig, Fyps, and F,o (namely, the imaginary part of ¢ and the real part of
X1 x) become discontinuous at 6 = 7/2

5 Distribution of electromagnetic energy flux

Now let us discuss the energy flux distribution given by the electromagnetic fields. The energy flux
vectors are defined by Eq. (2). Note that the complex variable X in 4 is oscillatory with respect to the
Kerr-Schild time £ (as well as the azimuthal angle ¢). Then, the energy flux vector £* contains oscillatory
terms. To estimate a real efficiency of the energy transport, we must consider the time averaged quantities

such that
A w 27w Adi
= — dt. 1

=5 (10)

Furthermore, to illustrate the distribution of electromagnetic energy flux, the complex functions ¥ (X) is
assumed to be

Y(X) = o [(X 72 4 X2 - x— — x%] (1)

where 1) is a real constant.
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Figure 1: Left-hand side:Time-averaged energy transport in the disk-black hole system. The electromag-
netic disturbance is given by Eq. (11) with the wave frequency w ~ 0.76238Qyg, an the spin parameter
a is chosen as a = 0.99999M. The arrows show the poloidal energy flux with the component (£") and
VA(E?), which are normalized by t,2/M*. The dark gray and light gray arrows correspond to the flux
with (£7) > 0 and (") < 0, respectively. Right-hand side:Contour of time-averaged energy density
for the electromagnetic disturbance given by Eq. (11). The wave frequency and the spin parameter are
assumed to be w ~ 0.76238Qy1 and a = 0.99999M. The negative energy region is shown as the shaded
region. The position of the maximum energy density (£%),, is at r ~ 1.0535M shown as cross point. The

surface giving (') = (£'),,/2 (which may be explained as the boundary of the hot spot) is shown by the
short gray line.
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In Fig. 1, it is easy to see that energy extracted from the black hole, extracted energy transported to
the disk, and then energy deposited to the disk region. If the deposited electromagnetic energy density
dissipates to heat up the disk, a hot spot is expected to appear on the inner part of the disk.

6 Summary

The superradiance process is confirmed in disk-black hole system. Then, the rotational energy is extracted
from the black hole, and transported to the disk. Finally, the High energy density region is formed in
the inner part of disk near the horizon.
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Abstract

We study about the multidimensional stability of standing shock waves in advection-
dominated accretion flows into a Schwarzschild black hole by 2D general relativistic
hydrodynamical simulations and linear analysis in the equatorial plane. We demon-
strate that the accretion shock is stable against axisymmetric perturbations but be-
comes unstable to non-axisymmetric perturbations. The results of dynamical simula-
tions are good consistent with linear analysis such as stability, oscillation and growing
timescale. However, our analysis does not support previous work suggestion which
is the instability mechanism is based on Papaloizou-Pringle type. It seems due to
the wavelength of perturbation is too large for discussion about reflection point. In
non-linear phases, it is found not only short-term random fluctuations by turbulent
motions but also quasi periodic oscillations taking place on longer time scales in the
latter phase. We discuss possible implications of Black Hole SASI for Quasi Periodic
Oscillation (QPO) and central engine for Gamma Ray Bursts (GRB).

1 Introduction

Many theoretical astrophysicists have long studied about the accretion flow with a shock. Hydrodynam-
ical instabilities of shocked accretion flows may explain the time variability of the emission from many
black hole candidates, since the shock wave is a good candidate mechanism for transforming potential
gravitational energy into radiation.

The multiple critical points are essential conditions for existence standing shocks. In order to pro-
duce them, the flow need to have adequate injection parameters such as specific angular momentum
and Bernoulli constant. Under setting adequate conditions, we can generally obtain two possible shock
locations. However, as is well known for a long time, inner shock is already unstable against radial
perturbations. Recently, [1, 2] pointed out by linear analysis that the outer shock wave is also unstable
to non-radial perturbations. He argued that the advection-acoustic cycle could be responsible for the
instability. In this mechanism the velocity and entropy fluctuations initially generated at the shock are
advected inward, producing pressure perturbations, which then propagate outward and reach the shock
and generate new entropy and velocity fluctuations there, thus repeating the cycle with an increased am-
plitude. The so-called standing accretion shock instability or SASI is currently attracting much attention
as Black Hole Accretion Disk and also Supernova context.

The non-axisymmetric shock stability also has a focus of much attention. The author of [3] per-
formed 2D simulations of a shocked adiabatic flow by using pseudo-Newtonian potential and found a
non-axisymmetric instability. To investigate the mechanism of this instability, [4, 5] performed linear
analysis under isothermal flow or adiabatic flow, respectively. They concluded that the mechanism seems
to be Papaloizou-Pringle type instability which is based on the cycle of acoustic waves between the
corotation radius and the shock point.

As mentioned above, many efforts have been made for clarifying non-radial (including non-axisymmetric)
instability, but the complete understanding of these mechanisms are still uncertain. It is because the
background accretion structure, which strongly affect to clarify the instability mechanism, is completely
different and complex in each case. For example, in supernova context, since the shock behavior is
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strongly affected by neutrino luminosity, we should take into account them adequately. On the other
hand, in black hole accretion disks, gravitational fields should be treated appropriately, because it is one
of the main factor to determine flow structure such as sonic points and shock points. However complete
general relativistic hydrodyanamical flow is much complex than Newton gravity, thus, the shock stability
has been investigated only under Newtonian or approximate general relativistic (GR) treatment Thus
far, there is no self-consistent work for studying non-radial shock stability under fully GR treatment.

In the present research, we performed the first time analyzing non-axisymmetric shock stability in
the advection-dominated accretion flows into a Schwarzschild black hole under fully general relativistic
hydrodynamical treatment. In so doing, we consider only the equatorial plane, assuming that 8 component
of four-velocity (u’) and vertical differentiation are negligible. We investigate the stability of shock by
using both linear approach and non-linear dynamical simulations. We show that the shock is indeed
unstable against non-axisymmetric perturbations and forms a spiral arm structure as the instability
grows. We analyze each phases and discuss the instability mechanisms by comparing with previous
works. Besides, we also discuss possible implications of our findings for GRBs: the fluctuations in the
jet that will produce the internal shocks and black hole QPO which can be also explained by the shock
quasi-periodic oscillation and rotation.

2 Basic Equations and Initial Conditions

The basic equations are relativistic continuity, energy momentum tensor conservations.

(POUJH);;L = 0 (1)
(T") = 0 (2)

in Schwarzschild geometry. As all of our calculations, we employed a I'-law EOS. The procedure for
constructing initial data which is steady axisymmetric accretion flow with standing shock is as follows.

First we set adequate injection parameters for multiple critical points, then we solve an ordinally difer-
ential equation numerically from each critical points. After making two transonic solutions, we search
locations for satisfying relativistic Rankine-Hugonit relations. As mentioned already, the two possible lo-
cations are generally obtained but we only consider the outer one because it is stable against axisymmetric
perturbations, in contrast inner one is unstable. For convincing this fact, we performed axisymmetric
shock stability analysis by linear perturbed method and dynamical simulations. We observed that outer
shock is truly axisymmetrically stable which are obtained by both methods. Moreover, it is interested
that perturbation is added against inner shock, then this shock goes down to black hole or approach to
outer shock location and eventually stop there. According to this fact, we conclude that the outer shock
is strong axisymmetric stable, indeed.

3 Dynamical Simulations and Basic Behavior

The dynamical simulations for the growth of the initial perturbations were computed with a multi-
dimensional general relativistic hydrodynamics code, which is based on a recent modern technique, the
so-called high-resolution central scheme. We use kerr-schild coordinates to evolve the system. The
computational domain is a part of the equatorial plane with 1.5M, <r < 200M, and computing time is
about t = 6 x 10*M, where M, indicates black hole mass. We employed 600(r) x 60(¢) grid points in
every cases which radial grids are chosen as non-uniform grids. The most inner resolution is Ar = 0.1M,
and grid spacing increases geometrically toward outer boundary by 0.34% per zone.

The procedure of adding initial perturbations are determined by linear analysis results in order to
extract purely single mode and node in linear evolution phase. Tnanks to perturbed methods, we can
figure out that not only distinguish each mode is stable or unstable but also radial and azimuthal distri-
bution of perturbed quantities. In this paper, we only explain about one Model whose Bernoulli constant
and specific angular momentum are set as 1.004 and 3.43M,, respectively. According to linear analysis,
this shock is unstable against m = 1 mode perturbations. We choose the most unstable eigenfrequency
case in m = 1 mode and determine the initial perturbed quantities and the initial shock displacement is
set as 1%.
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Figure 1: Velocity evolution for Standard Model. Color counter means the magnitude of radial velocity.
Side of red is supersonic and side of blue indicates subsonic. The arrow represents the velocity magnitud
and directions. The region of center(blue) indicates the black hole. As shown this figure, due to the
shock existence, the velocity is decelerate from supersonic to subsonic. However, because the azimuthal
velocity doesn’t change so much between pre and post shock region, the arrow direction become along
the azimuthal direction at post shock location.

Figure 1 shows that the example of system evolutions about this Model. The time and radius which
are shown in cgs units correspond to M, = 3M,, case. At first, the shock starts to fluctuate and rotation
pattern can be found. This pattern rotates to same directions of back ground matter rotations. Besides,
the shock not only rotates but also starts to increase axisymmetrically. After several revolutions, the
spiral arm structure develops and the more complex shocked features are constructed. In these non-linear
regime, some shocks generate and are interacted each other by collision. The flow becomes new axially
asymmetric configure with dominat m = 1 mode in non-linear phase. In other cases, the basic evolutional
path is similar but the growth rate and oscillation period and growth timescale are quantatively large
difference. The discussion of these results are done in following paper [6].

4 Comparison with linear analysis

For clarifying instability mechanisms and confirmation of dynamical simulations, we implement the linear
perturbed analysis. When we solve the linearlized equations about 1 and 2, we have to set boundary
conditions which locate at shock surface and inner sonic point. At shock surface, the boundary conditions
are set as pre-shock region doesn’t fluctuate. On the other hand, the inner sonic point, we impose the
regularity condition at this point.

Thanks to solving linearlized equations under these boundary conditions, we find out that the unstable
eigenfrequencies in each mode. We obtain that about Standard Model, the oscillation period is about
3.7 ms, the growth period is about 20 ms in the most unstable eigenfrequency of m = 1 mode. As
shown in Figure 2, the dynamical simulation shows good agreement with oscillation and growth time
scale of m = 1 mode until 10 ms. After this time, the non-linear coupling can not be ignored (please
see Figure 3 which shows that m = 0 evolution), thus it starts to line off gradually. According to
this result, we confine that our numerical simulation is correct and the shock is really unstable against
non-axisymmetric perturbations.

Besides, linear analysis gives us information that counter-rotating modes m < 0 are stable. Actually
our dynamical simulations demonstrate that the shock pattern rotates same directions of background
matter rotation. It means that the rotation stabilize the counter rotating mode.

5 Summary and Conclusions

The main results of the present work are as follows

1. As mentioned already, the standing shock is generally unstable against non-axisymmetric perturba-
tions, and a spiral arm structure can be constructed. This is typically one-armed, which indicates
that the dominant mode in the non-linear phase is m=1.

2. In the linear phase, the dynamical simulations are consistent with the linear analysis in such features
as stability, oscillation timescale and growth timescale. The direction of deformed shock pattern is
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Figure 2: Comparison of linear analysis and dynamical t[ms]

simulation results in linear growing phase. The red line
indicates the expected evolution of growing m = 1 mode
by linear analysis, and green dots indicate that calculation
from GRHD simulation results.

Figure 3: The evolution of m = 0 mode
until 30 ms in M1 case.

also consistent woth the linear analysis.

3. The growth of axisymmetric mode is also induced by the non-axisymmetric instability. It seems to
be quasi-periodic in longer timescale. Other higher modes also have each specific frequency period.
In the non-linear phases, due to the axisymmetric growth, these oscillation periods become slightly
longer than expected in the linear analysis.

4. Even though strong perturbations are added initially, the shock system isn’t disrupted. Thus, if
the outer boundary continues to satisfy the shock producing conditions, the shock would remain in
a quasi-steady state.

5. The effects of higher modes to a axisymmetric mode become weaker even though the higher mode
growth rate is larger than the lower modes.

6. The reflection point can not be identified unambiguously in the present work. It is because the
wavelength of perturbations is much longer than the scale height. Thus, the Papaloizou-Pringle
type Mechanism which is cycle between corotation point and shock doesn’t always happen. Actually
the timescale of acoustic cycle are different from their growth timescale.

7. The Black Hole SASI can contribute to QPO. Moreover, it may have an implication for GRB since
it is a nature source of fluctuations for internal shocks.

We conducted more systematic investigations, such as initial mode or backgournd dependency.etc. For
more details, please see [6]
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Abstract
We show a global existence theorem for the vacuum Einstein equations with cylin-
drical symmetry. Also Kasner-like solutions near initial singularity are constructed.
These results support the validity of the strong cosmic censorship.

One of the most important problems in general relativity is the understanding of the global behavior
of solutions to the Einstein equations. It is known that the Einstein equations lead to the formation of
singularities. Typical examples are given by the Friedman-Robertson-Walker (spatially homogeneous and
isotropic) spacetime, which evolves from the "big bang” singularity, and the Schwarzschild (stationary
and spherically symmetric) spacetime, which has the central singularity. Then, the question of whether
singularities generally occur in physical spacetimes or not, has been an important question for year.
Penrose and Hawking have given some answers by their singularity theorems [4]. Rephrased in the words
of the initial value problem, the question is that of the timelike and null geodesic completeness of the
maximal future Cauchy development. The singularity theorems give us negative answers, i.e. generic
spacetimes are timelike or null geodesically incomplete.

If the singularities can be seen, this means violation of predictability, because we cannot put appro-
priate boundary conditions on the singularities. Since predictability is a fundamental requirement of
classical physics, it seems reasonable to require it to be valid whole spacetime. This implies that physical
spacetimes should be globally hyperbolic in Leray’s sense. Motivated by these considerations, Penrose
proposed the strong cosmic censorship conjecture:

Conjecture 1 (Klainerman [6]) Generic Cauchy data sets have mazimal Cauchy developments which
are locally inextendible as Lorentzian manifolds.

This is one of the most important and unsolved questions in classical general relativity. We need two
steps to prove the validity of the conjecture: (1) show global existence theorems for solutions to the
Einstein(-matter) equations in an appropriate time coordinate, (2) analyze asymptotic behavior of the
solutions and show inextendiblity of spacetime manifold. Thus, an important aspect of this strong cosmic
censorship conjecture is relation to the global Cauchy problem for the Einstein(-matter) equations.

Unfortunately, the problem of proving global existence theorems for the full Einstein-matter equations
is beyond the reach of the mathematics presently available. To make some progress, it is necessary to
concentrate on simplified models. The most common simplifications are to look at solutions with various
types of symmetry and solutions for small data.

Recently, new spacetimes which describe cylindrical gravitational waves in expanding universe are
proposed [3]. The metric of the (generalized) spacetimes is given by

g=—2=0ae? + 20=Uar? 4 2V (dg + Ady)* + e 2V R%dy?, (1)

where 9/0z and 9/0y are Killing vector fields generating the U(1) x R group action, and n, U, A and R
are functions of ¢ € (0, 00) and r € (0, 00). These new spacetimes would model localized inhomogeneities
in Big Bang cosmology. Now we put a gauge condition, R = rt [3]. The system of the evolution part of
the Einstein equations is equivalent with the following wave maps u : (M?*! G) — (N2 h):

Sy = / dtdrv/—GGPh s gdautd5u”, (2)
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where

64U

4722
One of our main results is to show existence of global solutions for the above system and by using this
we can prove the following theorem:

G = —dt? + dr? + >r2dy?,  h=dU?+ dA2.

Theorem 1 Let (M,g) be the mazimal Cauchy development of C3° initial data for the cylindrically
symmetric system. Then, M can be covered by Cauchy surfaces of constant time t with each value in
the range (0,00). Moreover, this mazimal Cauchy development is timelike future geodesically complete,
hence inextendible into the future direction.

The method of the proof is the standard energy estimate (so-called light cone estimate). Theorems of
Christodoulou-Tahvildar-Zadeh are also used [1, 2].

Another result is to construct Kasner-like (asymptotically velocity-terms dominated (AVTD)) so-
lutions as t — 0. To do this we will apply the Fuchsian algorithm developed by Kichenassamy and
Rendall [5] to our system. This algorithm consists of the following st