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PREFACE

The seventeenth workshop on General Relativity and Gravitation in Japan was held at
Noyori Conference Hall, Nagoya University, located in the Higashiyama Campus from 3
December to 7 December 2007. The main purpose of this workshop was to review the latest
progress in the field of general relativity, gravitation and general relativistic astrophysics as
well as to promote interaction between researchers working in these fields.

The workshop was organized as an international conference and composed of 12 invited
talks 89 contributed short talks (50 oral presentations and 39 poster presentations). Among
them, 19 were presented by the researchers from overseas. All the talks were given in English.
The workshop was attended by about 170 researchers. We appreciate very much all the
participants for their contribution to the workshop.

We would like to thank Ms. K. Yokota and Ms. N. Takahashi, the secretaries at the Kyoto
University, for their devoted transaction for various official works. We are also grateful to
the graduate students of the gravitational theory group in the Department of Physics, Nagoya
University for their cooperation in management of the workshop. The workshop was fi-
nancially supported in part by Grants-in-Aid for Sscientific Research(B) No.17340075 and
Grant-in-Aid for Creative Scientific Research No.19GS0219.
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Can F (R)-gravity be a viable model: the universal unification
scenario for inflation, dark energy and dark matter

Shin’ichi Nojiri1 and Sergei D. Odintsov2

1Department of Physics, Nagoya University, Nagoya 464–8602, Japan
2Instituciò Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Ciencies de l’Espai

(IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra
(Barcelona), Spain

Abstract
We review on the viability of F (R)-gravity. We show that recent cosmic acceleration,
radiation/matter-dominated epoch and inflation could be realized in the framework
of F (R)-gravity in the unified way. For some classes of F (R)-gravity, the correction
to the Newton law is extremely small and there is no so-called matter instability (the
very heavy positive mass for additional scalar degree of freedom is generated). The
reconstruction program in modified gravity is also reviewed and it is demonstrated
that any time-evolution of the universe expansion could be realized in F (R)-gravity.
Special attention is paid to modified gravity which unifies inflation with cosmic ac-
celeration and passes local tests. It turns out that such a theory may describe also
dark matter.

1 Introduction

Recent astrophysical observations indicate that the accelerating expansion of the universe has started
about five billion years ago and the present universe is flat. This implies the existence of dark energy,
that is, unknown component in the universe.

Usually the evolution of the universe can be described by the FRW equation:

3
κ2

H2 = ρ . (1)

Here the spatial part of the universe is assumed to be flat. We denote the Hubble rate by H, which is
defined in terms of the scale factor a by

H ≡ ȧ

a
. (2)

In (1), ρ expresses the energy density of the usual matter, dark matter, and dark energy. The dark energy
could be cosmological constant and/or a matter with ‘equation of state (EoS)’ parameter w, which is less
than −1/3 and is defined by

w ≡ p

ρ
< −1/3 . (3)

Instead of including unknown exotic matter or energy, one may consider the modification of gravity,
which corresponds to the change of the l.h.s. in (1).

An example of such modified gravity pretending to describe dark energy could be the scalar-Einstein-
Gauss-Bonnet gravity [1], whose action is given by

S =
∫

d4x
√
−g

{
1

2κ2
R − 1

2
∂µφ∂µφ − V (φ) + f(φ)G

}
. (4)

Here G is Gauss-Bonnet invariant:

G ≡ R2 − 4RµνRµν + RµνρσRµνρσ . (5)
1E-mail:nojiri@phys.nagoya-u.ac.jp
2E-mail:odintsov@ieec.uab.es, also at Lab. Fundam. Study, Tomsk State Pedagogical University, Tomsk
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Another example is so-called F (R)-gravity (for a review, see [2]). In F (R)-gravity models, the scalar
curvature R in the Einstein-Hilbert action

SEH =
∫

d4x
√
−gR , (6)

is replaced by a proper function of the scalar curvature:

SF (R) =
∫

d4x
√
−gF (R) . (7)

Recently, an interesting realistic theory has been proposed in [3], where F (R) is given by

F (R) =
1

2κ2
(R + fHS(R)) , fHS(R) = −

m2c1

(
R/m2

)n

c2 (R/m2)n + 1
. (8)

In this model, R is large even in the present universe, and fHS(R) could be expanded by the inverse
power series of R:

fHS(R) ∼ −m2c1

c2
+

m2c1

c2
2

(
R

m2

)−n

+ · · · , (9)

Then there appears an effective cosmological constant Λeff as Λeff = m2c1/c2, which generates the
accelerating expansion in the present universe

In the HS-model (8), there occurs a flat spacetime solution, where R = 0, since the following condition
is satisfied:

lim
R→0

fHS(R) = 0 . (10)

An interesting point in the HS model is that several cosmological conditions could be satisfied.
In the next section, we review on the general properties of F (R)-gravity. After some versions of

F (R)-gravity were proposed as a model of the dark energy, there appeared several criticisms/viability
criteria, which we review in Section 3. It is shown how the critique of modified gravity may be removed
for realistic models. In Section 4, we propose models [4] and [5], which unify the early-time inflation
and the recent cosmic acceleration and pass several cosmological constraints. Reconstruction program
for F (R)-gravity is reviewed in Section 5. The partial reconstruction scenario is proposed. Section six
is devoted to the description of dark matter in terms of viable modified gravity where composite scalar
particle from F (R) gravity plays the role of dark particle. Some summary and outlook is given in the
last section.

2 General properties of F (R)-gravity

In this section, the general properties of the F (R)-gravity are reviewed. For general F (R)-gravity, one can
define an effective equation of state (EoS) parameter. The FRW equations in Einstein gravity coupled
with perfect fluid are:

ρ =
3
κ2

H2 , p = − 1
κ2

(
3H2 + 2Ḣ

)
. (11)

For modified gravities, one may define an effective EoS parameter as follows:

weff = −1 − 2Ḣ

3H2
. (12)

The equation of motion for modified gravity is given by

1
2
gµνF (R) − RµνF ′(R) − gµν¤F ′(R) + ∇µ∇νF ′(R) = −κ2

2
T(m)µν . (13)

By assuming spatially flat FRW universe,

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dxi

)2
, (14)

2
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the FRW-like equation follows:

0 = −F (R)
2

+ 3
(
H2 + Ḣ

)
F ′(R) − 18

(
4H2Ḣ + HḦ

)
F ′′(R) + κ2ρ(m) (15)

There may be several (often exact) solutions of (15). Without any matter, assuming that the Ricci
tensor could be covariantly constant, that is, Rµν ∝ gµν , Eq.(13) reduces to the algebraic equation:

0 = F (R) − 2RF (R) . (16)

If Eq.(16) has a solution, the Schwarzschild (or Kerr) - (anti-)de Sitter space is an exact vacuum solution
(see[6] and refs. therein).

When F (R) behaves as F (R) ∝ Rm and there is no matter, there appears the following solution:

H ∼
− (m−1)(2m−1)

m−2

t
, (17)

which gives the following effective EoS parameter:

weff = − 6m2 − 7m − 1
3(m − 1)(2m − 1)

. (18)

When F (R) ∝ Rm again but if the matter with a constant EoS parameter w is included, one may get
the following solution:

H ∼
2m

3(w+1)

t
, (19)

and the effective EoS parameter is given by

weff = −1 +
w + 1

m
. (20)

This shows that modified gravity may describe early/late-time universe acceleration.

3 Criticism of F (R)-gravity

Just after the F (R)-models were proposed as models of the dark energy, there appeared several works
[7, 8] (and more recently in [9, 10]) criticizing such theories.

First of all, we comment on the claim in [7]. Note that one can rewrite F (R)-gravity in the scalar-
tensor form. By introducing the auxiliary field A, we rewrite the action (7) of the F (R)-gravity in the
following form:

S =
1
κ2

∫
d4x

√
−g {F ′(A) (R − A) + F (A)} . (21)

By the variation over A, one obtains A = R. Substituting A = R into the action (21), one can reproduce
the action in (7). Furthermore, we rescale the metric in the following way (conformal transformation):

gµν → eσgµν , σ = − lnF ′(A) . (22)

Hence, the Einstein frame action is obtained:

SE =
1
κ2

∫
d4x

√
−g

(
R − 3

2
gρσ∂ρσ∂σσ − V (σ)

)
,

V (σ) = eσg
(
e−σ

)
− e2σf

(
g

(
e−σ

))
=

A

F ′(A)
− F (A)

F ′(A)2
(23)

Here g (e−σ) is given by solving the equation σ = − ln (1 + f ′(A)) = ln F ′(A) as A = g (e−σ). Due to the
scale transformation (22), there appears a coupling of the scalar field σ with usual matter. The mass of
σ is given by

m2
σ ≡ 1

2
d2V (σ)

dσ2
=

1
2

{
A

F ′(A)
− 4F (A)

(F ′(A))2
+

1
F ′′(A)

}
. (24)

3
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Unless mσ is very large, there appears the large correction to the Newton law. Naively, one expects the
order of the mass mσ could be that of the Hubble rate, that is, mσ ∼ H ∼ 10−33 eV, which is very light
and the correction could be very large, which is the claim in [7].

We should note, however, that the mass mσ depends on the detailed form of F (R) in general [11].
Moreover, the mass mσ depends on the curvature. The curvature on the earth Rearth is much larger than
the average curvature Rsolar in the solar system and Rsolar is also much larger than the average curvature
in the unverse, whose order is given by the square of the Hubble rate H2, that is, Rearth À Rsolar À H2.
Then if the mass becomes large when the curvature is large, the correction to the Newton law could be
small. Such a mechanism is called the Chameleon mechanism and proposed for the scalar-tensor theory
in [12]. In fact, the HS model [3] has this property and the correction to the Newton law can be very
small on the earth or in the solar system. In the HS model, the mass mσ is given by (see also [13])

m2
σ ∼ m2c2

2

2n(n + 1)c1

(
R

m2

)n+2

. (25)

Here the order of the mass-dimensional parameter m2 could be m2 ∼ 10−64 eV2. Then in solar system,
where R ∼ 10−61 eV2, the mass is given by m2

σ ∼ 10−58+3n eV2 and in the air on the earth, where
R ∼ 10−50 eV2, m2

σ ∼ 10−36+14n eV2. The order of the radius of the earth is 107 m ∼
(
10−14 eV

)−1.
Therefore the scalar field σ could be heavy enough if n À 1 and the correction to the Newton law is not
observed being extremely small. On the other hand, in the air on the earth, if we choose n = 10, for
example, one gets the mass is extremely large:

mσ ∼ 1043 GeV ∼ 1029 × MPlanck . (26)

Here MPlanck is the Planck mass. Hence, the Newton law correction should be extremely small.
Let us discuss the matter instability proposed in [8], which may appear when the energy density or

the curvature is large compared with the average one in the universe, as is the case inside of the planet.
Multiplying gµν with Eq.(13), one obtains

¤R +
F (3)(R)
F (2)(R)

∇ρR∇ρR +
F ′(R)R
3F (2)(R)

− 2F (R)
3F (2)(R)

=
κ2

6F (2)(R)
T . (27)

Here T is the trace of the matter energy-momentum tensor: T ≡ T ρ
(m)ρ. We also denote dnF (R)/dRn

by F (n)(R). Let us now consider the perturbation from the solution of the Einstein gravity. We denote
the scalar curvature solution given by the matter density in the Einstein gravity by Rb ∼ (κ2/2)ρ > 0
and separate the scalar curvature R into the sum of Rb and the perturbed part Rp as R = Rb + Rp

(|Rp| ¿ |Rb|). Then Eq.(27) leads to the perturbed equation:

0 = ¤Rb +
F (3)(Rb)
F (2)(Rb)

∇ρRb∇ρRb +
F ′(Rb)Rb

3F (2)(Rb)

− 2F (Rb)
3F (2)(Rb)

− Rb

3F (2)(Rb)
+ ¤Rp + 2

F (3)(Rb)
F (2)(Rb)

∇ρRb∇ρRp + U(Rb)Rp . (28)

Here U(Rb) is given by

U(Rb) ≡
(

F (4)(Rb)
F (2)(Rb)

− F (3)(Rb)2

F (2)(Rb)2

)
∇ρRb∇ρRb +

Rb

3

−F (1)(Rb)F (3)(Rb)Rb

3F (2)(Rb)2
− F (1)(Rb)

3F (2)(Rb)
+

2F (Rb)F (3)(Rb)
3F (2)(Rb)2

− F (3)(Rb)Rb

3F (2)(Rb)2
(29)

It is convinient to consider the case that Rb and Rp are uniform, that is, they do not depend on the
spatial coordinate. Hence, the d’Alembertian can be replaced with the second derivative with respect to
the time coordinate: ¤Rp → −∂2

t Rp and Eq.(29) has the following structure:

0 = −∂2
t Rp + U(Rb)Rp + const. . (30)

4
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Then if U(Rb) > 0, Rp becomes exponentially large with time t: Rp ∼ e
√

U(Rb)t and the system becomes
unstable. In the 1/R-model [14], since the order of mass parameter mµ is

µ−1 ∼ 1018sec ∼
(
10−33eV

)−1
, (31)

one finds

U(Rb) = −Rb +
R3

b

6µ4
∼ R3

0

µ4
∼

(
10−26sec

)−2
(

ρm

g cm−3

)3

,

Rb ∼
(
103sec

)−2
(

ρm

g cm−3

)
(32)

Hence, the model is unstable and it would decay in 10−26 sec (for planet size). On the other hand, in
1/R + R2-model [11], we find

U(R0) ∼
R0

3
> 0 . (33)

Then the system could be unstable again but the decay time is ∼ 1, 000 sec, that is, macroscopic. In HS
model [3], U(Rb) is negative[13]:

U(R0) ∼ − (n + 2)m2c2
2

c1n(n + 1)
< 0 . (34)

Therefore, there is no matter instability[13].
Let us discuss the critical claim against modified gravity in [9, 10]. As shown in (16), as an exact

solution, there appears de Sitter-Schwarzschild spacetime in F (R)-gravity. The claim in [9, 10] is that the
solution does not match onto the stellar interior solution. Since it is difficult to construct explicit solution
describing the stellar configuration even in the Einstein gravity, we now proceed in the following way:
First, we separate F (R) into the sum of the Einstein-Hilbert part and other part as F (R) = R + f(R).
Then Eq.(13) has the following form:

1
2
gµνR − Rµν − 1

2
gµνΛ +

κ2

2
T(m)µν

= −1
2
gµν (f(R) + Λ) + Rµνf ′(R) + gµν¤f ′(R) −∇µ∇νf ′(R) . (35)

Here −Λ is the value of f(R) in the present universe, that is, Λ is the effective cosmological constant:
Λ = −f(R0). We now treat the r.h.s. in (35) as a perturbation. Then the last two derivative terms in
(35) could be dangerous since there could be jump in the value of the scalar curvature R on the surface of
stellar configuration. Of course, the density on the surface could change in a finite width ∆ as in Figure
1 and the derivatives should be finite and the magnitude could be given by

∂µ ∼ 1
∆

. (36)

One now assumes the order of the derivative could be the order of the Compton length of proton:

∂µ ∼ mp ∼ 1GeV ∼ 109 eV (37)

Here mp is the mass of proton. It is also assumed

R ∼ Re ∼ 10−47 eV2 , (38)

that is, the order of the scalar curvature R is given by the order of it inside the earth.
In case of the 1/R model [14], one gets

¤f ′(R) ∼ ∇µ∇νf ′(R) ∼
m2

pµ
4

R2
∼ 10−20 eV2 À Re . (39)

Then the perturbative part could be much larger than unperturbative part in (35), say, R ∼ Re ∼
10−47 eV2. Therefore, the perturbative expansion could be inconsistent.
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Figure 1: Typical behavior of R and ρ near the surface of the stellar configuration.

In case of the model [3], however, we find

¤f ′(R) ∼ ∇µ∇νf ′(R) ∼
m2

pΛ
m2

(
R

m2

)−n−1

∼ 10−3−17n eV2 . (40)

Then if n > 2, we find ¤f ′(R), ∇µ∇νf ′(R) ¿ Re and therefore the perturbative expansion could
be consistent. This indicates that such modified gravity model may pass the above test. Thus, it is
demonstrated that some versions of modified gravity may easily pass above tests.

4 Unifying inflation and late-time acceleration

In this section, we consider an extension of the HS model [3] to unify the early-time inflation and late-time
acceleration, following proposals [4, 5].

In order to construct such models, we impose the following conditions:

• Condition that inflation occurs:
lim

R→∞
f(R) = −Λi . (41)

Here Λi is an effective early-time cosmological constant.

Instead of (41) one may impose the following condition

lim
R→∞

f(R) = αRm . (42)

Here m and α are positive constants. Then as shown in (19), the scale factor a(t) evolves as

a(t) ∝ th0 , h0 ≡ 2m

3(w + 1)
, (43)

and weff = −1 + 2/3h0. Here w is the matter EoS parameter, which could correspond to dust or
radiation. We assume m À 1 so that Ḣ/H2 À 1.

• The condition that there is flat spacetime solution is given as

f(0) = 0 (44)

• The condition that late-time acceleration occurs should be

f(R0) = −2R̃0 , f ′(R0) ∼ 0 . (45)

Here R0 is the current curvature of the universe and we assume R0 > R̃0. Due to the condition
(45), f(R) becomes almost constant in the present universe and plays the role of the effective small
cosmological constant: Λl ∼ −f(R0) = 2R̃0.
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Figure 2: The typical behavior of f(R) which satisfies the conditions (41), (44), and (45).
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Figure 3: The typical behavior of f(R) which satisfies the conditions (42), (44), and (45).
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Figure 4: The potential in the inflationary epoch.

The typical behavior of f(R) which satisfies the conditions (41), (44), and (45) is given in Figure 2
and the behavior of f(R) satisfying (41), (42), and (45) is given in Figure 1.

Some examples may be of interest. An example which satisfies the conditions (41), (44), and (45) is
given by the following action[4]:

f(R) = − (R − R0)
2n+1 + R2n+1

0

f0 + f1

{
(R − R0)

2n+1 + R2n+1
0

} . (46)

Here n is a positive integer. The conditions (42) and (45) require

R2n+1
0

f0 + f1R
2n+1
0

= 2R̃0 ,
1
f1

= Λi . (47)

One can now investigate how the exit from the inflation could be realized in the model (46). It is easier
to consider this problem in the scalar-tensor form (Einstein frame) in (23). In the inflationary epoch,
when the curvature R = A is large, f(R) has the following form:

f(R) ∼ − 1
f1

+
f0

f2
1 R2n+1

. (48)

Hence, one gets

σ ∼ (2n + 1)f0

f2
1 A2n+2

, (49)

and

V (σ) ∼ 1
f1

− 2(n + 1)f0

f2
1

(
f2
1 σ

(2n + 1)f0

) 2n+1
2n+2

. (50)

Note that the scalar field σ is dimensionless now. Let us check the condition for the slow roll, |V ′/V | ¿ 1.
Since

V ′(σ)
V (σ)

∼ −f1

(
f2
1 σ

(2n + 1)f0

)− 1
2n+2

, (51)

if we start with σ ∼ 1, one finds
V ′(σ)
V (σ)

∼ −
(

R0

Λi

) 2n
2n+1

, (52)

which is very small and the slow roll condition is satisfied.
Thus, the value of the scalar field σ increases very slowly as in Figure 4 and the scalar curvature R

becomes smaller. When σ becomes large enough and R becomes small enough, the inflation could stop.
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Another possibility to achieve the exit from the inflation is to add small non-local term to gravitational
action.

We now consider another example, where f(R) satisfies the conditions (42), (44), and (45) [5]:

f(R) =
αR2n − βRn

1 + γRn
. (53)

Here α, β, and γ are positive constants and n is a positive integer. When the curvature is large (R → ∞),
f(R) behaves as

f(R) → α

γ
Rn . (54)

To achieve the exit from the inflation, more terms could be added in the action. Since the derivative of
f(R) is given by

f ′(R) =
nRn−1

(
αγR2n − 2αRn − β

)
(1 + γRn)2

, (55)

we find the curvature R0 in the present universe, which satisfies the condition f ′(R0) = 0, is given by

R0 =

{
1
γ

(
1 +

√
1 +

βγ

α

)}1/n

, (56)

and

f(R0) ∼ −2R̃0 =
α

γ2

(
1 +

(1 − βγ/α)
√

1 + βγ/α

2 +
√

1 + βγ/α

)
. (57)

Let us check if we can choose parameters to reproduce realistic cosmological evolution. As a working
hypothesis, we assume βγ/α À 1, then

R0 ∼ (β/αγ)1/2n
, f(R0) = −2R̃0 ∼ −β/γ (58)

We also assume f(RI) ∼ (α/γ)Rn
I ∼ RI . Here RI is the curvature in the inflationary epoch. As a result,

one obtains
α ∼ 2R̃0R

−2n
0 , β ∼ 4R̃2

0R
−2n
0 Rn−1

I , γ ∼ 2R̃0R
−2n
0 Rn−1

I . (59)

Hence, we can confirm the assumption βγ/α À 1 if n > 1 as

βγ

α
∼ 4R̃2

0R
−2n
0 R2n−2

I ∼ 10228(n−1) À 1 . (60)

Thus, we presented modified gravity models which unify early-time inflation and late-time acceleration.
One should stress that the above models (46) and (53) satisfy the cosmological constraints/local tests in
the same way as in the HS model [3].

5 Reconstruction of F (R)-gravity

In this section, it is shown how we can construct F (R) model realizing any given cosmology (including
inflation, matter-dominated epoch, etc) using technique of ref.[15]. The general F (R)-gravity action with
general matter is given as:

S =
∫

d4x
√
−g {F (R) + Lmatter} . (61)

The action (61) can be rewritten by using proper functions P (φ) and Q(φ) of a scalar field φ:

S =
∫

d4x
√
−g {P (φ)R + Q(φ) + Lmatter} . (62)

Since the scalar field φ has no kinetic term, one may regard φ as an auxiliary scalar field. By the variation
over φ, we obtain

0 = P ′(φ)R + Q′(φ) , (63)
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which could be solved with respect to φ as φ = φ(R). By substituting φ = φ(R) into the action (62), we
obtain the action of F (R)-gravity where

F (R) = P (φ(R))R + Q(φ(R)) . (64)

By the variation of the action (62) with respect to gµν , the equation of motion follows:

0 = −1
2
gµν {P (φ)R + Q(φ)} − RµνP (φ) + ∇µ∇νP (φ) − gµν∇2P (φ) +

1
2
Tµν (65)

In FRW universe (14), Eq.(65) has the following form:

0 = −6H2P (φ) − Q(φ) − 6H
dP (φ(t))

dt
+ ρ

0 =
(
4Ḣ + 6H2

)
P (φ) + Q(φ) + 2

d2P (φ(t))
dt

+ 4H
dP (φ(t))

dt
+ p (66)

By combining the two equations in (66) and deleting Q(φ), we obtain

0 = 2
d2P (φ(t))

dt2
− 2H

dP (φ(t))
dt

+ 4ḢP (φ) + p + ρ . (67)

Since one can redefine φ properly as φ = φ(ϕ), we may choose φ to be a time coordinate: φ = t. Then
assuming ρ, p could be given by the corresponding sum of matter with a constant EoS parameters wi

and writing the scale factor a(t) as a = a0eg(t) (a0 : constant), we obtain the second rank differential
equation:

0 = 2
d2P (φ)

dφ2
− 2g′(φ)

dP (φ))
dφ

+ 4g′′(φ)P (φ) +
∑

i

(1 + wi) ρi0a
−3(1+wi)
0 e−3(1+wi)g(φ) . (68)

If one can solve Eq.(68), with respect to P (φ), one can also find the form of Q(φ) by using (66) as

Q(φ) = −6 (g′(φ))2 P (φ) − 6g′(φ)
dP (φ)

dφ
+

∑
i

ρi0a
−3(1+wi)
0 e−3(1+wi)g(φ) . (69)

Thus, it follows that any given cosmology can be realized by some specific F (R)-gravity.
We now consider the cases that (68) can be solved exactly. A first example is given by

g′(φ) = g0 +
g1

φ
. (70)

For simplicity, we neglect the contribution from matter. Then Eq.(68) gives

0 =
d2P

dφ2
−

(
g0 +

g1

φ

)
dP

dφ
− 2g1

φ2
P . (71)

The solution of (71) is given in terms of the Kummer functions or confluent hypergeometric functions:

P = zαFK(α, γ; z) , z1−γFK(α − γ + 1, 2 − γ; z) (72)

Here

z ≡ g0φ , α ≡ 1 + g1 ±
√

g2
1 + 10g1 + 1
4

,

γ ≡ 1 ±
√

g2
1 + 10g1 + 1

2
, FK(α, γ; z) =

∞∑
n=0

α(α + 1) · · · (α + n − 1)
γ(γ + 1) · · · (γ + n − 1)

zn

n!
. (73)

Eq.(70) gives the following Hubble rate:
H = g0 +

g1

t
. (74)
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Then when t is small, H behaves as
H ∼ g1

t
, (75)

which corresponds to the universe with matter whose EoS parameter is given by

w = −1 +
2

3g1
. (76)

On the other hand, when t is large, we find

H → g0 , (77)

that is, the universe is asymptotically deSitter space.
We now show how we could reconstruct a model unifying the early-time inflation with late-time

acceleration. In principle, one may consider g(φ) satisfying the following conditions:

• The condition for the inflation (t = φ → 0):

g′′(0) = 0 , (78)

which shows that H(0) = g′(0) is almost constant, which corresponds to the asymptotically deSitter
space.

• The condition fot the late-time acceleration (at t = φ ∼ t0):

g′′(t0) = 0 , (79)

which corresponds to the asymptotically deSitter space again.

An example could be

g′(φ) = g0 + g1

(
t20 − φ2

)n − t2n
0

(t20 − φ2)n + c
. (80)

Here g0, g1, and c are positive constants and n is positive integer greater than 1. Note that g′(φ) is a
monotonically decreasing function of φ if 0 < φ < t0 We also assume

0 < g0 −
g1t

2n
0

c
¿ g0 . (81)

One should note that g′(0) = g0 corresponds to the large Hubble rate in the inflationary epoch and
g′(t0) = g0 − g1t2n

0
c to the small Hubble rate in the present universe. It is very difficult to solve (68) with

(80), so we expand g′(φ) for small φ. For simplicity, we consider the case that n = 2 and no matter
presents. Then

g(φ) = g0 −
2g1t

2
0

t40 + c
φ2 + O

(
φ4 or g2

1

)
. (82)

Hence, one gets

P (φ) = P0 + P1eg0φ − 2g1t
2
0

t40 + c

[
P1

{
φ3

3
− 3φ2

g0
+

6φ

g2
0

− 6
g4
0

}
eg0φ +

{
2φ2

g0
+

4φ

g2
0

}
P0

−P2

g0
eg0φ − P3

]
+ O

(
g2
1

)
. (83)

Using boundary conditions we can specify different modified gravities which unify the early-time inflation
with late-time acceleration. The important element of above reconstruction scheme is that it may be
applied partially. For instance, one can start from the known model which passes local tests and describes
the late-time acceleration. After that, the reconstruction method may be applied only at very small times
(inflationary universe) to modify such a theory partially. As a result, we get the modified gravity with
necessary early-time behavior and (or) vice-versa.
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6 Dark Matter from F (R)-gravity

It is extremely interesting that dark matter could be explained in the framework of viable F (R)-gravity
which was discussed in previous sections.

The previous considerations of F (R)-gravity suggest that it may play the role of gravitational alter-
native for dark energy. However, one can study F (R)-gravity as a model for dark matter. There have
been proposed several scenarios to explain dark matter in the framework of F (R)-gravity. In most of such
approaches[16], the MOND-like scenario or power-law gravity have been considered. In such scenarios,
the field equations have been solved and the large-scale correction to the Newton law has been found and
used as a source of dark matter.

There was, however, an observation [17] that the distribution of the matter is different from that of
dark matter in a galaxy cluster. From this it has been believed that the dark matter can not be explained
by the modification of the Newton law but dark matter should represent some (particles) matter.

It is known that F (R)-gravity contains a particle mode called ‘scalaron’, which explicitly appears when
one rewrites F (R)-gravity in the the scalar-tensor form (23). In the Einstein gravity, when we quantize
the fluctuations over the background metric, we obtain graviton, which is massless tensor particle. In
case of F (R)-gravity, when one quantizes the fluctuations of the scalar field in the background metric, one
gets the massive scalar particles in the addition to the graviton. Since the scalar particles in F (R)-gravity
are massive, the pressure could be negligible and the strength of the interaction between such the scalar
particles and usual matter should be that of the gravitational interaction order and therefore very small.
Hence, such scalar particle could be a natural candidate for dark matter.

In the model [3] or our models (46) and (53), the mass of the effective scalar field depends on the
curvature or energy density, in accord with so-called Chameleon mechanism. As our models (46) and
(53) describe the early-time inflation as well as late-time acceleration, the ‘scalaron’ particles, that is,
the scalar particles in F (R)-gravity, could be generated during the inflationary era. An interesting point
is that the mass could change after the inflation due to Chameleon mechanism. Especially in the model
(46), the mass decreases when the scalar curvature increases as shown in (49). Hence, in the inflationary
era, when the curvature is large, one may consider the model where mσ is large. After the inflationary
epoch, the scalar particles, generated by the inflation, could lose their mass. Since the mass corresponds
to the energy, the difference between the mass in the inflationary epoch and that after the inflation could
be radiated as energy and could be converted into the matter and the radiation. This indicates that the
reheating could be naturally realized in such model. Let the mass of σ in the inflationary epoch be mI

and that after inflation be mA. Then for N particles, the radiated energy EN may be estimated as

E = (mI − mA) N , (84)

which could be converted into radiation, baryons and anti-baryons (and leptons). It is believed that the
number of early-time baryons and anti-baryons is 1010 times of the number of baryons in the present
universe. Since the density of the dark matter is almost five times of the density of the baryonic matter,
we find

mI > 1010mA . (85)

In the solar system, one gets A = R ∼ 10−61 eV2. Then if n À 10 ∼ 12 and Λi ∼ 1020∼38, the order
of the mass mσ is given by

m2
σ ∼ 10239∼295−10n eV2 , (86)

which is large enough so that σ could be Cold (non-relativistic) Dark Matter. On the other hand, in
1/R-model, the corresponding mass is given by

m2
1/R ∼ µ4

R
∼ 10−51 eV2 . (87)

Here µ is the parameter with dimension of mass and µ ∼ 10−33 eV. The mass m1/R is very small
and cannot be a Cold Dark Matter. The corresponding composite particles can be a Hot (relativistic)
Dark Matter but Hot Dark Matter has been excluded due to difficulty to generate the universe structure
formation.
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In the inflationary era, the spacetime is approximated by the de Sitter space:

ds2 = −dt2 + e2H0t
∑

i=1,2,3

(
dxi

)2
. (88)

Then the scalar particle σ could be Fourier-transformed as

σ =
∫

d3kσ̃(k, t)e−ik·x . (89)

Hence, the number of the particles with k created during inflation is proportional to eνπ. Here

ν ≡

√
m2

σ

H2
0

− 9
4

. (90)

Then if
m2

σ

H2
0

>
9
4

, (91)

sufficient number of the particles could be created.
In the original f(R)-frame (7), the scalar field σ appears as composite state. The equation of motion

in f(R)-gravity contains fourth derivatives, which means the existence of the extra particle mode or
composite state. In fact, the trace part of the equation of motion (13) has the following Klein-Gordon
equation-like form:

3∇2f ′(R) = R + 2f(R) − Rf ′(R) − κ2T . (92)

The above trace equation can be interpreted as an equation of motion for the non trivial ‘scalaron’ f ′(R).
This means that the curvature itself propagates. In fact the scalar field σ in the scalar-tensor form of the
theory can be given by ‘scalaron’, which is the combination of the scalar curvature in the original frame:

σ = − ln (1 + f ′(R)) . (93)

Note that the ‘scalaron’ is different mode from graviton, which is massless and tensor.
Eq.(49) shows that the mass, which depends on the value of the scalar field σ, is given by

m2
σ ∼ f0

f2
1

(
2n + 1
2n + 2

) (
f2
1

(2n + 1)f0

) 2n+1
2n+2

σ− 2n+3
2n+2 . (94)

If the curvature becomes small, σ becomes large and m2
σ decreases. Then the scalar particles lose their

masses after the inflation. The difference of the mass in the inflationary epoch and that after the inflation
could be radiated as energy and can be converted into the matter and the radiation.

By substituting the expression of σ (49) into (94), one obtains

m2
σ ∼ f2

1 A2n+3

2(2n + 1)(n + 1)f0
. (95)

Note that A corresponds to the scalar curvature. Let denote the value of A in the inflationary epoch by
AI and that after the inflation by AA. Then the condition (85) shows

mI

mA
∼

(
AI

AA

)n+3/2

> 1010 . (96)

For the model with n = 2, the condition (85) or (96) could be satisfied if AI/AA > 103, which seems to
indicate that the reheating could be easily realized in such a model.

Now we check if the condition (91) could be satisfied. Note H2
0 ∼ Λi. Eq.(95) also indicates that in

the inflationary era, where A = R ∼ Λi, the magnitude of the mass is given by

m2
σ ∼ Λ2n+1

i

R2n
0

, (97)
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which is large enough and the condition (91) is satisfied. Here Eq.(47) is used. Thus, sufficient number
of σ-particles could be created.

Let us consider the rotational curve of galaxy. As we will see the shift of the rotational curve does not
occur due to correction to the Newton law between visible matter (baryon or intersteller gas) but due to
invisible (dark) matter, and the Newton law itself is not modified.

Let the temperature of the dark matter be T = 1/kβ where k is the Boltzmann constant. First, we
assume the mass mσ of the scalar particle σ is constant. As the total mass of dark matter is much larger
than that of baryonic matter and radiation, we neglect the contributions from the baryonic matter and
radiation just for simplicity. We now work in Newtonian approximation and the system is spherically
symmetric. Let the gravitational potential, which can be formed by the sum of the dark matter particles,
be V (r). Then the gravitational force is given by F(r) = −mdV (r)/dr. If we denote the number density
of the dark matter particles by n(r), in the Newtonian approximation, by putting κ2 = 8πG, one gets

F(r) = −Gm2
σ

r2

∫ r

0

4πs2n(s)ds (98)

and therefore V (r) is given by

V (r) = 4πGmσ

∫ r ds

s2

∫ s

0

u2n(u)du . (99)

If one assumes the number density n(r) of dark matter particles could obey the Boltzmann distribution,
we find

n(r) = N0e−βmσV (r) . (100)

Here N0 is a constant, which can be determined by the normalization. Using (99) and (100) and deleting
n(r), the differential equation follows:(

r2V ′(r)
)′

= 4πGmσN0r
2e−βmσV (r) . (101)

An exact solution of the above equation is given by

V (r) =
2

βmσ
ln

(
r

r0

)
, r2

0 ≡ 1
2πGm2

σN0β
. (102)

As the general solution for the non-linear differential equation (101) is not known, we assume V (r) could
be given by (102). Then the rotational speed v of the stars in the galaxy could be determined by the
balance of the gravitational force and the centrifugal force:

m?
v2

r
= −F(r) = m?V

′(r) =
2m?

βmσr
. (103)

Here m? is the mass of a star. Hence,

v2 =
2

mσβ
, (104)

that is, v becomes a constant, which could be consistent with the observation.
For the dark matter particles from f(R)-gravity, the mass mσ depends on the scalar curvature or

the value of the background σ as in (94). The scalar curvature is determined by the energy density ρ
(if pressure could be neglected as in usual baryonic matter and cold dark matter) and if we neglect the
contribution from the baryonic matter, the energy density ρ is given by

ρ(r) = mσn(r) . (105)

Therefore it follows
mσ = mσ (ρ(r)) = mσ (mσn(r)) , (106)

which could be solved with respect to mσ:

mσ = mσ (n(r)) . (107)
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Furthermore by combining (100) and (107), one may solve mσ with respect to V (r) and N0 as

mσ = mσ (N0, V (r)) . (108)

Then (98) could be modified as

F(r) = −Gmσ (N0, V (r))
r2

∫ r

0

4πs2mσ (N0, V (r)) n(s)ds (109)

which gives, instead of (101),(
r2V ′(r)

)′
= 4πGmσ (N0, V (r)) N0r

2e−βmσ(N0,V (r))V (r) . (110)

Eq.(110) is rather complicated but at least numerically solvable.
For the model (46), if the curvature is large enough even around the galaxy, the mass mσ is given

by (95). The scalar curvature A = R is proportional to the energy density (since the pressure could be
neglected), A ∝ ρ, and the energy density ρ is given by (105). Then

n(r) ∼ 1
κ2

{
2(n + 1)(2n + 1)f0

f2
1

} 1
2n+3

(mσ(r))−
2n+1
2n+3 . (111)

Using (100), one also gets

V (r) =
2n + 1

(2n + 3)βmσ(r)
ln

mσ(r)
m0

, m0 ≡
(
κ2N0

)− 2n+3
2n+1

{
2(n + 1)(2n + 1)f0

f2
1

} 1
2n+1 .

(112)

Here m0 has mass dimension. By substituting (112) into (110), it follows(
2n + 1
2n + 3

)
1
β

{
r2

(
1 − ln

mσ(r)
m0

)
m′′

σ(r)
mσ(r)2

− r2

(
3 − 2 ln

mσ(r)
m0

)
(m′

σ(r))2

mσ(r)3

+2r

(
1 − ln

mσ(r)
m0

)
m′

σ(r)
mσ(r)2

}
=

1
2

{
2(n + 1)(2n + 1)f0

f2
1

} 1
2n+3

r2 (mσ(r))
2

2n+3 . (113)

It is very difficult to find the exact solution of (113), although one may solve (113) numerically. Then we
now consider the region where mσ ¿ m0 but ln (mσ/m0) is slow varying function of r, compared with
the power of r. In the region, we may treat ln (mσ/m0) as a large negative constant:

ln (mσ/m0) ∼ −C . (114)

Then the following solution is obtained:

mσ(r) = m0

(
r

r0

)− 2(2n+3)
2n+5

,

r2
0 ≡ 4(2n + 1)(2n + 9)C

(2n + 5)β
(
κ2N0

) 2n+5
2n+1

{
2(n + 1)(2n + 1)f0

f2
1

}− 1
2n+1

. (115)

Note that r0 can be real for any positive n. Eq.(112) shows that

V (r) = −2(2n + 1)
2n + 5

1
βm0

(
r

r0

) 2(2n+3)
2n+5

ln
r

r0
. (116)

Note that the potential (116) is obtained by assuming the Newton law by summing up the Newton po-
tentials coming from the f(R)-dark matter particles (‘scalaron’) distributed around the galaxy. Eq.(115)
indicates that the condition mσ ¿ m0 requires r À r0. Then by using the equation for the balance of
the gravitational force and the centrifugal force, as in (103), we find

v ∝
(

r

r0

) 2n+3)
2n+5

, (117)
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which is monotonically increasing function of r and the behavior is different from that in (104). If there is
only usual baryonic matter without any dark matter, the velocity is the decreasing function of r, if there
is also usual dark matter, as shown in (104), the velocity is almost constant, if dark matter originates from
f(R)-gravity, as we consider here, there is a region where the velocity could be an increasing function
of r. Of course, one should be more careful as these are qualitative considerations. The condition
mσ ¿ m0 requires r À r0 but in the region faraway from galaxy, the scalar curvature becomes small
and the approximation (95) could be broken. Anyway if there appears a region where velocity is the
increasing function of r, this might be a signal of f(R)-gravity origin for dark matter. For more precise
quantitative arguments, it is necessary to include the contribution from usual baryonic matter as well as
to do numerical calculation. In any case, it seems very promising that composite particles from viable
modified gravity which unifies inflation with late-time acceleration may play the role of dark matter.

7 Discussion

In summary, we reviewed F (R)-gravity and demonstrated that some versions of such theory are viable
gravitational candidates for unification of early-time inflation and late-time cosmic acceleration. It is
explicitly shown that the known critical arguments against such theory do not work for those models. In
other words, the modified gravity under consideration may pass the local tests (Newton law is respected,
the very heavy positive mass for additional scalar degree of freedom is generated). The reconstruction
of modified F (R) gravity is considered. It is demonstrated that such theory may be reconstructed for
any given cosmology. Moreover, the partial reconstruction (at early universe) may be done for modified
gravity which complies with local tests and dark energy bounds. This leads to some freedom in the choice
of modified gravity for the unification of given inflationary era compatible with astrophysical bounds and
dark energy epoch. As a final very promising result it is shown that modified gravity under consideration
may qualitatively well describe dark matter, using the composite scalar particle from F (R) theory and
Chameleon scenario.

Thus, modified gravity remains viable cosmological theory which is realistic alternative to standard
Einstein gravity. Moreover, it suggests the universal gravitational unification of inflation, cosmic accel-
eration and dark matter without the need to introduce any exotic matter. Moreover, it remains enough
freedom in the formulation of such theory which is very positive fact, having in mind, coming soon precise
observational data.
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Ghost condensation and gravity in Higgs phase

Shinji Mukohyama1

Department of Physics and Research Center for the Early Universe
The University of Tokyo, Tokyo 113-0033, Japan

Abstract
In this presentation I review basic properties of the simplest Higgs phase of grav-
ity called ghost condensation, and discuss possible applications and observational
bounds.

1 Introduction

Acceleration of the cosmic expansion today is one of the greatest mysteries in both cosmology and
fundamental physics. Assuming that Einstein’s general relativity is the genuine description of gravity
all the way up to cosmological distance and time scales, the so called concordance cosmological model
requires that about 70% of our universe should be some sort of energy with negative pressure, called dark
energy. However, since the nature of gravity at cosmological scales has never been probed directly, we
do not know whether the general relativity is really correct at such infrared (IR) scales. Therefore, it
seems natural to consider modification of general relativity in IR as an alternative to dark energy. Dark
energy, IR modification of gravity and their combination should be tested and distinguished by future
observations and experiments.

From the theoretical point of view, however, IR modification of general relativity is not an easy
subject. Most of the previous proposals are one way or another scalar-tensor theories of gravity, and are
strongly constrained by e.g. solar system experiments [1] and the theoretical requirement that ghosts be
absent [2, 3, 4]. The massive gravity theory [5] and the Dvali-Gabadadze-Porrati (DGP) brane model [6]
are much more interesting IR modification of gravity, but they are known to have macroscopic UV
scales [7, 8]. A UV scale of a theory is the scale at which the theory breaks down and loses its predictability.
For example, the UV scale of the 4D general relativity is the Planck scale, at which quantum gravity
effects are believed to become important. Since the Planck scale is microscopic, the general relativity
maintains its predictability at essentially all scales we can directly probe. On the other hand, in the
massive gravity theory and the DGP brane model, the UV scale is macroscopic. For example, if the scale
of IR modification is the Hubble scale today or longer then the UV scale would be ∼ 1, 000km or longer.
At the UV scale an extra degree of freedom, which is coupled to matter, becomes strongly coupled and its
quantum effects cannot be ignored. This itself does not immediately exclude those theories, but means
that we need UV completion in order to predict what we think we know about gravity within ∼ 1, 000km.
Since this issue is originated from the IR modification and the extra degree of freedom cannot be decoupled
from matter, it is not clear whether the physics in IR is insensitive to unknown properties of the UV
completion. In particular, there is no guarantee that properties of the IR modification of gravity will
persist even qualitatively when the theories are UV completed in a way that they give correct predictions
about gravity at scales between ∼ 1, 000km and ∼ 0.1mm.

Ghost condensation is an analogue of the Higgs mechanism in general relativity and modifies gravity
in IR in a way that avoids the macroscopic UV scale [9] 2. In ghost condensation the theory is ex-
panded around a background without ghost and the low energy effective theory has a universal structure
determined solely by the symmetry breaking pattern. While the Higgs mechanism in a gauge theory
spontaneously breaks gauge symmetry, the ghost condensation spontaneously breaks a part of Lorentz
symmetry since this is the symmetry relevant to gravity. In a gauge theory the Higgs mechanism makes
it possible to give a mass term to the gauge boson and to modify the force law in a theoretically con-
trollable way. Similarly, the ghost condensation gives a “mass term” to the scalar sector of gravity and

1E-mail: mukoyama@phys.s.u-tokyo.ac.jp
2See e.g.[10, 11, 12, 13, 14, 15, 16] for other related proposals.
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modifies gravitational force in the linearized level even in Minkowski and de Sitter spacetimes. The
Higgs phase of gravity provided by the ghost condensation is simplest in the sense that the number of
Nambu-Goldstone bosons associated with spontaneous Lorentz breaking is just one and that only the
scalar sector is essentially modified.

2 Ghost Condensation

The ghost condensation can be pedagogically explained by comparison with the usual Higgs mechanism
as in the table shown below. First, the order parameter for ghost condensation is the vacuum expectation
value (vev) of the derivative ∂µϕ of a scalar field ϕ, while the order parameter for Higgs mechanism is the
vev of a scalar field Φ itself. Second, both have instabilities in their symmetric phases: a tachyonic insta-
bility around Φ = 0 for Higgs mechanism and a ghost instability around ∂µϕ = 0 for ghost condensation.
In both cases, because of the instabilities, the system should deviate from the symmetric phase and the
order parameter should obtain a non-vanishing vev. Third, there are stable point where small fluctuations
do not contain tachyons nor ghosts. For Higgs mechanism, such a point is characterized by the vev of the
order parameter satisfying V ′ = 0 and V ′′ > 0. On the other hand, for ghost condensation a stable point
is characterized by P ′ = 0 and P ′′ > 0. Fourth, while the usual Higgs mechanism breaks usual gauge
symmetry and changes gauge force law, the ghost condensation spontaneously breaks a part of Lorentz
symmetry (the time translation symmetry) and changes linearized gravity force law even in Minkowski
background. Finally, generated corrections to the standard Gauss-law potential is Yukawa-type for Higgs
mechanism but oscillating for ghost condensation.

Higgs mechanism Ghost condensate

Order

Parameter

Instability Tachyon Ghost

Condensate V’=0, V’’>0 P’=0, P’’>0

Spontaneous 

breaking
Gauge symmetry symmetry

Modifying Gauge force Gravity

New

potential

Yukawa-type Oscillating

F
mf¶

22F-m 2f&-

( )2( )P f¶

f&

(| |)V F

F

At this point one might wonder if the system really reach a configuration where P ′ = 0 and P ′′ > 0.
Actually, it is easy to show that this is the case. For simplicity let us consider a Lagrangian Lϕ =
P (−(∂ϕ)2) in the expanding FRW background with P of the form shown in the upper right part of the
table. We assume the shift symmetry, the symmetry under the constant shift ϕ → ϕ + c of the scalar
field. This symmetry prevents potential terms of ϕ from being generated. The equation of motion for ϕ
is simply ∂t[a3P ′ϕ̇] = 0, where a is the scale factor of the universe. This means that a3P ′ϕ̇ is constant
and that

P ′ϕ̇ ∝ a−3 → 0 (a → ∞) (1)

2

19



as the universe expands. We have two choices: P ′ = 0 or ϕ̇ = 0, namely one of the two bottoms of the
function P or the top of the hill between them. Obviously, we cannot take the latter choice since it is a
ghosty background and anyway unstable. Thus, we are automatically driven to P ′ = 0 by the expansion
of the universe. In this sense the background with P ′ = 0 is an attractor.

Having shown that the ghost condensate is an attractor, let us construct a low energy effective
field theory around this background. For this purpose let us consider a small fluctuation around the
background with P ′ = 0. For ϕ = M2t + π, the quadratic action for π coming from the Lagrangian P is∫

d4x[(P ′(M4)+M4P ′′(M4))π̇2−P ′(M4)(∇π)2]. By setting P ′(M4) = 0 we obtain the time kinetic term
M4P ′′(M4)π̇2 with the correct sign. Unless the function P is fine-tuned, P ′′ is non-zero at P ′ = 0. This
means that the coefficient of the time kinetic term is non-vanishing and, thus, we do not have the strong
coupling issue which the massive gravity and the DGP brane model are facing with. On the other hand,
the coefficient of (∇π)2 vanishes at P ′ = 0 and the simple Lagrangian P does not give us a spatial kinetic
term for π. However, this does not mean that there is no spatial kinetic term in the low energy EFT for
π. This just says that the leading spatial kinetic term is not contained in P and that we should look for
the leading term in different parts. Indeed, other terms like P̃ ((∂ϕ)2)Q(¤ϕ) do contain spatial kinetic
terms for π but the spatial-derivative expansion starts with the fourth derivative: (∇2π)2+ · · · . If there is
a non-vanishing second-order spatial kinetic term (∇π)2 then it can be included in P by redefinition and
the redefined P ′ goes to zero by the expansion of the universe as shown above. Namely, the expansion
of the universe ensures that the spatial-derivative expansion starts from (∇2π)2 + · · · . Combining this
spatial kinetic term with the previously obtained time kinetic term and properly normalizing π, we obtain
the low energy effective action of the form

M4

∫
d4x

[
1
2
π̇2 − α

M2
(∇2π)2 + · · ·

]
, (2)

where α is a dimensionless parameter of order unity 3. One might worry that other (nonlinear) terms in
effective theory such as π̇(∇π)2 might mess up the effective action. In fact, it turns out that all such terms
are irrelevant at low energy [9]. An important fact to show this is that the scaling dimension of π is not
the same as its mass dimension 1 but is 1/4, reflecting the situation that the Lorentz symmetry is broken
spontaneously. Moreover, it is also straightforward to show that all spurious modes associates with higher
time derivative terms such as (ϕ̈)2 have frequency above the cutoff M and, thus, should be ignored. In
this sense, we are assuming the existence of a UV completion but not assuming any properties of it.
Finally, it must be noted that the effective action of the form (2) is stable against radiative corrections.
Indeed, the only would-be more relevant term in the effective theory is the usual spatial kinetic term
(∇π)2, but its coefficient P ′ is driven to an extremely small value by the expansion of the universe even
if it is radiatively generated.

The effective action (2) would imply the low energy dispersion relation for π is ω2 ≃ αk4/M2. However,
since the background spontaneously breaks Lorentz invariance, π couples to gravity in the linearized level
even in Minkowski or de Sitter background. Hence, mixing with gravity introduces an order M2/M2

pl

correction to the dispersion relation. As a result the dispersion relation in the presence of gravity is
ω2 ≃ αk4/M2 −αM2k2/2M2

pl. This dispersion relation leads to IR modification of gravity due to Jean’s
instability. Note that there is no ghost around the stable background P ′ = 0 and the Jeans’s instability
is nothing to do with a ghost.

In the above we have expanded a general Lagrangian consistent with the shift symmetry around the
stable background in order to construct the low energy EFT. This is the most straightforward approach.
An alternative, more powerful way is to use the symmetry breaking pattern. In this approach, we actually
do not need to specify a concrete way of the spontaneous symmetry breaking. In this sense, the ghost
around ϕ̇ = 0 has nothing to do with the construction of the EFT around P ′ = 0. Indeed, it is suffice
to assume the symmetry breaking pattern, namely from the full 4-dimensional Lorentz symmetry to the
3-dimensional spatial diffeomorphism [9].

Here, let us briefly review this approach based on the symmetry breaking pattern. This leads to the
exactly same conclusion as above, but is more universal and can be applied to any situations as far as
the symmetry breaking pattern is the same. We assume that (i) the 4-dimensional Lorentz symmetry

3With this normalization, π has the dimension of length.

3

20



is spontaneously broken down to a 3-dimensional spatial diffeomorphism and that (ii) the background
spacetime metric is maximally symmetric, either Minkowski or de Sitter. With the assumption (i), we
are left with the 3-dimensional spatial diffeomorphism x⃗ → x⃗′(t, x⃗). Our strategy here is to write down
the most general action invariant under this residual symmetry. After that, the action for the Nambu-
Goldstone (NG) boson π is obtained by undoing the unitary gauge.

For simplicity let us consider the Minkowski background plus perturbation: gµν = ηµν + hµν . The
infinitesimal gauge transformation is δhµν = ∂µξν + ∂νξµ, where ξµ is a 4-vector representing the gauge
freedom. Under the residual gauge transformation ξi (i = 1, 2, 3), the metric perturbation transforms as

δh00 = 0, δh0i = ∂0ξi, δhij = ∂iξj + ∂jξi. (3)

Now let us seek terms invariant under the residual gauge transformation. Those terms must begin at
quadratic order since we assumed that the flat spacetime is a solution to the equation of motion. The
leading term (without derivatives acted on the metric perturbations) is

∫
dx4M4h2

00. This is indeed
invariant under the residual gauge transformation (3). From this term, we can obtain the corresponding
term in the effective action for the NG boson π. Since h00 → h00 + 2∂0ξ0, by promoting the broken
symmetry ξ0 to a physical degree of freedom π, we obtain the term

∫
dx4M4(h00 − 2π̇)2. This includes a

time kinetic term for π as well as a mixing term. At this point we wonder if we can get the usual space
kinetic term (∇⃗π)2 or not. The only possibility would be from (h0i)2 since h0i → h0i − ∂iπ under the
broken symmetry transformation ξ0 = π. However, this term is not invariant under the residual spatial
diffeomorphism ξi and, thus, cannot enter the effective action. Actually, there are combinations invariant
under the spatial diffeomorphism. They are made of the geometrical quantity called extrinsic curvature.
The extrinsic curvature Kij in the linear order is Kij = ∂jh0j + ∂ih0j − ∂0hij and transforms as a tensor
under the spatial diffeomorphism. Thus,

∫
dx4M̃2(Ki

i )
2 and

∫
dx4M̄2KijKij are invariant under spatial

diffeomorphism and can be used in the action. Since Kij → Kij − ∂i∂jπ under the broken symmetry
ξ0 = π, we obtain

∫
dx4(M̃2 + M̄2)(∇⃗2π)2. Combining these terms with the above time kinetic term and

properly normalizing the definition of π and M , we obtain

Leff = M4

{
1
2

(
π̇ − 1

2
h00

)2

− α

M2
(∇⃗2π)2 + · · ·

}
, (4)

where α is a dimensionless constant of order unity. By setting h00 = 0, this completely agrees with (2),
which was obtained by expanding the scalar field action explicitly around the stable background. Here,
in deriving the effective action all we needed was the symmetry breaking pattern. Thus, the low energy
EFT of the ghost condensation is universal and should hold as far as the symmetry breaking pattern is
the same.

In ghost condensation the linearized gravitational potential is modified at the length scale rc in the
time scale tc, where rc and tc are related to the scale of spontaneous Lorentz breaking M as

rc ≃ MPl

M2
, tc ≃ M2

Pl

M3
. (5)

Note that rc and tc are much longer than 1/M . The way gravity is modified is peculiar. At the time
when a gravitational source is turned on, the potential is exactly the same as that in general relativity.
After that, however, the standard form of the potential is modulated with oscillation in space and with
exponential growth in time. This is an analogue of Jeans instability, but unlike the usual Jeans instability,
it persists in the linearized level even in Minkowski background. The length scale rc and the time scale tc
above are for the oscillation and the exponential growth, respectively. At the time ∼ tc, the modification
part of the linear potential will have an appreciable peak only at the distance ∼ rc. At larger distances,
it will take more time for excitations of the Nambu-Goldstone boson to propagate from the source and
to modify the gravitational potential. At shorter distances, the modification is smaller than at the peak
position because of the spatial oscillation with the boundary condition at the origin. The behavior
explained here applies to Minkowski background, but in ref. [9] the modification of gravity in de Sitter
spacetime was also analyzed. It was shown that the growing mode of the linear gravitational potential
disappears when the Hubble expansion rate exceeds a critical value Hc ∼ 1/tc. Thus, the onset of the IR
modification starts at the time when the Hubble expansion rate becomes as low as Hc.
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If we take the M/MPl → 0 limit then the Higgs sector is completely decoupled from the gravity
and the matter sectors and, thus, the general relativity is safely recovered. Therefore, cosmological and
astrophysical considerations in general do not set a lower bound on the scale M of spontaneous Lorentz
breaking, but provide upper bounds on M . If we trusted the linear approximation for all gravitational
sources for all times then the requirement Hc <∼ H0 would give the bound M <∼ (M2

PlH0)1/3 ≃ 10MeV ,
where H0 is the Hubble parameter today [9]. However, for virtually all interesting gravitational sources
the nonlinear dynamics dominates in time scales shorter than the age of the universe. As a result the
nonlinear dynamics cuts off the Jeans instability of the linear theory, and allows M <∼ 100GeV [17].

Note that the ghost condensate provides the second most symmetric class of backgrounds for the
system of field theory plus gravity. The most symmetric class is of course maximally symmetric solutions:
Minkowski, de Sitter and anti-de Sitter. The ghost condensate minimally breaks the maximal symmetry
and introduces only one Nambu-Goldstone boson.

Because of the universality of the low energy EFT, it is worthwhile investigating properties of the
Higgs phase of gravity, whether or not it leads to interesting physical phenomena. Actually, it turns
out that the physics in the Higgs phase of gravity is extremely rich and intriguing. They include IR
modification of gravity [9], a new spin-dependent force [18], a qualitatively different picture of inflationary
de Sitter phase [19, 20], effects of moving sources [21, 22], nonlinear dynamics [23, 17], properties of black
holes [24, 25, 26], implications to galaxy rotation curves [27, 28, 29], dark energy models [30, 31, 32, 33, 34],
other classical dynamics [35, 36], attempts towards UV completion [37, 38, 39], and so on.

3 Possible Applications

Dark energy: In the usual Higgs mechanism, the cosmological constant (cc) would be negative in the
broken phase if it is zero in the symmetric phase. Therefore, it seems difficult to imagine how the Higgs
mechanism provides a source of dark energy. On the other hand, the situation is opposite with the ghost
condensation: the cc would be positive in the broken phase if it is zero in the symmetric phase. Hence,
while this by itself does not solve the cc problem, this can be a source of dark energy.

Dark matter: If we consider a small, positive deviation of P ′ from zero then the homogeneous
part of the energy density is proportional to a−3 and behaves like dark matter. Inhomogeneous linear
perturbations around the homogeneous deviation also behaves like dark matter. However, at this moment
it is not clear whether we can replace dark matter with ghost condensate. We need to see if it clumps
properly. Ref. [17] can be thought to be a step towards this direction.

Inflation: We can also consider inflation within the regime of the validity of the EFT with ghost
condensation. In the very early universe where H is higher than the cutoff M , we do not have a good
EFT describing the sector of ghost condensation. However, the contribution of this sector to the total
energy density ρtot is naturally expected to be negligible: ρghost ∼ M4 ≪ M2

p H2 ≃ ρtot. As the Hubble
expansion rate decreases, the sector of ghost condensation enters the regime of validity of the EFT and
the Hubble friction drives P ′ to zero. If we take into account quantum fluctuations then P ′ is not quite
zero but is ∼ (H/M)5/2 ∼ (δρ/ρ)2 ∼ 10−10 in the end of ghost inflation. In this way, we have a consistent
story, starting from the outside the regime of validity of the EFT and dynamically entering the regime of
validity. All predictions of the ghost inflation are derived within the validity of the EFT, including the
relatively low-H de Sitter phase, the scale invariant spectrum and the large non-Gaussianity [19].

Black hole: In ref. [25] we consider the question “what happens near a black hole?” A ghost
condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent
vector uµ = −gµν∂νϕ. It is argued that the ghost condensate in this picture approximately corresponds
to a congruence of geodesics and the accretion rate of the ghost condensate into a black hole should be
negligible for a sufficiently large black hole. This argument is confirmed by a detailed calculation based on
the perturbative expansion w.r.t. the higher spatial kinetic term. The essential reason for the smallness
of the accretion rate is the same as that for the smallness of the tidal force acted on an extended object
freely falling into a large black hole.
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4 Bounds

In this section we consider the bounds on the symmetry breaking scale M . We argue that the nonlinear
dynamics cuts off the Jeans instability of the linear theory, and allows M <∼ 100 MeV [17].

4.1 Jeans Instability

For M >∼ 10 MeV, the Jeans instability time is shorter than the lifetime of the universe, and we must
consider the effects of this instability. We have seen that the nonlinear effects dominate near interesting
gravitational sources, but the linear dynamics still controls the behavior of the system for sufficiently
weak ghostone amplitudes. In the linear regime, fluctuations with wavelength λ >∼ LJ grow on a time
scale

τ ∼ TJ
λ

LJ
, (6)

where

LJ ∼ MPl

M2
, TJ ∼ M2

Pl

M3
(7)

are the Jeans length and time scales. Wavelengths of order LJ become unstable first, and longer wave-
lengths take longer to grow. Since fluctuations on wavelength shorter than LJ are stable, we expect the
minimum size of a positive or negative energy region to be LJ. On the other hand, the maximum size is
determined by requiring that the time scale τ above be shorter than the Hubble time. Hence, a positive
or negative region can grow within the age of the universe if its size L is in the range

LJ <∼ L <∼ Lmax, (8)

where

Lmax ∼ M

MPlH0
∼ R⊙

(
M

100 GeV

)
. (9)

The unstable modes grow at least until nonlinear effects become important. This happens for π >∼ πc,
where

πc ∼
λ2

τ
. (10)

or equivalently Σ >∼ Σc with

Σc ∼
πc

τ
∼ λ2

τ2
∼ M2

M2
Pl

. (11)

It is reasonable to assume that the nonlinear effects cut off the Jeans instability at this critical amplitude.
This mechanism will fill the universe with regions of positive and negative ghostone field with amplitude
of order ±Σc and the size in the range (8). Since Σ is a conserved charge, there will be equal amounts of
positive and negative Σ.

The sun’s Newtonian potential triggers the Jeans instability of the ghost condensate and, thus, it is
expected that there be a positive or negative region around the sun. This is justified if the ‘aether’ is
efficiently dragged by the sun and we now argue that this is indeed the case. To do this, it is useful to
work in the rest frame of the sun. Far from the sun, the aether is moving with constant velocity v ∼ 10−3,
but near the sun the velocity field will be distorted by the presence of the sun. By using the fluid picture
of the ghostone field, we estimate the effect on a fluid particle with speed v and impact parameter r. The
fluid particle will be a distance of order r away for a time ∆t ∼ r/v, so the change in the particle velocity
in the impulse approximation is

∆v ∼ RS

r2
· r

v
∼ RS

vr
, (12)

where RS is the Schwarzschild radius of the source. Thus, the change in the velocity of a fluid particle
becomes comparable to or greater than the initial velocity if r < rdrag, where

rdrag ∼ RS

v2
, (13)
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For our sun, rdrag ∼ 10R⊙, so the dragged region extends outside the solar radius.4

We require that the absolute value of the mass of the lump with the critical density ρc and the size
Lmax be at worst less than the solar mass:

ρcL
3
max

<∼ M⊙. (14)

This requirement gives the bound
M <∼ 103 GeV. (15)

Since the high power of M (the l.h.s. ∝ M9) is involved in (14), a more stringent requirement on the
mass of the lump will not substantially improve the bound.

4.2 Twinkling from Lensing

We have argued that if M >∼ 10 MeV, then the Jeans instability fills the universe with regions of positive
and negative energy of size L >∼ LJ ∼ MPl/M

2 with energy density ρc ∼ M6/M2
Pl. This will happen

everywhere, in particular in the voids between galaxies. Any light that travels to us from far away will
therefore be lensed by these positive and negative regions. These positive and negative energy regions
move, because the local rest frame of the lensing regions is different from that of our galaxy, so the result
is that the observed luminosity of any point source will change with time. This is similar to the twinkling
of the stars in the night sky caused by time dependent temperature differences in the atmosphere. In
this subsection, we work out the bounds on the ghost condensate from this effect.

Suppose that the universe is filled with regions of positive and negative energy with size L and density
ρc. A light ray traveling through such a region will lens by an angle

∆θ ∼ Φ ∼ ρcL
2

M2
Pl

∼ M6L2

M4
Pl

. (16)

If a light ray travels a distance d ≫ L, then it will undergo N ∼ d/L uncorrelated lensing events, so the
total angular deviation will be enhanced by a N1/2 random walk factor:

∆θtot ∼
(

d

L

)1/2
M6L2

M4
Pl

. (17)

We see that the largest angular deviation comes from the largest L and largest d.
The size of L is limited by the time for the Jeans instability to form as in (8). If the source is the

cosmic microwave background, then d ∼ H−1
0 and we obtain

∆θCMB ∼ M15/2

M
11/2
Pl H2

0

∼
(

M

100 GeV

)15/2

, (18)

for the largest regions with the size L ∼ Lmax. The high power of M makes the precise experimental
limit on ∆θCMB irrelevant, and we obtain the bound

M <∼ 100 GeV. (19)

For M ∼ 100 GeV, the size of the largest critical region is L ∼ 1012 cm, approximately the radius of
the sun. The local velocity of these regions relative to our galaxy is of order 10−3, so the time scale for
one of these regions to cross the line of sight is of order a day, which is therefore the time scale of the
variation.

If there is a distant astrophysical source that is observed to shine with very little time variation, it
may give a competitive bound. But given the high power of M involved, it seems difficult to improve on
this bound significantly.

4This radius is still much less than the orbital radius of Mercury.
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4.3 Supernova time-delay

Gravitational lensing considered in the previous subsection induces a time-delay for light-rays coming
from far distances. With this time-delay effect, observed supernovae should be older than they appear.
Thus, this effect would change the estimate of dark energy by observation of Type Ia supernovae. Since
the determination of the dark energy by supernovae observation is known to be consistent with the
WMAP data, we require that the time-delay is sufficiently shorter than the total time:

∆t

t
∼ (∆θ)2 ∼ M6L2

max

M4
Pl

≤ 1. (20)

Note that the precise experimental limit on the ∆t/t is irrelevant because of the higher power of M
involved in the l.h.s. From this we obtain the bound

M <∼ 103 GeV. (21)

5 Summary

The usual Higgs mechanism gives a mass to a gauge boson in a theoretically controllable way by spon-
taneously breaking the gauge symmetry. Similarly, the ghost condensation gives a “mass” to the scalar-
sector of gravity by spontaneously breaking a part of Lorentz symmetry, the invariance under time
re-parameterization. It has been shown that the structure of low energy effective field theory of ghost
condensation is determined by the symmetry breaking pattern and does not depend at all on the way the
symmetry is broken. In this sense the low energy effective field theory of ghost condensation has nothing
to do with ghost.

The theory of ghost condensation opens up a number of new avenues for attacking cosmological
problems, including inflation, dark matter, dark energy and black holes. Finally, it has been argued that
the theory is compatible with all current experimental observations if the scale of spontaneous Lorentz
breaking is lower than ∼ 100 MeV. Our current understanding of the dynamics of gravity in Higgs phase
is very immature. Most of its properties still remain unexplored.
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Abstract

The reheating of the universe after hybrid inflation proceeds through the nucleation

and subsequent collision of large concentrations of energy density in the form of

bubble-like structures moving at relativistic speeds. This generates a significant frac-

tion of energy in the form of a stochastic background of gravitational waves, whose

time evolution is determined by the successive stages of reheating: First, tachyonic

preheating makes the amplitude of gravity waves grow exponentially fast. Second,

bubble collisions add a new burst of gravitational radiation. Third, turbulent mo-

tions finally sets the end of gravitational waves production. From then on, these

waves propagate unimpeded to us. We find that the fraction of energy density today

in these primordial gravitational waves could be significant for GUT-scale models of

inflation, although well beyond the frequency range sensitivity of gravitational wave

observatories like LIGO, LISA or BBO. However, low-scale models could still produce

a detectable signal at frequencies accessible to BBO or DECIGO. For comparison,

we have also computed the analogous background from some chaotic inflation models

and obtained similar results to those of other groups. The discovery of such a back-

ground would open a new observational window into the very early universe, where

the details of the process of reheating, i.e. the Big Bang, could be explored. Thus, it

could also serve as a new experimental tool for testing the Inflationary Paradigm.

1 Introduction

Gravitational waves (GW) are ripples in space-time that travel at the speed of light, and whose emission
by relativistic bodies represents a robust prediction of General Relativity. Theoretically, it is expected
that the present universe should be permeated by a diffuse background of GW of either an astrophysical or
cosmological origin [1]. Fortunately, these backgrounds have very different spectral signatures that might,
in the future, allow gravitational wave observatories like LIGO [2], LISA [3], BBO [4] or DECIGO [5], to
disentangle their origin [1]. Unfortunately, the weakness of gravity will make this task extremely difficult,
requiring a very high accuracy in order to distinguish one background from another.

There are, indeed, a series of constraints on some of these backgrounds, coming from the anisotropies
in the Cosmic Microwave Background (CMB) [6], from Big Bang nucleosynthesis [7] or from millisecond
pulsar timing [8]. Most of these constraints come at very low frequencies, from 10−18 Hz to 10−8 Hz, while
present and future GW detectors (will) work at frequencies of order 10−3− 103 Hz. If early universe first
order phase transitions [9, 10] or cosmic turbulence [11] occurred around the electro-weak (EW) scale,
GW detectors could have a chance to measure the corresponding associated backgrounds. However, if
those processes occurred at the GUT scale, their corresponding backgrounds will go undetected by the
actual detectors, since these cannot reach the required sensitivity in the high frequency range of 107−109

Hz. There are however recent proposals to cover this range [12, 13], which may become competitive in
the not so far future.

Cosmological observations seem to suggest that something like Inflation must have occurred in the very
early universe. Approximately scale-invariant density perturbations, sourced by quantum fluctuations
during inflation, seem to be the most satisfying explanation for the CMB anisotropies. Together with
such scalar perturbations one also expects tensor perturbations (GW) to be produced, with an almost

1E-mail: juan.garciabellido@uam.es
2E-mail: daniel.figueroa@uam.es
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scale-free power spectrum [14]. The detection of such a background is crucial for early universe cosmology
because it would help to determine the absolute energy scale of inflation, a quantity that for the moment
is still uncertain, and would open the exploration of physics at very high energies.

However, in the early universe, after inflation, other GWB could have been produced at shorter
wavelengths, in a more ’classical’ manner rather than sourced by quantum fluctuations. In particular,
whenever there are large and fast moving inhomogeneities in a matter distribution, one expects the emis-
sion of GW. At large distances from a source, the amplitude of the GW is given by hij ≃ GQ̈ij/c

4r, with
Qij the quadrupole moment of the mass distribution. The larger the velocity of the matter distribution,
the larger the amplitude of the radiation produced. However, because of the weakness of gravity, in order
to produce a significant amount of gravitational radiation, it is required a very relativistic motion (and
high density contrasts) in the matter distribution of a source. Fortunatelly, this is indeed believed to be
the situation at the end of inflaton, during the conversion of the huge energy density driving inflation
into radiation and matter, at the so-called reheating of the Universe [15], i.e. at the Big Bang.

Note that any background of GW coming from the early universe, if generated below Planck scale,
immediately decoupled upon production and, whatever their spectral signatures, they will retain their
shape throughout the expansion of the Universe. Thus, the characteristic frequency and shape of the
GWB generated at a given time should contain information about the very early state of the Universe
in which it was produced. Actually, it is conceivable that, in the not so far future, the detection of these
GW backgrounds could be the only way we may have to infer the physical conditions of the Universe at
such high energy scales. However, the same reason that makes GW ideal probes of the early universe −
the weakness of gravity − is responsible for the extreme difficulties we have for their detection on Earth.

In Refs. [16, 17] we described the stochastic background predicted to arise from reheating after hybrid
inflation. Here we will review the various processes involved in the production of such a background. In
the future, this background could serve as a new tool to discriminate among different inflationary mod-
els, since reheating in each model would give rise to a different GWB with very characteristic spectral
features. The details of the dynamics of preheating depend very much on the model and are often very
complicated because of the non-linear, non-perturbative and out-of-equilibrium character of the process
itself. However, all the cases have in common that only specific resonance bands of the fields suffer an
exponential instability, which makes their occupation numbers grow by many orders of magnitude. The
shape and size of the spectral bands depend very much on the inflationary model. If one translates
this picture into position-space, the highly populated modes correspond to large time-dependent inho-
mogeneities in the matter distributions which acts, in fact, as a powerful source of GW. For example, in
single field chaotic inflation models, the coherent oscillations of the inflaton during preheating generates,
via parametric resonance, a population of highly occupied modes that behave like waves of matter. They
collide among themselves and their scattering leads to homogenization and local thermal equilibrium.
These collisions occur in a highly relativistic and very asymmetric way, being responsible for the genera-
tion of a stochastic GWB [18, 19, 20, 21, 22] with a typical frequency today of the order of 107 − 109 Hz,
corresponding to the present size of the causal horizon at the end of high-scale inflation.

However, there are models like hybrid inflation in which the end of inflation is sudden [23] and the
conversion into radiation occurs almost instantaneously. Indeed, hybrid models preheat very violently,
via the spinodal instability of the symmetry breaking field that triggers the end of inflation, irrespective
of the couplings that this field may have to the rest of matter. Such a process is known as tachyonic

preheating [24, 25] and could be responsible for copious production of dark matter particles [26], lepto
and baryogenesis [27], topological defects [24], primordial magnetic fields [28], etc. In Ref. [25], it was
shown that the process of symmetry breaking in hybrid preheating, proceeds via the nucleation of dense
bubble-like structures moving at relativistic speeds, which collide and break up into smaller structures
(see Figs. 7 and 8 of Ref. [25]). We conjectured at that time that such collisions would be a very strong
source of GW, analogous to the GW production associated with strongly first order phase transitions [9].
As we will show here, this is indeed the case during the nucleation, collision and subsequent rescattering of
the initial bubble-like structures produced after hybrid inflation. During the different stages of reheating
in this model, gravity waves are generated and amplified until the Universe finally thermalizes and enters
into the radiation era of the Standard Model of Cosmology. From that moment until now, this cosmic
GWB will be redshifted as a radiation-like fluid, totally decoupled from any other energy-matter content
of the universe, such that today’s ratio of energy stored in these GW to that in radiation, could range
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from Ω
GW
h2 ∼ 10−8, peacked around f ∼ 107 Hz for the high-scale models, to Ω

GW
h2 ∼ 10−11, peacked

around f ∼ 1 Hz for the low-scale models.
Finally, since the first paper by Khlebnikov and Tkachev [18], studing the GWB produced at reheat-

ing after chaotic inflation, there has been some developments. The idea was soon extended to hybrid
inflation in Ref. [19]. It was also revisited very recently in Ref. [20, 21] for the λφ4 and m2φ2 chaotic
scenarios, and reanalysed again for hybrid inflation in Refs. [16, 17], using the new formalism of tachyonic
preheating [24, 25]. Because of the increase in computer power of the last few years, we are now able to
perform precise simulations of the reheating process in a reasonable time scale. Moreover, understanding
of reheating has improved, while gravitational waves detectors are beginning to attain the aimed sensitiv-
ity [2]. Furthermore, since these cosmic GWBs could serve as a deep probe into the very early universe,
we should characterize in the most detailed way the information that we will be able to extract from
them.

2 Gravitational Wave Production

Our main purpose here is to study the details of the stochastic GWB produced during the reheating
stage after hybrid inflation (sections 2 and 3). Nevertheless, we also study more briefly the analogous
background from reheating in some chaotic models (section 4). Thus, in this section we derive a general
formalism for extracting the GW power spectrum in any scenario of reheating within the (flat) Friedman-
Robertson-Walker (FRW) universe. The formalism will be simplified when applied to scenarios in which
we can neglect the expansion of the universe, like in the case of Hybrid models.

A theory with an inflaton scalar field χ interacting with other Bose fields φa, can be described by

L =
1

2
∂µχ∂

µχ+
1

2
∂µφa∂

µφa +
R

16πG
− V (φ, χ) (1)

with R the Ricci scalar. For hybrid models, we consider a generic symmetry breaking ‘Higgs’ field Φ,
with Nc real components. We can take Φ†Φ = 1

2

∑

a φ
2
a ≡ |φ|2/2, with a running for the number of Higgs’

components, e.g. Nc = 1 for a real scalar Higgs, Nc = 2 for a complex scalar Higgs or Nc = 4 for a SU(2)
Higgs, etc. The effective potential then becomes

V (φ, χ) =
λ

4

(

|φ|2 − v2
)2

+ g2χ2|φ|2 +
1

2
µ2χ2 . (2)

For chaotic scenarios, we consider a massless scalar field φ interacting with the inflaton χ via

V (χ, φ) =
1

2
g2χ2φ2 + V (χ) , (3)

with V (χ) the inflaton’s potential. Concerning the simulations we show in this paper, we concentrate in
the Nc = 4 case for the hybrid model and consider a potential V (χ) = λ

4χ
4 for the chaotic scenario.

The classical equations of motion of the inflaton and the other Bose fields are

χ̈+ 3Hχ̇− 1

a2
∇2χ+

∂V

∂χ
= 0 , φ̈a + 3Hφ̇a − 1

a2
∇2φa +

∂V

∂φa
= 0 (4)

with H = ȧ/a. On the other hand, GW are represented here by a transverse-traceless (TT) gauge-
invariant metric perturbation, hij , on top of the flat FRW space ds2 = −dt2 + a2(t) (δij + hij) dx

idxj ,
with a(t) the scale factor and the tensor perturbations verifying ∂ihij = hii = 0. Then, the Einstein
field equations can be splitted into the background and the perturbed equations. The former describe
the evolution of the flat FRW universe through

− Ḣ

4πG
= χ̇2 +

1

3a2
(∇χ)2 + φ̇2

a +
1

3a2
(∇φa)2 (5)

3H2

4πG
= χ̇2 +

1

a2
(∇χ)2 + φ̇2

a +
1

a2
(∇φa)2 + 2V (χ, φ) (6)

where any term in the r.h.s. of (5) and (6), should be understood as spatially averaged.
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On the other hand, the perturbed Einstein equations describe the evolution of the tensor perturba-
tions [35] as

ḧij + 3Hḣij −
1

a2
∇2hij = 16πGΠij , (7)

with ∂iΠij = Πii = 0. The source of the GW, Πij , contributed by both the inflaton and the other scalar
fields, will be just the transverse-traceless part of the (spatial-spatial) components of the total anisotropic
stress-tensor

Tµν = [∂µχ∂νχ+ ∂µφa∂νφa + gµν(L − 〈p〉)] /a2, (8)

where L(χ, φa) is the lagrangian (1) and 〈p〉 is the background homogeneous pressure. As we will explain
in the next subsection, when extracting the TT part of (8), the term proportional to gµν in the r.h.s
of (8), will be dropped out from the GW equations of motion. Thus, the effective source of the GW will
be just given by the TT part of the gradient terms ∂µχ∂νχ+ ∂µφa∂νφa.

2.1 The Transverse-Traceless Gauge

A generic (spatial-spatial) metric perturbation δhij has six independent degrees of freedom, whose contri-
butions can be split into [35] scalar, vector and tensor metric perturbations δhij = ψ δij+E,ij+F(i,j)+hij ,
with ∂iFi = 0 and ∂ihij = hii = 0. By choosing a transverse-traceless stress-tensor source Πij , we can
eliminate all the degrees of freedom (d.o.f.) but the pure TT part, hij , which represent the only physical
d.o.f which propagate and carry energy out of the source (i.e. GW). Thus, taking the TT part of the
anisotropic stress-tensor, we ensure that we only source the physical d.o.f. that represent GW.

Let us switch to Fourier space. The GW equations (7) then read

ḧij(t,k) + 3Hḣij(t,k) +
k2

a2
hij(t,k) = 16πGΠij(t,k) , (9)

where k = |k|. Assuming no GW at the beginnig of reheating (i.e. the end of inflation te), the initial
conditions are hij(te) = ḣij(te) = 0, so the solution to Eq. (9) for t > te will be just given by a causal
convolution with an appropriate Green’s function G(t, t′),

hij(t,k) = 16πG

∫ t

te

dt′G(t, t′)Πij(t
′,k) . (10)

Therefore, all we need to know for computing the GW is the TT part of the stress-tensor, Πij , and the
Green’s function G(t′, t). However, as we will demonstrate shortly, we have used a numerical method by
which we don’t even need to know the actual form of G(t′, t). To see this, let us extract the TT part of
the total stress-tensor. Given the symmetric anisotropic stress-tensor Tµν (8), we can easily obtain the
TT part of its spatial components in momentum space, Πij(k). Using the spatial projection operators

Pij = δij − k̂ik̂j , with k̂i = ki/k, then [36] Πij(k) = Λij,lm(k̂)Tlm(k), where

Λij,lm(k̂) ≡
(

Pil(k̂)Pjm(k̂) − 1

2
Pij(k̂)Plm(k̂)

)

. (11)

Thus, one can easily see that, at any time t, kiΠij(k̂, t) = Πi
i(k̂, t) = 0, as required, thanks to the identities

Pij k̂j = 0 and PijPjm = Pim.
Note that the solution (10) is just linear of the non-traceless nor-transverse tensor Tij (8). Therefore,

we can write the TT tensor perturbations (i.e. the GW) as

hij(t,k) = Λij,lm(k̂)ulm(t,k), (12)

with uij(t,k) the Fourier transform of the solution of the following equation

üij + 3Hu̇ij −
1

a2
∇2uij = 16πGTij . (13)

This Eq. (13) is nothing but Eq. (7), sourced with the complete Tij (8), instead of with its TT part,
Πij . Of course, Eq. (13) contains unphysical (gauge) d.o.f.; however, in order to obtain the real physical
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TT d.o.f. hij , we can evolve Eq.(13) in configuration space, Fourier transform its solution and apply the
projector (11) as in (12). This way we can obtain in momentum space, at any moment of the evolution,
the physical TT d.o.f. that represent GW, hij . Whenever needed, we can Fourier transform back to
configuration space and obtain the spatial distribution of the gravitational waves.

Moreover, since the second term of the r.h.s of the total stress-tensor Tij is proportional to gij =
δij + hij , see (8), when aplying the TT projector (11), the part with the δij just drops out, simply
because it is a pure trace, while the other part contributes with a term −(L − 〈p〉)hij in the l.h.s of
Eq.(9). However, (L − 〈p〉) is of the same order as the metric perturbation ∼ O(h), so this extra term
is second order in the gravitational coupling and it can be neglected in the GW Eqs. (9). This way, the
effective source in Eq. (13) is just the gradient terms of both the inflaton and the other scalar fields,

Tij = (∇iχ∇jχ+ ∇iφa∇jφa)/a2. (14)

Therefore, the effective source of the physical GW, will be just the TT part of (14), as we had already
mentioned before.

We have found the commuting procedure proposed (i.e. the fact that we first solve Eq. (13) and
secondly we apply the TT projector to the solution (12), and not the other way around), very useful.
We are able to extract the spectra or the spatial distribution of the GW at any desired time, saving a
great amount of computing time since we don’t have to be Fourier transforming the source at each time
step. Most importantly, with this procedure we can take into account backreaction simultaneously with
the fields evolution.

In summary, for solving the dynamics of reheating of a particular inflationary model, we evolve
Eqs. (4) in the lattice, together with Eqs. (5)-(6), while for the GWs we solve Eq. (13). Then, only
when required, we Fourier transform the solution of Eq. (13) and then apply (12) in order to recover the
physical transverse-traceless d.o.f representing the GW. From there, one can easily build the GW spectra
or take a snapshot of spatial distribution of the gravitational waves.

2.2 The energy density in GW

The energy-momentum tensor of the GW is given by [36]

tµν =
1

32πG

〈

∂µhij ∂νh
ij

〉

V
, (15)

where hij are the TT tensor perturbations solution of Eq. (7). The expectation value 〈...〉V is taken
over a region of sufficiently large volume V = L3 to encompass enough physical curvature to have a
gauge-invariant measure of the GW energy-momentum tensor.

The GW energy density will be just ρ
GW

= t00, so

ρ
GW

=
1

32πG

1

L3

∫

d3x ḣij(t,x)ḣij(t,x) =
1

32πG

1

L3

∫

d3k ḣij(t,k)ḣ∗ij(t,k) , (16)

where in the last step we Fourier transformed each ḣij and used the definition of the Dirac delta. We can
always write the scalar product in (16) in terms of the (Fourier transformed) solution ulm of the Eq.(13),
by just using the fact that Λij,lmΛlm,rs = Λij,rs. This way, we can express the GW energy density as

ρ
GW

=
1

32πGL3

∫

k2dk

∫

dΩ Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k). (17)

From here, we can also compute the power spectrum per logarithmic frequency interval in GW, normalized
to the critical density ρc, as Ω

GW
=

∫ df
f Ω

GW
(f) , where

Ω
GW

(k) ≡ 1

ρc

dρ
GW

d logk
=

k3

32πGL3ρc

∫

dΩ Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k) (18)

We have checked explicitely in the simulations that the argument of the angular integral of (18) is
independent of the directions in k-space. Thus, whenever we plot the GW spectrum of any model, we
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will be showing the amplitude of the spectrum (per each mode k) as obtained after avaraging over all the
directions in momentum space,

Ω
GW

(k) =
k3

8GL3ρc

〈

Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k)
〉

4π
(19)

with 〈f〉4π ≡ 1
4π

∫

fdΩ.
Finally, we must address the fact that the frequency range, for a GWB produced in the early universe,

will be redshifted today. We should calculate the characteristic physical wavenumber of the present
GW spectrum, which is redshifted from any time t during GW production. So let us distinguish four
characteristic times: the end of inflation, te; the time t∗ when GW production stops; the time tr when
the universe finally reheats and enters into the radiation era; and today, t0. Thus, today’s frequency f0
is related to the physical wavenumber kt at any time t of GW production, via f0 = (at/a0)(kt/2π), with
a0 and at, the scale factor today and at the time t, respectively. Thermal equilibrium was established
at some temperature Tr, at time tr ≥ t. The Hubble rate at that time was M2

PH
2
r = (8π/3)ρr, with

ρr = grπ
2T 4

r /30 the relativistic energy density and gr the effective number of relativistic degrees of
freedom at temperature Tr. Since then, the scale factor has increased as ar/a0 = (g0,s/gr,s)

1/3(T0/Tr),
with gi,s the effective entropic degrees of freedom at time ti, and T0 today’s CMB temperature. Putting
all together,

f0 =

(

8π3gr

90

)
1

4
(

g0,s

gr,s

)
1

3 T0
√

HrMp

(

ae

ar

)

k

2π
, (20)

where we have used the fact that the physical wave number kt at any time t during GW production, is
related to the comoving wavenumber k through kt = (ae/at)k with the normalization ae ≡ 1.

From now on, we will be concerned with hybrid inflation, leaving chaotic inflation for section 4. Within
the hybrid scenario, we will analyse the dependence of the shape and amplitude of the produced GWB
on the scale of hybrid inflation, and more specifically on the v.e.v. of the Higgs field triggering the end
of inflation. Given the natural frequency at hand in hybrid models, m =

√
λv, whose inverse m−1 sets

the characteristic time scale during the first stages of reheating, it happens that as long as v ≪ Mp, the

Hubble rate H ∼
√
λ(v2/Mp) is much smaller than such a frequency, H ≪ m. Indeed, all the initial

vacuum energy ρ0 gets typically converted into radiation in less than a Hubble time, in just a few m−1

time steps. Therefore, we should be able to ignore the dilution due to the expansion of the universe during
the production of GW, at least during the first stages of reheating. Our approach will be to ignore the
expansion of the Universe, such that we fix the scale factor to one, a = 1. As we will see later, neglecting
the expansion of the Universe for the time of GW production, will be completely justified a posteriori.

The system of equations that we have to solve numerically in a lattice for the hybrid model are

üij −∇2uij = 16πGTij (21)

χ̈−∇2χ+
(

g2|φ|2 + µ2
)

χ = 0 (22)

φ̈a −∇2φa +
(

g2χ2 + λ|φ|2 −m2
)

φa = 0 (23)

with Tij given by Eq.(14) with the scale factor a = 1. We have explicitly checked in our computer
simulations that the backreaction of the gravity waves into the dynamics of both the inflaton and the
Higgs fields is negligible and can be safely ignored. We thus omit the backreaction terms in the above
equations.

We evaluated during the evolution of the system the mean field values, as well as the different energy
components. Initially, the Higgs field grows towards the true vacuum and the inflaton moves towards the
minimum of its potential and oscillates around it. We have checked that the sum of the averaged gradient,
kinetic and potential energies (contributed by both the inflaton and the Higgs), remains constant during
reheating, as expected, since the expansion of the universe is irrelevant in this model. We have also
checked that the time evolution of the different energy components is the same for different lattices,
changing the number of points N , the minimum momentum pmin = 2π/L or the lattice spacing a = L/N ,
with L the lattice size. The evolution of the Higgs’ v.e.v. follows three stages easily distinguished. First,
an exponential growth of the v.e.v. towards the true vacuum. This is driven by the tachyonic instability of
the long-wave modes of the Higgs field, that makes the spatial distribution of this field to form lumps and
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Figure 1: The time evolution of the different types of energy (kinetic, gradient, potential, anisotropic
components and gravitational waves for different lattices), normalized to the initial vacuum energy, after
hybrid inflation, for a model with v = 10−3MP . One can clearly distinguish here three stages: tachyonic
growth, bubble collisions and turbulence.

bubble-like structures [24, 25]. Second, the Higgs field oscillates around the true vacuum, as the Higgs’
bubbles collide and scatter off eachother. Third, a period of turbulence is reached, during which the
inflaton oscillates around its minimum and the Higgs sits in the true vacuum. For a detailed description
of the dynamics of these fields see Ref. [25]. Here we will be only concerned with the details of the
gravitational wave production.

The initial energy density at the end of hybrid inflation is given by ρ0 = m2v2/4, with m2 = λv2, so
the fractional energy density in gravitational waves is

ρ
GW

ρ0
=

4t00
v2m2

=
1

8πGv2m2

〈

ḣij ḣ
ij

〉

V
, (24)

where
〈

ḣij ḣ
ij

〉

V
, defined as a volume average like 1

V

∫

d3xḣij ḣ
ij , is extracted from the simulations as

〈

ḣij ḣ
ij

〉

V
=

4π

V

∫

dlogk k3
〈

Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k)
〉

4π
(25)

where uij(t,k) is the Fourier transform of the solution of Eq. (21). Then, we can compute the corre-
sponding density parameter today (with Ωrad h

2 ≃ 3.5 × 10−5)

Ω
GW

h2 =
Ωrad h

2

2Gv2m2 V

∫

dlogk k3
〈

Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k)
〉

4π
(26)

which has assumed that all the vacuum energy ρ0 gets converted into radiation, an approximation which
is always valid in generic hybrid inflation models with v ≪MP , and thus H ≪ m =

√
λ v.

We have shown in Fig. 1 the evolution in time of the fraction of energy density in GW. The first
(tachyonic) stage is clearly visible, with a (logarithmic) slope twice that of the anisotropic tensor Πij .
Then there is a small plateau corresponding to the production of GW from bubble collisions; and finally
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Figure 2: We show here the comparison between the power spectrum of gravitational waves obtained
with increasing lattice resolution, to prove the robustness of our method. The different realizations are
characterized by the the minimum lattice momentum (pmin) and the lattice spacing (ma). The growth
is shown in steps of m∆t = 1 up to mt = 30, and then in and m∆t = 5 steps up to mt = 60.

there is the slow growth due to turbulence. In the next section we will describe in detail the most
significant features appearing at each stage.

Note that in the case that H ≪ m, the maximal production of GW occurs in less than a Hubble time,
soon after symmetry breaking, while turbulence lasts several decades in time units of m−1. Therefore,
we can safely ignore the dilution due to the Hubble expansion, up to times much greater than those of
the tachyonic instability. Eventually the universe reheats and the energy in gravitational waves redshifts
like radiation thereafter.

To compute the power spectrum per logarithmic frequency interval in GW, Ω
GW

(f), we just have to
use (18). We can evaluate the power spectrum today from that obtained at reheating by converting the
wavenumber k into frequency f . Simply using Eq. (20), with gr,s/g0,s ∼ 100, gr,s ∼ gr and ae ∼ a∗, then

f = 6 × 1010 Hz
k

√

HMp

= 5 × 1010 Hz
k

m
λ1/4 . (27)

We show in Fig. 2 the power spectrum of gravitational waves as a function of (comoving) wavenumber
k/m. We have used different lattices in order to have lattice artifacts under control, specially at late times
and high wavenumbers. We made sure by the choice of lattice size and spacing (i.e. kmin and kmax) that
all relevant scales fitted within the simulation. Note, however, that the lower bumps are lattice artifacts,
due to the physical cutoff imposed at the initial condition, that rapidly disappear with time. We have also
checked that the power spectrum of the scalar fields follows turbulent scaling after mt ∼ O(100), and we
can thus estimate the subsequent evolution of the energy density distributions beyond our simulations.

3 Lattice simulations

The problem of determining the time evolution of a quantum field theory is an outstandingly difficult
problem. In some cases only a few degrees of freedom are relevant or else perturbative techniques are
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applicable. However, in our particular case, our interests are focused on processes which are necessarily
non-linear and non-perturbative and involve many degrees of freedom. The presence of gravitational
fields just contributes with more degrees of freedom, but does not complicate matters significantly.

In the present paper we will use the so called classical approximation to deal with the problem.
It consists of replacing the quantum evolution of the system by its classical evolution, for which there
are feasible numerical methods available. The quantum nature of the problem remains in the stochastic
character of the initial conditions. This approximation has been used with great success by several groups
in the past [34, 24]. The advantage of the method is that it is fully non-linear and non-perturbative.

Our approach is to discretize the classical equations of motion of all fields in both space and time.
The time-like lattice spacing at must be smaller than the spatial one as for the stability of the discretized
equations. In addition to the ultraviolet cut-off one must introduce an infrared cut-off by putting the
system in a box with periodic boundary conditions. In this paper we have thouroughly studied a model
with g2 = 2λ = 1/4, but we have checked that other values of the parameters do not change our results
significantly.

3.1 Initial conditions

The initial conditions of the fields follow the prescription from Ref. [25]. The Higgs modes φk are solutions
of the coupled evolution equations, which can be rewritten as φ′′k + (k2 − τ)φk = 0, with τ = M(t− tc)
and M = (2V )1/3m. The time-dependent Higgs mass follows from the initial inflaton field homogeneous
component, χ0(ti) = χc(1 − Vm(ti − tc)) and χ̇0(ti) = −χcVm. The Higgs modes with k/M >

√
τi are

set to zero, while the rest are determined by a Gaussian random field of zero mean distributed according
to the Rayleigh distribution

P (|φk|)d|φk|dθk = exp

(

−|φk|2
σ2

k

)

d|φk|2
σ2

k

dθk

2π
, (28)

with a uniform random phase θk ∈ [0, 2π] and dispersion given by σ2
k ≡ |fk|2 = P (k, τi)/k

3, where P (k, τi)
is the power spectrum of the initial Higgs quantum fluctuations, computed in the linear approximation
in the background of the homogeneous inflaton. In the classical limit, the conjugate momentum φ̇k(τ) is
uniquely determined as φ̇k(τ) = F (k, τ)φk(τ), with F (k, τ) = Im(ifk(τ)ḟ∗

k (τ))/|fk(τ)|2, see Ref. [25].
The rest of the fields (the inflaton non-zero modes and the gravitational waves), are supposed to

start from the vacuum, and therefore they are semiclassically set to zero initially in the simulations.
Their coupling to the Higgs modes will drive their evolution, giving rise to a rapid (exponential) growth
of the GW and inflaton modes. Their subsequent non-linear evolution will be well described by the
lattice simulations. In the next subsections we will describe the different evolution stages found in our
simulations.

3.2 Tachyonic growth

In this subsection we will compare the analytical estimates with our numerical simulations for the initial
tachyonic growth of the Higgs modes and the subsequent growth of gravitational waves. The first check
is that the Higgs modes grow according to Ref. [25]. There we found that

k|φk(t)|2 ≃ v2 A(τ) e−B(τ)k2

, (29)

with A(τ) and B(τ) are given, for τ > 1, as A(τ) = π2(1/3)2/3

2Γ2(1/3) Bi2(τ) , and B(τ) = 2(
√
τ − 1), where

Bi(z) is the Airy function of the second kind. We have checked that the initial growth, from mt = 6 to
mt = 10, follows precisely the analytical expression.

The comparison between the tensor modes hij(k, t) and the numerical results is somewhat more
complicated. We should first compute the effective anisotropic tensor Tij(k, t) (14) from the gradients of
the Higgs field (those of the inflaton are not relevant during the tachyonic growth), as follows,

Π̃ij(k, t) =

∫

d3x e−ikx

(2π)3/2
[∇iφ

a ∇jφ
a(x, t)] , (30)
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where ∇iφ
a(x, t) =

∫

d3q

(2π)3/2 iqi φ̃a(q, t) e−iqx. After performing the integral in x and using the delta

function to eliminate q′, we make a change of variables q → q + k/2, and integrate over q. Finally, with
the use of Π̃ij(k, t), we can compute the tensor fields,

hij(k, t) = (16πG)

∫ t

0

dt′
sin k(t− t′)

k
Π̃ij , ∂0hij(k, t) = (16πG)

∫ t

0

dt′ cos k(t− t′) Π̃ij . (31)

Using the analytic solutions one can perform the integrals and obtain expressions that agree surprisingly
well with the numerical estimates. This allows one to compute the density in gravitational waves, ρ

GW
, at

least during the initial tachyonic stage in terms of analytical functions, and we reproduce the numerical
results. We will now compare these with the analytical estimates. The tachyonic growth is dominated
by the faster-than-exponential growth of the Higgs modes towards the true vacuum. The (traceless)
anisotropic strees tensor Πij grows rapidly to a value of order k2|φ|2 ∼ 10−3m2v2, which gives a tensor
perturbation

∣

∣hijh
ij

∣

∣

1/2 ∼ 16πGv2(m∆t)210−3 , (32)

and an energy density in GW,

ρ
GW
/ρ0 ∼ 64πGv2 (m∆t)210−6 ∼ Gv2 , (33)

for m∆t ∼ 16. In the case at hand, with v = 10−3MP , we find ρ
GW
/ρ0 ∼ 10−6 at symmetry breaking,

which coincides with the numerical simulations at that time, see Fig. 1.
As shown in Ref. [25], the spinodal instabilities grow following the statistics of a Gaussian random

field, and therefore one can use the formalism of [41] to estimate the number of peaks or lumps in the
Higgs spatial distribution just before symmetry breaking. As we will discuss in the next section, these
lumps will give rise via non-linear growth to lump invagination and the formation of bubble-like structures
with large density gradients, expanding at the relativistic speeds and colliding among themselves giving
rise to a large GWB. The size of the bubbles upon collision is essentially determined by the distance
between peaks at the time of symmetry breaking, but this can be computed directly from the analysis of
Gaussian random fields, as performed in Ref. [25]. This analysis works only for the initial (linear) stage
before symmetry breaking. Nevertheless, we expect the results to extrapolate to later times since once a
bubble is formed around a peak, it remains there at a fixed distance from other bubbles. This will give
us an idea of the size of the bubbles at the time of collision.

3.3 Bubble collisions

The production of gravitational waves in the next stage proceeds through ‘bubble’ collisions. In Ref. [24]
we showed that during the symetry breaking, the Higgs field develops lumps whose peaks grow up to a
maximum value |φ|max/v = 4/3, and then decrease creating approximately spherically symmetric bubbles,
with ridges that remain above |φ| = v. Finally, neighboring bubbles collide and high momentum modes
are induced via field inhomogeneities. Since initially only the Higgs field sources the anisotropic stress-
tensor Πij , then we expect the formation of structures in the spatial distribution of the GW energy
density correlated with the Higgs lumps. In this sub-section we will give an estimate of the burst in GW
produced by the first collisions of the Higgs bubble-like structures.

As for the collision of vaccum bubbles in first order phase transitions [9], we can give a simple estimate
of the order of magnitude of the energy fraction radiated in the form of gravitational waves when two
Higgs bubble-like structures collide. A similar stimation is indeed presented in [42, 22]. In general, the
problem of two colliding bubbles has several time and length scales: the duration of the collision, ∆t; the
bubbles’ radius R at the moment of the collision; and the relative speed of the bubble walls. The typical
size of bubbles upon collisions, is of the order of R ≈ 10m−1, while the growth of the bubble’s wall is
relativistic, see Ref. [25]. Then we can assume than the time scale associated with bubble collisions is
also ∆t ∼ R. Assuming the bubble walls contain most of the energy density, it is expected that the
asymmetric collisions will copiously produce GW.

Far from a source that produces gravitational radiation, the dominat contribution to the amplitude
of GW is given by the acceleration of the quadrupole moment of the Higgs field distribution. Given the
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energy density of the Higgs field, ρH, we can compute the (reduced) quadrupole moment of the Higgs
field spatial distribution, Qij =

∫

d3x (xixj −x2δij/3) ρH(x), such that the amplitude of the gravitational

radiation, in the TT gauge, is given by hij ∼ (2G/r)Q̈ij . A significant amount of energy can be emitted in
the form of gravitational radiation whenever the quadrupole moment changes significantly fast: through
the bubble collisions in this case. The power carried by these waves can be obtained via (17) as

P
GW

=
G

8π

∫

dΩ
〈...
Qij

...
Q

ij
〉

. (34)

Omitting indices for simplicity, as the power emitted in gravitational waves in the quadrupole approxi-
mation is of order P

GW
∼ G(

...
Q)2, while the quadrupole moment is of order Q ∼ R5ρH, we can estimate

the power emitted in GW upon the collision of two Higgs bubbles as

P
GW

∼ G

(

R5ρ

R3

)2

∼ Gρ2
HR

4 (35)

The fraction of energy density carried by these waves, ρ
GW

∼ P
GW

∆t/R3 ∼ P
GW
/R2 ∼ Gρ2

H R
2,

compared to that of the initial energy stored in the two bubble-like structures of the Higgs field, will be
ρ

GW
/ρH = GρHR

2. Since the expansion of the universe is negligible during the bubble collision stage, the
energy that drives inflation, ρ0 ∼ m2v2, is transferred essentially to the Higgs modes during preheating,
within an order of magnitude, see Fig. 1. Thus, recalling that R ∼ 10m−1, the total fraction of energy
in GW produced during the bubble collisions to that stored in the Higgs lumps formed at symmetry
breaking, is given by

ρ
GW

ρ0
∼ 0.1Gρ0R

2 ∼ (v/Mp)
2 , (36)

giving an amplitude which is of the same order as is observed in the numerical simulations, see Fig. 1. Of
course, an exhaustive analytical treatment of the production of GW during this stage of bubble collisions
remains to be done, but we leave it for a future publication.

3.4 Turbulence

The development of a turbulent stage is expected from the point of view of classical fields, as turbulence
usually appears whenever there exists an active (stationary) source of energy localized at some scale kin

in Fourier space. The oscillating inflaton zero-mode plays the role of the pumping-energy source, acting
at a well defined scale kin in Fourier space, given by the frequency of the inflaton oscillations. Apart from
kin, there is no other scale in Fourier space where energy is accummulated, dissipated and/or infused. So,
as turbulence is characterized by the transport of some conserved quantity, energy in our case, we should
expect a flow of energy from kin towards higher (direct cascade) or smaller (inverse cascade) momentum
modes. In typical turbulent regimes of classical fluids, there exits a sink in Fourier space, corresponding to
that scale at which the (direct) cascade stops and energy gets dissipated. However, in our problem there
is no such sink so that the transported energy cannot be dissipated, but instead it is used to populate
high-momentum modes. For the problem at hand, there exists a natural initial cut-off kout ∼ λ1/2v,
such that only long wave modes within k < kout, develop the spinodal instability. Eventually, after the
tachyonic growth has ended and the first Higgs’ bubble-like structures have collided, the turbulent regime
is established. Then the energy flows from small to greater scales in Fourier space, which translates into
the increase of kout in time.

When the turbulence has been fully established, if the wave (kinetic) turbulence regime of the fields’
dynamics is valid, the time evolution of the variance of a turbulent field f(x, t), should follow a power-
law-like scaling [43]

Var(f(t)) =
〈

f(t)2
〉

− 〈f(t)〉2 ∝ t−2p , (37)

with p = 1/(2N − 1) and N the number of scattering fields in a ‘point-like collision’. In Fig. 3 we have
plotted the time evolution of the variances of the Inflaton χ and of the Higgs modulus φ =

√
∑

a φ
2
a, and

fitted the data with a power-law like (37), obtaining
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Figure 3: Variance of the Inflaton and the Higgs field as a function of time, the former normalized to
its critical value, the latter normalized to its v.e.v.. As expected in a turbulent regime, these variances
follow a power law ∼ t−2p with p a certain critical exponent, although the slope of the Inflaton’s variances
evolves in time. The curves are produced from an average over 10 different statistical realizations.

Inflaton: p−1
I

= 5.1 ± 0.2, [35:85]

Inflaton: p−1
I

= 9.03 ± 0.03, [350:2000]

Higgs: p−1
H

= 7.02 ± 0.01, [50:2000]

where the last brackets on the right correspond to the range in time (in units of m−1) for which we
fitted the data. As can be seen in Fig. 3, the slope of the Higgs field (in logarithmic scale), 2p

H
∼ 2/7,

remains approximately constant in time, corresponding to a 4-field dominant interaction. However, the
slope of the Inflaton’s variance increases in time, i.e. the critical exponent pI of the Inflaton decreases,
until it reaches a stationary stage at mt ∼ 100. We will not try to explain here the origin of such an
effective critical exponents as extracted from the simulations. We will just stress that we have checked
the robustness of those values under different lattice configurations (N, pmin) and different statistical
realizations. Actually, when turbulence has fully developed, it is expected that the distribution function
of the classical turbulent fields, the inflaton and the Higgs here, follow a self-similar evolution [43]

n(k, t) = t−γ pn0(k t
−p) , (38)

with p the critical exponent of the fields’ variances and γ a certain factor ∼ O(1), which depends on
the type of turbulence developed. Looking at (38), we see that the exponent p determines the speed
of the particles’ distribution in momentum space: given a specific scale kc that scale evolves in time
as kc(t) = kc(t0)(t/t0)

p. In the simulations, we have seen that the evolution of the Higgs occupation
number follows Eq. (38) with p ≈ 1/7, as expected from the Higgs variance, and γ ≈ 2.7. Whereas the
evolution of the Inflaton occupation number follows (38) even more accurately than the Higgs, with an
“effective” exponent (once the asymptotic regime is achieved) p ≈ 1/5, and γ ≈ 3.9. In Figs. 4 we have
plotted the occupation numbers of the Higgs and the Inflaton, also inverting the relation of Eq. (38) in
order to extract the universal time-independent n0(k) functions of each field. As shown in those figures,
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Figure 4: Some snapshots of the evolution of the spectral particle occupation numbers of the Higgs and
the Inflaton fields at different times, each averaged over 10 statistical realizations. We multiply them by
k4 so we can see better the scaling behaviour. In the upper right corner, we plot the inverse relation
of (38), n0(kt

−p) = tγpn(k, t), also averaged over 10 realizations for each time. The scaling behaviour
predicted by wave kinetic turbulent theory [43], is clearly verified.

the distributions follow nicely the expected scaling behaviour. The universal functions n0(k) plotted in
Figs. 4 have been obtained from averaging over ten statistical realizations for each time.

The advantage of the development of a turbulence behaviour is obvious: it allows us to extrapolate
the time evolution of the fields’ distributions till later times beyond the one we can reach with the
simulations. Moreover, the fact that the turbulence develops so early after the tachyonic instability, also
allow us to check for a long time of the simulation, the goodness of the description of the dynamics of the
fields, given by the turbulent kinetic theory developed in Ref. [43]. We have fitted the averaged universal
functions n0(k) with expressions of the form k4 n0(k) = P (k)e−Q(k), with P (k) and Q(k) polynomials in
k. There is no fundamental meaning associated with such a fit, but it is very useful to have an analytical
control over n0(k), since this allows us to track the time-evolution of n(k, t) through Eq. (38). Actually,
the classical regime of the evolution of some bosonic fields ends when the system can be relaxed to the
Bose-Einstein distribution. Since we cannot reach that moment, we can at least estimate the moment in
which the initial energy density gets fully transferred to the Higgs classical modes. Using Eq.(38) and
the fit to the universal n0(k) of the Higgs, we find that the initial energy density is totally transfered to
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of k during the turbulent stage.

the Higgs when (in units m = 1)

ρ0 =
1

4λ
=

∫

dk

k

k3

2π2
k n(k, t) =

7.565

2π2
t(4−γ)p , (39)

where we have assumed that the Higgs’ modes have energy Ek(k, t) = k n(k, t). In our case, with λ = 1/8,
the conversion of the initial energy density into Higgs particles and therefore into radiation is complete
by t ∼ 6 × 104m−1. Therefore, if we consider this value as a lower bound for the time that classical
turbulence requires to end, we see that turbulence last for a very long time compared to the time-scale
of the initial tachyonic and bubbly stages. Thus, if GW were significatively sourced during turbulence,
one should take into account corrections from the expansion of the universe.

In Fig. 5, we show the evolution of the GW spectra up to times mt = 2000, for a lattice of (N, pmin)
= (128, 0.15). It is clear from that figure that the amplitude of the GW saturates to a value of order
ρ

GW
/ρ0 ≈ 2 · 10−6. At mt ≈ 50, the maximum amplitude of the spectra has already reached ρ

GW
/ρ0 ≈

10−6, while at time mt ≈ 100, the maximum has only grown a factor of 2 with respect to mt ≈ 50.
From times mt ≈ 150 till the maximum time we reached in the simulations, mt = 2000, the maximum of
the amplitude of the spectrum does not seem to change significantly, slowly increasing from ≈ 2 · 10−6

to ≈ 2.5 · 10−6. Despite this saturation, we see in the simulations that the long momentum tail of the
spectrum keeps moving towards greater values. This displacement is precisely what one would expect from
turbulence, although it is clear that the amplitude of the new high momentum modes never exceed that of
lower momentum. In order to disscard that this displacement towards the UV is not a numerical artefact,
one should further investigate the role played by the turbulent scalar fields as a source of GW. Here, we
just want to remark that the turbulent motions of the scalar fields, seem not to increase significatively
anymore the total amplitude of the GW spectrum. Indeed, in a recent paper [22] where GW production
at reheating is also considered, it is stated that GW production from turbulent motion of classical scalar
fields, should be very supressed. That is apparently what we observe in our simulations although, as
pointed above, this issue should be investigated in a more detailed way. Anyway, here we can conclude
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that the expansion of the Universe during reheating in these hybrid models, does not play an important
role during the time of GW production, and therefore we can be safely ignore it.

4 Gravitational Waves from Chaotic Inflation

The production of a relic GWB at reheating was first addressed by Khlebnikov and Tkachev (KT) in
Ref. [18], both for the quadratic and quartic chaotic inflation scenarios. Recently, chaotic scenarios were
revisited in Ref. [20, 21]. Also very recently, Ref. [22] studied in a very detail way, the evolution of GW
produced at preheating in the case of a massless inflaton with an extra scalar field.

In Refs. [18] and [20], the procedure to compute the GW from reheating relied on Weinberg’s formula
for flat space-time [45]. However, in chaotic models, the expansion of the universe cannot be neglected
during reheating, so Weinberg’s formula can only be used in an approximated way, if the evolution of
the universe is considered as an adiabatic sequence of stationary universes. In Ref. [17], however, we
adopted a different approach that takes into account the expansion of the universe in a self-consistent
manner, and allows us to calculate at any time the energy density and power spectra of the GW produced
at reheating (see section 2). Using our technique, we will show in this section that we reproduce, for
specific chaotic models, similar results to those of other authors. In particular, we adapted the publicly
available LATTICEEASY code [31], taking advantage of the structure of the code itself, incorparating
the evolution of Eq. (7), together with the equations of the scalar fields, Eqs. (4), into the staggered
leapfrog integrator routine.

Here we will concentrate only in an scenario with a massless inflaton χ, either accompanied or not by
an extra scalar field φ. Such scenarios are described by the potential

V (χ, φ) =
λ

4
χ4 +

1

2
g2χ2φ2 (40)

Rescaling the time by and the physical fields by a conformal transformation as

χc(τ) =
a(τ)

a(0)

χ(τ)

χ(0)
, φc(τ) =

a(τ)

a(0)

φ(τ)

χ(0)
, dτ =

a(τ)

a(0)
χ(0)

√
λ dt , (41)

then the equations of motion of the inflaton and of the extra scalar field, Eq. (4), can be rewritten in
terms of the conformal variables as

χ′′
c −∇2χc −

a′′

a
χc + (χ2

c + qφ2
c)χc = 0 (42)

φ′′c −∇2φc −
a′′

a
χc + qχ2

cφc = 0 , (43)

where the prime denotes derivative with respect to conformal time. Since the universe expands as
radiation-like in these scenarios, a(τ) ∼ τ , so the terms proportional to a′′/a in Eqs. (42) and (43)
are soon negligible, as explicitly checked in the simulations. Thanks to this, the model is conformal to
Minkowski.

The parameter q ≡ g2/λ controls the strength and width of the resonance. For the case of a massless
inflaton without an extra scalar field, we just set q = 0 in Eq. (42) and ignore Eq. (43). However, in that
case, fluctuations of the inflaton also grow via parametric resonance. Actually, they grow as if they were
fluctuations of a scalar field coupled to the zero-mode of the inflaton with effective couplig q = g2/λ = 3,
see Ref. [46]. Following Refs. [18] and [20], we set λ = 10−14 and q = 120. Since this case is also computed
in [22], we can also compare our results with theirs. Moreover, we also present results for the pure λχ4

model with no extra scalar field, a case only shown in Ref. [18].
We begin our simulations at the end of inflation, when the homogeneous inflaton verifies χ0 ≈ 0.342Mp

and χ̇0 ≈ 0. We took initial quantum (conformal) fluctuations 1/
√

2k for all the modes up to a certain
cut-off, and only added an initial zero-mode for the inflaton, χc(0) = 1, χc(0)′ = 0. In Figs. 6 and 7, we
show the evolution of Ω

GW
during reheating, normalized to the instant density at each time step, for the

coupled and the pure case, respectively. In the case with an extra scalar field, the amplitude of the GWB
saturates at the end of parametric resonance, when the fields variances have been stabilized. This is the
beginnig of the turbulent stage in the scalar fields, which seems not to source anymore the production of
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Figure 6: The spectrum of the gravitational waves’ energy density, for coupled case with λ = 10−14 and
g2/λ = 120. The spectrum is shown accumulated up to different times during GW production, so one
can see its evolution. At each time, it is normalized to the total instant density. This plot corresponds
to a N = 128 lattice simulation, from τ = 0 to τ = 240.

GWs, as already stated in Refs.[20, 22]. For the pure case, we also see the saturation of the amplitude of
the spectra, see Fig. 7, although the high momentum tail seems to slightly move toward higher values.

Of course, in either case, with and without an extra field φ, in order to predict today’s spectral window
of the GW spectrum, we have first to normalize their energy density at the end of GW production to the
total energy density at that moment; then to redshift the GW spectra from that moment of reheating,
taking into account that the rate of expansion have changed significantly since the end of inflation, see
Eq.(20). In particular, the shape and amplitude of GW spectra for the case with the extra scalar field
coupled to the inflaton with q = 120, seems to coincide with the espectra shown in Ref. [22]. On the
other hand, we also reproduce a similar spectra to the one shown in [18], for the case of the pure quartic
model. Thanks to the tremendous gain in computer power, we were able to resolve the ’spiky’ pattern
of that spectrum with great resolution. For the first time, it is clearly observed the exponential tail for
large frequencies, not shown in Ref. [18]. The most remarkable fact, is that we also confirm that the
peak structure in the GW power spectrum, see Fig. 7, remains clearly visible at times much later than
the one at which those peaks have dissapeared in the scalar fields’ power spectrum. So, as pointed out
in Ref. [18], this characteristic feature will allow us to distinguish this particular model from any other.

Let us emphasize that we have run the simulations till times much greater than that of the end of
the resonance stage, both for the pure and the coupled case. The role of the turbulence period after
preheating seems, therefore, not to be very important, despite its long duration. Apparently, the no-go

theorem about the suppresion of GW at turbulence, discussed in [22], is fulfilled. In Refs. [27, 48] it was
pointed out that gauge couplings or trilinear interactions could be responsible for a fast thermalization
of the universe after inflation (see also Ref. [49]), but as long as this takes place after the end of the
resonace stage, in principle this should not affect the results shown above.

5 Conclusions

To summarize, we have shown that hybrid models are very efficient generators of gravitational waves at
preheating, in three well defined stages, first via the tachyonic growth of Higgs modes, whose gradients
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Figure 7: The spectrum of the gravitational waves’ energy density, for the pure case, with λ = 10−14.
Again, we show the spectrum accumulated up to different times during GW production, normalized to
the total instant density at each time. The plot corresponds to a N = 128 lattice simulation, from τ = 0
to τ = 2000.

act as sources of gravity waves; then via the collisions of highly relativistic bubble-like structures with
large amounts of energy density, and finally via the turbulent regime (although this effect does not seem
to be very significant in the presence of scalar sources), which drives the system towards thermalization.
These waves remain decoupled since the moment of their production, and thus the predicted amplitude
and shape of the gravitational wave spectrum today can be used as a probe of the reheating period in
the very early universe. The characteristic spectrum can be used to distinguish between this stochastic
background and others, like those arising from NS-NS and BH-BH coalescence, which are decreasing with
frequency, or those arising from inflation, that are flat [50].

We have plotted in Fig. 8 the sensitivity of planned GW interferometers like LIGO, LISA and BBO,
together with the present bounds from CMB anisotropies (GUT inflation), from Big Bang Nucleosynthesis
(BBN) and from milisecond pulsars (ms pulsar). Also shown are the expected stochastic backgrounds of
chaotic inflation models like λφ4, both coupled and pure, as well as the predicted background from two
different hybrid inflation models, a high-scale model, with v = 10−3MP and λ ∼ g2 ∼ 0.1, and a low-scale
model, with v = 10−5MP and λ ∼ g2 ∼ 10−14, corresponding to a rate of expansion H ∼ 100 GeV. The
high-scale hybrid model produces typically as much gravitational waves from preheating as the chaotic
inflation models. The advantage of low-scale hybrid models of inflation is that the background produced
is within reach of future GW detectors like BBO [4]. It is speculated that future high frequency laser
interferometers could be sensitive to a GWB in the MHz region [12], although they are still far from the
bound marked with an interrogation sign.

For a high-scale model of inflation, we may never see the predicted GW background coming from pre-
heating, in spite of its large amplitude, because it appears at very high frequencies, where no detector has
yet shown to be sufficiently sensitive, unless the spectrum can be extrapolated to lower frequencies, where
there are interferometric detectors like BBO which could see a signal. On the other hand, if inflation oc-
cured at low scales, even though we will never have a chance to detect the GW produced during inflation in
the polarization anisotropies of the CMB, we do expect gravitational waves from preheating to contribute
with an important background in sensitive detectors like BBO. The detection and characterization of such
a GW background, coming from the complicated and mostly unknown epoch of rehating of the universe,
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may open a new window into the very early universe, while providing a new test on inflationary cosmology.
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Holography and Entanglement Entropy
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Abstract
We review our recent formulation [1, 2] of computing entanglement entropy in a
holographic way. The basic examples can be found by applying AdS/CFT correspon-
dence and the holographic formula has successfully been checked in many examples
of conformal field theories. We also explain the covariant formulation of holographic
entanglement entropy which is closely related to the covariant entropy bound (Bousso
bound) in an interesting way.

1 Introduction

In gravitational theories, the degree of freedom which is contained in a given region A is not proportional
to the volume, but to the area of its boundary ∂A. This is because if we put a lot of materials inside A,
then they eventually make a black hole and this gives the upper bound of the allowed entropy in A. In
this way, the property of the gravitational theory is rather different from the familiar systems described
by the law of quantum mechanics, where the entropy is extensive. This suggests that the true degree of
freedom in a d+2 dimensional gravity is actually equally described by that of a d+1 dimensional quantum
manybody system. This is known as the holographic principle [3]. This idea has been played crucial role
in the recent development of the string theory, especially in the context of AdS/CFT correspondence [4].
The AdS/CFT relates the d + 2 dimensional anti-de Sitter spacetime to a d + 1 dimensional conformal
field theory (CFT).

However, the holography in other spaces such as the de Sitter spacetime has not been studied well.
This is because there is no simple way to realize such spaces in string theory, though in principle we can
find (slightly complicated) examples for e.g. de-Sitter space [5]. Therefore it is intriguing and helpful
to explore a general principle of holography which may allow us to find the holographic dual for any
spacetime without relying on explicit examples in string theory. For this purpose, it is a nice idea to find
a universal physical observables by which we can formulate the holographic principle generally. Clearly,
the correlation functions, which are often quoted and studied in AdS/CFT, are not suitable for this aim,
since we need to specify which operators we consider and thus we need to know the precise spectrum or
field contents of the dual theory.

The purpose of this talk is to present a candidate of such a useful quantity. We claim that the
quantity called entanglement entropy, which can be defined in any quantum mechanical systems, is a
universal physical observable in holography. We will explain how the entanglement entropy in quantum
field theories (QFTs) is related a certain geometrical quantity in the dual gravity background. In the
first half, we assume that the spacetime is static for simplicity, where the entropy is time-independent. In
the latter half, we extend the result in the static case to the time-dependent backgrounds by presenting
a covariant formulation of holographic entanglement entropy. As will explain later, this construction has
an interesting connection to the covariant entropy bound known as the Bousso bound.

This article is organized as follows. In section 2, we will offer an basic definition and properties of
entanglement entropy. In section 3, we review the holographic calculation of entanglement entropy in a
static spacetimes. In section 4, we consider its generalization to time-dependent spacetimes by looking
at the covariant formulation. In section 5, we summarize the conclusions and discuss future problems.

1E-mail:takayana@gauge.scphys.kyoto-u.ac.jp
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2 Definition and Properties of Entanglement Entropy

2.1 Definition

In order to define the entanglement entropy, we first divide a given quantum mechanical (manybody)
system into two parts (or subsystems) A and B. Accordingly, the total Hilbert space is factorized as

H = HA ⊗ HB . (1)

A simple example is a spin chain, which is artificially divided into the left and right part of sites. Next
we introduce the reduced density matrix

ρA = TrBρ, (2)

for the subsystem A by tracing out HB . ρ is the density matrix of the original system. Indeed, ρA is the
density matrix when we consider an operator which only depends on the information of HA. Finally, the
entanglement entropy is defined as the von-Neumann entropy for ρA i.e.

SA = −TrρA log ρA. (3)

Notice that even if the total density matrix ρ is that of pure state (i.e. the entropy of ρ is vanishing),
still we get a non-vanishing entropy SA > 0 (except that A and B are totally decoupled) since we traced
out B and this leads to some ambiguity of information, which is measured by the von-Neumann entropy
SA.

2.2 Basic Properties

Here we summarize the basic properties.
First of all, the entanglement entropy is not an extensive quantity and because of this it has a rather

different property than the familiar thermal entropy. But, if we consider the high temperature limit, the
entanglement entropy SA includes a extensive part which is equal to the thermal entropy in A.

Let us assume that the total system is described by a pure state e.g. the system at zero temperature.
Then we can show SA = SB in a straightforwardly. However, this is violated when ρ is a mixed state.

It is also useful to consider the case where we divide the system in many parts. Especially assume
that the Hilbert space is factorized as H = HA ⊗ HB ⊗ HC ⊗ HD. Then we can show the inequality
known as the strong subadditivity (see e.g. [6] for a review)

SA+B+C + SB ≤ SA+B + SB+C . (4)

This has been known to be the most strong constraint which the entanglement entropy should satisfy and
it can be derived from the positivity of the norm of Hilbert space. By setting B to zero, (4) is reduced
to the subadditivity SA+C ≤ SA + SC . The strong subadditivity represents the concave property of the
von-Neumann entropy. For example, in [7], it has been shown that the strong subadditivity applied to
2D CFTs leads to the entropic version of the c-theorem.

2.3 Various Applications

The entanglement entropy has been played important roles in various areas in physics. First of all, it
is a crucial quantity in the research of quantum information theory and quantum computation. In this
context, the entanglement entropy measures the amount of quantum information [8].

Also recently it has been employed as a quantum order parameter in condense matter systems such
as a spin systems, quantum Hall liquid and so on [9, 10]. Especially, it is expected that it can distinguish
different quantum vacua such as the presence of anyons when the low energy limit is described by a
topological field theory. Notice that in such a topological theory, the correlation functions behave trivial
and are not useful. Also in the numerical simulation of quantum many body systems using the density
matrix renormalization2, the entanglement entropy measures the obstruction of the numerical simulation
by approximating the degree of freedom by finite size matrices. Thus we expect that it diverges at the
quantum phase transition point and this is the reason why the entanglement entropy plays the role of an
order parameter.

2Roughly speaking this is a quantum version of the method of compressing information.
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2.4 Entanglement Entropy in QFT and Area Law

Consider a QFT on a d + 1 dimensional manifold Rt × N , where Rt and N denote the time direction
and the d dimensional space-like manifold, respectively. We define the subsystem by a d dimensional
submanifold A ⊂ N at fixed time t = t0. We call its complement the submanifold B. The boundary of
A, which is denoted by ∂A, divides the manifold N into two submanifolds A and B. Then we can define
the entanglement entropy SA by (3). Sometimes this kind of entropy is called geometric entropy as it
depends on the geometry of the submanifold A. Since the entanglement entropy is always divergent in
a continuum theory, we introduce an ultraviolet cut off a (or a lattice spacing). Then the coefficient in
front of the divergence turns out to be proportional to the area of the boundary ∂A of the subsystem A
as first pointed out in [11],

SA = γ · Area(∂A)
ad−1

+ subleading terms, (5)

where γ is a constant which depends on the system. This behavior can be intuitively understood since the
entanglement between A and B occurs at the boundary ∂A most strongly. This result (5) was originally
found from numerical computations [11] and checked in many later arguments.

The simple area law (5), however, does not always describe the scaling of the entanglement entropy in
generic situations. As we will discuss in details in the next subsections, the entanglement entropy of 1D
quantum systems at criticality scales logarithmically with respect to the linear size l of A, SA ∼ c

3 log l/a
where c is the central charge of the CFT that describes the critical point.

Before we proceed to further analysis of entanglement entropy, it might be interesting to notice that
this area law (5) looks very similar to the Bekenstein-Hawking entropy (BH entropy) of black holes which
is proportional to the area of the event horizon

SBH =
Area of horizon

4GN
, (6)

where GN is the Newton constant. Intuitively, we can regard SA as the entropy for an observer who is
only accessible to the subsystem A and cannot receive any signals from B. In this sense, the subsystem
B is analogous to the inside of a black hole horizon for an observer sitting in A, i.e., outside of the
horizon. Indeed, this similarity was an original motivation of considering the entanglement entropy in
QFTs [12, 11]. An important motivation of our holographic calculations of the entanglement entropy is
actually to explain this similarity from the holographic viewpoint.

2.5 Explicit Computations in 2D CFT

In order to find the entanglement entropy, we first evaluate trA ρn
A, differentiate it with respect to n and

finally take the limit n → 1 (remember that ρA is normalized such that trA ρA = 1)

SA = lim
n→1

trA ρn
A − 1

1 − n
(7)

= − ∂

∂n
trA ρn

A|n=1 = − ∂

∂n
log trA ρn

A|n=1. (8)

This is called the replica trick. Therefore, what we have to do is to evaluate trA ρn
A in our 2D system.

The first line of the above definition (7) without taking the n → 1 limit defines the so-called Tsallis
entropy, Sn,Tsallis = trA ρn

A−1
1−n . 3

This can be done in the path-integral formalism as follows. We first assume that A is the single
interval x ∈ [u, v] at tE = 0 in the flat Euclidean coordinates (tE , x) ∈ R2. The ground state wave
function Ψ can be found by path-integrating from tE = −∞ to tE = 0 in the Euclidean formalism

Ψ (φ0(x)) =
∫ φ(tE=0,x)=φ0(x)

tE=−∞
Dφ e−S(φ), (9)

3The Tsallis entropy is related to the alpha entropy (Rényi entropy) Sα =
log trA ρα

A
1−α

through Sα,Tsallis = 1
1−α

[e(1−α)Sα−
1]. The α → 1 and α → ∞ limits of the alpha entropy give the von Neumann entropy and the single-copy entanglement
entropy, respectively.
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Figure 1: (a) The path integral representation of the reduced density matrix [ρA]φ+φ− . (b) The n-sheeted
Riemann surface Rn. (Here we take n = 3 for simplicity.)

where φ(tE , x) denotes the field which defines the 2D CFT. The values of the field at the boundary φ0

depends on the spacial coordinate x. The total density matrix ρ is given by two copies of the wave
function [ρ]φ0φ′

0
= Ψ(φ0)Ψ̄(φ′

0). The complex conjugate one Ψ̄ can be obtained by path-integrating from
tE = ∞ to tE = 0. To obtain the reduced density matrix ρA, we need to integrate φ0 on B assuming
φ0(x) = φ′

0(x) when x ∈ B.

[ρA]φ+φ− = (Z1)−1

∫ tE=∞

tE=−∞
Dφ e−S(φ)

∏
x∈A

δ (φ(+0, x) − φ+(x)) · δ (φ(−0, x) − φ−(x)) , (10)

where Z1 is the vacuum partition function on R2 and we multiply its inverse in order to normalize ρA

such that trA ρA = 1. This computation is sketched in Fig. 1 (a).
To find trA ρn

A, we can prepare n copies of (10)

[ρA]φ1+φ1− [ρA]φ2+φ2− · · · [ρA]φn+φn− , (11)

and take the trace successively. In the path-integral formalism this is realized by gluing {φi±(x)} as
φi−(x) = φ(i+1)+(x) (i = 1, 2, · · ·, n) and integrating φi+(x). In this way, trA ρn

A is given in terms of the
path-integral on an n-sheeted Riemann surface Rn (see Fig. 1 (b))

trA ρn
A = (Z1)−n

∫
(tE ,x)∈Rn

Dφ e−S(φ) ≡ Zn

(Z1)n
. (12)

To evaluate the path-integral on Rn, it is useful to introduce replica fields. Let us first take n
disconnected sheets. The field on each sheet is denoted by φk(tE , x) (k = 1, 2, · · ·, n). In order to obtain
a CFT on the flat complex plane C which is equivalent to the present one on Rn, we impose the twisted
boundary conditions

φk(e2πi(w − u)) = φk+1(w − u), φk(e2πi(w − v)) = φk−1(w − v), (13)

where we employed the complex coordinate w = x + itE . Equivalently we can regard the boundary
condition (13) as the insertion of two twist operators Φ+(k)

n and Φ−(k)
n at w = u and w = v for each

(k−th) sheet. Thus we find

trA ρn
A =

n−1∏
k=0

〈Φ+(k)
n (u)Φ−(k)

n (v)〉. (14)
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When φ is a real scalar field, this is a non-abelian orbifold. To make the situation simple, assume
that φ is a complex scalar field. Then we can diagonalize the boundary condition by defining n new fields
φ̃k = 1

n

∑n
l=1 e2πilk/nφl. They obey the boundary condition

φ̃k(e2πi(w − u)) = e2πik/nφ̃k(w − u), φ̃k(e2πi(w − v)) = e−2πik/nφ̃k(w − v). (15)

Thus in this case we can conclude that the system is equivalent to n−disconnected sheets with two twist
operators σk/n and σ−k/n inserted in the k−th sheet for each values of k. In the end we find

trA ρn
A =

n−1∏
k=0

〈σk/n(u)σ−k/n(v)〉 ∼ (u − v)−4
∑n−1

k=0
∆k/n = (u − v)−

1
3 (n−1/n), (16)

where ∆k/n = −1
2

(
k
n

)2
+ 1

2
k
n is the (chiral) conformal dimension of σk/n. When we have m such complex

scalar fields we simply obtain

trA ρn
A =

n−1∏
k=0

〈σk/n(u)σ−k/n(v)〉 ∼ (u − v)−
c
6 (n−1/n), (17)

setting the central charge c = 2m.
To deal with a general CFT with central charge c, we need to go back to the basis (13). The paper

[13] showed that the result (17) is generally correct. The argument is roughly as follows. Define the
coordinate z as follows

z =
(

w − u

w − v

) 1
n

. (18)

This maps Rn to the z-plane C. In this simple coordinate system we easily find 〈T (z)〉C = 0. Via
Schwartz derivative term in the conformal map we obtain a non-vanishing value of 〈T (w)〉Rn . From that
result, we can learn that twist operators Φ±(k)

n in (14) have conformal dimension ∆n = c
24 (1−n−2). Thus

we find the same result (17) for general CFTs as follows from (14).
Applying the formula (8) to (17), we find4 the famous result [14]

SA =
c

3
log

l

a
, (19)

where a is the UV cut off (or lattice spacing) and we set l ≡ v − u.
By applying appropriate conformal maps, we can compactify a direction of the two dimensional flat

space. If we do so in the space direction, after some computations we find the entanglement entropy on
a circle with the length L [13] as follows

SA =
c

3
log

(
L

πa
sin

πl

L

)
, (20)

where l < L is the length of the subsystem A.
On the other hand, if we periodically identify the (Euclidean) time direction, we get the result at

finite temperature T = β−1 [13]

SA =
c

3
log

(
β

πa
sinh

πl

β

)
. (21)

3 Holographic Entanglement Entropy for Static Spacetime

3.1 The Setup of Holography

As we have reviewed we can define the entanglement entropy SA in any QFTs for each choice of the
boundary ∂A. In this sense we always have infinite different quantities for a given QFT. Even though

4Here we neglect a constant term which does not depend on l, L and a.
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in two dimensional CFT they can be analytically computed by using the conformal map method as
in [13], the calculations in higher dimensional QFTs or CFTs are generally complicated and difficult.
Nevertheless, we expect that the entanglement entropy play the role of order parameter of quantum
phase transitions and it is quite useful if we can compute this quantity explicitly in a strongly coupled
theories.

For this purpose, the holographic dual computation, if it exists, will be very useful because we expect
that a quantum physical observable in the QFT side corresponds to a certain classical geometrical quantity
in the dual gravity theory as is so in the AdS/CFT. Therefore we would like to consider the holographic
calculation of the entanglement entropy in QFTs in this section.

The arguments below are not necessarily restricted to the setup of AdS/CFT correspondence, but we
consider a rather general setup of the holography.

We will work in the general setup of holography where the (quantum) gravity in the bulk d + 2
dimensional spacetime M is dual to a QFT on its (d + 1) dimensional boundary ∂M . If we stick to the
AdS/CFT correspondence, M is the asymptotically AdS spacetime and the gravity on M is dual to a
QFT with a UV fixed point defined on the boundary ∂M .

We assume that the spacetime M is static to make the argument simple. We will later discuss
general time-dependent cases in the next section. Then we can express M as M = Rt × N , where the d
dimensional manifold N represents the time slice and Rt is the time direction. Also on the boundary we
have ∂M = Rt × ∂N .

3.2 Holographic Entanglement Entropy

To define the entanglement entropy, we divide the time slice N into A and B as we explained before.
Since we are interested in the bulk gravity dual calculation, we would like to somehow extend this division
to the bulk spacetime M . Our principle is as follows; as is clear in the area law of entanglement entropy,
the boundary ∂A is the most physically important object. So we extend ∂A to a surface γA in the entire
M such that ∂γA = ∂A. Notice that this is a surface in the time slice N , which is a Euclidean manifold.
Of course, there are infinitely many different choices of γA. We claim that we have to choose the minimal
area surface among them. This is uniquely determined and we call this γA below.

We are now in a position to present our holographic formula. We argue that the holographic entan-
glement entropy is simply given by

SA =
Area(γA)

4G
(d+2)
N

, (22)

where G
(d+2)
N is the Newton constant in the gravity theory on M . The above formula is reminiscent of

the Bekenstein-Hawking formula of black hole entropy, though in our case γA is no longer than a horizon.
Indeed, we can motivate our formula (22) from the following intuitive argument. The holography

relates the bulk gravity to a non-gravitational theory on its boundary. Thus we expect that a part of
the bulk corresponds to the information of a certain region in the boundary. In our setup, we relate
the information includes B in the boundary theory, whose amount is measure by SA, to the bulk region
defined by the one inside γA. The reason why we take the minimal area surface is that we are applying
the idea of the entropy bound and we are trying to find the most strict bound. This part will be discussed
in detail in the next section.

If we restrict to the AdS/CFT setup, we can formally derive the holographic formula (22) from the
bulk to boundary relation (GKPW relation) [15] as shown in [16]. As we have explained in the previous
section, the computation of Trρn

A, whose derivative about n in the limit n → 1 leads to the entropy SA,
is equivalent to that of the partition function on the n-copied of the original manifold with the cut along
∂A. In other words, the manifold is defined by putting the negative deficit angle 2π(1−n) on the original
spacetime. Following the AdS/CFT, what we have to do is to extend this geometry on the boundary
toward the bulk region. We assume that the deficit angle surfaces extends to the entire the bulk AdS.
This is denoted by γA. Then the Ricci scalar behaves like a delta function

R = 4π(1 − n)δ(γA). (23)
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Then we plug this in the gravity action

SAdS = − 1

16πG
(d+2)
N

∫
M

dxd+2√g(R + Λ) + · · ·, (24)

where we only make explicit the bulk Einstein-Hilbert action. Other parts which come from the boundary
terms and the other fields contributions do not affect our computation here.

The basic principle of AdS/CFT i.e. the bulk to boundary relation [15] equates the partition function
of CFT with the one of AdS gravity. Thus we can holographically calculate the entanglement entropy
SA as follows

SA = − ∂

∂n
log Trρn

A|n=1 = − ∂

∂n

[
(1 − n)Area(γA)

4Gd+2
N

]
n=1

=
Area(γA)
4Gd+2

N

. (25)

This reproduces our holographic formula (22). The action principle in the gravity theory requires
that γA is the minimal area surface.

Finally we would like to point that this holographic formulation assumes the existence of non-trivial
minimal surfaces. In the spacetime with a warp factor as in AdS spaces, we expect this property. We
think this is an interesting constraint on the spacetime which has a holographic interpretation.

3.3 Many Evidences for the Holographic Formula

Since the above arguments are pretty formal and assume the AdS/CFT correspondence, we need to check
explicitly this claim by comparing both sides directly. Indeed, several different checks have been made
until now and they have turn out to be all successful. In this subsection we would like to give a very brief
overview of these agreements.

• The area law (5) known in QFT can be easily reproduced holographically. The warp factor in the
AdS space leads to the UV divergence of the dual CFT [1]. Since the leading contribution to the
area of γA comes from the region near the boundary, it should be proportional to the area of the
boundary i.e. ∂A. This leading divergence of the area clearly scales as ∼ a−(d−1) for AdSd+2, which
indeed agrees with the area law.

• We find perfect agreements in the lowest dimensional case of the AdS3/CFT2 setup [1]. In this
case γA is a geodesic line which connects the two points which define the division into A and B.
It is also possible to show that the entanglement entropy at finite temperature can be reproduced
from the geodesics length in the BTZ black holes. These arguments will be reviewed in the next
subsection.

• Though in the higher dimension, it is not easy to calculate the entanglement entropy in QFTs ana-
lytically, still we can show the semi-qualitative agreements between the CFT and AdS calculations.
In particular, for the logarithmic terms of the entropy we can show the precise agreement as its
coefficient is proportional to a linear combination of central charges. For details, refer to the second
paper of [1].

• In the presence of a horizon, the minimal surface γA tends to wrap the (apparent) horizon. Then
the wrapped part gives a extensive contribution to the holographic entanglement entropy. This
agrees with the fact that the entanglement entropy includes the thermal part and we know that
thermal entropy is dual to the black hole entropy which is given by the Bekenstein-Hawking area
formula. In other words, our holographic formula generalizes the black hole entropy formula.

• We can holographically derive the strong subadditivity (4) in a very simple way [17] (see also [6]).

• If we apply the holographic formula to the AdS2/CFT1 setup, which comes from the near horizon
limit of 4D or 5D extremal black holes, then it reproduces the Wald entropy formula in the presence
of the higher derivative correction to the Einstein-Hilbert action [18].

• The holographic formula is nontrivially consistent with the covariant entropy bound (Bousso bound).
This will be discussed in the next section.
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3.4 Holographic Entanglement Entropy in AdS3/CFT2

Here we present a detailed analysis of the holographic entanglement entropy in AdS3/CFT2. According
to AdS/CFT correspondence [4], the gravitational theories on this space are dual to 1 + 1 dimensional
conformal field theories with the central charge [19]

c =
3R

2G
(3)
N

, (26)

where G
(3)
N is the Newton constant in three dimensional gravity. In the global coordinate, the metric of

AdS3 becomes
ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdθ2). (27)

At the boundary ρ = ∞ of the AdS3, the metric is divergent. To regulate relevant physical quantities
we need to put a cutoff ρ0 and restrict the space to the bounded region ρ ≤ ρ0. This procedure corresponds
to the ultra violet (UV) cutoff in the dual conformal field theory. If we define the dimensionless UV cutoff
δ (∝ length), then we find the relation eρ0 ∼ δ−1. In the example of the previous section, δ should be
identified with

eρ0 ∼ δ−1 = L/a. (28)

Remember that L is the total length of the system and a is the lattice spacing (or UV cutoff). Notice
that there is actually an ambiguity about the O(1) numerical coefficient in this relation5.

In the global coordinate of AdS3 (27), the 1+1 dimensional spacetime, in which the CFT2 is defined,
is identified with the cylinder (t, θ) at the (regularized) boundary ρ = ρ0. Then we consider the AdS dual
of the setup of computing the entanglement entropy. The subsystem A corresponds to 0 ≤ θ ≤ 2πl/L
and we can discuss the entanglement entropy by applying our proposal (22). In this lowest dimensional
example, the minimal surface γA, which plays the role of the holographic screen [3, 20], becomes one
dimensional. In other words, it is the geodesic line which connects the two boundary points at θ = 0 and
θ = 2πl/L with t fixed (see Fig. 2) .

Then to find the entropy we calculate the length of the geodesic line γA. The geodesics in AdSd+2

spaces are given by the intersections of two dimensional hyperplanes and the AdSd+2 in the ambient
R2,d+1 space such that the normal vector at the points in the intersections is included in the planes. The
explicit form of the geodesic in AdS3, expressed in the ambient ~X ∈ R2,2 space, is

~X =
R√

α2 − 1
sinh(λ/R) · ~x + R

[
cosh(λ/R) − α√

α2 − 1
sinh(λ/R)

]
· ~y, (29)

where α = 1 + 2 sinh2 ρ0 sin2(πl/L); x and y are defined by

~x = (cosh ρ0 cos t, cosh ρ0 sin t, sinh ρ0, 0),
~y = (cosh ρ0 cos t, cosh ρ0 sin t, sinh ρ0 cos(2πl/L), sinh ρ0 sin(2πl/L)) . (30)

The length of the geodesic can be found as

Length =
∫

ds =
∫

dλ = λ∗, (31)

where λ∗ is defined by

cosh(λ∗/R) = 1 + 2 sinh2 ρ0 sin2 πl

L
. (32)

Assuming that the UV cutoff energy is large eρ0 À 1, we can obtain the entropy (22) as follows (using
(26))

SA ' R

4G
(3)
N

log
(

e2ρ0 sin2 πl

L

)
=

c

3
log

(
eρ0 sin

πl

L

)
. (33)

Indeed, this entropy exactly coincides with the known 2D CFT result (20), including the (universal)
coefficients after we remember the relation (28).

5However, this ambiguity does not affect universal quantities which do not depend on the cut off a and we will consider
such quantities in the later arguments.
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Figure 2: (a) AdS3 space and CFT2 living on its boundary and (b) a geodesics γA as a holographic
screen.

It may be useful to repeat the similar analysis in the Poincare coordinates of AdS3 ds2 = R2

z2 (−dt2 +
dz2 + dx2). We pickup the spacial region (again call A) −l/2 ≤ x ≤ l/2 and consider its entanglement
entropy. We can find the geodesic line γA between x = −l/2 and x = l/2 for a fixed time t0

(x, z) =
l

2
(cos s, sin s), (ε ≤ s ≤ π − ε). (34)

The infinitesimal ε is the UV cutoff and leads to the cutoff zUV as zUV = lε
2 . Since eρ ∼ xi/z near the

boundary, we find z ∼ a. The length of γA can be found as

Length(γA) = 2R

∫ π/2

ε

ds

sin s
= −2R log(ε/2) = 2R log

l

a
. (35)

Finally the entropy can be obtained as follows

SA =
Length(γA)

4G
(3)
N

=
c

3
log

l

a
. (36)

This again agrees with the well-known result (19) as expected.
Next we consider how to explain the entanglement entropy at finite temperature T = β−1 from the

viewpoint of AdS/CFT correspondence. Since we assumed that the spacial length of the total system L
is infinite, we have β/L ¿ 1. In such a high temperature circumstance, the gravity dual of the conformal
field theory is described by the Euclidean BTZ black hole [22]. Its metric looks like

ds2 = (r2 − r2
+)dτ2 +

R2

r2 − r2
+

dr2 + r2dϕ2. (37)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to obtain a smooth geometry. We also impose the
periodicity ϕ ∼ ϕ+2π. By taking the boundary limit r → ∞, we find the relation between the boundary
CFT and the geometry (37)

β

L
=

R

r+
¿ 1. (38)

The subsystem for which we consider the entanglement entropy is given by 0 ≤ ϕ ≤ 2πl/L at the
boundary. Then by applying our proposal (22), the entropy can be computed from the length of the
space-like geodesic starting from ϕ = 0 and ending to ϕ = 2πl/L at the boundary r = ∞ for a fixed time.
To find the geodesic line, it is useful to remember that the Euclidean BTZ black hole at temperature T
is equivalent to thermal AdS3 at temperature 1/T . If we define the new coordinates

r = r+ cosh ρ, τ =
R

r+
θ, ϕ =

R

r+
t, (39)
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Figure 3: (a) Minimal surfaces γA in the BTZ black hole for various sizes of A. (b) γA and γB wrap the
different parts of the horizon.

then the metric (37) indeed becomes the one in the Euclidean Poincare coordinates with t replaced by
it. Now the computation of the geodesic line is parallel with what we did just before. We only need to
replace sinh ρ and sin t with cosh ρ and sinh t. In the end we find (31) with λ∗ is now given by

cosh
(

λ∗

R

)
= 1 + 2 cosh2 ρ0 sinh2

(
πl

β

)
, (40)

where we took into account the UV cutoff eρ0 ∼ β/a. Then our area law (22) precisely reproduces the
known CFT result (21).

It is also intriguing to understand these calculations geometrically. The geodesic line in the BTZ black
hole takes the form shown in Fig. 3(a). When the size of A is small, it is almost the same as the one in
the ordinary AdS3. As the size becomes large, the turning point approaches the horizon and eventually,
the geodesic line covers a part of the horizon. This is the reason why we find a thermal behavior of the
entropy when l/β À 1 i.e. SA ∼ πcl

3β . The thermal entropy in a conformal field theory is dual to the black
hole entropy in its gravity description via the AdS/CFT correspondence. In the presence of a horizon, it
is clear that SA is not equal to SB (remember B is the complement of A) since the corresponding geodesic
lines wrap different parts of the horizon (see Fig. 3(b)). This is a typical property of entanglement entropy
at finite temperature as we mentioned in section 2.2.

Also as shown recently in [18], when A is very closed to the total system, γA is divided into two pieces,
the circle which wraps the horizon and the one localized at the boundary. This leads the precise relation
between the entanglement entropy on the circle SA and the BTZ black hole entropy SBH

lim
l→0

(SA(l) − SA(L − l)) = SBH , (41)

where again L is the total length of the boundary.

4 Covariant Holographic Entanglement Entropy and Covariant
Entropy Bound

4.1 Covariant Entropy Bound

So far we have only discussed static spacetimes. However, it is much more interesting to consider hologra-
phy in a time-dependent spacetime as eventually we would like to understand cosmological backgrounds
such as the de-Sitter space from a holographic viewpoint. Here we assume that there is a time-like
boundary where the metric diverges as is so in the time-dependent asymptotically AdS spaces.

In the previous argument, we assumed a time slice on which we can define minimal surfaces since
its signature is Euclidean. However, in our time-dependent case there is no longer a natural choice of
the time-slices as we have infinitely many different ways of defining the time slices. Thus we need to
consider the entire Lorentzian spacetime. Then we are in a trouble since in Lorentzian geometry there is
no minimal area surface as the area vanishing if the surface extends in the light-like direction. In order
to resolve this issue, let us remember an analogous problem; the covariant entropy bound so called the
Bousso bound.
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In general, if we get heavy objects together in a small region and continue to bring another one into
the region, this system eventually experiences the gravitational collapse. Therefore we have a upper
bound of the mass and entropy which can be included inside of the surface Σ. The bound for the entropy
in flat space time is called the Bekenstein bound and it is given by

SΣ ≤ Area(Σ)
4GN

, (42)

where Σ is a codimension two closed surface in the spacetime. It is also more interesting to generalize this
bound to any time-dependent backgrounds like the cosmological ones. This requires to find a covariant
description. It is obvious that the Bekenstein bound (42) is not covariant since the definition of the
entropy included inside Σ is not covariant but depends on the choice of the time slice. The covariant
entropy bound was eventually formulated by Bousso [20] and it is given by

SL(Σ) ≤
Area(Σ)

4GN
. (43)

The light-like manifold L(Σ) is called the light-sheet of Σ. This is defined by the manifold which is
generated by the null geodesics starting from the surface Σ. We require that the expansion θ of the null
geodesic is non-positive θ ≤ 0. In the flat spacetime, this is just a half of light-cone and the same is true
for the AdS spacetime as it is conformally flat. Then the quantity SL(Σ) means the entropy which pass
through the light sheet L(Σ), which is covariantly well-defined. One more interesting thing of the Bousso
bound is that we can apply the bound even if the surface Σ has boundaries, which is quite useful in the
holographic setup as we employ below.

4.2 Covariant Holographic Entanglement Entropy

Now we would like to return to our original question of the covariant holographic entanglement entropy.
Our final claim [2] is given by

SA(t) =
Area(γA(t))

4Gd+2
N

, (44)

where γA(t) is the extremal surface in the entire Lorentzian spacetime M with the boundary condition
∂γA(t) = ∂A(t). The time t is the time on the time slice in the boundary ∂M and there is no unique
way to extend it to the bulk spacetime M .

This covariant formula (44) has been originally motivated from the Bousso bound (43) in [2]. To see
let us remember the fact that the AdS/CFT correspondence with a UV cut off z > a can be regarded as
a brane-world setup (RS2 [21]). Since we assume that the cut off is close to the UV a << R, the gravity
on the d + 1 dimensional brane theory is very weak as

1
Gbrane

N

∼ Rd

Gbulk
N

∫ ∞

a

dz

zd
=

Rd

(d − 1)ad−1

1
Gbulk

N

>>
R

Gbulk
N

, (45)

where we assume the standard metric

ds2 = R2 dz2 + gij(x)dxidxj

z2
, (46)

where gij is the metric on the brane.
Now we would like to ask what is the Bousso bound on the brane gravity theory (see fig.4 in the

simplest case of AdS3/CFT2). We expect that the brane theory with quantum corrections taken into
account is dual to the bulk gravity theory which is classical, based on the standard idea of AdS/CFT
correspondence. Therefore we argue that the quantum corrected Bousso bound on the brane can be
found as the classical Bousso bound on the brane. First we start with the setup of Bousso bound at
the boundary ∂M . We pick up a (closed) surface ∂Σ which separates a time slice into the subsystem A
and B such that ∂A = ∂Σ. Now we define the light-sheet for Σ. We consider both the future and past
directed ones and call them ∂L+(Σ) and ∂L−(Σ). The reason why we put the symbol ∂ is that we are
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Figure 4: The setup of Bousso bound applied to the AdS3/CFT2 in the Poincare coordinate ds2 =
R2

z2 (−dt2 + dz2 + dx2). In this simplified case, the future Cauchy horizon H+ coincides with the future
light-sheet ∂L+(Σ). In the above figure we only write the future light-sheet and not the past one just for
simplicity.

interested in their bulk extensions L±(Σ). Again there are infinitely many different ways of extending
the boundary light-sheets toward the bulk. We define the surface Σ by the intersection L+(Σ) ∩ L−(Σ).
For each of such a Σ, we get the Bousso bound (43).

Here the condition of non-positive expansions of the null geodesics on the light-sheets i.e. θ± ≤ 0
come into play. If there were not this condition we can choose arbitrary Σ and we can take them to be
light-like. However, the condition is rather strong enough that the area of allowed Σ takes a non-trivial
minimum and therefore we can define an analogue of the minimal surface in this Lorentzian spacetime.
The minimum of the area corresponds to the most strict Bousso bound for a given boundary surface ∂Σ
or equally the choice of the subsystem A.

This minimum of the area occurs when the expansions on the two light-sheets are both vanishing
θ± = 0. This condition is actually equal to the statement that the surface Σ is an extremal surface again
called γA, which is defined by the saddle point of the area functional in the Lorentzian spacetime.

The final observation is that the quantum Bousso bound on the brane will be saturated by the
entanglement entropy. This is motivated by the fact that the entanglement entropy represents a thermal
entropy plus quantum corrections and that it is defined by assuming that the subsystem B is completely
smeared, which will be expected to lead to the maximal entropy allowed in the region. If we assume this,
then we immediately reach the holographic entanglement entropy formula (44).

Before we conclude, let us discuss an example where we can apply the above covariant formula. We
consider the AdS Vaidya solution

ds2 = −(r2 − m(v))dv2 + 2dvdr + r2dφ2. (47)

This is the solution to the Einstein equation with the negative cosmological constant in the presence of
null matter whose EM tensor looks like Tvv = 1

2r
dm(v)

dv . The null energy condition requires Tvv ≥ 0 and
thus we find that m(v) is a monotonically increasing function of the (light-cone) time v.

This background is asymptotically AdS3 and if we assume that m(v) is a constant, then it is equivalent
to the static BTZ black hole [22] with the mass m. Thus our background (47) describes an idealized
collapse of a radiating star in the presence of negative cosmological constant. The dual theory is expected
to be a CFT in a time-dependent background. The time-dependence comes from the time-dependent
temperature. We can now apply the covariant entanglement entropy formula (44) and in the end we find

SA(v) =
c

3

[
log

l

a
+

m(v)l2

6
+ · · ·

]
, (48)

as the expansion of small m(v). The null energy condition guarantees that this is a monotonically increas-
ing function of time. This shows that the entanglement entropy in this background is a monotonically
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increasing function of time as is so in the second law of the thermal entropy. We believe this behavior
of entanglement entropy in black hole formation processes is rather general. However, we would like to
stress that we are not claiming that the entanglement entropy is always increasing. For example if we
start with the system with maximally entangled, the entanglement entropy will decrease after a small
perturbation due to the de-coherence phenomenon.

We would also like to mention that if we stay with the brane-world setup we mentioned before and
consider the brane-world black hole, then the holographic formula (44) tells us that the quantum corrected
entropy of the black hole on the brane is equal to the entanglement entropy in the same theory as pointed
out in [23]. This is because the horizon of this black hole is actually an extremal surface.

5 Conclusions and Discussions

In this talk we have presented the holographic formula which computes the entanglement entropy in the
dual QFTs. It takes the form of the area law and can be regarded as a generalization of the Bekenstein-
Hawking entropy formula. We also gives a covariant formulation which is useful to analyze the holographic
dual of the time-dependent background.

There are many interesting future problems. We will mention a few of them here. One thing which
would hopefully be clear in near future is the question how much information the entanglement entropy
contains. Since we have infinitely many choices of the subsystem A, the entanglement entropy include
infinite amount of information. The natural question is whether the information of entanglement entropy
in a given QFT is enough to extract the metric of its holographic dual spacetime.

Another intriguing future problem is to understand any implications of holography in cosmological
background such as a de-Sitter space from the viewpoint of entanglement entropy. This will be directly
related to the understanding of the mysterious horizon entropy of de-Sitter space.
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Abstract
Observing gravitational microlensing events has become a powerful technique for
studying dark objects and the surface profiles of distant stars. The MOA II mi-
crolensing survey is a Japan-New Zealand collaboration that detects microlensing
events towards the Galactic Bulge and the Magellanic Clouds. A recently installed
1.8-m wide-field telescope, equipped with a large CCD camera, enabled us to make
high-cadence observations of most bulge microlensing events for the first time. This
new type of microlensing survey opened new vistas in the search for planets by mi-
crolensing, and also in the search for MACHOs. In this paper we review past obser-
vations and science of microlensing, and then describe the MOA II project and its
strategy.

1 Introduction

Gravitational microlensing is both a natural application of the general theory of relativity, and also
a potentially powerful tool in astronomy. The concept of gravitational lensing [1] was introduced by
Einstein in 1936. In his paper, Einstein predicted two phenomena. One was the ”Einstein ring”. If two
stars are perfectly aligned on a line of sight, the rays of light from the more distant star are bent by
the gravitational field of the nearer star. As the bending angle is independent of the azimuthal angle,
the rays form a circular image, the so-called Einstein ring. If the stars are nearly aligned, a pair of
arcs is produced. However, Einstein said in his paper, ”Of course, there is no hope of observing this
phenomenon directly.” In spite of 70 year’s progress in observational technology, Einstein rings (or arcs)
are still difficult to observe. The resolution of the current largest optical interferometer VLTI (Very Large
Telescope Interferometer) is 2.2 msec. This may be compared with the diameter of the Einstein ring which
is typically less than 2 msec. To date, only one attempt has been made to directly resolve such an image
[2, 3], and this was not successful 2. The other phenomenon that Einstein predicted was magnification.
This is the apparent increase in brightness of the distant star caused by the gravitational lensing of the
nearer star, when the integrated light of the Einstein ring or arcs is detected. This phenomenon was also
thought to be difficult to observe. Einstein said ”Therefore, there is no great chance of observing this

1E-mail:abe@stelab.nagoya-u.ac.jp
2However, Einstein arcs and rings have been observed with aligned galaxies, for which the characteristic angle is of order

secs [4]
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Figure 1: Configuration and definitions of parameters of a single lens event.

phenomenon, even if dazzling by the light of the much nearer star B is disregarded.” However, modern
technology now permits us to observe hundreds of microlensing events annually through the magnification
effect.

The microlensing technique has been applied in a number of areas of astronomy. Because the effect
is independent of the luminosity of the nearer star (i.e., the lens star), the technique can be applied to
search for dark objects that are very difficult to detect by other means. Such dark objects might be,
for example, MAssive Compact Halo Objects (MACHOs) [5], black holes [6], brown dwarfs, free-floating
planets, and extrasolar planets. Microlensing can also be used to probe the more distant star (i.e., the
source star). The magnification caused by microlensing depends sensitively on the angular separation
between the lens and source stars, especially when the separation is small and the magnification is high.
This enables the surface profile of a distant star to be resolved with remarkably high precision, allowing
its atmosphere to be probed [7] or, in one case, its shape to be determined [8].

The search for MACHOs using microlensing [9] was originally proposed by Paczyńscki. If the stars
in an external galaxy can be resolved, dark objects in the Halo in our galaxy may cause gravitational
microlensing of them. This could be detectable through a change of the brightness of a resolved star.
The magnification A(t) by a single lensing object is

A(t) =
u(t)2 + 2

u(t)(u(t)2 + 4)1/2
, (1)

where, u(t) is the projected distance between the source and the lens (see Fig.1),

u(t) = (u2
min + (vT (t− t0)/RE)2)1/2, (2)

umin is the minimum u(t), t0 is the time of minimum, and RE is the Einstein ring radius,

R2
E =

4GMD

c2
, D =

DlDls

Ds
, (3)

where, G is the gravitational constant, M is the mass of the lens, c is the velocity of light, and Dl, Dls, Ds

are the distances between the observer and the lens, the lens and the source, the observer and the source,
respectively. The variation of the brightness with time, i.e. the light curve, is symmetric before and after
the peak (at t0) and it is achromatic. The timescale of the event is characterized by the Einstein radius
crossing time tE = RE/vT . Typical values of tE depend primarily on the masses of possible lenses, and
are estimated to be tE > 200days for black holes, 6 < tE < 150days for stars, 2 < tE < 6days for brown
dwarfs, and tE < 2days for planetary mass objects. As the time scales of most of events are expected to
be several days or more, most past microlensing surveys included only one or a few observations/night.

The probability for a microlensing event to occur is expressed by the optical depth τ . Here τ is the
probability for microlensing to occur on a star at a given instant. If the mass density of the lensing
objects ρ(Dl) is known, then τ can be deduced from the relationship

τ =
∫ Ds

0

4πGD

c2
ρ(Dl)dDl. (4)
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Figure 2: Configuration of binary lensing projected to the lens (host star and a companion) plane. When
the source star is outside of the caustic (a), the number of images is 3. If the source star is on the caustic
(b), new images appear. If the source star is inside of the caustic (c), the number of images is 5.

Typical estimated values of τ are ∼ 10−6. This implies that more than 106 stars must be monitored to
find microlensing events. Thus, observations must be carried out toward crowded stellar fields (Magellanic
Clouds, Galactic Bulge, or other galaxies), and wide-field surveys are necessary.

Using Paczyński’s scheme, first generation surveys were performed to search for any dark matter in
the form of MACHOs. These were conducted by MACHO (MAsive Compact Halo Object) [5], EROS
(Expérience pour la Recherche d’Objects Sombres) [10], and OGLE (Optical Gravitational Lensing Ex-
periment) [11]. Microlensing events towards the Large Magellanic Cloud (LMC) were reported by the
MACHO and EROS groups, and toward the Galactic Bulge by the OGLE group. Since then, more than
3,000 microlensing events have been discovered, mostly in bulge fields. As the number density of stars
in our Galaxy increases as the stellar mass decreases, the majority of microlensing events in the Galactic
Bulge are expected to be caused by lenses that are low-mass red dwarfs.

A large fraction of the stars in our galaxy have companions. Such binary stars are expected to act
as lenses for microlensing events too. But the magnification by a binary lens is complex compared with
that of a single lens. The rays of light are bent by the host and the companion stars and are folded by
each other. The magnification pattern on the source plane is divergent on closed lines named caustics.
If the source star passes over a caustic, the light curve is singular. The magnification caused by binary
lensing can be calculated by solving the lens equation,

β = θ −
(
q1

θ

|θ|2
− q2

θ − l

|θ − l|2
)

(5)

where, β is the source position vector projected onto the lens plane in units of RE , θ is the image position
vector, l is the position vector of the companion (the host star is assumed at the origin), and q1 and q2 are
the mass ratio of the host star and the companion, respectively. Solutions [12] to Eq. 5 were obtained by
Scheneider and Weiβ. Recently, a simpler method [13] was devised by Asada. Figure 2(a-c) show images
for a binary configuration determined by Asada’s method. As seen in the figures, there are three images
when the source star lies outside the caustic. When the source star moves inside the caustic, the number
of images becomes five. Integrating over the images, the magnification of the lens may be calculated.
Alternatively, the Inverse-Ray Shooting (IRS) method may be used for binary and more complex lenses.
In the IRS method, rays of light generated by a hypothetical point source at the position of the observer
are traced through the lens to the source plane. The density of rays on the source plane represents the
magnification.

The light curve for binary lensing is generally quite complex and asymmetric. If the lens star has
a planet, the lens may be treated as a binary with a small mass ratio. The detectability of extrasolar
planets by gravitational microlensing was first treated in this manner[14]. The method is particularly
effective for finding planets in the ”lensing zone” which is an annular region from 0.6 to 1.6 RE centred on
the lens star. In this region, the anomaly caused by a planet is amplified. Simulations show that planets
down to Earth-mass or less [15, 16] could be discovered in this region. A typical Einstein ring radius is
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2−4AU in bulge microlensing events. This region corresponds to that occupied by the asteroid belt in our
solar system. As mentioned above, most Galactic Bulge microlensing events are caused by low-mass red
dwarfs, so planets orbiting such low-mass stars are the most common target of the microlensing method.
Planets may thus be detected by microlensing in very different regions from those explored by the radial
velocity and transit techniques.

In summary, the MOA II project aims to seek and identify a fraction of Galactic Dark Matter that
may exist in the form of MACHOs, and also to seek and identify extrasolar planets by gravitational
microlensing. The present paper is organized as follows. Our previous project, MOA I, is described in
Sec. 2, and extrasolar planets in Sec. 3. The MOA II project is introduced in Sec. 4. This includes
discussion of the observing strategy that is being used in MOA II. Finally, a summary is given in Sec. 5.

2 MOA I project

Japan-New Zealand collaboration MOA (Microlensing Observations in Astrophysics) project was started
in 1995. The observations were done toward Magellanic Clouds because the primary target was the
MACHO search. Due to the raising interest of extrasolar planet, observations toward Galactic bulge
were started later. The observations were performed with use of 61 cm B & C telescope in Mt. John
university observatory (170.◦28′E, 43.◦59′S), New Zealand. The first CCD camera was MOA-cam1 which
had 9 1k × 1k TI chips. Large mosaic CCD camera MOA-cam2 [17] which had 3 2k × 4k SITe CCD
chips was installed in 1998. One of the advantages of Mt. John is its unique location. Mt. John is the
southernmost astronomical observatory in the world except for Antarctica. In winter (June and July),
the Galactic bulge passes close to the zenith at midnight. Due to the high latitude, the bulge observation
can be continued more than 13 hours. Mt. John is a good observation site for Magellanic Clouds too.
Due to the high latitude, Magellanic Cloud don’t set. Observations can be done anytime in clear nights.

In spite of the small aperture, MOA I obtained a number of scientific results: measurement of optical
depth toward Galactic bulge [18], measurements of the atmosphere [19] and the shape [8] of a distant star,
period-luminosity relation of long-period variables in LMC [20], Candidate of extrasolar planet transits
[21], etc. The highlight of MOA I is discovery of the first extrasolar planet with microlensing [22]. We
will mention this discovery in Sec. 3. The MOA I microlensing alert was started in 2000 and continued
until 2005. The numbers of alerts were 13-74 alerts/year. After 10 years MOA I survey, MOA II took
over microlensing survey.

3 Extrasolar planets

Finding planets outside of the solar system is one of the most exciting issues in current astronomy. Since
first discovery [23] of extrasolar planet orbiting around a sun-like star, more than 200 planets [24] have
been discovered. Most of them were discovered with radial-velocity method which detects periodic change
of radial velocity of the host star caused by the planet. As this method is more sensitive to massive close-
in planets, most of the planets discovered are massive or close-in planets. Discovery of a number of
close-in giant planets named ”hot Jupiters” raized discussions [25] wheter our solar system is special or
not. However this question is hard to answere because access to low-mass wide orbit planets have been
very difficult.

Looking back to our solar system, eight planets are orbiting around the sun. They can be categorized
into three types: rocky (terrestrial) planets, gas giants (Jovian planets), and icy (uraniun) planets. Inner
four planets (Mercury, Venus, Earth, and Mars) are rocky planets which have solid rocky surfaces. Jupiter
and Saturn are gas giants which don’t have solid surface and covered with hydrogen and helium gases.
Outer two planets (Uranus and Neptune) are icy planets which have solid ice surfaces.

The standard model of the planet formation is the core-accretion model [26]. In this model, dusts in
the protoplanetary disk are coagulated then formed kilo-meter size planetesimals. The main component
of the dusts is expected to be silicates at inside and ice at outside (less than melding point). Thus the
core of the planets are formed with rocks at inside and ices at out side. The planetesimals are collide each
other and form larger objects named protoplanets. Planets are formed by giant collisions of protoplanets.
At the final stage of planet formation, the cores of planets at right outside of the ”snow line” absorb the
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Figure 3: A result of a simulation [27] of the core-accretion model. Planet mass vs. semi-major axis.
Red points represent gas giants, blue points are icy planets, and green points are rocky planets.

gas around them and gas giants are generated. This model succeeded to explain our solar system very
well. A number of simulation studies have been made with this model. Figure 3 shows one of the results
[27] of the simulation for a sun-like star. As shown in the figure, there are a number of rocky planets
inside of the snow line (∼ 2 − 3AU) and icy planets in the outside. However, access to the low-mass
rocky or icy planets was very difficult with conventional planet search. To confirm core-accretion model
at extrasolar planetary system, new method has been necessary.

As we have mentioned, the microlensing planet search [14] was proposed by Mao and Paczyńscky in
1992. But the real discovery was difficult. After several pioneering attempt, the first extrasolar planet
with microlensing [22] was discovered in 2003 by MOA I and OGLE. Anomaly in the light curve was
discovered in OGLE 2003-BLG-235/MOA 2003-BLG-053 microlensing event. Figure 4 shows the light
curve of OGLE 2003-BLG-235/MOA 2003-BLG-053. From the detailed analysis of the light curve, the
mass ratio of the planet and the host star was determined to be 0.0039+0.0011

−0.0007 and separation to be
1.120 ± 0.007. To determine absolute values of the masses and the separation, determination of the
distance to the lens system is necessary. As the determination of the distance from the observations is
very difficult, the first estimate was done using stochastic method with a Galactic model. The obtained
values were about 1.5MJ for the planet mass and about 3AU for the separation. In 2006, Hubble
Space Telescope observed [28] the motion of the host star, then the proper motion and the distance
were constrained. Using this constraint, the planet mass and the separation were better determined to
be 2.6+0.8

−0.6MJ and 4.3+2.5
−0.8AU , respectively. The microlensing planet search is thought to be potential

method to discover down to earth-mass planet or less [15, 16]. But the first discovery was still a giant
planet.

4 MOA II project

The MOA II project was started in 2002. New telescope which has 1.8-m aperture was installed in Mt.
John Observatory in 2004. Figure 5 shows the 1.8-m telescope and the dome. To achieve very wide field
of view, a prime focus optics with a parabolic primary mirror and four corrector lenses was adopted (see
Fig. 6). This optics was effective to make wide-field telescope in a limited cost, because making primary
mirror become much easier than short-focal length Ritchey-Crétien optics and no secondary mirror was
needed. A new CCD camera named MOA-Cam3 [29] which has 10 2k× 4k E2V CCD chips was installed
at the focal point. Figure 7 shows MOA-cam3 CCD camera. This system has strong advantages compared
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Figure 4: Discovery of first extrasolar planet with microlensing. The light curve of the microlensing
event OGLE 2003-BLG-235/MOA 2003-BLG-053 [22] is shown. Two sharp peaks are caused by caustic
crossing.

to past and on-going microlensing surveys. Table 1 shows comparison of the performances of microlensing
surveys. The field of view was 2.2degree2 which is about 6 times wider than that of OGLE. This wide
field of view enabled us to take new observation strategy: high-cadence observation. There are two kinds
of strategies in microlensing planet search: high magnification and high-cadence observations for all of the
events. The difference of the strategies is due to the shape of the caustics of the planetary microlensing.

Figure 8 shows a magnification pattern of a planetary lensing. There are two kinds of caustics in
the planetary lensing: central caustics and planetary caustics. The central caustics are always around
the host star, thus the anomaly by the central caustics always appear [30] around the peak of high-
magnification event. On the other hand, planetary caustics are hard to predict where they are. That
means predicting anomaly is impossible for the planetary caustics. To detect anomaly caused by central
caustics, watching peaks of high-magnification events is a clear very efficient strategy because observers
can be concentrated into limited number of events and limited time. Once such event is discovered, no
large CCD cameras are required. There are four major groups in microlensing observations: OGLE,
MOA, PLANET/ROBOnet, and µFUN. In these groups, OGLE and MOA have large CCD cameras and
working on microlensing event surveys. As the primary target is to find microlensing events, most of the
telescope times are used for the microlensing survey. The other groups PLANET/ROBOnet and µFUN
are working on follow-up observations of the events discovered by OGLE and MOA. These observations
are done in target of opportunity base and no large CCD camera is used. Thus their observations are
concentrated around the peaks of high-magnification events and specific target events they are interested
in.

Table 1: Comparison of microlensing surveys
MACHO EROS OGLE MOA I MOA II

Aperture (m) 1.27 1.0 1.3 0.61 1.8
FOV (deg2) 0.5 0.938 0.325 1.27 2.18

Site Australia Chile Chile NZ NZ
Status Finished Finished Active Finished Active

In spite of the effectiveness of the high-magnification strategy, this method is thought to be inefficient
to find low-mass planets. The size of the central caustic is proportional [31] to the mass ratio q and
shrinks quickly with the mass ratio decrease. On the other hand, the size of the planetary caustics are
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Figure 5: MOA II 1.8 m telescope at its opening ceremony.

Figure 6: Optics of the MOA II telescope. A simple prime focus with a parabolic primary mirror and for
corrector lenses was adopted.
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Figure 7: A large CCD camera MOA-cam3. The effective area is 12cm× 15cm.

Figure 8: A magnification pattern of a planetary lensing. The host star is at origin, and the separation
of the planet is 1.4 (outside of this figure). The mass ratio is 0.01. The small wedge shape caustic (left)
is the central caustic and a large diamond shape caustic (right) is the planetary caustic.
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Figure 9: Light curves of a central caustic event (a) and a planetary caustic event (b). The anomaly
by a central caustic always appear around the peak of a high-magnification event. The anomaly by a
planetary caustic is hard to predict.

proportional [32] to the square root of the mass ratio. Anomaly shrinks both in time and change of
brightness as the size of the caustic decrease. Thus finding planetary caustics are expected to be more
efficient than finding central caustics. However, finding planetary caustic is more difficult because there
is no prediction of anomaly to appear. Taking strong strategy such as high magnification is impossible
to find planetary anomaly. Simply watching most of the events almost uniformly in time is only possible
strategy. In this scheme, wider field of view is more efficient because higher-cadence observation can be
done for most of the microlensing events.

The MOA II observation has started in 2005. The observations are being done for the 22 Galactic
bulge fields. The exposure time is 60 seconds each. These 48 degree2 are scanned every one hour. To
find very short anomaly caused by low-mass planet, central 2 fields are observed every 10 minutes. A real
time analysis is beeing done to find microlensing events on time. To find microlensing events efficiently,
a Difference Image Analysis (DIA) [33] is used in the real time analysis. The MOA II microlensing alert
system has started in 2006 for the Galactic bulge fields. The number of events were 168 in 2006 and 488
in 2007.

In 2005, an exciting microlensing event OGLE 2005-BLG-390 [34] was occurred. Figure 10 shows the
light curve of this event. As seen in the figure, a small bump appeared on a single lens curve. From
detailed analysis of the light curve, the bump is found to be caused by a low-mass planet. The mass of the
planet was estimated to be 5.5+5.5

−2.7M⊕ and the separation to be 2.6+1.5
−0.6AU , where M⊕ is the mass of the

Earth. At that time, it was the lowest mass planet discovered outside of the solar system. The host star
was a low-mass (M = 0.22+0.22

−0.11M�) M dwarf. Combined with the separation, the surface temperature
was estimated to be ∼ 50K, a cool icy planet. It is the first discovery of extrasolar icy planet. MOA II
succeeded to observe second peak caused by the planetary caustic. That means the MOA II wide-field
survey itself can be a powerful follow-up observation for most of the microlensing events. The discovery
of the low-mass planet shows possibilities of discovery of Earth-mass planet with microlensing in near
future.

In spite of the microlensing surveys by MACHO and EROS groups, the fraction of MACHOs in the
Galactic halo is still not well determined and a controversial issue in the dark matter problems. In 2000,
the MACHO group reported [35] that the fraction of MACHOs is 20% for a typical halo model with a 95%
confidence interval of 8%-50%. Although some of them were found to be variable stars, the reanalysis
[36] of the data showed that the MACHO fraction is still 0.16 ± 0.06. On the other hand, EROS group
reported a microlensing event in LMC previously. However they reported later that the events are not
due to the microlensing but a variable star. They analyzed all of their LMC data and concluded that they
have no candidate and set an upper limit [37] to the MACHO fraction. Figure 12 shows the final result of
EROS group and that of MACHO group for comparison. As shown in the figure, there are discrepancies
between EROS and MACHO results although a common small allowed region around 0.2 < M < 1.0
and 0.05 < f < 0.1. In addition, there are lots of discussions about the locations of the lensing objects:
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Figure 10: Discovery of first extrasolar icy planet. Light curve [34] of the microlensing event OGLE
2005-BLG-390 is shown.

Figure 11: Extrasolar planets discovered with radial velocity and microlensing. The planet masses vs.
the orbital separations are shown. The red crosses are discoveries with radial velocity method. Green
squares are discoveries with microlensing. The brown triangles show solar system planets. The green
circle is the planet discovered in OGLE 2005-BLG-390.

10

71



Figure 12: Results of past microlensing surveys toward Magellanic Clouds. The fraction [37] of MACHOs
in the Galactic halo vs. the mass are shown. The 95% cl allowed area imposed by MACHO group and
95% cl upper limit imposed by EROS group are shown. The solid lines show LMC results. The dased
line show EROS result including a SMC event.
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lensings by MACHOs or lensing by LMC stars.
One of the aims of the MOA II project is to solve the MACHO problem and obtain well constrained

value of the MACHO fraction. There are several advantages in MOA II to study MACHOs compared
to other groups. The larger aperture enables us to observe more stars then to obtain more statistics
of the microlensing events. The wide field of view enables us high-cadence observations to obtain well
sampled light curves. Well sampled light curves are useful to discriminate background supernovae as
well as variable stars. The locations of the lensing objects can be expected to be inferred from detailed
analyses of the light curves if the parallax or finite source effect takes place. Well sampled light curves are
useful for such analyses too. The high-sampled data around the peak of microlensing events are useful
to find finite-source effects. From the analyses of finite-source effects, distances to the lens objects can
be constrained. Durations of anomalies caused by finite-source effect are expected to be several hours to
several days. In the past surveys, observations have been limited to a few times per night. Detecting short
anomalies have been difficult. We are observing 14 LMC fields and 2 SMC fields in 300 second exposure
time each. The central three fields are being observed every 30 minutes, while other fields are observed
a few times every night. The MOA II survey is expected to obtain high sampled well constrained results
in the MACHO problems.

5 Summary

Thanks to progress made in recent years in modern CCD technology, microlensing observations have
become a powerful tool in astronomy. Observations of microlensing have been applied to seek dark
objects and to probe distant stars. The first planet detection by microlensing was made jointly by MOA
I and OGLE. Following this discovery, the method has matured and become a powerful method for
planet hunting. Observations with the 1.8-m MOA II telescope commenced in 2005 using the MOA-cam3
CCD camera. Its wide field of view is being utilized to carry out high-cadence observations towards
the Galactic Bulge and the Magellanic Clouds. This observational strategy has opened new channels for
planet discovery, including the discovery of low-mass planets. The discovery of a 5.5 Earth-mass planet in
OGLE 2005-BLG-390 event confirmed the efficacy of the high-cadence strategy. In the MACHO search,
high-cadence observations toward the LMC and the SMC are expected to impose strict constraints on
the fraction of MACHOs in halo of our galaxy.

The MOA II project is supported by the Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT), the Japan Society for Promotion of Science (JSPS), and the Marsden Fund of New
Zealand.
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É ÒRË À W�NPW�R½�í�ÌJ×�ÌP½CS�TUNPVJWU½JL5ÌP½��)¶+MJNPV�°J½���Ì�ÈUáUáJÊU½CLC¶�NPW�OJ¶�WU½5ÈUßJÊU½ Á å�Ì
É ÔRË�Þ�¿C«,½Cí�ÌP½JÇ0M�°Y±E±ETU¬�°YVJMC¿C°R¿C½ Ý ÌP½�9�Ç0MJTUN]½���ÌJÈUáUáUÔJ½C¹)²E±EETU¬JMC¿C²RÌ�8�Ì�LC«J¬J¬J®]ÌJLCW�RÌP½5ÊRÔUÔJ½Cå�ÊRáJÌ
É Â Ë�Ç�°Y¯�W�OJØ�NPOJV,½ À Ì5ÊRß Á ÔJ½C¹)²E±EETU¬JMC¿C²RÌJ¹)²E±EETUO,ÌP½,ÊRÒUÔJ½�ÊRÆ Â Ì
É Á Ë�Í!TU¯�NP¯�°R±E²E«,½Y¹�ÌP½�9éÍ�°YÛU°YM�°Y²EMJN]½ À Ì�ÈUáUáUÆJ½U¹)²E±EETU¬JMC¿C²RÌ�8�ÌP½�ÒUßUÈJ½CÆUÈJÊUÌ
É ßRË�S�TUNPVJWU½JL5½JLCMJNP´�°Y±+°J½CS�Ì*9éS�«JVJTUM,½JÍ�Ì5ÊRßUß Á ¹)²E±EETU¬JMC¿C²RÌ�8�ÌP½CåCßUÒJ½J×,ÔUÆJÌ
ÉPÊRáRË�S�TUNPVJWU½�L5½JLCMJNP´�°Y±+°J½CS�Ì*9éS�«JVJTUM,½CÍ�Ì,ÊRßUßUß�¹)²E±EETU¬JMC¿C²RÌ�8�ÌP½JÒUÈUÈJ½ Â È Â Ì
ÉPÊUÊ+Ë�S�TUNPVJWU½�L5½ À W�NPW�R½�í�ÌJ×�ÌP½JLCMJNP´�°Y±+°J½CS�Ì*9éS�«JVJTUM,½CÍ�Ì�ÈUáUáUáJ½U¹)²E±EETU¬JMC¿C²RÌ�8�ÌP½�ÒUÆUÔJ½CÔUÔ Á Ì
ÉPÊRÈRË�S�TUNPVJWU½�L5½JLCMJNP´�°Y±+°J½CS�ÌJS�«JVJTUM,½CÍ�Ì*9 À W�NPW�R½�í�ÌJ×�ÌJÈUáUáUÈJ½JLC¶�NPW�OJ¶�WU½�ÈUßUÒJ½5ÊRÔ ÁUÁ Ì
ÉPÊRÆRË�S�TUNPVJWU½�L�ÈUáUáUÆJ½"!MC¿C²RÌ�Þ�W�³5ÌJí�Ô Â ½5ÊRáYåCáJÊRáJÌ
ÉPÊ�åYË�è)NPETU±+°YOJN]½CS�ÌP½CÍ�°YÛU°YM�°Y²EMJN]½ À ÌP½C»)NP±E±+°J½JL5Ì Ü	��ÌP½�9éÍ!TU¯�NP¯�°Y±E²E«,½Y¹�Ì,ÊRßUßUÈJ½U¹)²E±EETU¬JMC¿C²RÌ�8�ÌP½�Æ Á ÔJ½UåCÒUÒJÌ
ÉPÊRÒRË ",W�OJETU²EWU½5Þ�Ì5ÊRßUÔUßJ½U»)«JTY³UT�Ç0NP¯�W�OC±ET�½JÊU½JÈUÒUÈJÌ
ÉPÊRÔRË�ä0®l°YOJVCµbTUEV,½JÞ�ÌJí�Ì�9)(�O�°�Q+W�Û5½�Þ�Ì5ÊRß ÂUÂ ½ À TUO,ÌC»)TU±RÌJÞ�ÌC¹)²E±EETUO,Ì�LCTC¶UÌ,Ê Â ßJ½CåCÆUÆJÌ
ÉPÊ Â Ë�S�TUNPVJWU½�L�ÈUáUáYå�½U¹)²E±EETU¬JMC¿C²RÌ�8�Ì�×5W�±E±RÌP½�ÔUáUÔJ½C×5åCÒJÌ
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ÉPÊ Á Ë�ä0®l°YOJVCµbTUEV,½JÞ�ÌJí�Ì�9)"!°R¿COJWU½�í�Ì5ÊRß Á ÈJ½ À TUO,ÌJ»)TU±RÌJÞ�ÌC¹)²E±EETUO,Ì�LCTC¶UÌ,ÊRßUßJ½ ÁUÁ ÆJÌ
ÉPÊRßRË �)¶+MJNPV�°J½ ��Ì�9�LCMJNP´�°Y±+°J½CS�Ì,ÊRß Á ÒJ½"!«J´J®]ÌC¹)²E±EETUO,Ì�LCTC¶UÌ�8U¬JO,Ì�Æ Â ½JÒJÊRÒJÌ
É ÈUáRË�LCMJNP´�°Y±+°J½CS�Ì*9��)¶+MJNPV�°J½���Ì,ÊRß Á ÔJ½"!«J´J®]ÌC¹)²E±EETUO,Ì�LCTC¶UÌ�8U¬JO,Ì�Æ Á ½JÔUÆJÊUÌ
É ÈJÊ+Ë�ä�°Y®P´J«J²R½�L5ÌC¹�Ì*9éè�°RÖ�®PW�¿C½?8�Ì � Ì,ÊRßUßJÊ�¹)²E±EETU¬JMC¿C²RÌ*8�ÌJÆ Â ÔJ½JÈJÊ�å�Ì
É ÈUÈRË�S�TUNPVJWU½�L5½JLCMJNP´�°Y±+°J½CS�Ì*9éS�«JVJTUM,½CÍ�Ì�ÈUáUáUÔJ½"!MC¿C²RÌ�Þ�W�³5ÌJí�½ Â å�½JáYåUåCáUáUÒJÌ
É ÈUÆRË�è�°R¿C°Y²EMJN]½ À ÌJÞ�ÌP½JLCMJNP´�°Y±+°J½CS�Ì�9 À °Y±E²E«J¯�TU±ET�½CÞ�Ì5ÊRßUßUÔJ½C¹)²E±EETU¬JMC¿C²RÌ�8�Ì�×5W�±E±RÌJåCÔ Á ½C×,Æ Â Ì
É ÈYåYË À ¶�S�NPOJOJW�¿C½�8�Ì�Ç�ÌJÈUáUáUÔJ½ À TUO,ÌJ»)TU±RÌJÞ�ÌC¹)²E±EETUO,Ì�LCTC¶UÌP½JÆUÔ Á ½5ÊRÒUÔJÊUÌ
É ÈUÒRË À °Y¶ � °YVJ¿UW�O,½J¹�Ì Ý ÌP½�9 � TCTU²E®PW�¿C½CL5Ì*��Ì5ÊRßUßUßJ½C¹)²E±EETU¬JMC¿C²RÌ�8�ÌP½JÒUÈYå�½JÈUÔUÈJÌ
É ÈUÔRË�LCMJNP´�°Y±+°J½ À ÌP½�9�LCW�ÛCNP·U«J¶+MJN]½���Ì Ý ÌJÈUáUáUÒJ½"!MC¿C²RÌ�Þ�W�³5Ì�í�½ Â ÈJ½CáYåUåCáJÊ�å�Ì
É È Â Ë�S�TUNPVJWU½�L5½�9é¹)+°YN]½CS�Ì�ÈUáUá Á ½U²E«J´J¯�NP±E±EW�V,Ì
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From Gravity Probe B to STEP:

Testing Einstein in Space

James Overduin1

1Gravity Probe B, Hansen Experimental Physics Laboratory,

Stanford University, Stanford, CA 94305, USA

Abstract
I summarize the history, current status and preliminary findings of the Gravity
Probe B (GPB) mission, which seeks to make the first direct measurements of the
geodetic and frame-dragging effects predicted by Einstein’s theory of general relativ-
ity. I then discuss the planned Satellite Test of the Equivalence Principle (STEP),
which will test the underlying assumption of Einstein’s theory, the equivalence of
gravitational and inertial mass. STEP will place important constraints on theories
that seek to go beyond general relativity, such as unified field theories based on higher
dimensions (string theory) and theories of dynamical dark energy (quintessence), both
of which predict the existence of new fields that may violate the equivalence principle.

1 Background to the Gravity Probe B Experiment

By coincidence, the successful launch of Gravity Probe B on 20 April 2004 (Fig. 1) came exactly 100 years
after the earliest published accounts of frame-dragging experiments, by August Föppl in Munich in 1904
[1]. Föppl, working as he was before general (and for that matter special) relativity, was investigating the
possibility of a coupling between the spin of the Earth and that of a pair of heavy flywheels whose rotation
axis could be aligned along either lines of latitude or longitude (Fig. 2). He was probably inspired by
earlier experiments of countrymen Immanuel and Benedict Friedlaender (1896) involving torsion balances
in the vicinity of spinning millstones, and by the writings of Ernst Mach, who famously speculated in
1883 that water in a spinning bucket might not exhibit the effects of centrifugal force “if the sides of the
vessel increased in thickness and mass until they were ultimately several leagues thick.” A sufficiently

Figure 1: Launch of Gravity Probe B

1E-mail:overduin@relgyro.stanford.edu
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Benedict Friedlaender

Foppl’s experimental setupAugust Foppl

Figure 2: Experiments in frame-dragging before general relativity

massive bucket, in other words, might carry the local inertial frame of the water around with it. Mach’s
Principle, as this idea came to be known, has proved to be of limited scientific value (Ref. 1 lists 21
different formulations of it in the literature, some mutually contradictory). Nevertheless Gravity Probe B
(GPB) can be seen as a modern-day realization of Mach’s proposal with an earth-sized bucket and the
role of water played by orbiting gyroscopes more than a million times more sensitive than the best inertial
navigation gyros on earth.

Albert Einstein was strongly influenced by Mach’s ideas, and his early attempts at gravitational
field theories all exhibited frame-dragging effects. It is somewhat surprising, therefore, that he did not
attempt to work out the Machian implications of general relativity himself. That was left to Hans
Thirring and Josef Lense (1918), after whom the general relativistic frame-dragging effect is often named.
(In a nice reversal of the usual course of events, Thirring had wanted to build an improved Föppl-type
experiment and only reluctantly settled for doing the theoretical calculation after he was unable to obtain
funding [1].) The terms “frame-dragging” and “Lense-Thirring” are sometimes used interchangeably with
“gravitomagnetic”, based on the close analogy between Maxwell’s equations and a subset of Einstein’s
field equations in the low-velocity, weak-field limit [2]. Such analogies did not begin with general relativity;
their existence was already suspected in 1849 by Michael Faraday, who designed experiments to search
for “gravitational induction.” The terminology must be used with care, however; for just as in ordinary
electrodynamics, the distinction between gravitomagnetic and gravitoelectric is frame-dependent, and
other phenomena besides frame-dragging are at least partly ”gravito-electromagnetic.” An example is
the geodetic effect, which involves the transport of angular momentum through a gravitational field and
was already studied two years before the Lense-Thirring effect by Willem de Sitter (1916). He showed
that the earth-moon system would precess in the field of the sun, an effect now called the solar geodetic
effect (although “heliodetic” might be more descriptive). De Sitter’s calculation was extended to rotating
test bodies such as the earth by Jan Schouten (1918) and Adriaan Fokker (1920), and the solar geodetic
effect is now sometimes referred to as the de Sitter or Fokker-de Sitter effect.

These effects became widely known when they were mentioned by Arthur Eddington in his textbook
of 1924. The idea of attempting to observe them with terrestrial gyroscopes was briefly considered in
the 1930s by P.M.S. Blackett, who discarded it as impractical [3]. Technological progress during World
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Dan Debra, Bill Fairbank, Francis Everitt and Bob Cannon with a model of GPB, 1980

Figure 3: Genesis of Gravity Probe B

War II, however, brought the problem back into the realm of possibility. An advertisement for a new
“cryogenic gyroscope” in the December 1959 issue of Physics Today stimulated Leonard Schiff to revisit
some earlier calculations involving tests of Mach’s Principle and led to his elegant re-derivation of both
the geodetic and frame-dragging effects in the form now known as the Schiff formula:

~ΩGR = ~Ωgeo + ~Ωf−d =
3GM

2c 2r3
(~r × ~v) +

GI

c 2r3

[

3~r

r2

(

~S · ~r
)

− ~S

]

, (1)

where M , I and ~S refer to the mass, moment of inertia and angular momentum of the central body and
r and ~v are the orbital radius and instantaneous velocity of the gyroscope. In a nice example of scientific
synchronicity, essentially the same results were arrived at independently months earlier by George Pugh,
a researcher at the Pentagon who also contributed the ingenious suggestion of shielding an orbiting
gyroscope from non-gravitational disturbances inside a drag-free satellite.

Frame-dragging arises due to a spin-spin interaction between the gyroscope and rotating earth, anal-
ogous to the interaction of a magnetic dipole with a magnetic field. In a polar orbit 642 km above the
earth, it causes a gyroscope’s spin axis to precess in the east-west direction by 39 milliarcsec/yr, an angle
so tiny that it is equivalent to the angular width of the object Pluto as seen from earth. The geodetic
effect is somewhat larger; it arises partly as a spin-orbit interaction between the spin of the gyroscope and
the “mass current” of the moving earth in the gyro rest frame. This is the analog of Thomas precession
in electromagnetism. The spin-orbit interaction accounts for one-third of the total geodetic precession;
the other two-thirds are not gravito-electromagnetic in origin, but arise due to space curvature around
the massive earth (an effect sometimes referred to as the “missing inch” [2]). In a 642 km polar orbit,
the geodetic effect causes a gyroscope’s spin axis to precess in the north-south direction by 6606 mil-
liarcsec/yr, an angle comparable to that subtended by the planet Mercury as seen from earth. The
measurement of precessions this small would eventually pose immense technical and scientific challenges,
an obstacle which fortunately did not deter Schiff (a theorist), Bill Fairbank (a low-temperature experi-
mentalist) and Bob Cannon (a gyroscope specialist) when they met one sunny afternoon in 1960 in the
Stanford university swimming pool to discuss the idea seriously for the first time (Fig. 3). GPB received
its first NASA funding in March 1964.

2 The Gravity Probe B Mission and Preliminary Results

In concept the experiment is simplicity itself: a gyroscope, a readout mechanism to monitor its spin axis,
and a telescope to compare this axis with the line of sight to a distant guide star (Fig. 4). In practice GPB
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Figure 4: Gravity Probe B concept

grew into one of the most complex experiments ever flown, requiring at least a dozen new technologies
that did not exist when it was conceived. Among these are the world’s roundest and most homogeneous
gyroscope rotors and a suspension system operating to levitate and maintain them within microns of their
housings over a dynamic range of eleven orders of magnitude in force. A novel readout scheme based
on the superconducting London moment was developed using ultra-sensitive superconducting quantum
interference device (SQUID) magnetometers. Expandable nested lead shields were employed to reduce
the ambient magnetic field. New techniques were invented to spin up the gyros, reduce vacuum pressure
and remove charge buildup on the rotors. Perturbing forces were suppressed by a drag-free control system
whereby any one of the gyroscopes could be isolated as an inertial “plumb line”; the rest of the spacecraft
was made to follow its motion by means of helium boiloff vented through a revolutionary porous plug
and specially designed thrusters. (This porous plug has since proved vital to other NASA missions
including COBE, IRAS, WMAP and Spitzer.) The resolution of the onboard telescope, fastened to the
gyro assembly by a novel quartz bonding technique, was enhanced by means of a beam splitter and image
dividers. Non-inertial motions of the guide star, IM Pegasi, were compensated by the use of long-baseline
radio interferometry to monitor its position relative to distant background quasars.

Once in orbit, GPB underwent an initial orbit checkout phase, which lasted until 27 August 2004
and has been described in detail elsewhere [4]. The science phase which followed lasted until 14 August
2005 (or 353 days, just under the original goal of one full year). The final post-flight calibration phase
then continued for a further 46 days until there was no longer enough liquid helium to maintain the
experiment at cryogenic temperatures. Fig. 5 shows one year’s worth of preliminary north-south data.
The predicted geodetic effect is already seen in the unprocessed gyro data to an accuracy level of 1%.
Table 1 shows the general relativistic predictions in both the north-south (NS) and east-west (EW)
directions compared to preliminary GPB results[5] (all figures in milliarcsec/yr). These numbers should
be regarded as preliminary. As might be expected in an experiment that goes six or more orders of
magnitude in gyro drift rate beyond anything that has gone before, two unexpected factors have cropped
up to complicate the data analysis. First, it became apparent during the science phase of the mission
that there were variations in the polhode rate of the gyros (polhode motion had been expected, but
its period had not been expected to change appreciably over the mission lifetime, given characteristic
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Figure 5: Seeing general relativity directly

gyro spin-down periods on the order of 10,000 years). It is critical to understand and model these
polhode variations in order to combine the data from successive orbits and thereby reduce the noise as
far as possible within the limits inherent in the SQUID readout system (roughly 1 milliarcsec in 5 hrs).
Second, misalignment torques (torques proportional to the angle between the spacecraft roll axis and the
line of sight to the guide star) appeared during the post-flight calibration phase that were larger than
expected. These classical torques must also be understood and modeled, because they can mimic the
desired relativity signal. Both factors have been traced to larger-than-anticipated electrostatic patches on
the gyroscopes. The misalignment torques are due to interactions between these patches and similar ones
on the gyro housings, and the time-varying polhode periods are caused by the fact that these interactions
extract energy from the spinning rotors, albeit at a rate that would be imperceptible were the rotors not
so perfect. (The energy loss amounts to ∼ 10−13 W, four orders of magnitude below the loss due to heat

radiation of ∼ 10−9 W for rotors at 2.2 K.) A current worst-case upper bound on systematic error due
to both factors together is 97 milliarcsec/yr in both directions (Table 1) [5]. However this will go down
significantly. In expectation of the unexpected, GPB was designed to take various kinds of “redundant”
data, and these are now proving their worth. In particular trapped-flux modeling is allowing the data
analysis team to reconstruct the behavior of the gyro rotors in real time. This, in combination with more
sophisticated method of data analysis, is expected to yield accuracies close to those originally envisioned
for the experiment. Final results are to be announced in 2008.

Table 1: Preliminary GPB results (initial year-long 4-gyro average [5])

(Terrestrial) Solar Guide star Net predicted Observed

geodetic geodetic proper motion (ΩGR) (Ωobsd)

NS -6606 +7 +28 ± 1 −6571 ± 1 −6578 ± 9 (1σ)

EW -39 -16 −20 ± 1 −75 ± 1 −87 ± 9 (1σ)

The final results from GPB will constitute a sixth and seventh test of general relativity, supplementing
the three “classical tests” (gravitational redshift, perihelion precession and light deflection), the Shapiro
time delay, and the spin-down of the binary pulsar in accordance with expectations based on the emission
of gravitational radiation [6]. They will strengthen constraints on metric theories as possible extensions
of general relativity, by placing new independent limits on the parameter γ of the Parametrized Post-
Newtonian (PPN) formalism [7]. (In principle the GPB data can also constrain a second PPN parameter,
the preferred-frame parameter α1, but this effect is probably too small to be observed.) They may also
impose new constraints on a wide variety of other “generalizations of general relativity.” Examples are
theories involving torsion (Hayashi and Shirafuji 1979 [8] and Halpern 1984 [9]; see Mao et al. 2006 [10]
and Flanagan et al.[11]), extra dimensions (Overduin and Wesson 1997 [12]; see Liu and Overduin 2000
[13]) and violations of Lorentz invariance (Bailey and Kostelecký 2006 [14]; see Overduin 2008 [15]).
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Figure 6: STEP concept: Galileo’s free-fall experiment in orbit

3 Satellite Test of the Equivalence Principle

By contrast with GPB, which has carried out two new tests of predictions of general relativity, STEP
will probe the underlying foundation of Einstein’s theory, the (local) equivalence of gravitational and
inertial mass. The equivalence principle (EP) originated in Newton’s clear recognition (1687) of the
strange experimental fact that mass fulfills two conceptually independent functions in physics, as both
the source of gravitation and the seat of inertia. Einstein’s “happiest thought” (1907) was the realization
that the local equivalence of gravitational and inertial mass tells us something very deep about gravity:
it tells us that the phenomenon of gravitation does not depend on the properties of matter (for it can
be transformed away by moving to the same accelerated frame, regardless of the mass or composition
of the falling object). Rather, the phenomenon of gravity must spring from the properties of spacetime
itself. Einstein eventually identified the property of spacetime that is responsible for gravitation as its
curvature. General relativity, our currently accepted “geometrical” theory of gravity, thus rests on the
validity of the EP. But it is now widely expected that general relativity must break down at some level,
in order to be united with the other fields making up the standard model (SM) of particle physics. It
therefore becomes crucial to test the EP as carefully as possible.

Historically, there have been four distinct ways of testing equivalence: (1) Galileo’s free-fall method,
(2) Newton’s pendulum experiments, (3) Newton’s celestial method (his dazzling insight that moons and
planets could be used as test masses in the field of the sun) and (4) Eötvös’ torsion balance. Of these,
(3) and (4) are by far the most exact: the celestial method now makes use of lunar laser ranging to place
limits on the relative difference in acceleration toward the sun of the earth and moon of 3 × 10−13 [16],
and similar constraints come from modern state-of-the-art torsion balance experiments [17]. But both
these methods are subject to fundamental limitations (modeling uncertainties and seismic noise) and it
is unlikely that they will advance significantly beyond the 10−13 level. STEP is conceptually a return to
Galileo’s free-fall method, but one that uses a 7000 km high “tower” that constantly reverses its direction
to give a continuous periodic signal, rather than a quadratic 3 s drop (Fig. 6). A free-fall experiment
in space has two principal advantages over terrestrial torsion-balance tests: a larger driving acceleration
(sourced by the entire mass of the earth) and a quieter “seismic” environment, particularly if drag-free
technology is used. These and other factors will enable STEP to improve existing constraints on EP
violation by five to six orders of magnitude, from ∼ 10−13 to 10−18.
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ACCELEROMETER DETAIL:

Figure 7: Schematic cutaway of the STEP spacecraft (left) with solar panel (top) and dewar (below)
containing quartz block and four accelerometers (detail at right)

The STEP design calls for four pairs of concentric test masses, currently composed of Pt-Ir alloy, Nb
and Be in a “cyclic condition” to eliminate possible sources of systematic error (the total acceleration
difference between A-B, B-C and C-A must be sero for three mass pairs AB, BC and CA). This choice
of test-mass materials is not yet fixed, but results from extensive theoretical discussions in the 1990s
suggesting that EP violations are likely to be tied to three potential determinative factors that can be
connected to a general class of string-inspired models: baryon number, neutron excess and nuclear electro-
static energy [18, 19]. The test masses are constrained by superconducting magnetic bearings to move in
one direction only; they can be perfectly centered by means of gravity gradient signals, thus avoiding the
pitfall of most other free-fall methods (unequal initial velocities and times of release). Their accelerations
are monitored with very soft magnetic “springs” coupled to a cryogenic SQUID-based readout system.
The SQUIDs are inherited from GPB, as are many of the other key STEP technologies, including test-
mass caging mechanisms, charge measurement and UV discharge systems, drag-free control algorithms
and proportional helium thrusters using boiloff from the dewar as propellant (Fig. 7). Prototypes of key
components including the accelerometer are in advanced stages of development. STEP is to be submitted
for NASA Phase A study as a Small Explorer (SMEX)-class mission in early 2008.

Theoretically, the range 10−18 <
∼ ∆a/a <

∼ 10−13 is an extremely interesting one. This can be seen
in at least three ways. The simplest argument is a dimensional one. New effects in any theory of
quantum gravity must be describable at low energies by an effective field theory with new terms like
β(m/mQG) + O(m/mQG)2 where β is a dimensionless coupling parameter not too far from unity and
mQG is the quantum-gravity energy scale, which could be anywhere between the grand unified theory
(GUT) scale mGUT ∼ 1016 GeV and the Planck scale mPl ∼ 1019 GeV. In a theory combining gravity
with the SM, m could plausibly lie anywhere between the mass of an ordinary nucleon (mnuc ∼ 1 GeV)
and that of the Higgs boson (mH ∼ 100 GeV). With these numbers one finds that EP-violating effects
should appear between (mnuc/mPl) ∼ 10−19 and (mH/mGUT) ∼ 10−14 — exactly the range of interest.
This makes STEP a potential probe of quantum gravity [20].

The dimensional argument, of course, is not decisive. A second approach is then to look at the
broad range of specific theories that are sufficiently mature to make quantitative predictions for EP
violation. There are two main categories. On the high-energy physics side, EP violations occur in many
of the leading unified theories of fundamental interactions, notably string theories based on extra spatial
dimensions. In the low-energy limit, these give back classical general relativity with a key difference:
they generically predict the existence of a four-dimensional scalar dilaton partner to Einstein’s tensor
graviton, and several other gravitational-strength scalar fields known as moduli. In the early universe,
these fields are naturally of the same order as the gravitational field, and some method has to be found
to get rid of them in the universe we observe. If they survive, they will couple to SM fields with the
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Figure 8: Investigating nature on all three scales — small, large and intermediate

same strength as gravity, producing drastic violations of the EP. One conjecture is that they acquire
large masses and thus correspond to very short-range interactions, but this solution, though widely
accepted, entails grave difficulties (the Polonyi or “moduli problem”) because the scalars are so copiously
produced in the early universe that their masses should long ago have overclosed the universe, causing it
to collapse. Another possibility involves a mechanism whereby a massless “runaway dilaton” (or moduli)
field is cosmologically attracted toward values where it almost, but not quite, decouples from matter; this
results in EP violations that lie in the same range as that identified above and can reach ∼ 10−14 [21].
Similar comments apply to another influential model, the TeV “little string” theory [22]. The second
category of specific EP-violating theories occurs at the opposite extremes of mass and length, in the field
of cosmology. The reason is the same, however: a new field is introduced whose properties are such
that it should naturally couple with gravitational strength to SM fields, thus influencing their motion in
violation of the EP. The culprit in this case is usually dark energy , a catch-all name for the surprising but
observationally unavoidable fact that the expansion of the universe appears to be undergoing late-time
acceleration. Three main explanations have been advanced for this phenomenon: either general relativity
is incorrect on the largest scales, or there is a cosmological constant (whose value is extremely difficult
to understand) — or dark energy is dynamical . Most theories of dynamical dark energy (also known as
quintessence) involve one or more species of new, light scalar fields that could violate the EP [23]. The
same thing is true of new fields that may be responsible for producing cosmological variations in the
electromagnetic fine-structure constant α [24].

In all or most of these specific theories, EP violations are predicted to appear in the STEP range,
10−18 <

∼ ∆a/a <
∼ 10−13. To understand the reasons for this, it is helpful to look at the third of the

arguments alluded to above for regarding this range as a particularly rich and interesting one from
a theoretical point of view. This line of reasoning shares some of the robustness of the dimensional
argument, in that it makes the fewest possible assumptions beyond the SM, while at the same time
being based upon a convincing body of detailed calculations. Many authors have done work along these
lines, with perhaps the best known being that of Carroll in 1998 [25], which we follow in outline here.
Consider the simplest possible new field: a scalar φ (as motivated by observations of dark energy, or
alternatively by the dilaton or supersymmetric moduli fields of high-energy unified theories such as string
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theory). Absent some protective symmetry (whose existence would itself require explanation), this new
field φ couples to SM fields via dimensionless coupling constants βk (one for each SM field) with values
not too far from unity. Detailed but standard calculations within the SM (modified only to incorporate
φ) show that these couplings are tightly constrained by existing limits on violations of the EP. The
current bound of order ∆a/a < 10−12 translates directly into a requirement that the dominant coupling
factor (the one associated with the gauge field of quantum chromodynamics or QCD) cannot be larger
than βQCD < 10−6. This is very small for a dimensionless coupling constant, though one can plausibly
“manufacture” dimensionless quantities of this size (e.g. α2/16π), and many theorists would judge that
anything smaller is almost certainly zero. Now STEP will be sensitive to violations as small as 10−18. If
none are detected at this level, then the corresponding upper bounds on βQCD go down like the square
root of ∆a/a; i.e., to βQCD < 10−9, which is no longer a natural coupling constant by any current
stretch of the imagination. For perspective, recall the analogous “strong CP” problem in QCD, where
a dimensionless quantity of order 10−8 is deemed so unnatural that a new particle, the axion, must be
invoked to drive it toward zero. This argument does not say that EP violations inside the STEP range
are inevitable; rather it suggests that violations outside that range would be so unnaturally fine-tuned
as to not be worth looking for. As Ed Witten has stated, “It would be surprising if φ exists and would
not be detected in an experiment that improves bounds on EP violations by 6 orders of magnitude” [26].
Only a space test of the EP has the power to force us to this conclusion.

The fundamental nature of the EP makes such a test a “win-win” proposition, regardless of whether
violations are actually detected. A positive detection would be equivalent to the discovery of a new
force of nature, and our first signpost toward unification. A null result would imply either that no such
field exists, or that there is some deep new symmetry that prevents its being coupled to SM fields. A
historical parallel to a null result might be the Michelson-Morley experiment, which reshaped physics
because it found nothing. The “nothing” finally forced physicists to accept the fundamentally different
nature of light, at the cost of a radical revision of their concepts of space and time. A non-detection of
EP violations at the 10−18 level would strongly suggest that gravity is so fundamentally different from
the other forces that a similarly radical rethinking will be necessary to accommodate it within the same
theoretical framework as the SM based on quantum field theory.

STEP should be seen as the integral “intermediate-scale” element of a concerted strategy for funda-
mental physics experiments that also includes high-energy particle accelerators (at the smallest scales)
and cosmological probes (at the largest scales), as suggested in Fig. 8. Accelerators such as the Large
Hadron Collider (LHC) may provide indirect evidence for the existence of new fields via their missing-
energy signatures. Astronomical observatories such as the SuperNova Acceleration Probe (SNAP) may
produce direct evidence of a quintessence-type cosmological field through its bulk equation of state. But
only a gravitational experiment such as STEP can go further and reveal how or whether that field couples

to the rest of the standard model. It is at once complementary to the other two kinds of tests, and a
uniquely powerful probe of fundamental physics in its own right.
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[4] G.M. Keiser et al., in V.A. Kostelecký, ed., Third Meeting on CPT and Lorentz Symmetry, World
Scientific, Singapore, 2005, p. 115

9

88



[5] C.W.F. Everitt, presentation at the 18th Meeting on General Relativity and Gravitation (GRG18),
Sydney, Australia, July 2007

[6] C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 1993),
p. 210

[7] C.M. Will, Living Reviews in Relativity 3 (2006); http://relativity.livingreviews.org/

Articles/lrr-2006-3/

[8] K. Hayashi and T. Shirafuji, Phys. Rev. D19 (1979) 3524

[9] L. Halpern, Int. J. Theor. Phys. 23 (1984) 843

[10] Y. Mao et al., Phys. Rev. D76 (2007) 104029; arXiv:gr-qc/0608121 (2006)
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Properties of Rotating Black Holes 

Roy Patrick Kerr 

University of Canterbury  
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The Schwarzschild Solution 
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The search for a rotating generalisation of 

Schwarzschild 

•! It was known that the field outside any isolated spherically 
symmetric gravitational source must be Schwarzschild. This is time 
independent, although its interior can collapse to a “singularity” 
inside the event horizon.  

•! For 40 years Relativists searched for a rotating generalisation, a 
spinning black hole. 

•! The obvious approach was to assume the exterior field to be 
rotationally symmetric and time independent. This eliminates two out 
of the four coordinates in  Einstein’s equations, leaving (r,z).  

•! The equations where put into many elegant and beautiful forms 
(particularly by Papapetrou) but no rotating solution was found.  

Some additional assumption was needed. 

Alexey Z. Petrov 

(1910-71) 

•!Petrov studied the algebraic form of the    curvature tensor for 

an empty Einstein space (the conformal tensor)  and showed 
that it is characterized by four null eigenvectors at each point. 

If these are written as spinors, 

•!The conformal tensor  corresponds to a completely 

symmetric four index spinor and its eigenvectors satisfy, 

•!This is a quartic equation for the ratio of the two components of the null spinor. 

•!It was observed that almost all known solutions  of Einstein’s equations were 

“Algebraically Special”, i.e. two of the eigenvectors coincided. 

Let’s look for “Algebraically Special” solutions of the empty Einstein equations! 
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Ivor Robinson              Andrzej Trautman 

STILL NOT ROTATING!! 

They made the further assumption that the null vector was a gradient. 
This lead to the Robinson-Trautman metrics  in 1962. 

Previous attempts to find most general 

Algebraically Special metric 

•! Ivor Robinson continued his study of the most general algebraically 
special space-times. This would be completed later. 

•! In 1962-3 a group centred in Pittsburgh announced that they had 
solved the complete problem and that there was there was only a 
fairly non-interesting generalisation of Schwarzschild, NUT space. 

•! I had been studying the same problem and was very surprised at 
this result. Ivor Robinson told me later that he and and Andrzej 
Trautman also disbelieved it. 

•! A preprint containing the proof was sent to Alfred Schild and Alan 
Thompson at the University of Texas in Austin. I was also there at 
that time, and was in the same small apartment building as Alan. 

•! Neither Alan nor Alfred could see anything wrong with the paper. 
Alan then gave it to me to see why there were no interesting 
algebraically special Einstein spaces. 
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•! I thumb through the paper to see where this surprising result came from – 

which equation told them that the search was futile. 

•! I find a simple equation that seemed to be the key to their result, 

•! I do not know what A is but this equation seems to be the crux of their 

argument, so I look back to see where it came from and find that it cannot be 
true. The coefficients must sum to zero because of the “Bianchi Identities” . 

•! I rush next door and tell Alan that the conclusions are false. We calculate the 

first of the three terms and find that it is incorrect.  The equation now reads 

•! I then calculate the correct field equations for Algebraically Special spaces. 
This is announced at a conference in New York.  The author of the original 

paper says “Yes, but the second coefficient was a misprint. The equation is 

•! I say “OK, then the third must be wrong!” Alan and I calculate it that night and 
find that the correct equation is 

Examining the paper 

•! I thumb through the paper to see where this surprising result came from – 

what equation told them that the search was futile. 

•! I find a simple equation that seemed to be the key to their result, 

•! I do not know what A is but this equation seems to be the crux of their 

argument, so I look back to see where it came from and find that it cannot be 

true. The coefficients must sum to zero because of the “Bianchi Identities” . 

•! I rush next door and tell Alan that the conclusions are false. We calculate the 

first of the three terms and find that it is incorrect.  The equation now reads 

•! I then calculate the correct field equations for Algebraically Special spaces. 

This is announced at a conference in New York.  The author of the original 
paper says “Yes, but the second coefficient was a misprint. The equation is 

•! I say “OK, then the third must be wrong!” Alan and I calculate it that night and 

find that the correct equation is 

Examining the paper 
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Path to Kerr Solution 

Assumed algebraically special. Five of the Einstein equations were solved and 
the metric was then written   

The metric’s dependence on the radial coordinate, “r”, is given explicitly. When 
P is chosen to be 1 the remaining field equations are 

Where a general coordinate system is being used, not necessarily one 

where P=1. 

The coordinates can be chosen so that  

Arbitrary Killing vector 

Any Killing vector (infinitesimal symmetry) can be written as 
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This leaves a solution with only two parameters, (M, a).  

Assume axially symmetry. This reduces the field equations down to 

ordinary differential equations which can be solved.  

The space-time now depends on four real numbers, or  parameters. These 

characterise the metric completely. Getting near!! 

Since I am looking for a physically interesting space-time I require the  

space to be Minkowski space (special relativity) at  large distances. Two 

parameters are removed. 

Assumed independent of time. Now the equations are getting better, but no general 
solution has been found It  is interesting to note that if ds0

2  is any time-independent 
solution then so is 

where m0  is a constant. 

Kerr  metric in Kerr-Schild form 

When a = 0 the metric reduces to Schwarzschild with mass M. 

DOES IT ROTATE WHEN “a” IS NONZERO? 

The metric is rather nasty in the coordinates originally used to find it, but it 

can be put into the simple Kerr-Schild form, 

I tell Alfred Schild, the director of the “Gravitational Research Centre” in 

Austin, that I am going to my office to calculate the angular momentum of 
the last remaining hope. He says “Fine, I am coming too!” 

Alfred sits in an armchair smoking his pipe while I chain smoke cigarettes 

and calculate.   
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The first thing to do was to expand the metric in inverse powers of R, the 

usual radial distance form the origin, 

Now if                             is an infinitesimal coordinate transformation, then 

the metric changes by                              . If we choose 

Then the asymptotic metric becomes 

 NO!! 

The leading terms in the linear approximation for the gravitational field 

around a rotating body were well known.  The contribution from the angular 

momentum vector, J, is 

At this point I turned to Alfred, puffing away in his armchair, and said 

YES!! 

“It rotates with angular momentum Ma about the z-axis. The parameter a is 

the angular momentum per unit mass.” We then went out to celebrate. 
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Kerr  metric in Kerr-Schild form 

Where the “radial” function r is given by 

Event Horizons for Kerr Black Hole 

By Fulvio Melia 

Inner Horizon 

Outer Horizon 

Singular Ring 
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Quasars 

•! In the late 1950s many strange radio sources were discovered. Hundreds 

were discovered, and then in 1960 3C 48 was shown to have an optical 
counterpart, a faint blue “star” with an anomalous spectrum.  John Bolton 

thought that it had a large redshift, but this was not believed by others. 

•! In 1962 the closest quasar, 3C 273, was occulted by the moon. Cyril Hazard 

and Bolton took observations allowing Marteen Schmidt to identify it.  

•! When he observed its spectrum he realised it was that for hydrogen, red-

shifted, and so quasars were identified as galactic objects. 

•! If they were as far away as their redshifts implied, then they were far too 

energetic for all “reasonable” explanations. 

•! Possible explanations: antimatter, white holes, ….  

First Texas Symposium on Gravitation and Astrophysics 

•! In December 1963 a meeting is arranged in Dallas Texas to discuss the newly 
discovered and highly energetic objects in the sky. These will later be called 
“Quasars”, short for “QUASi-stellAR radio sources”.  At least 300 astronomers/
astrophysicists and 50 Relativists attend. 

•! There are many theories presented but none that have broad appeal. 

•!  Hoyle and Burbidge suggest a giant star with the mass of at least a million 
suns. Even this does not produce enough energy to power the observed 
quasars. Black holes are mentioned but the non-rotating Schwarzschild metric 
is far too unlikely.  

•! On hearing that Roger Penrose is going to give a talk on my solution, I tell the 
organisers that that is my pleasure, and then I give a 10-15 minute talk 
explaining its geometry, including its double event horizon, and that it rotates. 

•! The astronomers are totally uninterested and ignore my talk. 

•! Papapetrou screams at them that he and others have worked for 30 years to 
find this metric and that they should listen. They ignore this. 
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Kerr-Schild metrics 
•! Around Christmas 1963, after the First Texas Symposium in Dallas, I spend a 

morning investigating whether there are other Algebraically Special spaces that have 
the Kerr-Schild form. There seem to be a large class that depend on a “function of a 
complex variable” and include the Kerr rotating solution but none of the others are of 
physical interest so I just leave  them on my desk. 

•! Jerzy Plebansky, a very well-known Polish relativist visits Austin for Christmas. Alfred 
Schild holds one of his excellent parties for Jerzy. During this I hear them mention 
their interest in spaces of the Kerr-Schild form (that name had not been invented at 
that time, of course). 

•! I say “I think I know of a large group of those, but the result was not checked and 
may be rubbish”. 

•! Alfred and I retire to his office and do a small calculation that shows that any metric 
of this type has to be Algebraically Special. 

•! Next day we redo my original calculations, verifying that they were correct. 

•! We subsequently add an electromagnetic field to the problem, and find that there is a 
natural charged version of Kerr, the Kerr-Newman charged black holes. This is also 
discovered by Ted Newman by testing various ways that charged Schwarzschild 
(Reissner-Nordstrom) and Kerr might be amalgamated! 

The Kerr-Schild metric can be parameterised so that 

If the metric satisfies Einstein’s equations, 

The only asymptotically non-singular, let alone flat, example is the original 

Kerr metric where the arbitrary function, F(Y) = - 2iaY.  

This equation has branch points on the ring where the discriminant is zero, 
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There are two roots for this equation, 

Where the surfaces of constant, r are ellipsoids with “foci” on the singular ring, 

This is a quadratic equation for r2 with ONE positive root for r2  and 

therefore ONE positive root for r. 

The coefficient of k2 in the metric is 

Charged Kerr Schild 

We could not prove that the congruences had to be geodesic, so 

we assumed that. The congruences are then same as in the 

uncharged case. Th electromagnetic field depends on two 

functions. We could not solve the remaining equations unless we 

put the first to zero, leaving an arbitrary analytic function, 

The electromagnetic potential is 

The simplest of these metrics is the Kerr-Newman metric.  
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The metric can be parametrised so that 

If the metric satisfies Einstein’s equations, 

The only asymptotic example is the original Kerr metric where the 

arbitrary function, F(Y), is quadratic in Y. 

Afterwards 

•! It is proved a few years later by David Robinson, another New Zealander, that 
there are no other spinning black hole solutions. All properties of the star are 
lost when it collapses, except for its mass, angular momentum and electric 
charge. John Archibald Wheeler coined the phrase “Black Holes have no hair” 
to express this. 

•! Do Black Holes really exist? Probably. We appear to be seeing millions or more 
black holes in the universe. It may be that every galaxy formed around a Black 
Hole that was created soon after the “Big Bang”. We do not know whether this is 
so, but Black Holes have something to do with the formation of galaxies. 

•! Are Black Holes truly represented by the Kerr solution?  Yes, but only in the limit 
as they age. We can never see a Black Hole collapse inside its event horizon. 
For us, it is always just on the verge of doing so. 

•! The most famous example is at the centre of our own galaxy. It is Sagitarius A* 
and is around 4,000,000 times as heavy as the Sun. Astronomers expect to be 
able to photograph it within the next ten years. 
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Black Hole passing in front of a galaxy 
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1.5 mm 

Stars circling Black Hole at Galactic Centre 
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Overall 3D 

3DRZmovie 
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DensityMinChunk 

Equatorial Plane,    John F Hawley 
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Seyfert  Galaxy 

1.5 mm 
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Jet Formation, John F Hawley 

Tagger and Melia (2006) 
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Unravelling Einstein’s Secrets

Professor Roy Patrick Kerr
University of Canterbury, New Zealand

Newton’s Theory of Gravitation

The inverse square law:   The force between two bodies is proportional

to the product of their masses and inversely proportional to the

square of the distance between them.

2

21

R

MGM
F =

If one of the bodies moves then an immediate  change is felt

across the universe. This means the speed of gravitational

signals is infinite. Newton thought that this was ridiculous, but he

could not think of a good alternative

110



Lorentz Grossman Einstein

1905 - Special Relativity

•    The velocity of light, c, is the same for all observers.

•    The equations of physics are the same for all.

•     No signal travels faster than light.

•     Newton’s theory says gravitation acts instantaneously.

2
mcE =

Newton’s theory is inconsistent with Special Relativity

General Relativity

Albert Einstein Marcel Grossmann David Hilbert

“Matter and energy curve space and time”

µ!µ! "GTG 8=

The geometry of space-time determines the motion of all bodies in it.  The

quickest path between two space-time events is called a geodesic and this

is the equivalent of a straight line in Euclidean space. As the Earth moves

around the sun it thinks that it is moving on a straight line!
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The first test of General Relativity

• The Perihelion of Mercury: It was already known that if Newton’s
theory was replaced with one that was consistent with special
relativity so that there was no longer instantaneous action at a
distance, then half of the precession could be explained.

• As soon as Einstein had formulated his theory he calculated the
motion of small bodies (the planets) around a much larger central
body (the sun).  He did not need an exact solution for the
gravitational field around the sun, although Schwarzschild’s solution
appeared soon afterwards

• When this was  applied to Mercury’s orbit the  calculated precession
was in agreement with the previous experimental results, 43” per
century!

• This result was enough for Einstein to have complete faith that his
theory was correct.

perihelionaphelion

Solar System

43 sec/century

• The place where a planet is furthest from the sun is called the

“perihelion”.

• In Newton’s theory this remains the same, orbit after orbit.

• It was observed that the perihelion of the planet Mercury advances by

43” (43 seconds of arc) per century, and so it rotates completely around

the sun every 3,000,000 years.

• The same is true for the other planets but the effect is much smaller
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Second Test: Bending of Light

• Einstein’ theory predicted that light passing close to a massive body
would curve towards it. This amounts to  1.75” close to the sun.
The only time that photographs can be taken successfully near the
sun is during  a solar eclipse so the observations had to wait for a
suitable moment. This did not occur until after World War I.

1.75”

Bending of Light around the Sun

• Light  bending by a strong gravitational field was not a
new idea. In 1801 J. Soldner had pointed out that
Newtonian gravity predicts that starlight will bend around
a massive object, but the effect is only half that predicted
by General Relativity and calculated by Einstein.

• Sir Arthur Eddington organised two of the most famous
scientific expeditions in history to observe this bending
during a solar eclipse in 1919. He led the first of these to
Principe in Africa and sent a second to Sobral in Brazil,
in case it was raining at the first site. In fact, the weather
was bad in Principe but Eddington was still able to take
some useful photographs.

Agreement with Relativity, disagreement with the Newtonian alternative
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A reproduction of one

of the negatives taken

by Eddington's group

using the 4-inch lens at

Sobral, in Brazil. The

positions of several

stars are indicated with

bars. When compared

to other photographs

taken of the same

region of the sky, it

became apparent that

those closest to the rim

of the Sun appeared to

have shifted slightly.

A modern example of light-bending . There is a Quasar behind the bright galaxy in

the centre of the picture, but 5 times further away.  Its light forms an “Einstein ring”.

This bending of light is being used to study the universe. The amount of distortion of

images tells us about the total mass in any region. This is the best evidence for the

existence of dark matter clustered around galaxies formed from standard matter.

Question: Does dark matter clustering cause ordinary matter to collect around it
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The Schwarzschild Solution

2

2

c

GM
r =

1873-1916

Within a year of Einstein proposing his theory, Professor Karl

Schwarzschild constructed a metric that was to be  the most

important solution of Einstein’s equations for the next 40+ years.

It gave the gravitational field outside a “spherically symmetric”

body, i.e. one that looks the same from all directions.

There was something strange happening at what is called the Schwarzschild

radius where the factor in brackets is zero.  The sphere with this radius is called

the event horizon.

At first it was thought that the metric was “singular” on this sphere, i.e. that the

curvature became infinite as one approached it.
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Eddington Coordinates
In 1924 Sir Arthur Eddington showed that the Schwarzschild

solution is not singular at the Schwarzschild radius. He did

this by changing to a new set of coordinates,

When the mass is zero the last part vanishes and the metric is that for flat space,

the space-time of special relativity. This is usually called the Minkowski metric.

The only singular point for this metric is at the centre where the radius, r, is zero.

This simple form of Eddington will appear again in this talk. For historical reasons

it is now called the Kerr-Schild form,
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The dreaded “Black Hole” appears!

• Eddington showed that the event horizon is well behaved but  there is
something strange happening there.

• A spaceship can approach as close as it likes to this surface and still escape
from the gravitational field of the central body, but if it ventures inside the event
horizon then there is no return. It is drawn rapidly to the central singularity.

• For a normal body such as the earth or the sun, the event horizon would be
deep inside. However, it is then a meaningless concept as Schwarzschild gives
the gravity outsideoutside, and not on the insideinside  of the physical object.

• If the Earth and the Sun were to collapse to black holes then the radii of their
event horizons would be 1cm  and 3km respectively.

• The density of the Sun as it collapsed inside its event horizon is
20,000,000,000,000 kg per cubic centimetre, denser than a Neutron star.

• The Sun is 300,000 time heavier than the Earth. The density of the Earth as it
collapsed inside its event horizon would therefore be

1,800,000,000,000,000,000,000,000 kg per cubic centimetre.

It cannot happen!

The search for “rotating Schwarzschild”

• The gravitational field outside any non-rotating spherical star must be
that found by Schwarzschild. This field  is constant in time, even though
the matter inside may evolve.

• If the star collapses inside its “event horizon” it becomes a black hole.
No object or message can be sent from the inside to  the outside of this
sphere.

• All bodies in the universe rotate. Although it may be only small, nothing
is ever absolutely still. Schwarzschild is a beautiful solution but nature
likes rotation. Furthermore, as a body collapses it rotates faster.
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The search for a rotating generalisation of

Schwarzschild

• Physicists wondered whether a spinning object could form a Black
Hole or whether the spin would make the event horizon disappear.

• For 40 years they searched for a spinning black hole solution of
Einstein’s equations.

• For simplicity, the star was assumed to be rotationally symmetric
(like a normal bottle or glass) and unchanging with time.

• The equations were then put into many elegant and beautiful forms
but no rotating solution was constructed.

Some additional assumption was needed.

Alexey Z. Petrov (1910-71)

•  Alexey Petrov was a Russian who studied

general properties of the curvature in an

Einstein space (such as our universe!)

• For almost all  known physical solutions of

Einstein’s equation, including that of

Schwarzschild, the curvature had a special

property. They were all  “Algebraically

Special”.

• This property also seems to be true for the

gravitational field far from any source.

1960: Let’s look for “Algebraically Special”

solutions of the empty Einstein equations!
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Ivor Robinson              Andrzej Trautman

They made a further assumption, leading to
the Robinson-Trautman metrics in 1962.
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STILL NOT ROTATING!!

Previous attempts
• Ivor Robinson continued his study of the most general lgebraically

special space-times. This would be completed later.

• In 1962-3 a group centred in Pittsburgh announced that they had
solved the complete problem and that there was there was only a
fairly non-interesting generalisation of Schwarzschild, NUT space.

• I had been studying the same problem and was very surprised at
this result, as were Ivor Robinson and Andrzej Trautman.

• A preprint containing the proof was sent to Alfred Schild and Alan
Thompson at the University of Texas in Austin. I was also there at
that time, and was in the same small apartment building as Alan.

• Neither Alan nor Alfred could see anything wrong with the paper.
Alan then gave it to me to see why there were no interesting
algebraically special Einstein spaces.
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• I thumb through the paper to see where this surprising result came from –

what equation told them that the search was futile.

• I find a simple equation that seemed to be the key to their result,

• I do not know what A is but this equation seems to be the crux of their

argument, so I look back to see where it came from and find that it cannot be

true. The coefficients must sum to zero because of the “Bianchi Identities” .

• I rush next door and tell Alan that the conclusions are false. We calculate the

first of the three terms and find that it is incorrect.  The equation now reads

• I then calculate the correct field equations for Algebraically Special spaces.

This is announced at a conference in New York.  The author of the original

paper says “Yes, but the second coefficient was a misprint. The equation is

• I say “OK, then the third must be wrong!” Alan and I calculate it that night

and find that the correct equation is

Examining the paper

!00gives02 ==!+ AAA

!0gives022 ==!+ AAAA

!0gives022 ==!+ AAAA

!00gives032 ==!+ AAA

Path to Kerr Solution

• Assumed algebraically special. This reduces the  ten Einstein equations to
five, and the metrics dependence on the radial coordinate, “r”, is known.
However, the equations are much worse than those of Robinson and
Trautman so something else is needed.

• Assumed independent of time. Now the equations are getting better, but they
are still intractable.

• Assume axially symmetry. This reduces the field equations down to ordinary
differential equations which can be solved.

• The space-time now depends on four real numbers, or  parameters. These
characterise the metric completely. Getting near!!

• Since I am looking for a physically interesting space-time I require the  space
to be Minkowski space (special relativity) at  large distances. Two parameters
are removed.

This leaves a solution with only two parameters, (M, a).
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Kerr  metric in Kerr-Schild form
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When a = 0 the metric reduces to Schwarzschild mass with mass M

DOES IT ROTATE WHEN “a” IS NONZERO?

 NO!!

The metric is rather nasty in the coordinates originally used to find it, but I

realise that it can be put into the simple Kerr-Schild form,

I tell Alfred Schild, the director of the “Gravitational Research Centre” in Austin,

that I am going to my office to calculate the angular momentum of the last

remaining hope. He says “Fine, I am coming too!”

YES!!

Alfred sits in an armchair smoking his pipe while I chain smoke cigarettes and

calculate.  Finally, I announce

Kerr  metric in Kerr-Schild form
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Where the “radial” function r is given by
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Event Horizons for Kerr Black Hole

By Fulvio Melia

Inner Horizon

Outer Horizon

Singular Ring

First Texas Symposium on Gravitation and Astrophysics

• In December 1963 a meeting is arranged in Dallas Texas to discuss the newly
discovered and highly energetic objects in the sky. These will later be called
“Quasars”, short f or “QUASi-stellAR radio sources”.  At least 300
astronomers/astrophysicists and 50 Relativists attend.

• There are many theories presented but none that have broad appeal.

•  Hoyle and Burbidge suggest a giant star with the mass of at least a million
suns. Even this does not produce enough energy to power the observed
quasars. Black holes are mentioned but the non-rotating Schwarzschild metric
is far too unlikely.

• On hearing that Roger Penrose is going to give a talk on my solution, I tell the
organisers that that is my pleasure, and then I give a 10-15 minute talk
explaining its geometry and that it rotates.

• The astronomers are totally uninterested and ignore my talk.

• Papapetrou screams at them that he and others have worked for 30 years to
find this metric and that they should listen. They ignore this.
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Kerr-Schild metrics

• Around Christmas 1963, after the First Texas Symposium in Dallas, I spend a
morning investigating whether there are other Algebraically Special spaces that have
the Kerr-Schild form. There seem to be a large class that depend on a “function of a
complex variable” and include the Kerr rotating solution but none of the others are of
physical interest so I just let them lie.

• Jerzy Plebansky, a very well-known Polish relativist visits Austin for Christmas. Alfred
Schild holds one of his excellent parties for Jerzy. During this I hear them mention
their interest in spaces of the Kerr-Schild form (that name had not been invented at
that time, of course).

• I say “I think I know of a large group of those, but the result was not checked and
may be rubbish”.

• Alfred and I retire to his office and do a small calculation that shows that any metric
of this type has to be Algebraically Special.

• Next day we redo my original calculations, verifying that they were correct.

• We subsequently add an electromagnetic field to the problem, and find that there is a
natural charged version of Kerr, the Kerr-Newman charged black holes. This is also
discovered by Ted Newman by testing various ways that charged Schwarzschild
(Reissner-Nordstrom) and Kerr might be amalgamated!

Powerpoint\Jena-TwistedPants_m4.avi
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Afterwards

• It is proved a few years later by David Robinson, another New Zealander,
that there are no other spinning black hole solutions. All properties of the
star are lost when it collapses, except for its mass, angular momentum and
electric charge. John Archibald Wheeler coined the phrase “Black Holes
have no hair” to express this.

• Do Black Holes really exist? Probably. We appear to be seeing millions or
more black holes in the universe. It may be that every galaxy formed around
a Black Hole that was created soon after the “Big Bang”. We do not know,
but Black Holes have something to do with the formation of galaxies.

• Are Black Holes truly represented by the Kerr solution?  Yes, but only in the
limit as they age. We can never see a Black Hole collapse inside its event
horizon. For us, it is always just on the verge of doing so.

• The most famous example is at the centre of our own galaxy. It is called
Sagitarius A* and is around 4,000,000 times as heavy as the Sun.
Astronomers expect to be able to photograph it within the next ten years.

Black Hole in front of a spiral galaxy

• This is the picture of a nearby Black Hole and a distant galaxy. It is a spiral
galaxy with a central bulge, just like ours, seen side on. Of course, no such
event has actually been photographed. It is just a computer simulation.

• Notice how the light from the galaxy bends around the back of the Black Hole.
It gets very complicated as the Black Hole crosses in front of the galaxy.
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Stars circling Black Hole at Galactic Centre

This is a series of real photographs of the stars circling the Black Hole at the

centre of our very own galaxy.  The  star coming in from the top  left on a

cometary orbit takes 13 years to circle the Black Hole. It has now been

observed for one complete orbit. From these orbits the mass of the central

object has been calculated to be almost 4,000,000 times the mass of our Sun.
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Black hole production at the LHC
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Abstract
In the TeV gravity scenarios, black holes are expected to be produced at the Large
Hadron Collider (LHC) in CERN. In this article, we review the current status of the
theoretical studies on this issue. After a brief overview, we explain our studies on the
apparent horizon (AH) formation in high-energy particle collisions.

1 Introduction

Almost a decade ago, scenarios in which the Planck energy Mp could be O(TeV) were proposed [1].
In these scenarios, our 3-dimensional space is a brane floating in large extra dimensions, and gauge
particles and interactions are confined on the brane. Since the TeV scale energy will be reached by the
Large Hadron Collider (LHC) in CERN, we have a possibility to observe quantum gravity phenomena by
experiments. Specifically, in the collision with the energy much higher than the Planck scale, the black
hole production is expected [2]. Since the LHC is planned to begin operation in 2008, the black hole
production at the LHC is a very timely topic. In this article, we review the theoretical studies on this
issue. We give a brief overview in the next section. In Sec. 3, we focus attention to our studies on the
apparent horizon (AH) formation in high-energy particle collisions.

2 Brief overview

The LHC is designed so that protons collide with the center-of-mass energy 14 TeV. In the collisions, the
partons interact with each other and black holes could be produced in these processes. If a black hole is
produced, it emits mainly the gravitational wave and become a stationary higher-dimensional Kerr black
hole (the balding phase). Then, the black hole will evaporate by the Hawking radiation (evaporation).
The particles emitted in this process can be observed by the detectors such as the ATLAS. In the final
phase of evaporation, the quantum gravity effects may become important (the Planck phase). Let us
look at these issues one by one.

2.1 Production rate

The black holes with mass (few)Mp are expected to exist, since its gravitational radius is larger than the
Planck length. Then the trans-Planckian collision is expected to cause the gravitational collapse if the
impact parameter is smaller than the gravitational radius rh(

√
τs) of the parton-pair system. Thus the

parton-parton cross section for the black hole production is estimated as σij→bh(τs) ∼ π[rh(
√

τs)]2. In
order to obtain the proton-proton cross section for the black hole production, one should multiply the
parton distribution functions and take the sum over all possible parton pairs:

σpp→bh(τm, s) =
∑

ij

∫ 1

τm

dτ

∫ 1

τ

dx

x
fi(x)fj(τ/x)σij→bh(τs). (1)

Based on this calculation, the black hole production rate is expected to be 1Hz in the most optimistic
estimate [2]. We remark that the production rate depends on the effect of balding and the black hole
threshold mass. Also, the value of σij→bh should be estimated by a direct calculation. The topics in
Sec. 3 are related to these issues.

1E-mail:hyoshino@phys.ualberta.ca
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2.2 Balding phase

Once a black hole is produced, it decays through several phases. The first phase is the so-called balding
phase. In this phase, the produced black hole emits gauge and gravitational radiations and eventually
becomes a stationary higher-dimensional Kerr black hole. The gravitational radiation is expected to
be larger than the gauge radiation. The characteristic time scale is estimated from the quasinormal
frequency as tbalding ∼ M−1

p (M/Mp)1/(D−3), where D is the spacetime dimensionality.
Since the radiations carry part of the system energy and angular momentum, the final mass and

angular momentum of the black hole is determined by the amount of the radiations. For this reason, the
study of the balding phase is important in order to estimate the distribution of the mass and angular
momentum of produced black holes. However, because of the highly nonlinear nature of high-energy
particle systems, the study of this process is very difficult even numerically. So far there are no reliable
estimates of the amount of radiations, although several attempts have been made including the interesting
one by Pretorius [3].

2.3 Evaporation

The produced black hole evaporates by the Hawking radiation. The evaporation phase is further divided
into two phases: the spin-down phase and the Schwarzschild phase. In the spin-down phase, the angular
momentum of the black hole is extracted by emission of spin particles. After that, the black hole is
Schwarzschild-like and the emission becomes almost isotropic. The characteristic time scale is estimated
as tevaporation ∼ M−1

p (M/Mp)(D−1)/(D−3), which is larger than tbalding for M À Mp. The energy spectrum
of emitted particles are almost thermal and the temperature is TH = (D−3)/4πrh(M). Since the number
of brane fields is much larger than that of the bulk fields, the black hole radiates mainly on the brane [4]
(though there are several subsequent discussions on this issue).

The emitted particles can be detected at the LHC. If the 10TeV mass black hole is produced, the
signals have the following features: (i) ∼ 50 quanta with energy 150-200 GeV; (ii) Large transverse
momentum; (iii) ∼ 10% hard leptons and ∼ 2% hard photons. The S/N ratio of lepton and photon
events is very large, and it makes the detection easier. In fact, the ATLAS group demonstrated that the
detection of black hole events is relatively easy by constructing the event generator [5].

We comment on the studies of the greybody factors. Because of the curvature scattering, part of the
emitted particles is absorbed by the black hole and the spectrum differs from that of the black body.
These effects were studied by many authors. The greybody factors of the Schwarzschild black hole were
numerically calculated for both brane fields and bulk gravitons [6]. The greybody factors of the Kerr
black hole were studied by full numerical calculations for brane fields [7]. Thanks to their studies, the
temporal evolution of the evaporation can be calculated quite accurately. The recently constructed event
generator takes account of the effects of these greybody factors [8]. Note that the greybody factor of the
Kerr black hole for bulk gravitons is left as a remaining problem.

2.4 Planck phase

As the black hole evaporates, the mass decreases and becomes close to the Planck mass Mp. In this phase,
the quantum gravity effects may become important. Currently there are no reliable predictions for this
phase since we have no theory of quantum gravity. Rather, we can able to learn the dynamics of quantum
gravity from the experiments. This opens up an interesting possibility to construct the quantum gravity
theory based on the experiments. If this is the case, we might be able to resolve e.g. the information loss
problem.

3 Studies on the apparent horizon formation

Now, we turn to the studies on the apparent horizon (AH) formation in high-energy particle collisions
by ourselves. Motivation for our studies is as follows. In Sec. 2.1, the parton-parton cross section for the
black hole production is assumed to be σij→bh = π[rh(2p)]2, where p denotes the energy of each incoming
particle. Since this is just the order estimate, the realistic cross section will be σij→bh = Fij(D)π[rh(2p)]2,

2
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where Fij(D) depends on the characters of the incoming particles such as charges and spins as well as
the dimensionality D. It is necessary to obtain the reliable cross sections by direct calculations.

The AH is defined as a closed (D − 2)-dimensional spacelike surface whose outgoing null geodesic
congruence has zero expansion. Assuming the cosmic censorship, the AH existence is the sufficient
condition for the black hole formation when the null energy condition is satisfied. Therefore, the AH
is a good indicator for the black hole formation. We studied the AH formation in the grazing collision
of Aichelburg-Sexl (AS) particles [9, 10]. The charge effect and the effects of spin and duration were
discussed in [11] and [12], respectively. We briefly review these studies one by one.

3.1 Aichelburg-Sexl particle collision

In [9, 10], we studied the AH formation in the collision of AS particles with the impact parameter b, using
the (D ≥ 4)-dimensional general relativity. By using the AS particles, we ignored charges and spins of
incoming particles, the brane tension and the structure of extra dimensions. By numerically calculating
the cross section σAH for the AH formation, we found a lower bound on σij→bh.

The AS particle is a simple massless pointlike particle whose metric for D ≥ 5 is

ds2 = −dudv +
∑

i

dx2
i + Φ(r)δ(u)du2, Φ(r) =

16πGp

(D − 4)ΩD−3rD−4
, (2)

where r :=
√∑

i x2
i and the particle is located at r = 0. The gravitational field is distributed in the

transverse plane to the motion, and it propagates at the speed of light along u = 0. We can set up the
collision of two AS particles by just combining two metrics, since they do not interact before the collision.
In this spacetime, the two incoming waves propagate along u = 0 and v = 0, and collide at u = v = 0.
The locations of particles in the transvese plane are xi = (±b, 0, ..., 0), where b is the impact parameter.

The equation and the boundary conditions for determining the AH on the slice u ≤ 0 = v and
v ≤ 0 = u were derived by Eardley and Giddings, and they solved the AH analytically in the case D = 4
[13]. Unfortunately, their method could not be applied to the higher-dimensional cases, and myself and
Nambu [9] developed a numerical code to solve this problem. In Ref. [10], myself and Rychkov improved
this result by solving the AH on a different slice, u ≥ 0 = v and v ≥ 0 = u. The results of these two
works are summarized as follows:

D 4 5 6 7 8 9 10 11
σYN/πr2

h(2p) [9] 0.65 1.08 1.34 1.52 1.64 1.74 1.82 1.88
σYR/πr2

h(2p) [10] 0.71 1.54 2.15 2.52 2.77 2.95 3.09 3.20

These values give the reliable lower bounds on σij→bh for the case of AS particle collisions. In addition,
using the area theorem, we could find the lower bound MAH on the mass of final state of the produced
black hole MBH by calculating the AH area (i.e. MBH > MAH). MAH has the tendency to decrease as the
impact parameter b and the dimensionality D are increased. Our results were used in e.g. [14] in order
to improve the estimate of the black hole production rate at the LHC. Specifically, they compared the
two cases MBH = 2p and MBH = MAH. The result is that the two estimates of the black hole production
rate differ by a factor 103–106, indicating the importance of the studies on the balding phase.

3.2 Charge effect

In [11], myself and Mann discussed the effect of electric charge on the AH formation. In that paper, we
ignored the confinement of electromagnetic fields on the brane. Namely, using the higher-dimensional
classical Einstein-Maxwell theory, we introduced the charged version of the AS particle as the particle
model as the first step. We studied only the head-on collision cases for simplicity.

The metric of the charged AS particle is similar to Eq. (2), but the function Φ(r) has the correction
term due to the charge:

Φ(r) =
16πGp

(D − 4)ΩD−3rD−4
− 16π2(2D − 5)!!Gγq2

(D − 3)(2D − 7)(2D − 4)!!r2D−7
, (3)

3
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where q is the D-dimensional charge and γ is the Lorentz factor. Since the correction term is negative,
it is expected that the charge makes the AH formaton difficult. In fact, we solved the AH analytically
and found that the condition for the AH formation is roughly given as γq2 . Gp2. This is rewritten as
αCD−4

b (Mp/m)(Mp/p) . 1 with the fine structure constant α, the brane thickness Cb in the unit of the
Planck length, and the rest mass m. This condition cannot be satisfied at the LHC, and our result might
indicate that the black hole production rate is highly suppressed by the charge effect. However, in the
regime where the AH formation is prohibited in this model, the QED effects are found to be important
by evaluating the so-called classical radius. Therefore, further improvement is required to obtain the
definite conclusion.

3.3 Effects of spin and duration

In [12], myself, Zelnikov and Frolov discussed the effects of spin and duration on the AH formation
using the gyraton model [15], which represents the gravitational field of a spinning radiation beam pulse.
Although the gyraton is a classical model, it can be regarded as a toy model of the quantum wavepackets
with spin. For simplicity, we considered only the head-on collision in four dimensions.

The gyraton metric is given by

ds2 = −dudv + dr2 + r2dφ2 − 8Gpχp(u) log rdu2 + 4GJχj(u)dudφ, (4)

where J is the angular momentum (spin) and the last term causes the repulsive gravitational field around
the center. χp(u) and χj(u) are the functions normalized as

∫
χp(u)du =

∫
χj(u)du = 1, which specify

the energy and angular momentum distributions. The characteristic width of χp(u) and χj(u) is the
duration L of the gyraton. Using this model, we studied the AH formation numerically, and found that
the condition for the AH formation is roughly expressed as L ' rh(2p) and J . 0.4prh(2p). By assuming
L to be the Lorentz contracted proton size ∼ 1.5 × 10−4fm and J to be ~/2, the above two conditions
are satisfied at the LHC. Therefore the spin effects might not have such a significant effect for the black
hole production rate, though it could be changed by a factor.
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Abstract
Within the framework of f(R) gravity where f is an arbitrary function of the Ricci
scalar, we obtain a surface term for action which allows initial-value formulation
with Dirichlet boundary conditions. Based on the action principle, we find match-
ing conditions for two spacetimes across a codimension-one brane/shell, which are
generalisation of the Israel junction conditions in the Einstein gravity.

1 Introduction

Recent trends in studies of gravitation have been strongly motivated by the progresses in string theories,
where we are urged to face some of the essences of the fundamental theories; Here one is higher dimen-
sionality of the universe, while another is non-linear curvature corrections to the Einstein gravity. It is an
urgent task to construct viable models in which those two aspects are appropriately taken into account.

For that purpose, we shall here consider D-dimensional spacetimes on which the following higher-
curvature action for gravity is defined:

Sg =
1
2

∫
M

√
−gf(R), (1)

where f is an arbitrary function of the Ricci scalar R. The idea of braneworld [1] is a simple way to
extend the theory to higher dimensions without giving rise to immediate inconsistencies, where matters
are confined in a lower-dimensional object, called brane. We shall focus on a particular case of codimension
one, where the matter energy–momentum tensor can be written as

Tab = Sabδ(y), (2)

where y is the Gaussian coordinate normal to the brane.
Prior to more general analyses, the concept of “Einstein limit” provides some clue to the problem,

in which “f(R) → R” is brought about. In such a limit, the theory is naively expected to recover the
ordinary Einstein gravity, however, an obstacle arises since the Einstein limit is not a smooth limit; To
illuminate this, first vary the action with respect to the metric to find the fourth-order field equation

f ′(R)Gab +
1
2
(Rf ′(R) − f(R))gab + (gab¤ −∇a∇b)f ′(R) = Sabδ(y), (3)

where we took brane into account as the matter source. Assuming continuity of metric and R, integration
of the field equation across the brane leads to the following jump conditions

−f ′(R)[Kab − Kγab]+− + f ′′(R)[∂yR]+−γab = Sab, [K]+− = [R]+− = 0, (4)

where γab is the metric induced on the brane and Kab is the extrinsic curvature. [A]+− ≡ A|y=+0−A|y=−0

means jump across the brane. We see that the continuity imposed on K remains no matter how the
theory approaches Einstein, where f ′ → 1, f ′′ → 0, thereby claiming a discrepancy between this and the
usual Israel junction conditions [2].

Puzzled by this phenomenon, at least we can imagine the importance of serious investigation into
junction conditions in f(R) gravity. The remainder of this article is dedicated to developing matching
condition for f(R) gravity theories in a rigorous manner.

1
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2 First-order action for f(R) gravity

We start with an initial-value formulation of the f(R) gravity since the matching conditions for spacetimes
will be given as boundary conditions at a given surface. As a rigorous way to find all the dynamical degrees
of freedom and necessary boundary conditions, we employ canonical formulation of f(R) gravity. For the
time being we concentrate on vacuum gravity. We will discuss coupling to matter in the next section.

2.1 Equivalent scalar–tensor theory

We introduce two scalar fields ρ and Φ related by an algebraic constraint Φ = f ′(ρ), and use them to
rewrite the f(R) action in the following way

Sg =
1
2

∫
M

√
−g(ΦR − ρΦ + f(ρ)). (5)

In vacuum, this action gives coupled equations of motion for gab and Φ

ΦGab +
1
2
(ρΦ − f(ρ))gab + (gab¤ −∇a∇b)Φ = 0,

R − ρ = 0.
(6)

As this form is of Brans–Dicke-type scalar–tensor theory, it is clear that there is an additional scalar
degree of freedom in gravity other than metric. It is easily seen that these field equations are combined
to give the original fourth-order field equation (3).

2.2 Surface term via (D − 1) + 1 canonical decomposition

Suppose that the spacetime M is foliated by a one-parameter family of hypersurfaces {Σy} labeled by a
coordinate y and that the spacetime boundary ∂M is for convenience identified as one of those constant-y
surfaces Σy0 . We discuss within the portion corresponding to y ≥ y0. We denote the unit vector normal
to Σy as na, by which the metric induced on Σy is given as γab = gab − εnanb, where ε = nana = ±1
for the cases the normal is spacelike and timelike, respectively. The signature of na is chosen so that it
directs to the direction of increasing y. We define the extrinsic curvature of Σy by Kab = γa

c∇cnb. Then
we decompose the metric together with the lapse N(> 0) and the shift Na as

gabdxadxb = γab(Nady + dxa)(N bdy + dxb) + εN2dy2. (7)

By the Gauss relation, the action is represented by quantities that are totally parallel or perpendicular
to the hypersurfaces:

Sg =
1
2

∫
M

√
|γ|N(ΦR̄ − εΦ(KabK

ab − K2) + 2εK∂nΦ − 2¤̄Φ − ρΦ + f(ρ))

− ε

∫
M

√
−g∇a(ΦKna − Φaa − ε∇̄aΦ),

(8)

where and hereafter the bar represents (D − 1)-dimensional quantities, and where aa = nb∇bn
a, ∂n =

na∇a, and ¤̄ = ∇̄a∇̄a. To cancel the second derivative along the normal direction, we have to add a
surface term

S̄g = −ε

∫
∂M

√
|γ|ΦK. (9)

Then we get an action that contains normal derivatives only up to first order.

2.3 Boundary conditions in vacuum

Now canonical formulation for f(R) gravity is ready. The result1 tells that we have two dynamical
variables {γab, Φ} with canonical conjugate momenta

πab
γ = ε

√
|γ|
2

(−Φ(Kab − Kγab) + γab∂nΦ), πΦ = ε
√
|γ|K, (10)

1We defer its full result until our accompanied paper [3].
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respectively. In vacuum, we find variation of the action on-shell to be

δ(Sg + S̄g) = −
∫

∂M
(πab

γ δγab + πΦδΦ), (11)

which vanishes if the fields satisfy Dirichlet conditions at the boundary.

3 Coupling to matter on a boundary and junction conditions

Next we take into account matters on the boundary ∂M which couples to gravitational fields γab and
Φ. In presence of matter on the boundary, variations of the matter action S̄m[γab, Φ] give rise to source
terms; The variational principle tells that we have boundary conditions

πab
γ |∂M =

δS̄m

δγab
, πΦ|∂M =

δS̄m

δΦ
. (12)

Now we move to the braneworld picture where two spacetimes M+ and M− are matched at the
boundary. In both of the portions we use the common unit normal vector na by choosing its signature
so that it directs from M− to M+. The notion [· · · ]+− means jump across the boundary such as [A]+− ≡
A|∂M+ − A|∂M− . Then we find the junction conditions for the jumps of the canonical momenta, which
are conveniently rearranged into the following expression

Φ[Kab]+− = −
(

Sab −
S − ΦF

D − 1
γab

)
, [∂nΦ]+− =

S + (D − 2)ΦF

D − 1
, (13)

where

Sab ≡ ε
−2√
|γ|

δS̄m

δγab
, F ≡ ε

1√
|γ|

δS̄m

δΦ
. (14)

It is seen that the Israel junction condition is recovered only when

ΦF = − S

D − 2
(15)

is satisfied by the matter on the boundary.

4 Conformal equivalence

A well-known fact for Brans–Dicke-type scalar–tensor theories is that a suitable conformal transformation
takes to a particular frame in which the gravitational theory appears to be familiar Einstein–scalar theory.
To see this, let us introduce another scalar field defined by

φ =

√
D − 1
D − 2

lnΦ, (16)

where we assume Φ > 0, and perform the following conformal transformation

gab = e−2φ/
√

(D−1)(D−2)g̃ab. (17)

Then the action is given in terms of the Einstein-frame variables as

S =
1
2

∫
M

√
−g̃(R̃ − (∂̃φ)2 − 2V (φ)) − ε

∫
∂M

√
|γ̃|K̃ + S̄m[γ̃ab, φ] (18)

with the scalar potential given in terms of f

V (φ) =
ρf ′(ρ) − f(ρ)
2f ′(ρ)D/(D−2)

, (19)
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where ρ is parametrically defined to satisfy φ =
√

D−1
D−2 ln f ′(ρ). Thus the following junction conditions

are obtained

[K̃ab]+− = −

(
S̃ab −

S̃

D − 2
γ̃ab

)
, [∂̃nφ]+− = −ε

1√
|γ|

δS̄m[γ̃ab, φ]
δφ

, (20)

where

S̃ab = ε
−2√
−γ̃

δS̄m

δγ̃ab
. (21)

Therefore the set of junction conditions in the original frame (13) has been shown to be equivalent to the
familiar Israel conditions plus a jump condition for ∂̃nφ, which were utilised in, e.g., [5].

5 Summary

We showed that the Brans–Dicke-type action supplemented by a surface term

Sg =
1
2

∫
M

√
−g(ΦR − ρΦ + f(ρ)) − ε

∫
∂M

√
|γ|ΦK (22)

allows well-defined initial-value formulation for the equivalent f(R) gravity with Dirichlet conditions
imposed on the boundary.

In presence of a brane, the junction conditions in this frame were given as

Φ[Kab]+− = −
(

Sab −
S − ΦF

D − 1
γab

)
, [∂nΦ]+− =

S + (D − 2)ΦF

D − 1
. (23)

where Sab and F were defined in (14).
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Abstract
We explored several properties of dynamical black holes in Einstein-Gauss-Bonnet
gravity. In the present paper, we assume that the spacetime is pseudo-spherically
symmetric and the Gauss-Bonnet coupling constant is non-negative. Depending on
the existence or absence of the general relativistic limit, solutions are classified into
GR and non-GR branches, respectively. Assuming the null energy condition on matter
fields, we show that a future outer trapping horizon in the GR branch possesses the
same properties as that in general relativity. In contrast, that in the non-GR branch
is shown to be non-spacelike with its area non-increasing into the future. We can
recognize this peculiar behavior to arise from a fact that the null energy condition
necessarily leads to the null convergence condition for radial null vectors in the GR
branch, but not in the non-GR branch. The energy balance law yields the first law
of a trapping horizon, from which we can read off the entropy of a trapping horizon
reproducing Iyer-Wald’s expression. The entropy of a future outer trapping horizon
is shown to be non-decreasing in both branches along its generator.

1 Preliminaries

The action in n(≥ 5)-dimensional spacetime is given by

S =
1

2κ2
n

∫ [
R − 2Λ + α(R2 − 4RµνRµν + RµνρσRµνρσ)

]
+ Smatter, (1)

where the natural volume element is omitted. Here, R and Λ are the n-dimensional Ricci scalar and the
cosmological constant, respectively. Smatter in Eq. (1) is the action for matter fields and κn :=

√
8πGn,

where Gn is the n-dimensional gravitational constant. In four-dimensional spacetime, the Gauss-Bonnet
term does not contribute to the field equations since it becomes a total derivative. α with the dimension
of length-squared is the coupling constant of the Gauss-Bonnet term. We assume α ≥ 0 throughout this
paper, as motivated by string theory. The gravitational equation derived from the action (1) is

Gµν + αHµν + Λgµν = κ2
nTµν , (2)

where Gµν := Rµν − gµνR/2 is the Einstein tensor and

Hµν := 2
[
RRµν − 2RµαRα

ν − 2RαβRµανβ + R αβγ
µ Rναβγ

]
− 1

2
gµν(R2 − 4RµνRµν + RµνρσRµνρσ) (3)

and Tµν is the energy-momentum tensor of matter fields. The field equations (2) contain up to the second
derivatives of the metric and linear in that term.

Suppose the n-dimensional spacetime (Mn, gµν) has symmetries corresponding to the isometries of
an (n − 2)-dimensional constant curvature space (Kn−2, γij), which we call pseudo-spherical symmetry.
Namely, the line element is written by the direct product as

gµνdxµdxν = gab(y)dyadyb + r2(y)γij(z)dzidzj , (4)

where a, b = 0, 1; i, j = 2, ..., n− 1. Here r is a scalar on (M2, gab) with r = 0 defining its boundary, and
γij is the unit metric on (Kn−2, γij) with its sectional curvature k = ±1, 0. We assume that (Kn−2, γij)
is compact. Then the trapped region is expressed simply as the region where (∇r)2 < 0.

1E-mail:nozawa@gravity.phys.waseda.ac.jp
2E-mail:hideki@cecs.cl
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The generalized Misner-Sharp mass [1] is a scalar function on (M2, gab) with the dimension of mass
such that

m :=
(n − 2)V k

n−2

2κ2
n

{
−Λ̃rn−1 + rn−3[k − (Dr)2] + α̃rn−5[k − (Dr)2]2

}
, (5)

where α̃ := (n − 3)(n − 4)α, Λ̃ := 2Λ/[(n − 1)(n − 2)], Da is a metric compatible linear connection on
(M2, gab) and (Dr)2 := gab(Dar)(Dbr). V k

n−2 is the area of the unit (n−2)-dimensional space of constant
curvature. The quasi-local mass is defined by the quasi-local geometrical quantity on the boundary of
a spatial surface and dependent only on the metric and first derivatives. The equations in the following
analysis can be transcribed in a comprehensible form by using the quasi-local mass. The definition reduces
to the Misner-Sharp mass when Λ = 0 [3], which characterizes the local nature of spherically symmetric
spacetime [4].

Here we recapitulate basic properties that the quasi-local mass exhibits [2]. First, our geometrical
definition is physically justified in that it is rederived as an integral of energy flux. Let us define the
Kodama vector Kµ = −εµν∇νr, from which Kµ is timelike in the trapped region. The existence of
a timelike vector field irrespective of a highly dynamical setting is a direct consequence of the pseudo-
spherical symmetry. Straightforward calculations show that ∇µKµ = 0, Gµν∇µKν = 0 and Hµν∇µKν =
0. Using these facts, we can show that the integral of the Kodama current, Jµ, yields our quasi-local
mass:

m = −
∫

Σ

Jµnµ, Jµ = −Tµ
νKν , (6)

where Σ is some spatial region without an inner boundary and nµ is its future-directed unit normal. It
can be also derived by the locally conserved energy flux, from which the quasi-local mass is recognized
as a total amount of energy enclosing the spatial surface [2].

The second criterion that we may recognize it as a well-defined mass is that whether it satisfies the
first law. This is indeed the case. Define the pressure and the Bondi-flux localization as

P = −1
2
T a

a, ψa = T a
bD

br + PDar, (7)

then the variation of m is written by manifestly satisfactory form

dm = Aψadxa + PdV, (8)

where A = V k
n−2r

n−2 and V = V k
n−2r

n−1/(n− 1). It follows from the unified first law (8) that m = M =
const.. In the case of k + (Dr)2/2α̃ 6= 0 and (∇r)2 6= 0, the Kodama vector Kµ becomes hypersurface-
orthogonal and then the spacetime is locally isometric to the Boulware-Deser-Wheeler solution (Birkhoff’s
theorem). In the asymptotic regions (asymptotically flat region at spatial infinity and asymptotic anti-de
Sitter region), the values of quasi-local mass converges to the constancy representing the total energy
of the system. If we assume the dominant energy condition and under some technical assumptions, the
quasi-local mass shows monotonicity and positivity properties. All of the above properties supports the
physical interpretation of our definition of quasi-local mass. We summarize the fundamental properties
of the quasi-local mass in Table 1.

Table 1: Properties of the quasi-local mass.
k = 1 k = 0 k = −1

Unified first law Yes Yes Yes
Higher-dim. ADM mass Yes n/a n/a
Monotonicity Yes Yes Yes
Positivity Yes See [2] See [2]

2 Dynamical black holes

By utilizing the quasi-local mass, we investigate the nature of trapping horizons (especially, future outer
trapping horizons since we are mainly focusing our attention to the dynamical nature of black holes).
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Black-hole formation typically entails the trapped region, from which even the outgoing null rays are
converging. This is the local characterization of dynamical aspects of black holes. We investigated the
nature of trapping horizons, which is the (n − 1)-dimensional surface foliated by marginal surfaces. Let
θ± be two expansions associated with null vectors orthogonal to Kn−2. For the black-hole spacetimes,
future (θ− < 0) outer (θ+,u < 0) trapping horizons are relevant, in which case the trapping horizon is
located at θ+ = 0.

Now noting that (Dr)2 is proportional to θ+θ−, the local nature of spacetime is encoded in quasi-local
mass. But it is quadratic in θ+θ− unlike general relativistic case so that two branches appear by solving
(5) inversely

θ+θ− ∝ −k − r2

2α̃

(
1 ∓

√
1 +

8κ2
nα̃m

(n − 2)V k
n−2r

n−1
+ 4α̃Λ̃

)
. (9)

We call GR-branch (the upper sign) and non-GR branch (lower sign) according to their general relativistic
limit. Thus the nature of trapping horizons are very sensitive to branches. It follows from (9) that the
trapping horizons are absent in the case of k = 0, 1 for non-GR branches and r <

√
2α̃ (r >

√
2α̃)

regions with k = −1 for the GR (non-GR) branch. Whether the region is trapped or not is judged by
the inequality of the quasi-local mass. The value of quasi-local mass

mh :=
(n − 2)V k

n−2

2κ2
n

rn−3
h

(
k +

α̃k2

r2
h

− Λ̃r2
h

)
. (10)

at trapping horizon r = rh is naturally regarded as the mass of trapping horizon. Let us consider a
spacetime containing a trapping horizon. The quasi-local mass satisfies the Penrose inequality m ≥ (≤)mh

for the GR (non-GR) branch under the dominant energy condition. For k = 1 and Λ < 0 case, this
inequality gives more severe lower and upper bound than mere positivity.

Now it is well known fact that Killing horizons exhibit thermodynamical nature. To derive the
formulae of black-hole thermodynamics, we have made full use of the stationarity conditions. Hence,
it is not clear in dynamical situations that how these laws are altered. But for the case of trapping
horizons (and especially for the pseudo-spherically symmetric case), similar laws seem to be valid. Taking
the Kodama vector as a substitute of horizon-generator, we found that the trapping horizons exhibit
thermodynamical properties as for Killing horizons, irrespective of its highly non-stationary situations.
The symmetric derivative of the Kodama vector along itself reduces to

KbD(bKa) =
rκ2

n

n − 2

(
1 +

2α̃

r2
[k − (Dr)2]

)−1

ψa, (11)

Eq. (11) reveals that ψa vanishes if Ka is a Killing vector on (M2, gab), implying that Kµ = Ka(∂/∂xa)µ

is a hypersurface-orthogonal Killing vector on (Mn, gµν). This fact also lends support to the physical
interpretation of ψa. Since ψaKa = TabK

aKb on the trapping horizon where Dar = Ka holds, ψa is
not in general proportional to Ka in a dynamical setting. Then the surface gravity of a trapping horizon
should be defined by KbD[bKa] = κTHKa. Thus we have

κTH =
1
2
D2r = −1

2
εabDaKb, (12)

where the evaluation is performed on the trapping horizon. Transform the unified first law and project
onto the generator of trapping horizon, we have the first law of the trapping horizon

Aψad′xa =
κTH

κ2
n

d′
[
A

(
1 +

2(n − 2)α̃k

(n − 4)r2

)]
, (13)

where d′ is the derivative along the trapping horizon. From the first law, we can read off the entropy of
the trapping horizon as

STH :=
V k

n−2r
n−2
h

4Gn

[
1 +

2(n − 2)(n − 3)αk

r2
h

]
. (14)

This coincides with Iyer and Wald’s definition of dynamical black-hole entropy, which has several plausible
properties among other things. Their entropy is independent of the potential ambiguity of the Lagrangian
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and associated with a Noether charge. Moreover, it agrees with a non-stationary perturbation of the
entropy of a stationary black hole and reduces to the entropy of a stationary black hole in the stationary
case.

The first and second piece in the entropy expression corresponds to the one quarter of the area the
deviation from the general relativistic case. We can show that under the null energy conditions, the area
of future outer trapping horizon is non-decreasing (non-increasing) along the generator of the trapping
horizon for the GR (non-GR) branch, whereas its entropy is non-decreasing in both branches. One
may wonder why the non-GR branch shows the counter-intuitive behaviors. This peculiarity is best
understood as follows. Let kµ be radial null vector. The field equations and our definition of quasi-local
mass combine to give

±Rµνkµkν

√
1 +

8κ2
nα̃m

(n − 2)V k
n−2r

n−1
+ 4α̃Λ̃ = κ2

nTµνkµkν . (15)

This equation shows that the null convergence condition violates if the null energy condition is strictly
satisfied.

It also follows from (15) and Raychaudhuri’s equation that under the null energy condition, an outer
(inner) trapping horizon in the GR branch is non-timelike (non-spacelike), while it is non-spacelike (non-
timelike) in the non-GR branch. The timelike nature for the non-GR branch is also counter-intuitive since
light rays emanating from a point on the trapping horizon can propagate into both sides, which does not
capture the idea that the black hole should be a region of no escape. This can be again recognized as the
‘divergence condition’ is satisfied for the non-GR branch.

For concreteness, let us consider the Hawking evaporation of a black hole, in which the null energy
condition is violated. A black hole in the GR branch continues to lose its mass and reduce its area. In
other words, the signature of a trapping horizon becomes non-spacelike and shrinks. Whereas in the non-
GR branch, a black hole defined by a future outer trapping horizon increases its size as it “evaporates.”
A fundamental cause of this arises from the sign flip in Eq. (15) for a radial null vector kµ, which makes
the non-GR-branch solutions quite eccentric. But we have not explicitly shown whether this sign change
is special to radial null vectors or an artifact of our spacetime ansatz (4).

To conclude we sum up the upshots obtained in [5] in Table 2.

Table 2: Properties of the future trapping horizon under the null energy condition. Each quoted term
denotes that it has the meaning of time evolution only if the trapping horizon is null, since the area and
entropy laws are formulated along the generator of the trapping horizon.

GR branch non-GR branch
future outer future inner future outer future inner

signature non-timelike non-spacelike non-spacelike non-timelike
trapped side future exterior interior past
area law “non-decreasing” non-increasing non-increasing “non-decreasing”
entropy law “non-decreasing” non-increasing non-decreasing “non-increasing”
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Abstract
We consider a six-dimensional axisymmetric Einstein-Maxwell model of warped
braneworlds. The bulk is bounded by two branes, one of which is a conical 3-brane
and the other is a 4-brane wrapped around the axis of symmetry. The latter brane is
assumed to be our universe. The 3-brane folds the internal two-dimensional space in
a narrow cone, making sufficiently small the Kaluza-Klein circle of the 4-brane. An
arbitrary energy-momentum tensor can be accommodated on this ring-like 4-brane.
We study linear perturbations sourced by matter on the brane, and show that weak
gravity is apparently described by a four-dimensional scalar-tensor theory. The extra
scalar degree of freedom can be interpreted as the fluctuation of the internal space vol-
ume, the effect of which turns out to be suppressed at long distances. Consequently,
four-dimensional Einstein gravity is reproduced on the brane.

1 Introduction

Probably one of the most interesting recent developments in particle physics and cosmology has been the
idea of braneworlds. Models with extra dimensions are motivated theoretically, as in superstring the-
ory, which is a very promising approach to unification, requiring ten spacetime dimensions. Braneworld
scenarios are further motivated by their phenomenologically interesting aspects. Among them are the
possible effect of having the fundamental scale as low as the weak scale and some modification of the grav-
ity law on submillimeter scales [1], both of which are accessible by experiments. So far five-dimensional
(5D) Randall-Sundrum-type braneworlds [1] have been the most extensively studied examples, whereas
more recently there has been growing interest in six- or higher dimensional models. In the present paper
we will be focusing on 6D braneworlds with Maxwell fields. Since two extra dimensions are enough to
admit flux-stabilized compactifications while keeping the setup as simple as possible, such brane models
allow us to explore some of the interesting features which would be less easily addressed in more string
theoretical settings. Perhaps the simplest exact solution of this type of warped braneworlds has been
constructed in [2]. Codimension two branes are often considered in the above approaches, and they are
unfortunately associated with the problem of the localization of matter. Namely, a strict codimension two
defect does not allow for arbitrary energy-momentum tensor localized on it. Gravitational aspects of such
higher dimensional braneworlds have not been explored thoroughly yet because of this fact. The hybrid
Kaluza-Klein / Randall-Sundrum construction of [3] evades this problem by assuming that our universe
is a 4-brane in six dimensions, with one of the spatial directions compactified on a circle. Refs. [4, 5, 6, 7]
also exploit essentially the same idea to resolve codimension two singularities. The specific model we
consider in this paper is most closely similar to that of [3], but not exactly the same. In [3] the bulk with
axisymmetry closes regularly at the point where the axial Killing vector vanishes. In contrast, ours does
not, permitting a conical singularity there, corresponding to a tensional 3-brane. The conical 3-brane can
fold the internal 2D space in a narrow cone, yielding a small Kaluza-Klein circle of the 4-brane wrapped
around the symmetry axis. (For this idea we are indebted to [8].) To study in more detail the behavior of
weak gravity sourced by matter in the braneworld, we provide a rigorous treatment of metric and matter
perturbations in this paper. We use the technique of [9], which was originally developed for studying
linear perturbations in the Randall-Sundrum model and was developed by [4, 6] in the context of 6D
brane models.
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2 The model

Our 6D bulk is described by the Einstein-Maxwell action. In our setup the bulk cosmological constant
may be positive or negative or zero, and so we write Λ6 = ε 10

�2 , ε = ±1, 0. The 6D field equations derived
from the above action and they admit the following bulk solution [3]:

gMNdx
MdxN = ξ2ηµνdx

µdxν + �2
[

dξ2

f(ξ)
+ β2f(ξ)dθ2

]

, (1)

where f(ξ) := −εξ2 + µ
ξ3 − q2

ξ6 . Only the (ξθ) component of the field strength is nonvanishing, given by
Fξθ = 2

√
3β�κ

q
ξ4 . Let ξ0 be the positive zero of f(ξ). We consider the region in which ξ ≥ ξ0 and f(ξ) ≥ 0.

More specifically, ξ0 is the largest positive zero of f(ξ0) for ε = −1. For ε = 0, we have ξ0 = (q2/µ)1/3. In
the ε = 1 case, ξ0 is the second largest positive zero, and we consider the region ξ0 ≤ ξ < ξ1, with ξ1 being
the largest zero. Accordingly, we have a deficit angle δ = 2π [1 − βf ′(ξ0)/2], corresponding to a conical
3-brane placed at ξ = ξ0 with tension κ2σ = 2π

[

1 − βf ′(ξ0)
2

]

. As in [3], one may impose β = 2/f ′(ξ0),
leading to the regular geometry without a 3-brane. In the present paper, however, we do not do so and
allow for a conical deficit. We follow the construction of [3] and add a ring-like 4-brane at a point ξ∗ > ξ0,
which is assumed to be our universe. The brane action is given by Sbrane =

∫

d5x
√−γ (−λ+ Lm), where

λ is the tension of the 4-brane and Lm is the matter Lagrangian. We denote by γab the induced metric
on the brane. Let M be the spacetime in which ξ ranges from ξ0 to ξ∗. We impose Z2 symmetry about
ξ∗, and glue M and a copy of M together at ξ = ξ∗. In so doing we assume that the metric and FMN

are continuous across the brane.3 The first derivative of the metric is subject to the Israel conditions.
We now consider a vacuum brane. In this case the Israel conditions determines the brane position as

ξ∗ = 2
(

q2

5µ

)1/3

. Since our brane model includes one Kaluza-Klein direction, we must impose that the

circumference of the ring, C = 2πβ�
√
f∗, is not too large (say C � 10−16 cm), whereas if the scale of the

“braneworld compactification” is as large as � ∼ 10−2 cm it will be particularly interesting. Clearly, this
can be achieved by requiring β

√
f∗ � 1. In other words, if the tension of the conical brane is fine-tuned

to be very close to the critical value, κ2σ � 2π, the bulk will look like a narrow sliver with a small
Kaluza-Klein circle. The required fine-tuning is 1− κ2σ

2π ∼ C
� . We will keep using the conical brane to set

the boundary of the system.
We can express the parameters µ and q2 in terms of ξ0 and ξ∗: µ = −ε 8ξ50

5α3−8 , q
2 = −ε 5α3ξ80

5α3−8 , where
α := ξ∗

ξ0
. Note that the above expression is valid only for ε �= 0. Introducing the new coordinate z := ξ/ξ0,

we write f = ξ20f(z), where f(z) := −ε
(

z2 + 8
5α3−8

1
z3 − 5α3

5α3−8
1
z6

)

. The background solution apparently
depends on ξ0, but it can be eliminated by performing an appropriate coordinate rescaling. Thus, it
turns out that the background configuration in the ε �= 0 models is characterized by two parameters, α
and the 3-brane tension σ. We see that (1 <) α3 < 8/5 for ε = +1 and α3 > 8/5 for ε = −1. If α is
very close to 2/51/3, we have a large circumference, C ∝ |α − 2/51/3|−1/2. Large α also tends to give
a large Kaluza-Klein radius, C ∝ α. Therefore, in what follows we will assume α ∼ O(1) but not too
close to 2/51/3. The special case with ε = 0 (α3 = 8/5) should be considered separately. Since the 6D
cosmological constant vanishes, the typical compactification scale is given solely by the Maxwell field:
κ2F 2 = (24/�20)z−8 ∼ 1/�20, where �0 := ξ40�

q .

3 Linear perturbations

Let us now analyze linear perturbations on the brane model. We are interested in a length scale much
larger than the circumference of the ring, and hence we focus on perturbations homogeneous in the θ-
direction. Linear perturbations are split into scalar, vector, and tensor modes under the Lorentz group
in the external spacetime. Here let us consider scalar and tensor perturbations. (Vector modes are of
no particular interest.) For the transverse and traceless tensor perturbation, hµν , the Einstein equations

3We impose the same boundary condition as in [3] for the Maxwell field. This is different from [4, 5, 6], in which FMN

is discontinuous at the 4-brane due to the Stückelberg term included in the brane action.
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simply give
(

ξ4fh′µν
)′+ξ2�2�hµν = 0, where � := ηµν∂µ∂ν . For the scalar perturbations, it is convenient

to employ the 6D longitudinal gauge. The (µν), (ξξ), and (θθ) components of the Einstein equations
are combined to give two basic equations as Ω′′ + 2

(

f ′

f + 5
ξ

)

Ω′ + . . . = 0 and Ψ′′ + 4
ξΨ

′ + . . . = 0.

The remaining variables are obtained from Ξ = Ψ + Ω and δAθ = β�ξ3

2
√

3κq
[f (ξΩ′ + 2Ω) + ξf ′(Ω + 2Ψ)].

We now proceed to discuss boundary conditions. At the point where the geometry pinches off, ξ = ξ0,
we impose some regularity conditions on the perturbations. For the tensor mode, we require that both
hµν and h′µν are regular at ξ = ξ0. The regularity conditions for the scalar modes are fΩ|ξ0 = 0 and
(fΩ)′ + 2f ′Ψ|ξ0 = 0. The perturbed field strength in the Gaussian-normal gauge must be continuous at
ξ = ξ∗. Since we are assuming the Z2 symmetry across the ring, it leads to the condition δAθ∗+A′

θ∗ζ = 0,
where the equation is written in terms of the 6D longitudinal gauge perturbations and hence includes the
brane bending mode ζ = ζ(x). In the 6D longitudinal gauge, the location of the brane is perturbed in
general: ξ∗ → ξ∗ + ζ(x). We now investigate the long-distance behavior of weak gravity on the 4-brane.
Using the Israel condition we can put the bulk equation of motion and the boundary condition into a
single equation with a source term:

Ohµν :=
(

ξ4fh′µν
)′

+ ξ2�2�hµν = −Sµνδ(ξ − ξ∗), (2)

where we define Sµν ≡ 2�ξ2∗
√
f∗κ2

(

Tµν − 1
3T

λ
λ γµν

)

+ 4�2ξ2∗ζ,µν . We use the standard Green function
method to solve Eq. (2). The Green function is explicitly given byGR = − ∫

d4k
(2π)4 e

ik·(x−x′) ∑ ui(ξ)ui(ξ
′)

m2
i +k2−(ω+iε)2

,
where ui(ξ) are a complete set of eigenfunctions of

(

ξ4fu′i
)′

= −ξ2�2m2
iui. (3)

The eigenfunctions must be normalized. We are mainly interested in the long-range gravity on the brane
and hence the zero-mode solution of (3) is the most important. Setting m2

0 = 0 and integrating once,
we obtain u′0 = ξ−4f−1U , where U is an integration constant. However, from the regularity condition
at ξ = ξ0 we must impose U = 0. Therefore, the zero-mode solution is given by u0 = L−1 = constant.

The normalization is determined as L = �
√

2
3 (ξ3∗ − ξ30). The zero-mode truncation of the Green function

leads to hµν ≈ − 1
L2 �−1Sµν . Now we would like to compute the Ricci tensor R(4)

µν of the 4D metric gµν =
ξ2∗ [(1+2Ψ∗)ηµν+hµν ]. Here Ψ∗ is the metric perturbation in the Gaussian-normal gauge, which is related
to the longitudinal gauge quantities. We write R(4)

µν = − 1
2�hµν− 2ξ2∗�

2

L2 ζ,µν− �2

L2 γµν�ζ−(2∂µ∂ν + ηµν�)Υ,
where we defined Υ := Ψ∗ − �2

L2 ξ
2∗ζ. Finally, we can evaluate

R(4)
µν ≈ κ2

4

(

Tµν − 1
2
T
λ

λ γµν

)

− (2∂µ∂ν + ηµν�)Υ, (4)

where T ab := CTab is the energy-momentum tensor integrated along the θ-direction, and we defined
the 4D Newton constant as κ2

4 := ξ2∗κ
2

2πL2β . Thus, we see that the first three terms help to recover a 4D
gravitational theory. However, brane gravity looks different from Einstein gravity at this stage because of
the additional scalar degree of freedom encoded in Υ. It should be stressed here that the brane bending
mode is crucial for reproducing the 4D tensor structure. The role of the brane bending here is the same
as that of the Randall-Sundrum braneworld [9], and it has been shown that the same mechanism works
in a slightly different setup of 6D braneworlds [4, 6].

Let us evaluate the effect of Υ. For �2� = 0 we have the exact solutions, where four integration
constants c1(x), · · · etc. are to be determined by the boundary conditions. In general cases with Tab �= 0
we have nonzero integration constants. From the regularity conditions, one can express c3 and c4 in terms
of c1 and c2. Then, we can write ζ in terms of c1 and c2. For ε �= 0 we find Υ = (ξ3∗−ξ30)(ξ3∗+8ξ30)

72ξ3∗ξ60
ĉ(x),

where ĉ := 8ξ30c1 − c2. Using the Israel conditions, we finally arrive at

Υ = F(α)�2 κ2
4

(

1
3
T
λ

λ − T
θ

θ

)

, (5)

where F(α) := − ε
1440α

2(5α3 − 8)(α3 + 8). Eqs. (4) and (5) imply that the effect of Υ is suppressed on
scales much greater than

√F�. For α ∼ O(1), the coefficient
√F is not large, so that the critical scale

3

139



may be given by �. The critical scale becomes large for α� 1, but this is not the case we are considering.
In the ε = 0 case, a straightforward computation can be similarly done and the effect of Υ is negligible
on scales much greater than �0. To illustrate the geometrical interpretation of the scalar mode Υ, we
compute the perturbations of the internal space volume and the circumference of the brane. It then turns
out that δV ∝ δC ∝ ĉ. Namely, Υ (∝ ĉ) can be interpreted as the perturbations of the internal space
volume and the circumference of the ring. It is reasonable that standard 4D gravity is recovered when
the matter fields on the brane do not perturb the internal space much.

So far we have seen that the zero-mode sector of perturbations can reproduce standard 4D gravity on
the brane. Basically, the effect of discrete Kaluza-Klein modes are Yukawa-suppressed, and hence we can
safely neglect these massive modes at long distances. In this subsection, we compute the mass spectrum
of the Kaluza-Klein modes for completeness. To do so we rewrite Eq. (3) in terms of z and f(z), so
that we would like to solve d

dz

[

z4f(z)dui

dz

]

+ ν2
i z

2ui = 0, ν2
i := m2

i �
2

ξ20
, supplemented with the boundary

conditions. For ε = 0 we replace �2 in ν2
i by �20. In the case of ε = 0 we have analytic solutions for the

Kaluza-Klein mode functions. The Kaluza-Klein mass spectrum can be calculated from the boundary
condition and we can find ν1 � 7.42, ν2 � 13.6, ν3 � 19.7, · · · . The Kaluza-Klein masses measured by an
observer on the ring are νi�−1

0 (ξ0/ξ∗) � 0.855× νi�
−1
0 . In the case of ε �= 0 we compute the mass spectra

fully numerically. As before, the Kaluza-Klein masses measured by an observer on the ring are νi�−1α−1.
We are considering the case with α ∼ O(1), and so we have mi/ξ∗ � �−1.

4 Summary

We have considered a warped braneworld in six dimensions. The background is given by the model
of [3] with a slight modification, in which our universe is assumed to be a 4-brane wrapped around the
axisymmetric internal space. Since the codimension of the brane is one, this construction allows for
localized matter on the brane. We have performed a linearized perturbation analysis in order to study
the long-distance behavior of weak gravity sourced by arbitrary matter on the brane. We have found that
there are two scalar modes, ζ and Υ, relevant to brane gravity. The first one, ζ, describes the shift of the
brane position and plays an important role in recovering the tensor structure of 4D gravity. The mode Υ
encodes the fluctuation of the volume of the internal space (or that of the circumference of the 4-brane)
and signals a scalar-tensor theory of gravity. However, the effect of Υ was shown to be suppressed on
scales greater than � (or �0). Discrete Kaluza-Klein modes are Yukawa-suppressed at long distances.
Thus, we have successfully obtained standard 4D gravity on the brane. The hybrid braneworld does
not eliminate the hierarchy problem with relatively “large” extra dimensions, because one of the extra
dimensions will be quite small compared to the other. Indeed, we find M2

Pl = (M4
6 )�C 2(ξ3∗−ξ30)

3ξ2∗
√
f∗

∼ (M4
6 )�C.

(For ε = 0, we find M2
Pl = 2(M4

6 )�0C/
√

15.) The circumference of the ring must be C � 10−16 cm. Thus,
for � � 10−2 cm we get the fundamental scale M6 � 107 GeV.
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3 School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
4 Department of Physics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Abstract
Using the WKBJ approximation we obtain semi-analytic expressions of the absorption
probability for Dirac fermions on a higher dimensional Schwarzschild background. We
then relate the absorption probability to the absorption cross-section, and then use
these results to plot the emission rates. Our results lead to the interesting conclusion
that for d > 5 bulk fermion emission dominates brane localised emission.

Introduction

Large extra-dimensional scenarios [1] have led to the somewhat striking prediction that black holes (BHs)
may be observed at particle accelerators such as the LHC [2]. However, in order to suppress a rapid proton
decay quarks and leptons need to be physically separated in the higher dimension(s). Such models are
generically called split fermion models [3, 4]. Note that in supersymmetric versions of this idea the
localizing scalars and bulk gauge fields will also have fermionic bulk superpartners.

In a previous work we applied conformal methods, which allowed us to separate the Dirac equation
on a higher dimensional spherically symmetric background, to discuss the quasinormal modes (QNMs)
for Schwarzschild BHs [5]. In this work we used this same method to calculate the greybody factors [6]
and emission rates for Dirac perturbations on a d-dimensional Schwarzschild background by writing the
background as:

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
d−2 , (1)

with f(r) = 1 −
(rH

r

)d−3
and where the horizon is at r = rH .

After the conformal transformation [5], the Dirac equation separates into a time-radial part and a
(d−2)-sphere. Moreover, the radial part reduces to a Schrödinger-like equation in the tortoise coordinate
r∗: (

− d2

dr2
∗

+ V1

)
G = E2G , (2)

where dr = f(r)dr∗, and the potential is given by V1(r) = κ2 f
r2 +κf d

dr

[√
f

r

]
, with κ = "+ d−2

2 . Note that
the above potential reduces to the brane-localized results when we set κ = " + 1, and therefore provides
an alternate derivation of the brane localized potential.

Absorption probabilities via the WKBJ approximation

In a recent work by two of the authors [7] we applied the intermediate WKBJ approximation (up to first
order) to evaluate the absorption probability of a graviton to a static BH. The WKBJ approximation
can, however, be applied at all energies (including low energy) as has been discussed in reference [8].
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3j.doukas”at”physics.unimelb.edu.au
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Low Energy WKBJ

In terms of the WKBJ approximation, in general, it will be convenient to make a change of variables to
x = Er [7]. Writing E2Q(x∗) = E2 − V1 the Schrödinger equation, equation (2), takes the form:

(
d2

dx2
∗

+ Q

)
G = 0 . (3)

The low energy absorption probability corresponds to the probability for a particle to tunnel through
the potential barrier. The result to first order in the low energy WKBJ approximation is given by:

|Aκ(E)|2 = exp
[
−2

∫ x2

x1

dx′

f(x′)
√
−Q(x′)

]
, (4)

where x1 and x2 are the turning points, Q(x1,2) = 0. This approximation is valid for V1
>∼ E2 and as long

as we can solve for the turning points in V1(x) = E2. Note that we can numerically integrate equation
(4) for each energy E to obtain the absorption probability as a function of E.

Intermediate Energy: 3rd Order WKBJ

An adapted form of the WKBJ method can be employed to find the QNMs, or the absorption probability
(which we are primarily interested in here), when the scattering takes place near the top of the potential
barrier. In the following we shall use the same notation as reference [9], where we have confirmed their
results to fourth order. However, for the purposes of this work, we shall consider only up to and including
third order, in which case we express the absorption probability as:

|Aκ(E)|2 =
1

1 + e2S(E)
, (5)

where S(E) has been defined in reference [5].
It should be noted that as we go to higher orders the approximation becomes valid for lower energies.

However, as can be seen from figure 1, even orders in the intermediate WKBJ method drop back down to
zero for large energy. For this reason we shall work to third order in our calculations, as odd orders have
the nice property that |A|2 → 1 for large energy. Note also that the WKBJ approximation, in general, is
accurate for larger angular momentum channels, whereas the Unruh approach [10] is valid for only the
lowest angular momentum channels and ε $ 1 (namely small BHs). However, it is interesting to note
that although the low energy WKBJ result does not agree exactly with the Unruh result, they both tend
to zero for ε → 0. On the other hand, unlike the Unruh result, the low energy WKBJ is valid for energies
up to ε ∼ O(1), where it matches onto the intermediate WKBJ. For a more in depth discussion of this
method see references [5].

High Energy

For high energies the absorption probability tends to unity, and the cross-section reduces to that of the
classical cross-section, see reference [7]. However, as discussed in reference [8], there will always be small
corrections to the large energy limit. A high energy WKBJ approach can be applied in this limit, but for
the purposes of this current study it will be sufficient to use |Aκ(E)|2 = 1.

Emission Rates

The emission rate for a massless fermion from a BH is related to the cross-section by a dd−1k dimensional
momentum integral times a fermionic thermal temperature distribution:

dE
dt

=
∑

λ,E

σλ,E
E

e
E

TH + 1

dd−1k

(2π)d−1
, (6)
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Figure 1: Plots of the absorption probability, via various schemes, for d = 7 and the first two angular
momentum channels: " = 0 (left) and " = 1 (right). Note the Unruh result is only valid for ε $ 1.

where TH is the Hawking temperature, σλ,E are the greybody factors and the sum is a generic sum over
all angular momentum and momentum variables. We were able to relate the greybody factor to the
absorbtion probability by considering the results of reference [11]:

σλ,E =
1

2Ωd−2

(
2π

E

)d−2 ∑

κ

Dκ|Aκ(E)|2 . (7)

In the above we have used Dκ as the degeneracy. Given that the angular integration over the momentum
for a massless field (|k| = E) leads to the Jacobian

∫
dd−1k =

∫
Ωd−2Ed−2dE, the fermion emission

rate can be expressed solely in terms of the absorption probability. However, as the sum over κ is for
κ = ±

(
d
2 − 1

)
, ± d

2 , ±
(

d
2 + 1

)
and since the integrand depends only on the absolute value of κ, we shall

sum for κ ≥ 0 and multiply by a factor of two. Therefore, after changing variables to ε = ErH , and using
the fact that the Hawking temperature is TH = (d − 1)/(4πrH), we obtain:

d2E
dEdt

=
1

πrH

∑

κ>0

ε

e
4πε
d−1 + 1

Dκ|Aκ(ε)|2 . (8)

Results and Conclusions

We have calculated the total power by integrating over ε, see equation (8). The results are shown in
Table 1. From these results we find that for d > 5 the emission is predominantly into the bulk. Note that
in order to obtain convergence in equation (8) we must choose some value of κmax > ε, and to ensure
this we have taken κmax = 34 + d

2 .

Dimension d 5 6 7 8 9 10
dEBulk/dt 0.0579 0.1771 0.3380 1.4731 3.56403 18.2606

dEbrane/dt 0.0708 0.1172 0.204 0.3435 0.554892 0.860165

dEBulk/dt
dEbrane/dt 0.8181 1.5109 1.6587 4.2880 6.42292 21.9019

Table 1: A comparison of the bulk and brane-localised power spectrum up to d = 10, where we have
changed units from rH to M and set M = 1.

Our results for the Hawking emission rate of a massless Dirac field on a bulk d-dimensional Schwarzschild
background, using the method we developed in reference [5], conclude that fermions are mainly emitted
into the bulk for d > 5, as we have shown, see Table 1, which is in contrast to the scalar field case and for
bulk to brane photons [12]. This is an example contrary to the conjecture that BHs radiate mainly on the
brane [13]. Furthermore, bulk dominated fermion emission is also consistent with the original motivation
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for split-fermions, namely that of a suppression of a rapid proton decay [3]. Note that these results also
agree qualitatively with our work for the QNMs on such a background [5], where the BH damping rate
was found to increase with dimension.

We have also highlighted how semi-analytic results can be obtained by considering different versions of
the semi-classical WKBJ approximation, where we also compared this to the low energy analytic results
derived from the method first developed in reference [10], see figure 1. Note also that in a recent work
these methods have been used to investigate the effect of brane tension on bulk fermion emission, with
the result that QNMs were damped by the tension of the brane [14].
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Abstract
We consider a brane world in an arbitrary number of dimensions without Z2 symmetry
and derive the effective Einstein equation on the brane, where its right-hand side is
given by the matter on the brane and the curvature in the bulk. This is achieved
by first deriving the junction conditions for a non-Z2 symmetric brane and second
solving the Gauss equation, which relates the mean extrinsic curvature of the brane
to the curvature in the bulk, with respect to the mean extrinsic curvature. The
latter corresponds to formulating an explicit junction condition on the mean of the
extrinsic curvature, analogue to the Israel junction condition for the jump of the
extrinsic curvature. The derived equation is a basic equation for the study of Kaluza-
Klein brane worlds in which some dimensions on the brane are compactified or for a
regularization scheme for a higher codimension brane world, where the Kaluza-Klein
compactification on the brane is regarded as a means to regularize the uncontrollable
spacetime singularity created by the higher codimension brane.

1 Introduction

String theory suggests that our universe is not four dimensional but, rather, a submanifold (brane)
embeded in a higher-dimensional spacetime (bulk). In particular, Randall and Sumdrum (RS) [2, 3]
proposed an interesting brane world model. The RS model assumes a codimension-1 brane with Z2

symmetry embeded in the bulk with a negative cosmological constant. However, to reconcile a higher-
dimensional theory with the observed four-dimensional spacetime, the RS model is not sufficient. Since
string theory suggests that the number of bulk dimensions is 10 or 11, the corresponding number of
codimensions is 6 or 7. Therefore, we must consider a higher-codimension brane world. But a higher-
codimension brane world has the serious problem that the brane becomes an uncontrollable spacetime
singularity due to its self-gravity, except possibly for a codimension-2 brane world, which may give a
reasonable cosmology. Thus it is necessary to develop a regularization method to realize a reasonable
higher-codimension brane world.

For the above-stated purpose, we focus on a specific regularization scheme, which we now describe.
Let us consider a codimenion-(q + 1) brane in an n-dimensional spacetime. We regularize this brane by
expanding it into q-dimensions, so that it becomes a codimension-1 brane with q compact dimensions on
the brane. Note that the resulting codimension-1 brane will not have the Z2 symmetry. This regulariza-
tion scheme is essentially the same as the Kaluza-Klein (KK) compactification of q spatial dimensions on
the brane, which is called the KK brane world.

In this paper, partly to give a framework for the KK brane worlds and partly as a first step to formulate
the above-mentioned regularization scheme for brane worlds of arbitrary codimension, we consider a
codimension-1 brane world in an arbitrary number of spacetime dimensions without Z2 symmetry and
derive an effective Einstein equation on the brane, which is a generalization of the effective Einstein
equation on the brane with Z2 symmetry derived by Shiromizu, Maeda and Sasaki [4].

The work most relevant to the present one is that of Battye et al., [5] in which the non-Z2 symmetric
brane world is investigated. They study the junction condition in detail and point out that the effective
Einstein equation has terms involving the mean of the extrinsic curvature across the brane which are not
explicitly expressed in terms of either the matter on the brane or the curvature in the bulk. Then, they
focused their investigation on a spatially homogeneous, isotropic brane. Our purpose here is to solve

1E-mail: yamauchi@yukawa.kyoto-u.ac.jp
2E-mail: misao@yukawa.kyoto-u.ac.jp
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this problem and express the effective Einstein equation solely in terms of the matter on the brane and
the curvature in the bulk, and also to present a straightforward generalization in which the number of
spacetime dimensions of the bulk is extended from 5 to n.

Thoughout the paper, we use square brackets to denote the jump of a quantity across the brane and
angled brackets to denote its mean. For an arbitrary tensor A (with tensor indices suppressed), we define
[A] ≡ A+ −A− , 〈A〉 ≡ 1

2 (A+ +A−), where the superscript + denotes the side of the brane from which
the normal vector nA points toward the bulk.

2 Pre-effective Einstein equation on the brane

We consider a family of (n−1)-dimensional timelike hypersurfaces (slicing) in an n-dimensional spacetime
and identify one of them as a brane (i.e., a singular hypersurface). We denote the bulk metric by gMN

where M = 0, 1, · · · , n− 1. We denote the vector field unit normal to the hypersurfaces by nM . Then the
induced metric γMN on the hypersurfaces is given by γMN = gMN −nMnN . The metric γA

B = γACgCB

acts as a projection operator, projecting bulk tensors onto the brane. Here, the Gauss equation gives

R̄ab = Fab + KKab − Ka
cKbc , (1)

where R̄abcd is the (n− 1)-dimensional Riemann curvauture, Kab is the extrinsic curvature on the brane.
For convenience, we introduce the tensor Fab defined by

Fab ≡
n − 3
n − 2

RABγA
a γB

b +
1

n − 2
RCDγCDγab −

1
n − 1

Rγab + Eab , (2)

where RABCD is the n-dimensional Riemann curvature and Eab is the projected Weyl curvature on the
brane, defined by Eab ≡ CACBDnCnDγA

a γB
b . Using the fact that the brane induced metric satisfies the

junction condition [γab] = 0, the Gauss equation can be decomposed into two equations,

〈R̄ab〉 = R̄ab = 〈Fab〉 +
1
4
([K][Kab] − [Kc

a][Kbc]) + 〈K〉〈Kab〉 − 〈Kc
a〉〈Kbc〉 , (3)

[R̄ab] = 0 = [Fab] + 〈K〉[Kab] + [K]〈Kab〉 − 2〈K(a
c〉[Kb)c] , (4)

where we use the relations between the jump and mean symbol〈〉, []. We can construct the effective
Einstein equation on the brane without any symmetry. For convenience, we decompose the Fab and Kab

into trace and traceless parts, Fab = F
n−1γab + ωab, Kab = K

n−1γab + σab, respectively. The effective
Einstein equation is derived from the mean of the Gauss equation (3). Inserting the Israel junction
condition [6] ([Kγab − Kab] = κ2

(n)T̄ab = κ2
(n)(−λγab + τab)) into it, we obtain

Ḡab = −Λ̄γab + κ2
(n−1)τab +

κ2
(n−1)

λ
Sab + 〈Ωab〉 − 〈σa

c〉〈σbc〉 , (5)

where the each terms is defined by

κ2
(n−1) =

n − 3
4(n − 2)

κ4
(n)λ , (6)

Λ̄ =
n − 3

2(n − 1)
〈F〉 +

1
2
κ2

(n−1)λ +
(n − 2)(n − 3)

2(n − 1)2
〈K〉2 − 1

2
〈σcd〉〈σcd〉 , (7)

Sab =
τ

n − 3
τab −

τ2

2(n − 3)
γab −

n − 2
n − 3

τ c
aτbc +

n − 2
2(n − 3)

τ cdτcdγab , (8)

〈Ωab〉 = 〈ωab〉 +
n − 3
n − 1

〈K〉〈σab〉 . (9)

The first term Λ̄ on the right-hand side of Eq. (5) represents the effective cosmological constant. We note,
however, that this quantity may not be constant in general, as is clear from its expression in Eq. (7).
The second and third terms are contributions from the energy-momentum tensor on the brane and its
quadratic term, which are the same as in the Z2 symmetric case [4]. The fourth traceless term, 〈Ωab〉,
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which is traceless by definition, is an extension of the Eab term in the Z2 symmetric case. Finally, the last
term is a new term, which has no analog in the Z2 symmetric case. As is clear from its definition, this
term arises from the square of the mean extrinsic curvature 〈Kab〉, and it vanishes only if the traceless
part of 〈Kab〉 is zero. The above effective Einstein equation, (5), is completely general in the sense that no
symmetry has been imposed. However, it is useless, except in the Z2 symmetric case, because it depends
strongly on the unknown mean extrinsic curvature 〈Kab〉. In order to make it meaningful, it is necessary
to express 〈Kab〉 in terms of geometrical quantities in the bulk (i.e., the bulk metric and curvature) and
the brane energy-momentum tensor.

3 The mean extrinsic curvature 〈Kab〉
The equation we solve is (4),

−[Fab] = 2κ2
(n)τ̂(a

c〈Kb)c〉 + 〈K〉[Kab] . (10)

where we use the Israel junction condition and for convenience we introduce the “hatted” energy-
momentum tensor:

τ̂ab ≡ τab −
(n − 3)λ − τ

2(n − 2)
γab = T̄ab −

1
2(n − 2)

T̄ γab . (11)

Here we seek a general solution without particular assumptions concerning the brane energy-momentum
tensor. Our method consists of two parts. First, we obtain the trace of the mean extrinsic curvature
〈K〉 by introducing the inverse of the hatted tensor τ̂ab. Second, with 〈K〉 known, we rewrite the second
Gauss equation as a matrix equation for 〈Kab〉. This matrix equation can be solved by using the tetrad
(more precisely, the vielbein) decomposition of τ̂ab. Using this strategy, we obtain the general solution
for the mean extrinsic curvature.

κ2
(n)〈Kab〉 = −1

2
(τ̂−1)a

c[Fbc] +
(n − 3)(τ̂−1)de[Fde]

2((n − 3)2 − τ̂m
m(τ̂−1)n

n)

(
γab −

τ̂ c
c

n − 3
(τ̂−1)ab

)
−

∑
i6=j

1
τ̂(i) + τ̂(j)

ē(i)
a ē

(j)
b [ω(i)(j)] . (12)

where (τ̂−1)ab is a inverse matrix of the “hatted” energy-momentum tensor τ̂ab and ē
(i)
a is a local Lorentz

frame in which the hatted tensor τ̂ab is diagonalized. We refer to this as the junction condition for the
mean of the extrinsic curvature, which is a counterpart to the conventional junction condition for the
jump of the extrinsic curvature, Israel junction condition [6]. We also note that this result is valid only if
we have τ̂(i) + τ̂(j) 6= 0 for all possible pairs of (i) and (j). We need a special treatment in the case that
any of the demonimators are zero.

4 Effect of 〈Kab〉 on the brane

Low energy limit

We conjecture that the low energy regime, where |τab| ¿ λ, Einstein gravity is recovered on the brane.
For this reason, we believe that the contributions of the ωab and Sab terms become negligibly small. To
examine this, let us consider the solution for the mean extrinsic curvature up to O(τ2

ab, ωab). In this case,
the inverse of the hatted energy-momentum tensor is given by

(τ̂−1)ab =
2(n − 2)
n − 3

λ−1

(
γab +

2(n − 2)
n − 3

λ−1

(
τab − τ

2(n − 2)
γab

)
+ · · ·

)
.

(13)

Then 〈Kab〉 can be readily obtained as

κ2
(n)〈Kab〉 =

[F ]
2(n − 1)λ

{
γab +

1
λ

(τγab − (n − 2)τab)
}

+ O(τ2
ab, ωab) . (14)
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Using this, the effective Einstein equation becomes

Ḡab = −Λ̄LEγab + κ2
(n−1)

LE
τab + O(τ2

ab, ωab), (15)

where

κ2
(n−1)

LE
=

n − 3
4(n − 2)

κ4
(n)λ − (n − 2)(n − 3)[F ]2

4(n − 1)2κ4
(n)λ

3
, (16)

Λ̄LE =
n − 3

2(n − 1)
〈F〉 +

n − 3
8(n − 2)

(κ2
(n)λ)2 +

(n − 2)(n − 3)[F ]2

8κ4
(n)(n − 1)2λ2

. (17)

Thus, Einstein gravity is recovered. However, in contrast to our naive expectation, the contribution of
the mean extrinsic curvature gives rise to new correction terms from the bulk, both to the gravitational
constant and to the cosmological constant, which are not necessarily constant.

5 Conclusion

We considered a general codimension-1 brane in an arbitrary number of dimensions without Z2 symmetry
and we obtained expressions for both the jump and the mean of the extrinsic curvature in terms of the
bulk curvature tensor and the brane energy-momentum tensor. With this result, we derived the effective
Einstein equation on the brane in its most general form, which is a generalization of the Shiromizu-
Maeda-Sasaki equation [4] to the case in which Z2 symmetry does not exist. The derived effective
Einstein equation has a new term arising from the mean extrinsic curvature, and this new term leads to
the appearance effectively anisotropic matter on the brane.

Thus, our result is a basic equation for the hybrid brane world scenario, in which some spatial
dimensions on the brane are Kaluza-Klein compactified. Also, it provides a basis for higher codimension
brane worlds in which a higher codimension brane is regularized by a codimension-1 brane with extra
dimensions on the brane compactified to an infinitesimally small size.
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Leptogenesis from two at diretionsKohei Kamada 1 and Jun'ihi YokoyamaResearh Center for the Early Universe (RESCEU),Graduate Shool of Siene, The University of Tokyo, Tokyo 113-0033, JapanAbstratWe investigate A�ek-Dine mehanism when multiple at diretions have large valuessimultaneously. We onsider in detail the ase when both LHu at diretion andHuHd at diretion with non-renormalizable superpotential work. We �nd that initialvalue is determined ompletely by the potential and there are no ambiguities how twoat diretions are mixed. Moreover there is CP-violation even for large H whih isdue to A-term and ross oupling in F-term and lepton asymmetry is generated justafter the end of ination. There is no suppression fator m3=2=Hos in the net lepton-to-entropy ratio.1 IntrodutionThe A�ek-Dine (AD) mehanism [1℄ is one of the most promising senarios among many models ofbaryogenesis that aount for the origin of the observed baryon asymmetry of the universe. Espeiallya model of AD mehanism that Dine et al. developed [2℄ is very e�etive in the inationary regime andmany authors [3, 4, 5℄ have analyzed this model energetially.Their analyses restrited only in the ase where the on�guration of at diretion an be parameterizedin terms of one omplex salar �eld. There are, however, many at diretions even in the minimalsupersymmetri standard model (MSSM), some of whih arry B �L harge but others do not. (Leptonasymmetry an be onverted to baryon asymmetry through the sphaleron e�et [6℄, whih violates B+Lat the eletroweak sale, where B and L are baryon and lepton harges respetively.) Therefore it isvery important whih at diretion, if any, is seleted as the AD �eld. Moreover, there are multiple atdiretions whih do not give rise to any F-term in the renormalizable limit. Suh diretions an get largevalues at the same time and we an no longer parameterize them by one salar �eld. If some of themarry B�L harge and others do not, the degree of the mixing of multiple at diretions diretly a�etsthe net baryon asymmetry. It is not trivial whether the simple one-�eld analysis is appliable in suh aase.Previously, Senami and Yamamoto [7℄, and Enqvist et al. [8℄ have onsidered the ase where multipleat diretions have large values in the MSSM and its extensions. However, their evaluation of the potentialwas insuÆient and in partiular they did not are how multiple at diretions mix. The purpose ofthis talk is to investigate how multiple at diretions mix and to evaluate the resultant baryon/leptonasymmetry.2 ModelWe adopt a non-renormalizable superpotential of the form [7℄,ÆW = �Lij2M (LiHu)(LjHu) + �H2M (HuHd)(HuHd); (1)in addition to the lepton setor of the renormalizable superpotential of MSSM. Here M is some ut-o�sale, �Lij and �H are oupling onstants. We hoose a basis whih �Lij is diagonal and assume that�L22; �L33 � �H � �L11 � �L. Note that this superpotential gives neutrino mass when Higgs �eld thatouples up-type quark gets a nonvanishing expetation value,m�i = �LiiM hHui2: (2)1E-mail:kamada�reseu.s.u-tokyo.a.jp 1
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To realize ination, we introdue an inaton setor besides the MSSM setor. Coupling between theinaton setor and the MSSM setor arises only with the gravitational strength in the supergravity salarpotential, V = eK=M2G �DiWKi�jD�jW � � 3M2G jW j2� ; (3)where MG is the redued Plank mass. We also introdue non-minimal Kahler potential,ÆK = aaM2G jI j2j�aj2 and ÆK = baMG I j�aj2 + h::; (4)in addition to the anonial terms, where �a is salar �elds of MSSM and I is the inaton, and aa is real,ba is omplex parameter. We assume the F-term of inaton dominates the universe during ination.By negleting heavier leptons [7℄ (Hereafter L represents lightest lepton L1) and restriting dynamisof salar �elds along at diretions, we an parameterize salar �elds asL = �0�� ;Hu = �hu0 � ;Hd = � 0hd� ; (5)without loss of generality. The resultant potential for �; hu and hd during inationary era beomesV (�; hu; hd) = Xa=�;hu;hd(m2a � aH2)j�aj2+ �����LM �2hu + �HM huh2d����2 + �����HM h2uhd����2 + �����LM �h2u����2+ � �L2M (aLH +ALm3=2)�2h2u + h::�+ � �H2M (aHH +AHm3=2)h2dh2u + h::�+ VD; (6)VD =(g2 + g02)(j�j2 � jhuj2 + jhdj2)2 (7)where a's are real and aL; AL; aH and AH are omplex parameters with their magnitude presumably oforder of unity. Here we also introdue the e�et of SUSY breaking from hidden setor in terms of ma,the soft mass of salar �eld �a, and m3=2, the gravitino mass. Terms inluding the Hubble parameter Harise due to the oupling of at diretion to the F-term of the inaton FI � HinfMG.Inaton osillation era follows the inationary era. In this era, a part of the potential of salar �eldshange as �L2MaLH�2h2u + h::! �L2�MHinf aLH2�2h2u + h:: (8)�H2MaHHh2dh2u + h::! �H2�MHinf aHH2h2dh2u + h::; (9)where Hinf is the Hubble parameter in the inationary era and � is a numerial parameter of order ofunity that depends on the ination model. This hange of potential is due to the hange of time averageof FI . Moreover, thermal plasma from inaton deay emerges and the potential for salar �elds aquiresthermal orretion [4℄.3 Instability of one at diretionNext we examine the neessity of onsidering multiple at diretions in the inationary era. The massterms of salar �elds are �(� + u)H2j�j2 � (u + d)H2jhdj2: (10)Here we neglet soft terms from hidden setor and set the D-at ondition VD = 0. When the initialvalues are set near the origin, and if � + u > 0 and u + d < 0, hd stays at the origin and we an takethe one at diretion desription. However, if � + u > 0 and u + d > 0, not only � but also hd stay2
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away from the origin and we an no longer take the desription. Moreover, even if only LHu diretionis seleted in the beginning, Hd is unstable at the origin for large parameter region. We an see thisby evaluating the eigenvalues of mass matrix for Hd around the loal minimum of LHu at diretionparameterized as � = hu = � �p((� + u)=2)1=2HM=�L , The eigenvalues of this matrix are��HM �2 j�j4 � dH2 � "��L�HM2 j�j4 +Re(aH)�HH2M j�j2�2 +�Im(aH)�HH2M j�j2�#1=2 : (11)As a onsequene, if d or jaH j is a little larger than unity, for example, hd is unstable around LHu atdiretion with a wide range of parameters. Therefore, onsidering multiple at diretions is more naturalthan one at diretion.4 Dynamis of salar �elds and leptogenesis
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In this setion, we desribe the motion of salar �elds and esti-mate number asymmetry of salar �elds-to-entropy ratio. Herewe onsider only homogeneous mode and neglet utuationsaround it beause the urvature of the potential is muh largerthan the Hubble parameter and quantum utuation is suÆ-iently suppressed in this ase.In the Friedman universe salar �elds �a obey the equationof motion, ��a + 3H _�a + �V���a = 0: (12)We analyzed the dynamis of three salar �elds in the ination-ary era (H = Hinf = onst:) and in the inaton osillation era(H = (2=3)t�1) numerially.In the inationary era, salar �elds fall into one of potentialminima like one �eld ase [2℄ if the number of e-fold is largeenough. Moreover we �nd the potential minima is unique exeptfor the gauge freedom (Fig.1) although the potential is veryompliated. As a onsequene, in this model there remains nopre inationary information.Next we turn to the inaton osillation dominant era. Wetake the �nal value of salar �elds in the inationary era as theirinitial value in the inaton osillation dominant era. In this era,the equation for angular motions of salar �elds beomes�2�a�z2 + 49 e2z(Hinf j�aj)2 �V��a = 0; (13)where �a is the phase of �a and we de�nez = ln(t=tf ); tf = 23H�1inf (14)Potential minima in the angular diretion hange just after the end of ination beause of the hangeof potential (8), (9). Therefore, salar �elds aquire angular momenta, in other words, number asym-metry at one and some of their values osillate without damping. The value of number asymmetry peromoving volume is �xed when the rotation around the origin, whih is due to mass term or thermalpotential[5℄, starts. Moreover, beause the potential for the phase of hu vanishes rapidly, the value ofnumber asymmetry per omoving volume of hu is �xed muh earlier than other �elds. The net value ofnumber asymmetry to entropy ratio is evaluated asn�(hd)s (t) ' jaL(H)j18 � g�g�s� TRM�M2G sin(Æ�(hd)eff ) (15)3
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for �(hd) (The number asymmetry of � is the leptonasymmetry), andnhus (t) ' jaLj+ jaH j36� � g�g�s� TRM�M2G sin(Æhueff ); (16)for hu, where Æ�aeff is the e�etive phase of osillation of�a at the time of number asymmetry �xing. There is nosuppression fator m3=2=Hos whih is emerged in Ref.5.We see this feature by numerial alulation (Fig. 2).5 ConlusionWe have demonstrated two important results aboutA�ek-Dine leptogenesis via multiple at diretions withnon-renormalizable superpotential and vanishing renor-malizable F-term. First, when multiple at diretionshave negative Hubble indued masses, we an no longerparameterize at diretions in terms of one omplexsalar �eld and multi-dimensional motion of salar �eldsmust be onsidered. Moreover, salar potential hasunique minimum exept for gauge freedom and phaseinversion. Therefore the degree of the mixing of at di-retions is determined only by the shape of the potentialwithout ambiguities and initial values of dynamis of postinationary are deterministi. Thus AD mehanism viamultiple at diretions, there remains no pre inationaryinformation if ination lasts long enough.Seond, there are CP-violation term even for largeH whih is due to ross oupling of salar �elds in non-renormalizable F-terms and the Hubble indued A-terms.Although the Hubble indued A-terms dereases rapidlyafter the end of ination, they an give the angular momentum salar �elds. Therefore lepton asymmetryis generated just after the end of ination. In partiular, there is no suppression due to thermal e�et[3℄. Net lepton entropy ratio does not have suppression fator m3=2=Hos.Referenes[1℄ I. A�ek and M. Dine, Nul. Phys. B 249, 361 (1985).[2℄ M. Dine, L. Randall and S. D. Thomas, Nul. Phys. B 458, 291 (1996) .[3℄ A. Anisimov and M. Dine, Nul. Phys. B 619, 729 (2001) .[4℄ R. Allahverdi, B. A. Campbell and J. R. Ellis, Nul. Phys. B 579, 355 (2000) .[5℄ M. Fujii, K. Hamaguhi and T. Yanagida, Phys. Rev. D 63, 123513 (2001)[6℄ V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 191, 171 (1987).[7℄ M. Senami and K. Yamamoto, Phys. Rev. D 66, 035006 (2002) .[8℄ K. Enqvist, A. Jokinen and A. Mazumdar, JCAP 0401, 008 (2004) .
4

160



Cosmology of Supersymmetric Axion Models
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Abstract
We derive general cosmological constraints on supersymmetric extension of axion
models, in particular paying careful attention to the cosmological effects of saxion. It
is found that for every mass range of the saxion from O(1) keV to O(10) TeV, severe
constraints on the energy density of the saxion are imposed. Together with constraints
from axino, we obtain stringent upper bounds on the reheating temperature.

1 Introduction

Although the standard model in particle physics has achieved great successes, there still remain some
theoretical problems. One is the strong CP problem, and another is the gauge hierarchy problem. In
other words, these problems indicate the existence of the physics beyond the standard model.

A promising solution to the strong CP problem was proposed in the 1970’s by Peccei and Quinn [1].
They introduced an anomalous U(1) symmetry, called PQ symmetry, which is spontaneously broken at
some energy scale Fa. From astrophysical and cosmological arguments, Fa is constrained as 1010 GeV <∼
Fa

<∼ 1012 GeV. A coherent oscillation of the axion, which is a pseudo-Nambu-Goldstone boson associated
with spontaneous breaking of PQ symmetry, can be the cold dark matter of the universe for Fa ∼
1012 GeV.

On the other hand, supersymmetry (SUSY) is also well-motivated from particle physics point of
view. First, SUSY provides a solution to the gauge hierarchy problem. Due to the symmetry between
a scalar and fermion, radiative corrections to the Higgs scalar mass squared are canceled and quadratic
divergent quantity disappears. Thus the weak scale becomes stabilized against the radiative correction,
which explains why the Higgs mass should be around 100 GeV, as indicated by electroweak precision
measurements at LEP. Next, the running of the gauge coupling constants are modified in SUSY, which
realizes the gauge coupling unification at the energy scale ∼ 2 × 1016 GeV. Thus Grand Unified Theory
(GUT) is naturally realized in the framework of SUSY.

Therefore the combination these two paradigms, the SUSY axion model, has many attractive features.
However, cosmology of SUSY axion model is highly non-trivial. In SUSY axion model, the axion forms a
supermultiplet, which contains a scalar partner called saxion and fermionic superpartner, called axino [2].
Their interaction is suppressed by the PQ scale, and hence they are long-lived particles (or become stable
for the axino). Such a long-lived particle has a potential to affect the cosmological evolution scenario
like the gravitino [3]. In the present work, we have studied the cosmology of SUSY axion models, in
particular paying careful attention to the effects of the saxion (see Ref. [4] for a detail).

2 Properties of Saxion

The saxion corresponds to a flat direction which does not feel the scalar potential, which is preserved by
U(1)PQ symmetry and the holomorphic property of the superpotential in SUSY limit. Thus the saxion
obtains a mass only from SUSY breaking effects, and hence the saxion mass (ms) is naturally expected
to be of order of the gravitino mass (m3/2). The gravitino mass ranges from O(1) keV to O(10) TeV
depending on SUSY breaking models, such as gauge-, gravity- or anomaly-mediated SUSY breaking
models. Here we regard the saxion (gravitino) mass as a free parameter within the above range.

Now we turn to the cosmological effects of the saxion. For cosmological arguments, it is important to
know the production mechanism and decay modes.

1E-mail:nakayama@icrr.u-tokyo.ac.jp
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Saxions are produced in the early universe in two ways. One is thermal production, where scattering
processes of particles in thermal bath produce saxion. The other is the coherent oscillation. Because the
saxion is a scalar field, it has large energy density with an initial amplitude si in the form of Bose-Einstein
condensate. The former contribution, in terms of the saxion-to-entropy ratio, is given by(ρs

s

)(TP)

∼ 1.0 × 10−9 GeV
( ms

1 GeV

) (
TR

105 GeV

)(
1012 GeV

Fa

)2

(1)

for TR
<∼ TD ∼ 109GeV (Fa/1011GeV)2, where TR denotes the reheating temperature of the universe

after inflation. For TR
>∼ TD, saxions are thermalized and its abundance is given by (ρs/s)(TP) ∼

1.0 × 10−3 GeV(ms/1 GeV). The coherent oscillation contribution is estimated as(ρs

s

)(C)

=
1
8
TR

(
si

MP

)2

≅ 2.1 × 10−9 GeV
(

TR

105 GeV

) (
Fa

1012 GeV

)2 (
si

Fa

)2

(2)

for ΓI < ms where ΓI denotes the decay rate of the inflaton. For ΓI > ms, TR in the above formula should
be replaced with Tosc, which is the temperature at which the saxion oscillation begins. Importantly, both
contributions are proportional to TR for wide parameter regions, and hence cosmological constraints on
the saxion abundance are rephrased by the upper bound on TR.

Next let us investigate the saxion decay modes. First, the saxion can decay into two axions (s → 2a).
We can estimate the decay rate of the saxion into axions as

Γ(s → 2a) ≅ f2

64π

m3
s

F 2
a

, (3)

where f =
∑

i q3
i v2

i /F 2
a with the VEV of the i-th PQ scalar field vi and its PQ charge qi. If f ∼ 1 as in

many cases including the case with only one PQ scalar, this is the dominant decay mode of the saxion [5].
Then the lifetime is given by

τs ≅ 1.3 × 102f−2 sec
(

1 GeV
ms

)3 (
Fa

1012 GeV

)2

. (4)

As for the cosmological arguments, it is important to know whether the main saxion decay mode is into
axions (f ∼ 1) or not (f ∼ 0), because such a decay mode does not affect BBN or CMB.

On the other hand, the saxion also decays into ordinary particles. For the KSVZ axion model, the
saxion decays into two gluons through one-loop process with a decay rate given by

Γ(s → 2g) ≅ α2
s

64π3

m3
s

F 2
a

, (5)

for ms
>∼ 1 GeV. The decay rate into two photons is given by

Γ(s → 2γ) ≅ κ2α2
EM

512π3

m3
s

F 2
a

, (6)

where κ is a model dependent constant of O(1).
For the DFSZ axion model, the saxion decays into fermion-anti-fermion pair. The decay rate into

down-type quarks di (i = 1, 2, 3) is represented as

Γ(s → did̄i) =
3
8π

(
2x

x + x−1

)2

ms

(
mdi

Fa

)2 (
1 − 4m2

di

m2
s

)3/2

, (7)

where x = tan β = 〈Hu〉/〈Hd〉. Decay rate into up-type quarks ui (i = 1, 2, 3) is similar,

Γ(s → uiūi) =
3
8π

(
2x−1

x + x−1

)2

ms

(
mui

Fa

)2 (
1 − 4m2

ui

m2
s

)3/2

. (8)

Although those decay modes into ordinary particles may be sub-dominant if f ∼ 1, only such a small
fraction of the saxion decay may significantly affect cosmology, as we will see in the next section.
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3 Cosmological Constraints

Now we briefly summarize various cosmological constraints on the saxion abundance.
Effective number of neutrinos : Decay products of the saxion increase the radiation energy density

of the universe. Such extra radiation contributions accelerate the Hubble expansion and changes the
predictions of BBN, CMB anisotropy and structure formation etc. In terms of the effective number of
neutrino species, ∆Nν

<∼ 1 must hold. Note that this constraint is relevant for the decay mode s → 2a
[6], even if τs ≪ 1 sec.

Big-Bang nucleosynthesis : Decay produced photons or hadrons may significantly affect BBN for
τs

>∼ 10−2 sec [7]. For 10−2 sec <∼ τs
<∼ 102 sec, the main effect is p ↔ n conversion due to injected pions,

which results in 4He overproduction. For later injection, the main effect is photo (hadro)-dissociation of
light elements, for radiative (hadronic) decay modes.

Cosmic microwave background : For τs
>∼ 106 sec, injected radiations can not reach chemical equilib-

rium because double-Compton scattering processes are ineffective. Then the extra radiations distort the
blackbody spectrum of CMB. The distortion is characterized by a chemical potential µ or Compton-y
parameter, which is constrained by the COBE FIRAS measurement [8].

Diffuse X(γ)-ray background : For τs
>∼ 1013 sec, the decay produced photons contribute to diffuse

X(γ)-ray background [9]. But such a contributions are constrained from the observations of ASCA,
HEAO1, COMPTEL, EGRET. This gives a stringent bound on the saxion abundance.

Reionization : For τs
>∼ 1013 sec, depending on the photon energy and decay epoch, the decay-

produced photon may escape the “transparency window”, where photons can freely propagate the universe
without interacting with intergalactic medium (IGM) [10]. If this is the case, decay-produced photons
ionize the IGM and change the reionization history of the universe which results in too large optical depth
to the last scattering surface to be consistent with the WMAP three year observaton.

Present matter density limit : If the saxion lifetime exceeds the present age of the universe, the energy
density of the saxion itself contributes to the total matter density of the universe, Ωmh2.

LSP overproduction : If the saxion is heavy enough to decay into SUSY particles, the non-thermally
produced LSPs emitted by the saxion decay must not be overproduced [11]. Otherwise the LSPs give too
large contribution to the matter density of the universe. Here we assume for ms

>∼ 1 TeV, such decay
modes are open, and also the annihilation cross section of the LSP is small so that they do not annihilate
with each other after the non-thermal production.

Gravitino and Axino overproduction : As is well known, gravitinos are produced through scattering
of particles in thermal bath. The resulting abundance is proportional to the reheating temperature TR

[12]. For m3/2
<∼ 100 GeV, the gravitino is stable and it contributes to the matter density of the universe.

Similarly, axinos are also produced efficiently. Its abundance is also proportional to TR [13]. (Here we
assume the axino mass mã is equal to the gravitino mass.) Thus both set the upper bound on TR.

In Fig. 1 we summarize the upper bound on the reheating temperature including all the above men-
tioned constraints. Four panels correspond to different models. Upper left : KSVZ with f = 1, upper
right : KSVZ with f = 0, lower left : DFSZ with f = 1, lower right : DFSZ with f = 0. We can see that
for almost all the saxion mass, the reheating temperature is severely constrained.

4 Summary

In this work, we have derived general cosmological constraints on SUSY axion models. It is found that the
reheating temperature is severely constrained, compared with the bound from usual gravitino problem.

This has some implications on SUSY axion models. Because the reheating temperature is severely
constrained, it is rather difficult to produce the correct amount of baryon asymmetry. In particular,
thermal leptogenesis using right-handed neutrinos suffers from the low-reheating temperature. One pos-
sibility to generate baryon asymmetry is using Affleck-Dine mechanism. In fact, it can create a correct
amount of baryon asymmetry even for such a low-reheating temperature [14]. Also, the present dark
matter can be accounted for by the axion condensate or the axino. For an unstable axino, the neutralino
LSP produced either thermally or non-thermally may also be the dark matter candidate.

As a final remark, the axion induces an isocurvature fluctuation with an amplitude proportional to
the inflation scale. Hence a low-scale inflation model such as new inflation should be assumed [15].
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Figure 1: Upper bounds on the reheating temperature TR for each model with Fa = 1012 GeV [4]. The
initial amplitude of the saxion is assumed to be si ∼ Fa.
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Abstract
We compute the non-Gaussianity of the curvature perturbation generated by ekpy-
rotic collapse with multiple fields. The transition from the multi-field scaling solu-
tion to a single-field dominated regime converts initial isocurvature field perturba-
tions to an almost scale-invariant comoving curvature perturbation. In the specific
model of two fields, φ1 and φ2, with exponential potentials, −Vi exp(−ciφi), we cal-
culate the bispectrum of the resulting curvature perturbation. We find that the
non-Gaussianity is dominated by non-linear evolution on super-Hubble scales and
hence is of the local form. The non-linear parameter of the curvature perturbation is
given by fNL = 5c2

j/12, where cj is the exponent of the potential for the field which
becomes sub-dominant at late times.

1 Introduction

Recently, there has been progress in generating a scale-invariant spectrum for curvature perturbations
in the ekpyrotic scenario with more than one field, which we will refer to as the new ekpyrotic scenario
[1, 2, 3]. If these fields have steep negative exponential potentials, there exists a scaling solution where
the energy densities of the fields grow at the same rate during the collapse. In this multi-field scaling
solution background, the isocurvature field perturbations have an almost scale-invariant spectrum, owing
to a tachyonic instability in the isocurvature field.

The multi-field scaling solution in the new ekpyrotic scenario can be shown to be an unstable saddle
point in the phase space and the late-time attractor is the old ekpyrotic collapse dominated by a single
field [4]. But the transition from the multi-field scaling solution to the single-field-dominated solution
also provides a mechanism to automatically convert the initial isocurvature field perturbations about the
multi-field scaling solution into comoving curvature perturbations about the late-time attractor [5].

On the other hand, the non-Gaussianity of the distribution of primordial curvature perturbations in
the inflationary scenario has been extensively studied by many authors (see e.g. [6] for a review). Thus,
as a natural extension of the study performed in [4, 5], in this paper [7] we compute the non-Gaussianity
of the primordial curvature perturbations generated from the contracting phase of the multi-field new
ekpyrotic cosmology.

2 Model and Homogeneous dynamics

We first review the model and the background dynamics of the new ekpyrotic cosmology with multiple
scalar fields. During the ekpyrotic collapse the contraction of the universe is assumed to be described by
a 4D Friedmann equation in the Einstein frame with n scalar fields with negative exponential potentials

3H2 = V +
n∑

j

1
2
φ̇2

j , where V = −
n∑

j

Vje
−cjφj , (1)

1E-mail:mizuno@resceu.s.u-tokyo.ac.jp
2E-mail:Kazuya.Koyama@port.ac.uk
3E-mail: vernizzi@ictp.it
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and we take Vi > 0 and set 8πG equal to unity. From now on, for simplicity, we concentrate our attention
on the case of two fields. In this case, it will be easier to work in terms of new variables,

ϕ =
c2φ1 + c1φ2√

c2
1 + c2

2

, χ =
c1φ1 − c2φ2√

c2
1 + c2

2

. (2)

The potential can then be simply re-written as

V = −U(χ) e−cϕ , with U(χ) = V1 e−(c1/c2)cχ + V2 e(c2/c1)cχ ,
1
c2
≡

∑

j

1
c2
j

. (3)

It can be shown that U(χ) has a minimum at χ = χ0 and the multi-field scaling solution corresponds
to the classical solution along this minimum χ = χ0, while ϕ is rolling down the exponential potential.
It is worth noting that the potential for χ has a negative mass-squared m2

χ ≡ ∂2V/∂χ2 = c2V < 0
around χ = χ0 which makes the multi-field scaling solution unstable. Furthermore, the χ field evolution
is nonlinear, with the cubic interaction being given by

V (3) ≡ ∂3V

∂χ3
= c̃m2

χ , where c̃ ≡ c2
2 − c2

1√
c2
1 + c2

2

, (4)

which becomes important when we consider the non-Gaussianity later in this paper. Another important
solution is the single-field dominated scaling solution which is also appeared in the old ekpyrotic scenario.
In this paper, we consider the case in which the background evolves from the multi-field scaling solution
to the φ2-dominated scaling solution without loss of generality.

3 Statistical correlators and δN-formalism

In the two-field new ekpyrotic cosmology, the isocurvature fluctuations acquired by the field χ during
the multi-field scaling regime, play a crucial role to generate a scale-invariant spectrum of perturbations.
On the other hand, the fluctuations of the field ϕ are negligible on large scales, because of its very blue
spectral tilt. Thus, in the following we neglect δϕ fluctuations. To relate the non-Gaussianity of the
scalar field fluctuations to observations, we need to calculate the three-point functions of the comoving
curvature perturbation ζ. In order to do that, we can use the δN -formalism [8, 9]. In the δN -formalism,
the comoving curvature perturbation ζ evaluated at some time t = tf coincides with the perturbed
expansion integrated from an initial flat hypersurface at t = ti, to a final uniform density hypersurface
at t = tf , with respect to the background expansion, i.e.,

ζ(tf ,x) ' δN(tf , ti,x) ≡ N(tf , ti,x)−N(tf , ti) , (5)

with

N(tf , ti,x) ≡
∫ tf

ti

H(x, t)dt , N(tf , ti) ≡
∫ tf

ti

H(t)dt , (6)

where H(x, t) is the inhomogeneous Hubble expansion. We will choose the initial time ti to be during
the multi-field scaling regime. Furthermore, since ϕ is unperturbed, δN can be expanded in series of the
initial field fluctuations δχi. Retaining only terms up to second order, we obtain

δN = N,χi
δχi +

1
2
N,χiχi

(δχi)2 , (7)

where N,χ denotes the derivative of N with respect to χ.
The bispectrum of the curvature perturbation ζ, which includes the first signal of non-Gaussianity, is

defined as
〈ζk1ζk2ζk3〉 ≡ (2π)3δ(3)(

∑

j

kj)Bζ(k1, k2, k3) , (8)

where the left hand side of Eq. (8) can be evaluated by the δN -formalism using Wick’s theorem,

〈ζk1ζk2ζk3〉 = N3
,χi
〈δχik1δχik2δχik3〉+

1
2
N2

,χi
N,χiχi〈δχik1δχik2(δχi ? δχi)k3〉+ perms . (9)
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In the above equation, a star ? denotes the convolution and we have neglected correlators higher than
the four-point.

Observational limits on the non-Gaussianity of the primordial curvature perturbations are usually
given on the nonlinear parameter fNL defined by

6
5
fNL ≡

∏
j k3

j∑
j k3

j

Bζ

4π4P2
ζ

, (10)

where Pζ is the power spectrum of the curvature perturbation ζ. If the non-Gaussianity is local, one can
write ζ as

δN = ζL +
3
5
fNLζ2

L , (11)

where ζL is a Gaussian variable.

4 Non-Gaussianities

We consider the situation in which χi is perturbed on the t = ti hypersurface, while Hi assumes on this
hypersurface a constant value. This is justified by the fact that the t = ti hypersurface is flat and since
χ is an isocurvature field its fluctuations do not affect the local Hubble expansion. Furthermore, we
assume that the transition into the single-field-dominated scaling solution at the time t = tT , happens
instantaneously on the hypersurface χ = χT = const., where HT is perturbed.

Under these assumptions, the expansion N defined by Eq. (6) can be split into

N =
∫ tT

ti

Hdt +
∫ tf

tT

Hdt , (12)

where tf is set sufficiently later than the transition time tT . In Eq. (12), the first integral is over the
multi-field scaling evolution and the last integral is over the φ2-dominated phase.

The first term on the right hand side of Eq. (12) can be expressed as −(1/ε) ln(Hi/HT ), where
ε = c2/2, while the second term becomes −(1/ε2) ln(HT /Hf ), where ε2 = c2

2/2. Then, for a fixed ti and
tf , the expansion N can be expressed as

N =
2
c2
1

ln |HT |+ const., (13)

which depends only on the parameter c1, besides the transition time tT .
During the multi-field scaling regime, the linear evolution equation of χ on large scales is given by

χ̈ + 3Hχ̇ + m2
χχ = 0 . (14)

Including the cubic self-interaction V (3) given in Eq. (4), the large scale evolution equation for χ in
the multi-field scaling regime becomes

χ̈ + 3Hχ̇ + m2
χχ = −1

2
c̃m2

χχ2. (15)

The above evolution equation can be solved perturbatively. Given the solution to the linear equation
(14), i.e., χL ∝ H, the growing-mode solution for χ is

χ = χL +
1
4
c̃χ2

L = αH +
1
4
c̃α2H2 , (16)

where α is a constant parameter whose value distinguishes the different trajectories and shown to be
close to Gaussian. Then, the simplest way to compute fNL is to calculate the δN corresponding to the
fluctuation δα, i.e.,

δN = N,αδα +
1
2
N,αα(δα)2 . (17)
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In order to compute N,α and N,αα we want to use Eq. (13), and for this we need to know how HT varies
as a function of α at the transition from multi-field scaling to single-field φ2-dominated scaling solution.
Inverting Eq. (16) (to leading order in c̃χ) gives

α =
χ

H

(
1− 1

4
c̃χ

)
. (18)

Assuming as in the linear case that the transition corresponds to a critical value of the tachyon field
χ = χT , on the transition surface (constant χT ) we have from (18) that α ∝ H−1

T and hence we find

δN = − 2
c2
1

δα

α
+

1
c2
1

(
δα

α

)2

, (19)

which means
N,α = − 2

c2
1

1
α

, N,αα =
2
c2
1

1
α2

. (20)

Taking δα to be a Gaussian random variable and comparing with Eq. (11) with ζL = −2δα/(c2
1α) we

obtain the nonlinear parameter for the curvature perturbation after the transition:

fNL =
5
6

N,αα

N2
,α

=
5
12

c2
1 . (21)

5 Conclusion

In this paper we have studied the nonlinear evolution of perturbations in the multi-field new ekpyrotic
cosmology. We have studied the simplest model based on two fields with exponential potentials and
considered the specific scenario in which the nearly scale-invariant comoving curvature perturbation is
generated by the transition from the multi-field scaling solution to the single-field dominated attractor
solution. We have applied the δN -formalism, which is widely adopted to study the non-linearity of
the primordial curvature perturbation. We find that after the transition to the single-field attractor
solution the non-Gaussian parameter fNL = 5c2

1/12, where −V1 exp(−c1φ1) is the potential of the field
φ1 which becomes subdominant at late time. Since the non-Gaussianity is mainly generated by the
nonlinear super-Hubble evolution, it is of the local form, and the nonlinear parameter is k independent.
Since c2

1 must be large, in order to generate an almost scale invariant spectrum, the non-Gaussianity is
inevitably large. Thus, the model is strongly constrained by observational bounds on the spectral index
and non-Gaussianity.
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98bis boulevard Arago, 75014 Paris, France

Abstract
Considerable and ongoing effort is made to identify promising scalar field candidates

in string theory to drive a cosmological period of inflation. At stake is the possibility

that fundamental string parameters could be encoded in observables such as the CMB

perturbation spectrum. In this contribution, we hold a concrete model of string

inflation (KKLMMT) up against WMAP3 and discuss the constraints obtained.

1 Introduction

In recent years, the hope of embedding cosmological inflation into superstring theory has been put on more
solid grounds. While they remain challenging, issues such as moduli stabilization are better understood,
and scenarios for both open and closed string mode inflatons have been constructed. With its tight relation
to observables of current and future CMB experiments, inflation could provide the decisive missing link
between string theory and observation. We investigate if the WMAP3 data provides constraints on the
parameters of one particular (open string) scenario, known as the KKLMMT model of brane inflation
[1]. To this end, we identify its cosmological parameters and how they relate to the underlying string
geometry, followed by a comparison to the WMAP3 data using numerical integration of the perturbations
and MCMC methods [2] (see also [3]).

2 Setting the stage in string theory

The KKLMMT inflaton field φ =
√

T3r corresponds to the distance r between a D3 and an anti-D3
brane in a 10d supergravity background. T3 denotes the brane tension, T3 = 1/[(2π)3gsα

′2], with string
coupling gs and α′ = l2s the string length squared. To understand the dynamics of φ and calculate its
potential, one has to start from the 10d action of type IIB superstring theory and find solutions for the
metric and all n-forms. A supergravity metric ansatz reads ds2 = h−1/2(r)gµνdxµdxν + h1/2(r)ds2

6, i.e.
a 4d extended space-time (along the worldvolume of the branes) and six compactified dimensions. The
function h(r) is called the warp factor. For the 6d section, the choice of interest (in view of the desired
cosmological outcome) is ds2

6 = dr2 + r2ds2
T1,1

, with ds2
T1,1

the conifold metric [4]. To enforce “warping”

on T1,1, non-vanishing background fluxes (which are characterized by an integer number N [5]) are given
to certain n-forms. This geometry is called the Klebanov-Strassler (KS) throat, defined by the throat’s
bottom r0, edge r

UV
(where it is glued into the rest of the 6d manifold), and a dimensionless parameter

v, measuring the relative size of the 5d conifold base. The KS throat is a an explicit example2, but one
may consider generic “warped throats” which appear in many flux compactifactions.

The (heavy) anti-D3 brane is embedded at r0 within this deformed background; its presence adds a
small warp factor perturbation δh(r, r0). The (light) D3 brane probes the resulting geometry: Inserted
at r1 ≫ r0 (far from the bottom, but below the edge r

UV
), it experiences gravity and Ramond-Ramond

interactions with the anti-D3 through closed string modes. The radial inter-brane distance r = r1 − r0

is interpreted as the inflation field φ (up to normalisation), and its potential V (φ) is calculated from the
Coulomb-like force in the limit r ≫ ls [1]. Inflation proceeds while the D3 approaches the anti-D3, hence
φ decreases. At a critical φstrg, when the branes’ proper distance equals ls, a tachyon (the lightest open
string mode) appears, and V (φ) calculated from closed mode exchange is no longer valid. The two branes
then annihilate in a complex process followed by the reheating era.

1lorenz@iap.fr
2where notably v is fixed at v = 16/27
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The resulting effective four-dimensional action for the inflaton field φ in this model reads

S = − 1

2κ

∫

R
√−g d4x −

∫

[

T (φ)

√

1 +
1

T (φ)
gµν∂µφ∂νφ + T (φ)

]

√−g d4x, (1)

where κ ≡ 8π/m2
Pl, and T (φ) = T3/h̃(φ) is the position-dependent brane tension. h̃(φ) includes the

anti-D3’s perturbation and follows from the 10d Einstein equations. T (φ) represents an upper bound on
the field’s velocity; while φ̇2 ≪ T (φ), one may expand the squareroot to obtain an action with standard
kinetic term. The true field dynamics, however, are given by the stringy DBI expression in (1). A tool to
quantify the DBI impact is the “Lorentz factor” γ(φ, φ̇) = [1− φ̇2/T (φ)]−1/2, with γ ≈ 1 in the standard
phase, and γ ≫ 1 when the stringy kinetic term is crucial [6]. In the expansion of (1), it is easy to identify
the potential (using the explicit form of h̃(φ), see [1]):

V (φ) = 2T (φ) =
M4

1 + (µ/φ)4
≃ M4

[

1 −
(

µ

φ

)4
]

(2)

The last expression is obtained for φ ≫ µ. This potential is characterized by the overall scale of inflation
M , and the relative scale µ for φ. Hence, together with φ

UV
(below which the evolution must start) and

φstrg (where brane annihilation sets in), they give a set of four parameters. On the microscopic level,
however, (M, µ, φ

UV
, φstrg) derive from the stringy quantities (gs, α

′, M, v,N )3.

3 The standard inflation viewpoint and stringy aspects

Starting at some initial value µ ≪ φin < φ
UV

, the inflaton moves across a period of standard inflation on
the very flat potential (2). The slow-roll approximation can be used until the field reaches φǫ; in usual
inflation, this means the end of accelerated expansion4. There are, however, new stringy ingredients
in the picture of (1): The kinetic term of φ is DBI, and hence Friedmann and Klein-Gordon equations
are different from standard (though they reduce to the usual ones for γ ≈ 1). In particular, inflation
may continue after φǫ, the inflaton eventually reaching (from a certain φ

DBI
onwards) an ultrarelativistic

regime where γ ≫ 1. An analytical solution in the DBI dominated regime exists [2], which, however, is
not inflating. This leaves the question if a significant amount of inflation is produced in the transitory
regime φ

DBI
< φ < φǫ, which would affect the matching of today’s scales to those during inflation. Access

to this regime is through numerics only, and φǫ and φ
DBI

are in fact of the same order, the number of
e-folds produced inbetween typically being O(1). Hence, in the pure KKLMMT scenario, DBI dynamics
do not significantly prolong inflation.

The second important point concerns the end of inflation: We do not forcibly have φend = φǫ,
since inflation really ends at φstrg, the onset of mutual brane annihilation. φstrg is calculated from
the background parameters5 (gs, M, v,N ). Since φǫ is known analytically, too, it is possible to express
their ratio φǫ/φstrg = f(gs, M, v,N ), i.e. as a function of background parameters. φstrg could therefore
lie “on either side” of φǫ, meaning that in some cases φend = φstrg while slow-roll still holds. Since
f(gs, M, v,N ) depends on the scale M , fixed from normalization to COBE (which, in turn, needs a φend

as an input), only the contour φǫ/φstrg = 1 (at fixed gs) can be traced unambiguously6 in the parameter
plane (ln v, lnN ), see figure 1. Depending on the choice of gs, some (ln v, lnN ) belong to the region where
φend = φstrg, or where φend = φǫ. There exists, however, a rescaling of (N , v, gs), illustrated by the lower
panel in figure 1, that allows to remove the gs dependence. In the rescaled parameter space (ln x, ln v̄),
the contour φǫ/φstrg = 1 is unique.

We now turn to intrinsic parameter restrictions. First, consistency requires that the volume of the
KS throat must not exceed the total volume V total

6 of the 6d compactification [7]. Since V total
6 enters

into the calculation of the 4d Planck mass, this constraint can be re-written as a condition relating mPl

to (N , v, gs, α
′). This condition is a straight line with universal slope and α′-dependent offset, cutting

3where µ
4 = φ

4

0
/N , M

4 = 4π
2
vφ

4

0
/N

4More precisely, we can distinguish φǫ1
, φǫ2

(the end of inflation vs. the end of slow-roll), where we find φǫ2
> φǫ1

.
5Note that the dependence on α

′ cancels out.
6COBE normalization is possible analytically when φend = φǫ, see [2].
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Figure 1: Upper panel: φǫ = φstrg in the
plane (lnN , ln v), using COBE normaliza-
tion with N∗ = 50. The dotted line cor-
responds to gs = 0.1, dashed to 10−3 and
dotted-dashed to 10−5. The area enclosed
is the region where φǫ > φstrg. The gs-
dependence can be absorbed by rescaling
the parameters. Lower panel: φǫ = φstrg

(universal for all values of gs) in the plane
(ln x, ln v̄), where x = 4πgsN/v and v̄ =
v/(4πgs)

2.

through the (lnx, ln v̄) plane7. Second, we focus on the case where inflation takes place in one throat:
We require φin < φ

UV
, and the throat has to be “long enough” to accommodate ∼ 60 e-folds of inflation.

In the region where φend = φǫ, this condition is another straight line, again with universal slope but an
α′-dependent offset. Where φend = φstrg, the shape of this condition has to be found numerically.

4 MCMC results

The KKLMMT model has four “cosmological” parameters (M, µ, φstrg, φUV
), to which we add the di-

mensionless parameter R for the reheating era8. The most suitable set for MCMC sampling, however,
is [log

(

1010P∗

)

, log(
√

κµ), log(
√

κφ
UV

), log(φstrg/µ), ln R], where P∗ is the amplitude of the scalar pri-
mordial spectrum at a given observable wavenumber k∗. Therefore, one has to implement the above
restrictions as priors for these quantities. The numerics impose a lower limit of

√
κµ > 10−3. For a

detailed discussion of all priors, see [2].
We now briefly present the results of our MCMC comparison. First, one can show that the KKLMMT

model reproduces ΛCDM parameters such as e.g. Ωb, Ωdm, H0, as well as the correct perturbation ampli-
tude and spectral indices. Second, figure 2 shows the mean likelihoods (ML) and marginalized probability
distributions (MPD) for the sampled primordial parameters [log(

√
κµ), log(

√
κφ

UV
), log(φstrg/µ), ln R].

An interesting feature of the panels for log(
√

κµ), log(
√

κφ
UV

) is the difference between ML and MPD:
The ML’s are uniform because in the explored prior range, these parameters do not improve the fit to
the data, while the drop in the MPD’s shows that log(

√
κµ) < 1.1 at 95% confidence level (CL). These

shapes are explained by volume effects in the multi-dimensional parameter space due to strong correla-
tions. log(φstrg/µ) and lnR, on the other hand, are directly constrained by the data: log(φstrg/µ) < 1.4
and lnR > −38 at 95% CL. Third, we can derive the corresponding distributions of the remaining pa-
rameters: log(

√
κM) and P∗ are directly related, as is log(4π2v) to µ and M (see figure 2). In addition,

the 2d probability distribution obtained without marginalising over log(
√

κµ) is shown, illustrating the
strong correlations. In particular, the numerically motivated lower prior

√
κµ > 10−3 directly translates

into an upper (lower) limit for log(4π2v) [log(
√

κM)]. The respective other end of these distributions,
however, is “physical” and gives the 95% CL constraints log(

√
κM) < −2.9 and log(4π2v) > −8.5.

Do these probability distributions hold restrictions for fundamental string parameters, e.g. gs? We
know that (M, µ, φstrg, φUV

) really derive from the five quantities (gs, α
′, M, v,N ), hence additional as-

sumptions are necessary. In [2] this approach was explored, yielding a non-trivial degeneracy between
N , gs and v at a certain α′. However, the corresponding MPD would not allow any quantitative restriction
on these parameters.

5 Conclusions

A general result of this work is that, in principle, it seems possible to constrain stringy parameters from
cosmology. However, the accuracy of present data does not suffice to break the degeneracies. Moreover,

7See figure 6 of [2].
8The definition of (and prior on) R is discussed in [2].
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Figure 2: Left: MPD (solid lines) and ML (dotted lines) for the sampled primordial ΛCDM–KKLMMT parame-

ters. Right: MPD and ML for M/mPl and v. On the very right are the 1σ- and 2σ-contours of the 2d posteriors

obtained without marginalising over log(
√

κµ). The 2d probability is proportional to the point density while the

colormap traces correlations with the third parameter.

one must not underestimate the strong theoretical prior that comes with any attempt at cosmological
model building in string theory, since the testable inflationary quantities derive from fundamental (e.g.
geometric) choices for the background.

In [2], we presented the first complete MCMC analysis of the pure KKLMMT model, considering gs

and α′ as free parameters. We also suggest how to systematically scan the parameter space for arbitrary
gs, α

′. The data favour those cases where inflation occurs in the usual slow-roll way, i.e. inflation ends
at φǫ and not earlier at brane annihilation. This is because φend = φstrg > φǫ would push ns → 1, while
preserving a low level of gravitational waves (see [2]). A weak limit on v, i.e. on a parameter of the 6d
compactification, is also obtained: log v > −10 at 95% CL.

The choice of the pure KKLMMT scenario [1] comes with a considerable caveat: All moduli are
considered stabilized, and various additional contributions to V (φ) are assumed to conspire in such a
way as to only leave the Coulomb term (2). Recently, these contributions became calculable [8], and
their general cancellation is unlikely. In practice, the full potential should be of the form V (φ) =
VDD̄(φ) + m2φ2 + . . ., leading to a completely different inflaton evolution and notably rendering the
DBI phase important. The next step would be to include these terms in our analysis, at the expense of
introducing additional parameters.
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Abstract
We reconstruct the primordial curvature fluctuation spectrum from the cosmic mi-

crowave background temperature anisotropy spectrum of the Wilkinson Microwave

Anisotropy Probe 3-year data by the maximum likelihood matrix inversion method

which can potentially reproduce possible fine structure in the primordial spectrum.

In the reconstructed primordial spectrum, the prominent oscillatory features found

previously on the scales of the top and foot of the first Doppler peak are mildly

smoothed except for the peaky structure on ≈ 750Mpc which might be a true signal

of deviation from a featureless spectrum.

1 Introduction

The cosmic history during the inflationary stage of the early Universe is recorded in the primordial fluctu-
ation spectrum which can be revealed by modern cosmological observations. In particular, the anisotropy
spectrum of the cosmic microwave background (CMB) contains a great deal of such information. With
the high quality data provided by the Wilkinson Microwave Anisotropy Probe (WMAP) mission and
the clear linear perturbation theory, which relates the primordial spectrum to the observational CMB
anisotropy spectrum, we can probe the shape of the primordial spectrum with good accuracy.

Since the first release of the WMAP data [1, 2, 3, 4, 5], it has been argued that the CMB temperature
anisotropy spectrum have non-trivial features such as oscillatory behaviors on intermediate scales and
lack of power on the largest scales already claimed before WMAP [6, 7]. Although some of the glitches and
bites seen in the WMAP 1-year anisotropy spectrum have disappeared in the 3-year anisotropy spectrum
[8, 9], still anomalous structure is observed and not well-understood. Those anomaly cannot be explained
by a simple powerlaw primordial spectrum that is a generic prediction of conventional inflation models,
hence they may have some implication for our understanding of early Universe. WMAP team managed to
parametrize the primordial spectrum by decomposing it into ad hoc band-powers, but existence or non-
existence of fine structure is still uncertain because it is beyond the scope of parameter fitting method.
To evaluate the significance of such fine structure, we apply more flexible non-parametric method.

2 Maximum likelihood matrix inversion method

We introduce the maximum-likelihood matrix method to reconstruct the primordial power spectrum
P (k). Temperature anisotropy is decomposed into the coefficients of spherical harmonics as,

δT

T
(n̂) =

∑

ℓ,m

aℓmYℓm(n̂). (1)

A theoretical angular power spectrum Cℓ is the ensemble average of their norm which is related to P (k)
via a radiation transfer function Xℓ(k),

Cℓ = 〈|aℓm|2〉 =
2

π

∫

d ln k k3P (k)

(

Xℓ(k)

2ℓ + 1

)2

. (2)
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We define the primordial spectrum as the initial spectrum of curvature fluctuation, P (k) = 〈|Φ(0, k)|2〉.
The probability distribution of a harmonic coefficient for a given P (k) obeys to Gaussian statistics of a
complex variable,

P [aℓm|P (k)] =
1

πCℓ
exp

(

−|aℓm|2
Cℓ

)

(m 6= 0), (3)

P [aℓ0 |P (k)] =
1√

2πCℓ

exp

(

−|aℓ0|2
2Cℓ

)

. (4)

Hence the probability of realizing a sky (i.e. a set of harmonic coefficients) is the product of them.

P [{aℓm}|P (k)] =
∏

ℓ, m≥0

P [aℓm|P (k)] ≡ e−L[P (k)]. (5)

Here, following Tocchini-Valentini et al.[10, 11], we assume that P (k) should be a sufficiently smooth
function. As the prior for P (k) we adopt

P [P (k)] ∝ exp

[

−ǫ

∫

dk
1

2

(

dk3P (k)

dk

)2
]

≡ e−ǫR[P (k)], (6)

where ǫ is a parameter[10, 11]. According to the Bayes theorem, the conditional probability of P (k)
under the condition that each aℓm takes some observed value reads,

P [P (k)|{aℓm}] =
P [{aℓm}|P (k)]P [P (k)]

P [{aℓm}] . (7)

The most probable primordial spectrum is obtained by solving the following equation as

δ

δP (k)

(

L[P (k)] + ǫR[P (k)]
)

= 0. (8)

We can interpret L[P (k)]+ǫR[P (k)] as the action of a forced oscillator rolling around Cobs
ℓ , which assures

that the reconstructed P (k) restores the observation.
In our numerical treatment, we adopt the adiabatic initial condition and fiducial cosmological pa-

rameters found by the WMAP team [9] to calculate the transfer function. We incorporate the angular
spectrum data from ℓmin = 10 to ℓmax = 800 and perform the reconstruction in the wave-number range
as k = 1.13×10−5 Mpc−1 ∼ 2.06×10−1 Mpc−1 which is divided into about 6000 bins, though the reliable
range is limited only to the scales between 2.10 × 10−3 Mpc−1 and 2.73 × 10−2 Mpc−1 or equivalently
between ℓ = 30 and ℓ = 390. The actual inversion formula is modified to include noise contribution and
uncertainty from incomplete sky coverage. We employ the appropriately chosen ǫ(= 4 × 10−4Mpc−1) so
that the resolution is as fine as possible while the power is positive on any scale. Test calculations using
mock samples show that this method returns a smoother power spectrum than the original one, if latter
has non trivial features. For implementing the inversion scheme, we employ the routines of CMBFAST
code [12] to calculate the transfer functions.

3 Reconstructed primordial spectrum

The reconstruction maps also the cosmic variance on the anisotropy spectrum into k-space. Therefore we
have to be careful about error estimation for extracting the reliable information of inflation dynamics.
In order to incorporate observational errors, we employ Monte-Carlo method to calculate the covariance
matrix of the reconstructed power spectrum Kij . Producing 10000 anisotropy spectra from χ2 distributed
random numbers whose mean is the central value of the observational anisotropy spectrum and variance
agrees with the diagonal element of the covariance matrix of Cℓ, we obtain 10000 realizations of P (k).

In the angular power spectrum, the dimension of persisting information of the primordial spectrum is
fewer than ℓmax due to smoothing by the convolution with the transfer function. To extract the mutually
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Figure 1: Primordial spectrum P (k) reconstructed from the three-year WMAP data and its band-power
decomposition where the vertical axis is normalized in the same way as that of CMBFAST code. The
dashed curve represents the solution of the reconstruction formula. Each data point indicates the ampli-
tude of diagonalized mode S defined in the text. The associated vertical bar is its expected dispersion
and horizontal bar is 1σ width of the window matrix estimated by Gaussian fitting. The solid line drawn
around the middle height is the best-fit powerlaw spectrum.

independent degree of freedom and estimate the reliable error bars, we disentangle this correlation by
diagonalizing the covariance matrix [13]. We define a window matrix W by

Wij =
(K−1/2)ij

∑N
m=1(K

−1/2)im

. (9)

K−1/2 represents the inverse square root of K defined as the unitary transform of diag(λ
−1/2
1 , λ

−1/2
2 , ...)

where λi’s are the eigenvalues of K. Convolving Pα(ki) with this window function, we define a new
statistical variable Sα(ki) as

Sα(ki) ≡
N

∑

j=1

WijPα(kj), (10)

whose correlation matrix is diagonal and reads

〈〈Sα(ki)Sα(kj)〉〉α − 〈〈Sα(ki)〉〉α 〈〈Sβ(kj)〉〉β

= (WKtW )ij =

[

N
∑

m=1

(K−1/2)im

]−2

δij , (11)

where Pα(ki) represents the value of the reconstructed power spectrum at k = ki in the α-th realization
and 〈〈〉〉 represents the average of 10000 realizations.

Fig.1 is the result of band power analysis of WMAP 3-year data. In this graph i-th data point
indicates the value of

〈〈Sα(ki)〉〉α =

N
∑

j=1

Wij 〈〈Pα(kj)〉〉α ,

and the vertical error bar represents the variance

[

〈〈

S2
α(ki)

〉〉

α
− 〈〈Sα(ki)〉〉2α

]1/2

=

[

N
∑

m=1

(K−1/2)im

]−1

.
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Here ki is the location of the peak of the i-th line of the window matrix Wij . The horizontal bar, on the
other hand, indicates the width of the window matrix. On most scales, the reconstructed band-powers
agree with the best-fit power-law quite well. However, we find a prominent peak around kd ≈ 125, or
equivalently the length scale of ≈ 750Mpc, which would be a true signal of deviation from a simple
power-law spectrum. It deviates from the best-fit power-law at about 4σ significance level. To evaluate
the statistical significance of this deviation, we performed Monte Carlo simulation. Producing 10000
mock realizations of Cℓ whose ensemble is supposed to be the best-fit power-law model, we apply our
reconstruction procedure to each Cℓ to collect the statistics of reconstructed band powers. We find that
the statistical distribution of reconstructed band powers agrees with Gaussian distribution. We repeated
the same analysis with the different value of ǫ many times, and in most cases observed the similar
peak with similar statistical significance. We have also reconstructed power spectrum using the cosmic
inversion method [14, 15, 16, 17, 18] and found a similar peak in the band power analysis at a slightly
smaller wave-number with a larger statistical significance ∼ 5σ.

4 Summary

In conclusion, we have reconstructed the power spectrum of primordial curvature perturbation and found
a severe deviation from the best-fit power-law in a narrow band around k∗ ≃ 0.009Mpc−1. The probability
that such a deviation is realized in a simple power-law fluctuation is expected to be less than 10−4, and
this provides an interesting challenge to theories of generation of fluctuations.
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Abstract
We give a concise formula for the non-Gaussianity of the primordial curvature per-
turbation generated on super-horizon scales in multi-scalar inflation model without
assuming slow-roll conditions.

1 Introduction

Non-Gaussianity of the primordial curvature perturbation is a potentially useful discriminator of the ex-
isting many inflation models [1]. PLANCK [2] is expected to detect the primordial non-Gaussianity if the
so-called non-linear parameter, fNL, which parameterizes the magnitude of the bispectrum, is larger than
3 ∼ 5 [1]. Hence it is important to theoretically understand the generation of non-Gaussianity. Standard
single slow-roll inflation model predicts rather small level of the non-linear parameter, fNL, suppressed
by the slow-roll parameters. In this article, we give a useful formula for calculating the non-linear pa-
rameter in the multi-scalar inflation models including the models in which the slow-roll approximation
is (temporarily) violated after the cosmological scales exit the horizon scale during inflation. Current
observations do not exclude such models.

2 formulation

In this section, we derive a formula for calculating the non-linear parameter in the multi-scalar inflation
models including the models in which the slow-roll approximation is (temporarily) violated after the
cosmological scales exit the horizon scale during inflation [4, 5], based on δN formalism [3]. We use the
unit M2

pl = (8πG)−1 = 1. We consider a N -component scalar field whose action is given by

S = −
∫

d4x
√−g

[

1
2
hIJg

μν∂μφ
I∂νφ

J + V (φ)
]

, (I, J = 1, 2, · · · ,N ) ,

where gμν is the spacetime metric and hIJ is the metric on the scalar field space. In the main text, we
restrict our discussion to the flat field space metric hIJ = δIJ to avoid inessential complexities due to
non-flat field space metric. Extension to the general field space metric was given in our paper [5]. We
define ϕIi (i = 1, 2) as

ϕI1 ≡ φI , ϕI2 ≡ d

dN
φI , (1)

where dN = Hdt with H and t being the Hubble parameter and cosmological time, respectively. Namely,
we take e-folding number, N , as a time coordinate. For brevity, hereinafter, we use Latin indices at the
beginning of Latin alphabet, a, b or c, instead of the double indices, I, i, i.e., X a = XI

i . Then, the
background equation of motion for ϕa and Friedmann equation are respectively

d

dN
ϕa = F a(ϕ) , with F I1 = ϕI2 , F

I
2 = − V

H2

(

ϕI2 +
V I

V

)

, (2)

H2 =
2V

6 − ϕI2ϕ2I
, (3)
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with V I = δIJ (∂V/∂φI) and ϕ2I = δIJϕ
J
2 .

In the δN formalism [3], the evolution of the difference between two adjacent background solutions
determines that of the primordial curvature perturbation on super-horizon scales. Here, we use the word
”perturbation” to denote the difference between two adjacent background solutions. In this subsection,
we analyze the time evolution of the perturbation and relate the result to the curvature perturbation.
The solution of the background equation (2) is labelled by 2N integral constants λa. Let us define δϕa as
the perturbation, δϕa(N ) = ϕa(λ + δλ;N ) − ϕa(λ;N ), where λ is abbreviation of λa and δλa is a small
quantity of O(δ). For the purpose of calculating the leading bispectrum of the curvature perturbation, it
is enough to know the evolution of δϕa(N ) up to second order in δ. For later convenience, we decompose

δϕa as δϕa = δ
(1)
ϕa + 1

2δ
(2)
ϕa, where δ

(1)
ϕa and δ

(2)
ϕa are first and second order quantities in δ, respectively.

Evolution equation for δ
(1)
ϕa is given by

d

dN
δ
(1)
ϕa(N ) = P ab(N )δ

(1)
ϕb(N ) , with P ab ≡

∂F a

∂ϕb

∣

∣

∣

∣

ϕ=
(0)
ϕ (N)

. (4)

Here
(0)
ϕ(N ) represents the unperturbed trajectory. Formally, solution of this equation can be written as

δ
(1)
ϕa(N ) = Λab(N,N∗)δ

(1)
ϕb(N∗) , (5)

d

dN
Λab(N,N

′) = P ac(N )Λcb(N,N
′) , (6)

with the condition Λab(N,N ) = ΛIjiJ (N,N ) = δIJδ
j
i . Evolution equation for δ

(2)
ϕa is given by

d

dN
δ
(2)
ϕa(N ) = P ab(N )δ

(2)
ϕb(N ) + Qabc(N )δ

(1)
ϕb(N )δ

(1)
ϕc(N ) , with Qabc ≡

∂2F a

∂ϕb∂ϕc

∣

∣

∣

∣

ϕ=
(0)
ϕ (N)

. (7)

Let us choose the integral constants λa as the initial values of ϕa at N = N∗, namely, λa = ϕa(N∗).

Then we have δϕa(N∗) = δλa. Hence δ
(2)
ϕa(N ) vanishes at N∗. Under this initial condition, the formal

solution of Eq. (7) is given by

δ
(2)
ϕa(N ) =

∫ N

N∗
dN ′Λab(N,N

′)Qbcd(N
′)δ

(1)
ϕc(N ′)δ

(1)
ϕd(N ′) . (8)

According to the δN formalism, the curvature perturbation on large scales evaluated at a final time,
N = Nc, is given by the perturbation of the e-folding number between an initial flat hypersurface at
N = N∗ and a final uniform energy density hypersurface at N = Nc. Let us take N∗ to be a certain time
soon after the relevant length scale crossed the horizon scale, H−1, during the scalar dominant phase
and Nc to be a certain time after the complete convergence of the background trajectories has occurred.
At N > Nc the dynamics of the universe is characterized by a single parameter and only the adiabatic
perturbations remain. Then, the e-folding number between N∗ and Nc can be regarded as the function
of the final time Nc and ϕa(N∗), which we denote N (Nc, ϕ(N∗)). Based on δN formalism, the curvature
perturbation on the uniform energy density hypersurface evaluated at N = Nc is given by

ζ(Nc) � δN (Nc, ϕ(N∗)) = Na∗δϕa∗ +
1
2
Nab∗δϕa∗δϕ

b
∗ + · · · , (9)

where δϕa∗ = δϕa(N∗) represents the field perturbations and their time derivative on the initial flat
hypersurface at N = N∗. Here we also defined Na∗ = Na(N∗) and Nab∗ = Nab(N∗) by

Na(N ) ≡ ∂N (Nc, ϕ)
∂ϕa

∣

∣

∣

∣

ϕ=
(0)
ϕ (N)

, Nab(N ) ≡ ∂2N (Nc, ϕ)
∂ϕa∂ϕb

∣

∣

∣

∣

ϕ=
(0)
ϕ (N)

, (10)

evaluated at N = N∗. It is well known that the curvature perturbations on an uniform density hyper-
surface, ζ, remain constant in time for N > Nc. Hence, ζ(Nc) gives the final spectrum of the primordial
perturbation. Let us take NF to be a certain late time during the scalar dominant phase. Then we have

ζ(Nc) � δN (Nc, ϕ(NF )) = NaF δϕ
a
F +

1
2
NabF δϕ

a
F δϕ

b
F + · · · . (11)
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where δϕaF = δϕa(NF ), NaF = Na(NF ) and NabF = Nab(NF ). During the period with N∗ < N < NF ,
we can use the solutions for δϕa given by Eqs. (5) and (8). Using these solutions, we obtain the relations;

Na∗ = NbFΛba(NF , N∗) , (12)

Nab∗ = NcdFΛca(NF , N∗)Λdb(NF , N∗) + 2
∫ NF

N∗
dN ′Nc(N ′)Qcde(N

′)Λda(N
′, N∗)Λeb(N

′, N∗) ,(13)

with

Na(N ) ≡ NbFΛba(NF , N ). (14)

Using above basic equations, we derive a formula for the non-linear parameter fNL by making use of the
δN formalism. We first give the definition of fNL. It is defined as the magnitude of the bispectrum of
the curvature perturbation ζ,

Bζ(k1, k2, k3)=
6
5

fNL

(2π)3/2

[

Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)
]

, (15)

where Pζ is the power spectrum of ζ. The definitions of Pζ and Bζ are, respectively,

〈ζk1ζk2〉 ≡ δ(k1 + k2)Pζ(k1) , (16)
〈ζk1ζk2ζk3 〉 ≡ δ(k1 + k2 + k3)Bζ (k1, k2, k3) . (17)

Equation (15) restricts the form of the bispectrum. The bispectrum in general does not take that simple
form. In fact, sub-horizon perturbations of fields give different k-dependent form of the bispectrum. How-
ever, the sub-horizon contribution to the bispectrum is suppressed by the slow-roll parameters evaluated
at the time of horizon exit. In contrast, the super-horizon evolution always gives the bispectrum in the
form of Eq. (15) independent of the number of fields (see below). If fNL >∼ 1, which is an interesting case
from the observational point of view, then the contribution due to super-horizon evolution dominates the
total bispectrum. We assume that the slow-roll conditions are satisfied at N = N∗. Then, to a good
approximation, δϕI1∗ becomes a Gaussian variable with its variance given by 〈δϕI1∗δϕJ1∗ ∝ δIJ , and ϕI2
becomes function of ϕI1. Differentiating ϕI2 � −V I

V , we have

δϕI2∗ =
(

V IVJ
V 2

− V IJ
V

)

δϕJ1∗ + · · · . (18)

The higher order terms are also suppressed by the slow-roll parameters. Hence, δϕI2∗ is Gaussian as well
as δϕI1∗ to a good approximation. Then, we can write down the variance of δϕa∗ as

〈δϕa∗δϕb∗〉 � Aab
(

H∗
2π

)2

. (19)

At the first order both in the field perturbation and slow-roll limit, the matrix Aab = AIJij can be written
as

AIJ11=δIJ , AIJ12 = AIJ21 = εIJ , AIJ22=εIKε
KJ , (20)

where

εIJ ≡
[

V I(φ)V J (φ)
V (φ)2

− V IJ (φ)
V (φ)

]

φ=
(0)
φ (N∗)

. (21)

Since εIJ = O(ε, η), we find that 〈δϕI1∗δϕJ2∗〉 and 〈δϕI2∗δϕJ2∗〉 are suppressed by the slow-roll parameters.
Using these equations, to the leading order, the non-linear parameter is written as

6
5
fNL � Na∗Nb∗Ncd∗AacAbd

(Ne∗Nf∗Aef )
2

=
1

(Na∗Θa∗)
2

[

NabFΘa(NF )Θb(NF ) +
∫ NF

N∗
dN ′Nc(N ′)Qcab(N

′)Θa(N ′)Θb(N ′)

]

, (22)
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where

Θa(N ) ≡ Λac(N,N∗)AcbNb∗ , (23)

and Θa∗ = Θa(N∗). As we mentioned before, we have neglected the non-Gaussianity from the sub-horizon
contributions in deriving Eq. (22). Eq. (22) shows that, aside from NaF and NabF

2, fNL is completely
determined by the quantities Na(N ) and Θa(N ). These quantities obey the following closed differential
equations,

d

dN
Na(N ) = −Nb(N )P ba(N ) ,

d

dN
Θa(N ) = Pab(N )Θb(N ) . (24)

First, we solve Na(N ) backward till N = N∗ under the initial conditions Na(NF ) = NaF . Then we solve
Θa(N ) forward till N = NF under the initial conditions Θa(N∗) = AabNb∗. Substituting these solutions
into Eq. (22), we obtain fNL.

3 Summary

In this article, Based on the δN formalism, we have derived a useful formula for calculating the primordial
non-Gaussianity due to the super-horizon evolution of the curvature perturbation in multi-scalar inflation
without imposing slow-roll conditions. This formula can apply for the inflation models with general field
space metric, hIJ , as long as super-horizon contributions are concerned. Generally, when one calculates
the non-Gaussianity of the curvature perturbations, one has to solve the second order perturbation
equations. In doing so for a multi-scalar inflation, there appear tensorial quantities with respect to the
indices of the field components. Our formalism reduces the problem to calculate the non-linear parameter
fNL to solving only first order perturbation equations for two vector quantities. This reduces O(N2)
calculations to O(N ) ones where N is the number of the scalar field components. Hence our formalism
has a great advantage for the numerical evaluation of fNL in the inflation model composed of a large
number of fields. We have not discussed the possibility of large non-Gaussianity, here. However, in
our paper [5], we have studied the primordial non-Gaussianity in double inflation model as an example
that violates slow-roll conditions by using our formalism. We found that, although fNL defined for the
curvature perturbation on a constant Hubble hypersurface exceeds 1 for a moment around the time when
the slow-roll conditions are violated, the final value of fNL is suppressed by the slow-roll parameters
evaluated at the time of horizon exit. We have shown that this can be understood even analytically in
the δN formalism. This result is straightforwardly extended to more general double inflation model and
N -flation model.
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Non-Gaussianity from a single field inflation during non
slow-roll regime
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Abstract
We estimated the bispectrum of curvature perturbations in the Starobinsky model
in which a single inflaton field has a potential where there is a sudden change in its
slope, and temporarily undergoes non slow-roll regime just after passing the change
spot, by using the non-linear solution for curvature perturbations, constructed in
gradient expansion. Then, we found that large non-Gaussianity may be produced in
the model.

1 Introduction

It has been understood from the observations of CMB anisotropies that early universe must have under-
gone inflationary era. As CMB observations become more accurate, we will come to know abundance
of informations about the inflationary era. As one among the observations, it has been studied if there
exists the deviation of Gaussian statistics in the CMB fluctuations, i.e. non-Gaussianity. Measuring the
non-Gaussianity is important because it plays a role to give much informations probably to distinguish
inflation models. Due to the expectation, non-Gaussianity in many models has been studied. Though
many authors have investigated non-Gaussianity in single field or multi fields models, there are not so
many works, considering models in which slow-roll conditions are violated. It was claimed in Ref. [3]
that enhancement or damping of curvature perturbations on superhorizon scales can be occurred in such
a non slow-roll model. However, since such features are still studied only in linear theory, it might be
worth studying them in non-linear theory, and then non-Gaussianity.

At this work, we consider the Starobinsky model, a single scalar field inflation in which slow-roll
condition is violated temporarily in Einstein gravity, and use the nonlinear solutions of metric for single
scalar system, which are constructed in gradient expansion [2], to evaluate the nonlinear consequences
from non slow-roll regime. And finally we calculate the bispectrum in the model. In this approach based
on gradient expansion, we consider only fluctuations on superhorizon scales, and don’t deal with nonlinear
evolutions on subhorizon scales.

2 Non-linear solutions in gradient expansion

Here, we present the non-linear solutions which are constructed in the existence of a minimal coupling
single scalar field, in gradient expansion.

The metric is expressed as

ds2 = (−α2 + βkβk)dt2 + 2βidxidt + a2(t) e2R(t,xk) γ̃ij(t, xk)dxidxj , (1)

where α and βi (βi = γijβj) are the lapse function, shift vector respectively, det(γ̃ij) = 1, and the
function a(t) is the scale factor of a fiducial homogeneous and isotropic background universe.

The stress-energy tensor for a minimal coupling single scalar field is expressed as

Tµν = ∇µφ∇νφ− 1
2
gµν(∇αφ∇αφ + 2V (φ)). (2)

We have general and non-linear solutions for α andR which satisfy the Einstein equations in a minimal
coupling single scalar field model as follows [2],

1E-mail:yotanaka@yukawa.kyoto-u.ac.jp
2E-mail:misao@yukawa.kyoto-u.ac.jp
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α = 1 + 2
φ̇k

a3φ̇3

[
(2)C(xk)

(
2a φ̇ +

dV

dφ

∫ t

−∞
a(t′)dt′

)
+ (2)D(xk)

dV

dφ

]
, (3)

R = (0)R+
∫ t

tk

(α− 1)Hdt′ , (4)

where (0)R and (2)D (the number indexes (0) and (2) indicate the leading-order and the next-order in
gradient expansion, for the quantities attached by them ) are arbitrary functions of the spatial coordinates
(i.e. integration constants), tk is actually arbitrary, but we take it to be the time at a few e-foldings after
horizon crossing by choosing (0)R, φ̇ is indeed (0)φ̇(t) which satisfies the (local) Friedmann equations,
and C(xk) is defined as

(2)C =
8(0)f

ij(D̄iD̄je(0)R/2)− (0)f
kl

(2)R̄kle(0)R/2

48πGe5(0)R/2a2
kφ̇(0)(tk)

. (5)

For simplifying the problem, we ignore tensor modes, set (0)fij = δij , and have

(2)C =
2∂2

(0)R+ δij∂i(0)R∂j(0)R
24πGφ̇k

e−2(0)R (6)

From Eqs. (3), (4) and (6) , we obtain

R = (0)R+
∫ t

tk

dt′H
2∂2

(0)R+ δij∂i(0)R∂j(0)R
12πGa3φ̇3

e−2(0)R
(

2a φ̇ +
dV

dφ

∫ t′

−∞
a(t′′)dt′′

)
+

∫ t

tk

2φ̇k H

a3φ̇3
(2)D

dV

dφ
dt′. (7)

3 Application of the nonlinear formalism

We shall estimate the bispectrum in a specific model, the Starobinsky model, using the nonlinear solution
which we showed in the previous section. We briefly introduce the model below.

3.1 The Starobinsky model

In the Starobinsky model, a single scalar field has a potential in which there is a sudden change in its
slope. The potential is described as

V (φ) =
{

V0 + A+(φ− φ0) for φ > φ0 ,
V0 + A−(φ− φ0) for φ < φ0 ,

(8)

where A+, A− and φ0 are assumed to be positive so that the scalar field evolves from a large positive
value of φ toward φ = 0. Then, assuming the de Sitter approximation 3H2 = κ2V0, the scalar field φ in
the (local) Friedmann spacetime satisfies

3Hφ̇ =
{ −A+ for φ > φ0 ,
− (

A− + (A+ −A−)e−3H(t−t0)
)

for φ < φ0 ,
(9)

where t0 is the time at which φ = φ0. Thus the scalar field slow-rolls at φ > φ0, and violates the
slow-roll condition temporarily at φ < φ0. The evolution is decelerated if A+/A− > 1, or accelerated if
A+/A− < 1, compared to the slow-roll evolution.
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3.2 Matching after horizon crossing

To determine the integration constants in Eq. (7), we consider a matching at a few e-foldings after horizon
crossing, of quantum fluctuation in linear theory and the nonlinear solution. We refer the detail of the
matching to Ref. [4] and avoid the argument here. After the matching, the integration constants are
determined as follows,

(0)R =

[
1 +

∂2

12πGa2
kφ̇2

k

− ∂2

(akH)2

]
(0)R(±)

H , (10)

where here (0)R(±)
H is defined in real space, and represents linear quantum curvature perturbations (0)R(+)

H

for tk < t0 and (0)R(−)
H for tk > t0. And (2)D is determined as follows,

(2)D =
(

3H2K(+)

8πGa2
kA2

+

− K(+)

2a2
kH2

) [
3H2

a3
0A+

(
1 +

A+

A−

)
− 6H2

A+

(
1
a3
0

− 1
a3

k

)]−1

, (11)

where K(+) is defined as

K(+) ≡ 2(∂2
(0)R(+)

H )(e−2(0)R(+)
H − 1) + δij∂i(0)R(+)

H ∂j(0)R(+)
H e−2(0)R(+)

H . (12)

By substituting Eq. (9) into Eq. (7) and evaluating the integrals in Eq. (7), it can be seen that in the
case that t0 < tk non-linear evolution doesn’t occur. So, non-Gaussianity isn’t generated on superhorizon
scales in the case, and we focus only on the case that t0 > tk. Substituting Eqs. (10) and (11) into Eq. (7),
and expanding the resulting formula w.r.t. (0)R to second order of it, we obtain the final amplitude (at
t = ∞) of curvature perturbations in Fourier space,

Rk(t = ∞) = (0)R(+)
Hk + T

{
−2k2

(0)R(+)
Hk

}
+ T

{
4

∫
d3k′d3k′′

(2π)3
k′2(0)R(+)

Hk′ (0)R(+)
Hk′′δ(−k + k′ + k′′)(13)

−
∫

d3k′d3k′′

(2π)3
δijk

′ik′′j(0)R(+)
Hk′ (0)R(+)

Hk′′δ(−k + k′ + k′′)
}

,

where we supposed that t0 > tk, R =
∫

d3k
(2π)3Rkeik·x, (0)R(+)

H =
∫

d3k
(2π)3 (0)R(+)

Hkeik·x, (0)R(+)
Hk = 3iH3√

2k3/2A+
,

and T is defined as T ≡ 1
5k2

0

(
A+
A−

− 1
)

where k0 = a0H.

3.3 Bispectrum

We define the bispectrum BR by the three point functions as follows,

< Rk1Rk2Rk3 > = (2π)3BR(k1,k2,k3)δ(3)(k1 + k2 + k3) , (14)

where < · · · > represents an ensemble average of · · ·. We assume < Rk >= 0. Thus, there is no discon-
nected part for < Rk1Rk2Rk3 >, and < Rk1Rk2Rk3 > equals to a connected part, < Rk1Rk2Rk3 >c.
We also assume that (0)R(+)

H is a Gaussian variable. Thus, the three point correlation function of Rk is
to leading order,

< Rk1Rk2Rk3 >c = T
[ 4
(2π)3

(k2
1 + k2

2)δ
(3)(k3 + k1 + k2)|(0)R(+)

Hk1
|2|(0)R(+)

Hk2
|2 + perms (15)

− 2
(2π)3

δijk
i
1k

j
2δ

(3)(k3 + k1 + k2)|(0)R(+)
Hk1

|2|(0)R(+)
Hk2

|2 + perms
]
.

The two point correlation function of (0)R(+)
Hk is written as < (0)R(+)

Hk (0)R(+)
Hk′ >= (2π)3|(0)R(+)

Hk |2δ(3)(k+
k′) = (2π)3PR(k)δ(3)(k + k′). From Eqs. (14) and (15), we have
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BR = T
[
4(k2

1 + k2
2)|(0)R(+)

Hk1
|2|(0)R(+)

Hk2
|2 + perms (16)

−2δijk
i
1k

j
2|(0)R(+)

Hk1
|2|(0)R(+)

Hk2
|2 + perms

]
.

Next, we define the k-dependent fNL as

BR = −6
5
fNL(k1,k2,k3)

∑
i k3

i
3∏

i=1

k3
i

(PR(k)k3)2 . (17)

From Eqs. (16) and (17), we obtain

fNL(k1,k2,k3) = −

(
A+
A−

− 1
)

6
∑

i k3
i


 ∑

i 6=j,j 6=k,k 6=i

2(k2
i + k2

j )k3
k

k2
0

−
∑

i 6=j,j 6=k,k 6=i

ki · kjk
3
k

k2
0


 . (18)

Evaluating this equation roughly, we have

fNL(k1,k2,k3) ∼ −
(

A+

A−
− 1

) ∑

i 6=j

(k2
i + k2

j )
k2
0

. (19)

As you can see from this equation, considering the fact that ki

k0
< 1, we may have |fNL| ≥ O(1) in case

that A+
A−

>> 1. As ki approaches to k0, fNL becomes larger, and maximum just at ki = k0. The maximum

value is characterized by A+
A−

. Thus, non-Gaussianity for the fluctuations which exit horizon just before

t0, may be large if A+
A−

is larger than unity. It should be noted that the sign of fNL is always minus. One
the other hand, non-Gaussianity for the fluctuations which exit horizon after t0 is not produced at all.

4 Conclusion

We calculated the bispectrum in the Starobinsky model, in which a single scalar inflaton field has a
potential where there is a sudden change in its slope, and undergoes non slow-roll regime temporarily
just after passing the field value where the change occurs, by using non-linear solutions which were
obtained in Ref. [2]. We found that as curvature fluctuations exit horizon scales at time (t < t0) earlier
than t = t0, their non-Gaussianity becomes larger and maximally ∼ −

(
A+
A−

− 1
)
. Then, we emphasize

that the sign of fNL is minus. On the other hand, for curvature fluctuations which exit horizon scales
after t0, non-Gaussianity is not produced at all. The Starobinsky model is indeed a toy model of non
slow-roll ones. Thus, we guess that what we found here may also be seen similarly in other non slow-roll
models.
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Abstract
We report about our first tests and results in simulating the last phase of the coalescence and
the merger of binary relativistic stars. The simulations were performed using our codeWhisky
and mesh refinement through theCarpet driver.

1 Introduction

Despite the presence of numerous works in the literature [1, 2, 3, 4, 5], the relativisticbinary neutron star problem
still poses a fundamental challenge in general relativity and in theoretical and observational astrophysics, as well as
in numerical relativity. Furthermore, binary systems of compact objects are considered one of the most important
sources for gravitational-wave emission and are thought to be at the origin of some of the most violent events in
the Universe: (short)γ-ray bursts.

Among the additional motivations that make this problem so interesting, there is surely the investigation of
gravitational waves, of their consistency with Einstein’s theory and of their detectabilty in the now-operating
gravitational-wave detectors. Detection of gravitational waves from relativistic-star binaries will provide a wide
variety of physical information on the component stars, including their mass, spin, radius and equation of state.

As said, the study of relativistic-star binary systems is also finalized to the understanding of the origin of some
type ofγ-ray bursts, because the short rise times of the bursts imply that their central sources have to be highly
relativistic objects [6]. After the observational confirmation thatγ-ray bursts a have cosmological origin, it has
been estimated that the central sources powering these bursts must provide a large amount of energy (∼ 1051 ergs)
in a very short timescale, going from one millisecond to one second (at least for a subclass of them, calledshort
γ-ray bursts). It has been suggested that the merger of relativistic-star binaries could be a likely candidate for the
powerful central source. The typical scenario is based on the assumption that a system composed of a rotating
black hole and a surrounding massive disc is formed after the merger. If the disc had a mass is& 0.1M⊙, it could
supply the large amount of energy by neutrino processes or by extracting the rotational energy of the black hole.

In our previous work [7, 8, 9, 10], we have described how we can perform - with our codeWhisky, mesh
refinement (through theCarpet driver [11]) and without excision - accurate three-dimensional relativistic simu-
lation of rotating relativistic-star collapse and how we can extract the (weak) gravitational signal emitted until and
past the newly formed black-hole ring-down phase. We have now started to apply theWhisky code to investigate
the binary problem (where the gravitational-wave signal is expected to be much stronger) and we report here our
initial setup.

Hereafter, unless explicitly shown otherwise for convenience, we use a system of units in whichc = G =
M⊙ = 1.

2 Basic equations and their implementation

TheWhisky code solves the general-relativistic hydrodynamics equations on a three-dimensional numerical grid
with Cartesian coordinates [12]. The code has been constructed within the framework of theCactus Com-
putational Toolkit (see [13] for details). While theCactus code provides at each time step and on a spatial
hypersurface the solution of the Einstein equationsGµν = 8πTµν , whereGµν is the Einstein tensor andTµν is
the stress-energy tensor, theWhisky code provides the time evolution of the hydrodynamics equations, expressed
through the conservation-equations for the stress-energy tensorT µν and for the matter current densityJµ

∇µT µν = 0 , ∇µJµ = 0 . (1)

1

189



Figure 1: LEFT: Comparison of the Hamiltonian constraint violation for three resolutions. The spacing for the
finest grid of the three resolutions are0.016M , 0.02M and0.025. RIGHT: conservation of baryon mass.

Details on the system of field equations we use are given in [14] and in the previousWhisky articles [7, 8, 9,
10]. The code is designed to handle arbitrary shift and lapse conditions, which can be chosen as appropriate for a
given spacetime simulation. More information about the possible families of spacetime slicings which have been
tested and used with the present code can be found in [14, 15].

The singularity-avoiding properties of the above gauge choices have proved equally good both when using ex-
cision, as we did in [7] and [8], and when not using excision. In the latter case, these gauge choices are essential to
“freeze” the evolution in those regions of the computational domain inside the apparent horizon, where the metric
functions experience the growth of very large gradients. Furthermore, in this case a small additional dissipation in
the metric and gauge terms is also necessary to obtain long-term stable evolutions [9].

An important feature of theWhisky code is the implementation of aconservative formulation of the hy-
drodynamics equations [16, 17, 18], in which the set of equations (1) is written in a hyperbolic, first-order and
flux-conservative form of the type

∂tq + ∂if
(i)(q) = s(q) , (2)

wheref (i)(q) ands(q) are the flux-vectors and source terms, respectively [2]. Note that the right-hand side (the
source terms) must not depend on derivatives of the stress-energy tensor.

Additional details on the formulation we use for the hydrodynamics equations can be found in [2]. We stress
that an important feature of this formulation is that it has allowed to extend to a general-relativistic context the pow-
erful numerical methods developed in classical hydrodynamics, in particular High-Resolution Shock-Capturing
schemes based on exact [19, 20, 21] or approximate Riemann solvers (see [2] for a detailed bibliography). Such
schemes are essential for a correct representation of shocks, whose presence is expected in several astrophysical
scenarios.

3 Initial data and evolution

As initial data for relativistic-star binary simulations we use the ones produced by the group working at the Obser-
vatoire de Paris-Meudon [22, 23]. These data, which we refer to also as theMeudon data, are obtained under the
simplifying assumptions of quasi-equilibrium and of conformally-flat spatial metric. These initial configurations
are computed using a multi-domain spectral-method code namedLORENE, which is a free software under the
GNU General Public License; a specific routine then converts from spherical coordinates to a Cartesian grid of the
desired dimensions and shape.

Except where explicitly indicated, the simulations we discuss here refer to evolutions of equal-mass irrotational
initial data having the following properties: initial orbital period T=3.395 ms; rest mass of a starM0 = 1.625M⊙;
gravitational mass of a starM = 1.456M⊙; radius of a star R=13.68 km; coordinate distance between stellar
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Figure 2: LEFT: Time evolution of the proper distance between themaximum–rest-mass-density points of the
stars. RIGHT: Time evolution of the maximum of the rest-mass density, in the case of a prompt formation of black
hole (dotted line) and in the case of the formation of an oscillating relativistic star.

centres 45km = 41M0 = 0.19λ
GW

= 3.4 R; compactness of a star M/R = 0.14; ratio of the polar to the equatorial
radius of a star 0.93; polytropic exponentΓ = 2.

We performed evolutions with 8 refinement levels. In the case of the highest-resolution simulation, the finest
grid covered only the interior of the stars, with a resolution of∆x ≃ 0.016M and the coarsest one had the outer
boundary at≃ 175M . This is still work in progress, but the presently available data for the initial part of the
time evolution seems to suggest that these resolutions are sufficient for reliable evolutions, as the time evolution
of the rest mass also shows (right panel of Fig. 1). The rest mass should in principle be constant and the data
represented in the figure indicate that the violation of the conservation, due to numerical errors, is less than 0.1%,
until horizon formation, when this measure ceases to be meaningful. The convergence rate of the code for this kind
of simulations, as measured through the norm of the Hamiltonian constraint violation, is 1.5. This is also shown in
the left panel of Fig. 1.

One positive remark we can make at this point is that in our evolutions for the above-mentioned initial data
we can follow the orbit of the stars for several periods, before the beginning of the plunge, as is shown in Fig. 2,
which reports the time evolution of the proper distance between the maximum–rest-mass-density points (i.e. the
centres) of the stars. Such a proper measure shows an approximately constant decrease of the distance, only slightly
modulated by residual eccentricity. At the time of the beginning of the plunge, at aroundt = 6 ms, the proper
distance between the stars is about 5 times the total initial ADM mass of the system. During the merger, the stars
bounce shortly before collapsing as a single object to a black hole. This phase is illustrated in the figure by the
spikes present between 6.5 and 8 ms. Even if for space reasons it is not reported in the present article, we can also
simulate the ring-down phase of the newly formed black hole and extract the complete gravitational-wave signal.

The right panel of Fig. 2 shows the time evolution of the maximum of the rest-mass density. This illustrates
two very different possible outcomes of the merger, namely the prompt collapse to a black hole, about 1 ms after
the merger, and the formation of a compact object without (apparent) horizons. Such a compact object oscillates
violently, emitting a persistent gravitational radiation of amplitude similar to the one emitted during the last phases
of the coalescence. After dissipative effects (depending strongly on the equation of state) like shock heating and
gravitational-radiation emission reduce the pressure and the angular momentum of the compact star, a delayed
collapse to black hole is possible. Indeed, we observe this behaviour in some simulations now under investigation
(not reported here).

In the near future, we plan to carry out a detailed study of relativistic-star mergers, investigating in particu-
lar the different dynamics and gravitational waveforms obtained with different initial data (masses) and different
equations of state.

I want to thank Luciano Rezzolla for discussions and suggestions on the manuscript. The computations were
performed on the clusters at the Albert Einstein Institute.
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Abstract
We propose the numerical scheme to solve the Grad-Shafranov equation which rep-
resents stationary, axisymmetric and force-free electromagnetic field. In this article,
firstly, we briefly surmmaraize the scheme to solve the Grad-Shafranov equation given
by [1][2]. Then, we describe our numerical scheme. In our scheme, treatment of the
light surface and the symmetry axis are improved from the method given by [1][2].

1 Introduction

It is widely believed that there is a supermassive black hole in the center of active galactic nuclei(AGN’s)
and it works as an engine of AGN. The mechanism of energy generation is roughly divided into two
categories. One is due to a release of the gravitational energy of accreting matter, and the other is due to
an extraction of the rotational energy from accretion disks or central rotating black holes. As the way to
extract the rotational energy of the black hole, Penrose process, super-radiance, and Blandford-Znajek(B-
Z) mechanism[3] are known. In paticular, B-Z mechanism is believed to play an important role in the
jets formation in AGN’s. Because the efficiency of energy extarction by B-Z mechanism would depend on
the configuration of magnetic field around the black hole, it is important to study the electromagnetics
around the black hole.

In this study we consider stationary, axisymmetric, and force-free magnetospheres, in which B-Z
mechanism is shown. The configuration of magnetosphere is determined by only one equation called the
Grad-Shafranov(G-S) equation. This equation is a quasi-linear second-order eliptic partial differential
equation, and has the singularity called the light surface. Due to this singularity, it is difficult to solve
the G-S equation in the domain including the light surfce. Recently Contopoulos et al.[4] proposed a
method to solve the G-S equation for pulsar magnetospheres. After that, Uzdensky extended this method
to black hole cases.

In this article we will briefly summarize the method to solve the G-S equation given by [1][2], and
describe our numerical scheme. Through this article we use the geometrical units c = G = 1.

2 The Grad-Shafranov equation

Here, we consider stationary, axisymmetric, and force-free magnetospheres around a Kerr black hole. In
Boyer-Lindquist coordinates (t, r, θ, φ), the metric of the Kerr black hole geometory is given by

ds2 = −
(

1− 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dtdφ +

ρ2

∆
dr2 + ρ2dθ2 +

A sin2 θ

ρ2
dφ2, (1)
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3E-mail:mkimura@sci.osaka-cu.ac.jp
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5E-mail:takahashi@phyas.aichi-edu.ac.jp
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where ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, and A = (r2 + a2)2 − a2∆ sin2 θ. M and a are mass and
spin parameter of the black hole, respectively. In order to describe the electromagnetic process around a
Kerr black hole, we use ZAMO formalism introduced by Macdonaldand and Thorne[5]. In this formalism,
the electric and magnetic fields are measured by zero-angular-momentum observers(ZAMOs). Because
four-velocities of ZAMOs constitute the normal vector fields to the spacelike hypersurfaces labeled by t,
this formalism is equivalent to the 3+1 dcomposition of the Maxwell equations. The intrinsic geometry
of a spacelike hypersurface labeled by t is given by

ds2
3dim = hijdxidxj =

ρ2

∆
dr2 + ρ2dθ2 +

A sin2 θ

ρ2
dφ2, (2)

where i, j, . . . runs over the three spatial coordinates (r, θ, φ).
Under the assumptions that the magnetosphere is stationary, axisymmetric and force-free, electric

and magnetic fields can be expressed in terms of three scalar functions, Ψ(r, θ), I(Ψ), and ΩF (Ψ), which
have the physical meanings of the total magnetic flux, the total current, and the angular velocity of the
magnetic field lines, respectively. The G-S eqution is a partial differential equation for Ψ(r, θ),

Di

(
D

α$2
DiΨ

)
+

(ΩF − ω)
α

dΩF

dΨ
DiΨDiΨ +

16π2I

α$2

dI

dΨ
= 0, (3)

where α2 = ∆ρ2/A, $2 = A sin2 θ/ρ2, ω = 2Mar/A, and D = α2 − (ΩF − ω)2$2.[5] Di is the derivative
oparator associated with hij . This equation is a quasi-linear second-order elliptic partial differential
equation. From (3), it is easy to see that, in general, this equation has two kinds of singular surface. One
is the event horizon defined by ∆ = 0, and the other is the so-called light surface defined by D = 0.

3 Numerical scheme to solve the Grad-Shafranov equation

3.1 Iterative method

Due to the light surface singularity, it is difficult to obtain a smooth solution of the G-S equation in
the domain including the light surface. Recently, Contopoulos et al.[4] proposed an iterative method to
obtain a smooth solution. They constructed the numerical scheme to solve the pulsar equation which
corresponds to the G-S equation in the Mikowsiki back ground. Uzdensky extended this method to a
black hole case [1][2]. We will briefly summarize his method(for details, see [1][2]) in this section.

To solve the G-S equation, Uzdensky defined the diffusion equation

∂Ψ
∂t

= f(r, θ)(LHS− RHS), (4)

where

LHS = ∂r

(
D∆
ρ2

∂rΨ
)

+ ∂θ

(
D

ρ2
∂θΨ

)
+

D∆sin θ

ρ4

(
∆∂rΨ∂r

(
ρ2

∆sin θ

)
+ ∂θΨ∂θ

(
ρ2

∆sin θ

))
,

RHS = −16π2I
dI

dΨ
− (ΩF − ω)$2 dΩF

dΨ
DiΨDiΨ. (5)

The function f(r, θ) is an artificial multiplier introduced to accelerate convergence Eq.(4). We set bound-
ary conditions and an initial condition, and specify I and ΩF . We solve Eq.(4) numerically as a Cauchy
problem. Since Ψ would be expected to satisfiy ∂tΨ = 0 after the sufficient time evolution, we obtain a
solution of the G-S equation by solving Eq.(4). However, we have to treat the light surface singularity
appropriatly to obtain a smooth solution in the domain including the light surface. At the light surface,
we obatin the regurality conditon as

−16π2I
dI

dΨ

∣∣∣∣
LS

= DiDDiΨ|LS + (ΩF − ω)$2 dΩF

dΨ
DiΨDiΨ|LS. (6)

In Uzdensky’s method, Eq.(6) is treated as an equation which determine I dI
dΨ . Then, the numerical

procedure to solve the G-S equation given by Uzdensky is as follows:
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1. We choose an initial traial magnetic flux function Ψini(r, θ), and set boundary conditions on the
boundary of computational domain.

2. By solving Eq.(6), we obtain the initial current distribution I dI
dΨ .

3. By solving Eq.(4), we obtain next time step magntic flux function Ψ(δt, r, θ).

4. We use Ψ(δt, r, θ) to determine new I dI
dΨ .

We repeat steps 2-4 until ∂tΨ = 0.

3.2 New Method

The method given in [1][2] does not guarantee that the values of ∂2
rΨ and ∂2

θΨ are continuous across the
light surface. To obtain a smooth solution of the G-S equation, we construct the numerical scheme which
guarantee the finiteness of ∂2

rΨ and ∂2
θΨ acrross the light surface in section 3.2.1. In section 3.2.2, we

introduce the boundary condition at the polar axis, θ = 0, which is the symmetry axis. We choose the
boundary condition at the polar axis such that total magntic flux Ψ and its derivative ∂θΨ vanish there.

3.2.1 Condition at the light surface

As a first step for our study, we assume the constant angular velocity of magnetic field lines, i.e.,ΩF =
constant. There are two light surfaces in the black-hole spacetime. On one light surface, we determine
I dI

dΨ . Another light surfce is treated as the boundary of numerical domain.
In order to guarantee that ∂2

rΨ and ∂2
θΨ are continuous across the light surface, we rewrite Eq.(3) as

∆
ρ2

∂2
rΨ +

sin θ

ρ2
∂θ

(
∂θΨ
sin θ

)
+

N

D
= 0, (7)

N = (DiD)(DiΨ) + 16π2I
dI

dΨ
. (8)

At the light surfce, N and D are vanishing, we see that

lim
r→rLS

N

D
=

∂rN

∂rD

∣∣∣∣
LS

. (9)

Then, Eq.(7) at the light surfce is given by

∆
ρ2

∂2
rΨ|LS +

sin θ

ρ2
∂θ

(
∂θΨ
sin θ

) ∣∣∣∣
LS

+
∂rN

∂rD

∣∣∣∣
LS

= 0. (10)

3.2.2 Boundary condition at the polar axis

The coditions Ψ(r, 0) = 0 and ∂θΨ(r, 0) = 0 imply that Ψ behaves as Ψ ∝ θ2 near the symmetry axis.
Thus we rewrite Ψ(r, θ) as Ψ(r, θ) = sin2 θΨ̂(r, θ). Substituting this into Eq.(7), we obtain the factorized
G-S equation

∆
ρ2

∂2
r Ψ̂ +

1
ρ2

∂2
θ Ψ̂ +

3
ρ2 tan θ

∂θΨ̂− 2
ρ2

Ψ̂ +
N

D sin2 θ
= 0. (11)

To avoid the singurarity at the symmetry axis, ∂θΨ̂ = 0 at θ = 0 should hold. This is a boundary
condition on Ψ̂ at the symmetry axis.

The diffusion equation to solve the factorized G-S equation (11) is

∂tΨ̂ =
∆
ρ2

∂2
r Ψ̂ +

1
ρ2

∂2
θ Ψ̂ +

3
ρ2 tan θ

∂θΨ̂− 2
ρ2

Ψ̂ +
N̂

D
, (12)

N̂ =
∆
ρ2

∂rD∂rΨ̂ +
1
ρ2

∂θD

(
∂θΨ̂ +

2Ψ̂
tan θ

)
+

16π2I

sin2 θ

dI

dΨ
. (13)
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At the light surface and the symmetry axis θ = 0, we solve the following equations

∂tΨ̂ =
∆
ρ2

∂2
r Ψ̂ +

1
ρ2

∂2
θ Ψ̂ +

3
ρ2 tan θ

∂θΨ̂− 2
ρ2

Ψ̂ +
∂rN̂

∂rD
at the light surface (14)

and

∂tΨ̂ =
∆
ρ2

∂2
r Ψ̂ +

4
ρ2

∂2
θ Ψ̂− 2

ρ2
Ψ̂ +

N̂

D
at θ = 0, (15)

respectively.

4 Summary

We proposed the numerical scheme to obtain a smooth solution of the G-S equation for the case of
ΩF = constant. In our scheme, treatment of the light surface and the symmetry axis are improved from
the method given in [1][2]. We have already constructed the numerical code, and we will report numerical
solutions by this code in near future.
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Abstract
Using the Kerr-Schild formalism to solve the Einstein-Maxwell equations, we consider
the superradiance in the black hole-disk system, which may work as a mechanism to
illustrate a disk licated on the equatorial plane. In this paper, we illustrate the
energy extraction from the black hole and the energy transport to the disk, using
a specific example. As a result, we obtain the disk illumination by the black hole
superradiance.

1 Introduction

It is widely believed that there exists a rotating black hole surrounded by a disk in the central region of
high energetic astrophysical objects, such as active galactic nuclei (AGNs), X-ray binary systems, and
gamma-ray bursts (GRBs). However, in this view, recent observation of extremely broad and red-shifted
Fe Kα line emission from a nearby Seyfert 1 galaxy [1] cannot be explained. To explain the observed
spectrum a very steep emissivity profile is required. This result motivate us to consider the energy
transport from the black hole to the disk in the disk-black hole systems.

It is important to consider magnetic fields in the processes of disk radiation, jet production, and so on.
As was emphasized in [2, 3], if a black hole is magnetically connected with a disk, the energy and angular
momentum fluxes can be transported between them along the magnetic field lines through a mechanism
analogous to the Blandford-Znajek effect [4]. The energy supply to an accretion disk due to spin-down
of a rapidly rotating black hole will enhance the disk radiation [5, 6]. Then this may be relevant to the
observational result.

Though it is possible to construct stationary magnetospheric models representing the magnetic con-
nection (e.g., see [7, 8, 9] for vacuum and force-free models with disk currents), the stability of such a
configuration is not confirmed. In fact, recent numerical simulation of general relativistic magnetohydro-
dynamics (GRMHD) rather claim that the magnetic connection should be disrupted to produce open field
lines threading the event horizon and extending to infinity [10, 11, 12]. Such a change of configuration
of magnetic field lines can develop turbulent disturbances in the inner magnetospheric region, and the
Poynting flux of strongly disturbed electromagnetic fields may propagate toward the equatorial plane to
illuminate the disk surface. The subsequent dissipation of the supplied electromagnetic energy inside the
disk should contribute to a disk heating. Hence, as a possible mechanism of energy transport to the disk
we would like to pay our attention to the process of disk illumination caused by persistent excitation
of electromagnetic disturbances in the black hole-disk system. However, using the superradiance, the
process of energy transport to the disk have been never studied.

2 Superradiance in the black hole-disk system

In general, the injected electromagnetic disturbances should be scattered away to infinity, or absorbed by
a black hole. Here we are not interested in the scattered outgoing part. We rather consider absorption
by a thin disk, which corresponds to the boundary condition that the energy flux is transported to the
equatorial plane both from the upper side and from the lower one. Of course, the exact analysis based on
GRMHD is required to study the time evolution of electromagnetic fields in black hole magnetospheres.

1E-mail:kobayashi@gravity.phys.nagoya-u.ac.jp
2E-mail:onda@gravity.phys.nagoya-u.ac.jp
3E-mail:atomi@gravity.phys.nagoya-u.ac.jp
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Nevertheless, we focus on the analysis of the vacuum Maxwell equations under the disk boundary condition
as a first step to approach the problem of disk illumination. This is because our main purpose is to
reveal the superradiance effect in Kerr background geometry which transports the energy from a central
black hole to “a surrounding disk”. If there exists no disk, the efficiency of superradiance of vacuum
electromagnetic waves to amplify the energy radiated away to infinity well-known [13]. We expect that
such an amplification can also occur in the process of disk illumination, by which a hot spot may appear
on the disk surface near the inner edge.

3 Kerr-Schild formalism

To treat vacuum electromagnetic fields in the disk-black hole system, it is convenient to use the Kerr-
Schild formalism [14] for solving the Einstein-Maxwell equation. If this formalism is applied to obtain
electromagnetic perturbations on Kerr background, it is known that all the field components are simply
derived by two arbitrary complex functions √ and φ [15], where arbitrary complex functions √ and φ are
function of Y = eiϕ̃ tan(θ/2) and τ = t̃ + r + ia cos θ. Here, t̃ and ϕ̃ denote the time and the azimuthal
angle in Kerr-Schild coordinates.

We consider some constraints to √ and φ, which will be useful to see clearly the superradiant energy
transport in the disk-black hole system. Recall that superradiant modes with frequency ω have the form
f(r, θ)ei(mϕ−ωt), if no disk boundary exists. This motivate us to assume that the √ is written by the
form

√(Y, τ) ≡ √(X), X ≡ e−iωτY = e−iωτ+iϕ̃ tan(θ/2), (1)

Next, to impose the similar constraint on φ, let us consider an energy flux vector Eµ defined in the
Boyer-Lindquist frame as

Eµ ≡ −Tµ
t, (2)

where Tµ∫ is the stress-energy tensor of electromagnetic field. Considering energy extraction on the
horizon, we impose the constraint on φ written by

φ(Y, τ) = e−iωτ
£
(rH + ia)iω + 1

§ √,X

rH
, (3)

where rH is the horizon radius. This means that the energy extraction may be more efficient at an
intermediate region between the pole and the equator, producing a hot spot on the disk surface slightly
apart from the horizon through the propagation of the Poynting flux. For example, we obtain the
electromagnetic component written by Boyer-Lindquist coordinate system as follows

Ftr = Re
∑

√

(r + ia cos θ)2
+

a

∆
iX√,X

2rH(r + ia cos θ)
K(r, θ)

∏
, (4)

Ftθ = Re
∑
− ia sin θ√

(r + ia cos θ)2
+

X√,X

rH(r + ia cos θ) sin θ
K(r, θ)

∏
, (5)

Ftϕ = Re
∑

iX√,X

2rH(r + ia cos θ)
K(r, θ)

∏
, (6)

Fθϕ = Re
∑
− i(r2 + a2) sin θ√

(r + ia cos θ)2
+

a sin θX√,X

rH(r + ia cos θ)
K(r, θ)

∏
, (7)

Frϕ = Re
∑

a sin2 θ√

(r + ia cos θ)2
+

r2 + a2

∆
iX√,X

2rH(r + ia cos θ)
K(r, θ)

∏
, (8)

Frθ =
Σ

∆ sin θ
Re

∑
X√,X

rH(r + ia cos θ)
K(r, θ)

∏
, (9)

where ∆ = (r2 + a2)2 − 2Mr, K(r, θ) ≡ (r − rH) + is cos θ(1− ω/≠(r)), ≠(r) ≡ a/(rrH) + a2, and then
≠H ≡ ≠(rH) is the angular velocity of the black hole.
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4 Disk boundary conditions

In the Kerr-Schild formalism, the electromagnetic fields are described by the only two arbitrary complex
functions. It is well-known that any complex function which is not a constant cannot be regular every
where on the complex plane. We will assume the existence of a branch cut in √ placed on the complex
X-plane, which corresponds to the existence of a disk current on the equatorial plane θ = π/2. This
means that the components Ftθ, Fθφ, and Frθ (namely, the imaginary part of √ and the real part of
X√,X) become discontinuous at θ = π/2

5 Distribution of electromagnetic energy flux

Now let us discuss the energy flux distribution given by the electromagnetic fields. The energy flux
vectors are defined by Eq. (2). Note that the complex variable X in √ is oscillatory with respect to the
Kerr-Schild time t̃ (as well as the azimuthal angle ϕ̃). Then, the energy flux vector Eµ contains oscillatory
terms. To estimate a real efficiency of the energy transport, we must consider the time averaged quantities
such that

hAi ≡ ω

2π

Z 2π/ω

0
Adt̃. (10)

Furthermore, to illustrate the distribution of electromagnetic energy flux, the complex functions √(X) is
assumed to be

√(X) = √0

h
(X−2 + X2)3/2 −X−3 −X3

i2
(11)

where √0 is a real constant.

Figure 1: Left-hand side:Time-averaged energy transport in the disk-black hole system. The electromag-
netic disturbance is given by Eq. (11) with the wave frequency ω ' 0.76238≠H, an the spin parameter
a is chosen as a = 0.99999M . The arrows show the poloidal energy flux with the component hEri and√

∆hEθi, which are normalized by √ 2
0 /M4. The dark gray and light gray arrows correspond to the flux

with hEri > 0 and hEri < 0, respectively. Right-hand side:Contour of time-averaged energy density
for the electromagnetic disturbance given by Eq. (11). The wave frequency and the spin parameter are
assumed to be ω ' 0.76238≠H and a = 0.99999M . The negative energy region is shown as the shaded
region. The position of the maximum energy density hEtim is at r ' 1.0535M shown as cross point. The
surface giving hEti = hEtim/2 (which may be explained as the boundary of the hot spot) is shown by the
short gray line.
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In Fig. 1, it is easy to see that energy extracted from the black hole, extracted energy transported to
the disk, and then energy deposited to the disk region. If the deposited electromagnetic energy density
dissipates to heat up the disk, a hot spot is expected to appear on the inner part of the disk.

6 Summary

The superradiance process is confirmed in disk-black hole system. Then, the rotational energy is extracted
from the black hole, and transported to the disk. Finally, the High energy density region is formed in
the inner part of disk near the horizon.

References

[1] J. Wilms, C. S. Reynolds, M. C. Begelnar, J. Reeves, S. Molendi, R. Staubert, and E. Kendziorra,
Mon. Not. R. Astron. Soc. 328, L27 (2001).

[2] L.-X. Li, ApJ 567, 463 (2002a).

[3] M. H. P. M. van Putten and A. Levinson, ApJ 584, 937 (2003).

[4] R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977).

[5] L.-X. Li, A& A 392, 469 (2002b).

[6] Z.-M. Gan, D.-X. Wang, and Y. Li, Mon. Not. R. Astron. Soc. 376, 1695 (2007).

[7] A. Tomimatsu and M. Takahashi, ApJ 552, 710 (2001).

[8] D. A. Uzdensky, ApJ 603, 652 (2004).

[9] D. A. Uzdensky, ApJ 620, 889 (2005).

[10] J. C. McKinney and C. F. Gammie, ApJ 611, 977 (2004).

[11] J. C. McKinney, Mon. Not. R. Astron. Soc. 368, 1561 (2006).

[12] S. Koide, T. Kudoh, and K. Shibata, Phys. Rev. D 74, 044005 (2006).

[13] S. A. Teukolsky and W. H. Press, ApJ 193, 443 (1974).

[14] G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. 10, 1842 (1969).

[15] A. Burinskii, E. Elizalde, S. R. Hildebrandt, and G. Magli, Grav. Cosmol. 12, 115 (2006),
astro-ph/0610036.

4

200



Analysis of Non-Axisymmetric Shock Stability in Black Hole
Geometry by Numerical Simulation and Linear Analysis

Hiroki Nagakura1 and Shoichi Yamada2

1Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
2Advanced Research Institute for Science and Engineering, Waseda University,

3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

Abstract
We study about the multidimensional stability of standing shock waves in advection-
dominated accretion flows into a Schwarzschild black hole by 2D general relativistic
hydrodynamical simulations and linear analysis in the equatorial plane. We demon-
strate that the accretion shock is stable against axisymmetric perturbations but be-
comes unstable to non-axisymmetric perturbations. The results of dynamical simula-
tions are good consistent with linear analysis such as stability, oscillation and growing
timescale. However, our analysis does not support previous work suggestion which
is the instability mechanism is based on Papaloizou-Pringle type. It seems due to
the wavelength of perturbation is too large for discussion about reflection point. In
non-linear phases, it is found not only short-term random fluctuations by turbulent
motions but also quasi periodic oscillations taking place on longer time scales in the
latter phase. We discuss possible implications of Black Hole SASI for Quasi Periodic
Oscillation (QPO) and central engine for Gamma Ray Bursts (GRB).

1 Introduction

Many theoretical astrophysicists have long studied about the accretion flow with a shock. Hydrodynam-
ical instabilities of shocked accretion flows may explain the time variability of the emission from many
black hole candidates, since the shock wave is a good candidate mechanism for transforming potential
gravitational energy into radiation.

The multiple critical points are essential conditions for existence standing shocks. In order to pro-
duce them, the flow need to have adequate injection parameters such as specific angular momentum
and Bernoulli constant. Under setting adequate conditions, we can generally obtain two possible shock
locations. However, as is well known for a long time, inner shock is already unstable against radial
perturbations. Recently, [1, 2] pointed out by linear analysis that the outer shock wave is also unstable
to non-radial perturbations. He argued that the advection-acoustic cycle could be responsible for the
instability. In this mechanism the velocity and entropy fluctuations initially generated at the shock are
advected inward, producing pressure perturbations, which then propagate outward and reach the shock
and generate new entropy and velocity fluctuations there, thus repeating the cycle with an increased am-
plitude. The so-called standing accretion shock instability or SASI is currently attracting much attention
as Black Hole Accretion Disk and also Supernova context.

The non-axisymmetric shock stability also has a focus of much attention. The author of [3] per-
formed 2D simulations of a shocked adiabatic flow by using pseudo-Newtonian potential and found a
non-axisymmetric instability. To investigate the mechanism of this instability, [4, 5] performed linear
analysis under isothermal flow or adiabatic flow, respectively. They concluded that the mechanism seems
to be Papaloizou-Pringle type instability which is based on the cycle of acoustic waves between the
corotation radius and the shock point.

As mentioned above, many efforts have been made for clarifying non-radial (including non-axisymmetric)
instability, but the complete understanding of these mechanisms are still uncertain. It is because the
background accretion structure, which strongly affect to clarify the instability mechanism, is completely
different and complex in each case. For example, in supernova context, since the shock behavior is

1E-mail:hiroki@heap.phys.waseda.ac.jp
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strongly affected by neutrino luminosity, we should take into account them adequately. On the other
hand, in black hole accretion disks, gravitational fields should be treated appropriately, because it is one
of the main factor to determine flow structure such as sonic points and shock points. However complete
general relativistic hydrodyanamical flow is much complex than Newton gravity, thus, the shock stability
has been investigated only under Newtonian or approximate general relativistic (GR) treatment Thus
far, there is no self-consistent work for studying non-radial shock stability under fully GR treatment.

In the present research, we performed the first time analyzing non-axisymmetric shock stability in
the advection-dominated accretion flows into a Schwarzschild black hole under fully general relativistic
hydrodynamical treatment. In so doing, we consider only the equatorial plane, assuming that θ component
of four-velocity (uθ) and vertical differentiation are negligible. We investigate the stability of shock by
using both linear approach and non-linear dynamical simulations. We show that the shock is indeed
unstable against non-axisymmetric perturbations and forms a spiral arm structure as the instability
grows. We analyze each phases and discuss the instability mechanisms by comparing with previous
works. Besides, we also discuss possible implications of our findings for GRBs: the fluctuations in the
jet that will produce the internal shocks and black hole QPO which can be also explained by the shock
quasi-periodic oscillation and rotation.

2 Basic Equations and Initial Conditions

The basic equations are relativistic continuity, energy momentum tensor conservations.

(ρ0u
µ);µ = 0 (1)

(T µν);ν = 0 (2)

in Schwarzschild geometry. As all of our calculations, we employed a Γ-law EOS. The procedure for
constructing initial data which is steady axisymmetric accretion flow with standing shock is as follows.

First we set adequate injection parameters for multiple critical points, then we solve an ordinally difer-
ential equation numerically from each critical points. After making two transonic solutions, we search
locations for satisfying relativistic Rankine-Hugonit relations. As mentioned already, the two possible lo-
cations are generally obtained but we only consider the outer one because it is stable against axisymmetric
perturbations, in contrast inner one is unstable. For convincing this fact, we performed axisymmetric
shock stability analysis by linear perturbed method and dynamical simulations. We observed that outer
shock is truly axisymmetrically stable which are obtained by both methods. Moreover, it is interested
that perturbation is added against inner shock, then this shock goes down to black hole or approach to
outer shock location and eventually stop there. According to this fact, we conclude that the outer shock
is strong axisymmetric stable, indeed.

3 Dynamical Simulations and Basic Behavior

The dynamical simulations for the growth of the initial perturbations were computed with a multi-
dimensional general relativistic hydrodynamics code, which is based on a recent modern technique, the
so-called high-resolution central scheme. We use kerr-schild coordinates to evolve the system. The
computational domain is a part of the equatorial plane with 1.5M∗ ≤ r ≤ 200M∗ and computing time is
about t = 6 × 104M∗ where M∗ indicates black hole mass. We employed 600(r) × 60(φ) grid points in
every cases which radial grids are chosen as non-uniform grids. The most inner resolution is ∆r = 0.1M∗
and grid spacing increases geometrically toward outer boundary by 0.34% per zone.

The procedure of adding initial perturbations are determined by linear analysis results in order to
extract purely single mode and node in linear evolution phase. Tnanks to perturbed methods, we can
figure out that not only distinguish each mode is stable or unstable but also radial and azimuthal distri-
bution of perturbed quantities. In this paper, we only explain about one Model whose Bernoulli constant
and specific angular momentum are set as 1.004 and 3.43M∗, respectively. According to linear analysis,
this shock is unstable against m = 1 mode perturbations. We choose the most unstable eigenfrequency
case in m = 1 mode and determine the initial perturbed quantities and the initial shock displacement is
set as 1%.
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Figure 1: Velocity evolution for Standard Model. Color counter means the magnitude of radial velocity.
Side of red is supersonic and side of blue indicates subsonic. The arrow represents the velocity magnitud
and directions. The region of center(blue) indicates the black hole. As shown this figure, due to the
shock existence, the velocity is decelerate from supersonic to subsonic. However, because the azimuthal
velocity doesn’t change so much between pre and post shock region, the arrow direction become along
the azimuthal direction at post shock location.

Figure 1 shows that the example of system evolutions about this Model. The time and radius which
are shown in cgs units correspond to M∗ = 3Msun case. At first, the shock starts to fluctuate and rotation
pattern can be found. This pattern rotates to same directions of back ground matter rotations. Besides,
the shock not only rotates but also starts to increase axisymmetrically. After several revolutions, the
spiral arm structure develops and the more complex shocked features are constructed. In these non-linear
regime, some shocks generate and are interacted each other by collision. The flow becomes new axially
asymmetric configure with dominat m = 1 mode in non-linear phase. In other cases, the basic evolutional
path is similar but the growth rate and oscillation period and growth timescale are quantatively large
difference. The discussion of these results are done in following paper [6].

4 Comparison with linear analysis

For clarifying instability mechanisms and confirmation of dynamical simulations, we implement the linear
perturbed analysis. When we solve the linearlized equations about 1 and 2, we have to set boundary
conditions which locate at shock surface and inner sonic point. At shock surface, the boundary conditions
are set as pre-shock region doesn’t fluctuate. On the other hand, the inner sonic point, we impose the
regularity condition at this point.

Thanks to solving linearlized equations under these boundary conditions, we find out that the unstable
eigenfrequencies in each mode. We obtain that about Standard Model, the oscillation period is about
3.7 ms, the growth period is about 20 ms in the most unstable eigenfrequency of m = 1 mode. As
shown in Figure 2, the dynamical simulation shows good agreement with oscillation and growth time
scale of m = 1 mode until 10 ms. After this time, the non-linear coupling can not be ignored (please
see Figure 3 which shows that m = 0 evolution), thus it starts to line off gradually. According to
this result, we confine that our numerical simulation is correct and the shock is really unstable against
non-axisymmetric perturbations.

Besides, linear analysis gives us information that counter-rotating modes m < 0 are stable. Actually
our dynamical simulations demonstrate that the shock pattern rotates same directions of background
matter rotation. It means that the rotation stabilize the counter rotating mode.

5 Summary and Conclusions

The main results of the present work are as follows

1. As mentioned already, the standing shock is generally unstable against non-axisymmetric perturba-
tions, and a spiral arm structure can be constructed. This is typically one-armed, which indicates
that the dominant mode in the non-linear phase is m=1.

2. In the linear phase, the dynamical simulations are consistent with the linear analysis in such features
as stability, oscillation timescale and growth timescale. The direction of deformed shock pattern is
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Figure 2: Comparison of linear analysis and dynamical
simulation results in linear growing phase. The red line
indicates the expected evolution of growing m = 1 mode
by linear analysis, and green dots indicate that calculation
from GRHD simulation results.
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Figure 3: The evolution of m = 0 mode
until 30 ms in M1 case.

also consistent woth the linear analysis.

3. The growth of axisymmetric mode is also induced by the non-axisymmetric instability. It seems to
be quasi-periodic in longer timescale. Other higher modes also have each specific frequency period.
In the non-linear phases, due to the axisymmetric growth, these oscillation periods become slightly
longer than expected in the linear analysis.

4. Even though strong perturbations are added initially, the shock system isn’t disrupted. Thus, if
the outer boundary continues to satisfy the shock producing conditions, the shock would remain in
a quasi-steady state.

5. The effects of higher modes to a axisymmetric mode become weaker even though the higher mode
growth rate is larger than the lower modes.

6. The reflection point can not be identified unambiguously in the present work. It is because the
wavelength of perturbations is much longer than the scale height. Thus, the Papaloizou-Pringle
type Mechanism which is cycle between corotation point and shock doesn’t always happen. Actually
the timescale of acoustic cycle are different from their growth timescale.

7. The Black Hole SASI can contribute to QPO. Moreover, it may have an implication for GRB since
it is a nature source of fluctuations for internal shocks.

We conducted more systematic investigations, such as initial mode or backgournd dependency.etc. For
more details, please see [6]
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On cylindrically symmetric gravitational waves in expanding
spacetimes
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Abstract
We show a global existence theorem for the vacuum Einstein equations with cylin-
drical symmetry. Also Kasner-like solutions near initial singularity are constructed.
These results support the validity of the strong cosmic censorship.

One of the most important problems in general relativity is the understanding of the global behavior
of solutions to the Einstein equations. It is known that the Einstein equations lead to the formation of
singularities. Typical examples are given by the Friedman-Robertson-Walker (spatially homogeneous and
isotropic) spacetime, which evolves from the ”big bang” singularity, and the Schwarzschild (stationary
and spherically symmetric) spacetime, which has the central singularity. Then, the question of whether
singularities generally occur in physical spacetimes or not, has been an important question for year.
Penrose and Hawking have given some answers by their singularity theorems [4]. Rephrased in the words
of the initial value problem, the question is that of the timelike and null geodesic completeness of the
maximal future Cauchy development. The singularity theorems give us negative answers, i.e. generic
spacetimes are timelike or null geodesically incomplete.

If the singularities can be seen, this means violation of predictability, because we cannot put appro-
priate boundary conditions on the singularities. Since predictability is a fundamental requirement of
classical physics, it seems reasonable to require it to be valid whole spacetime. This implies that physical
spacetimes should be globally hyperbolic in Leray’s sense. Motivated by these considerations, Penrose
proposed the strong cosmic censorship conjecture:

Conjecture 1 (Klainerman [6]) Generic Cauchy data sets have maximal Cauchy developments which
are locally inextendible as Lorentzian manifolds.

This is one of the most important and unsolved questions in classical general relativity. We need two
steps to prove the validity of the conjecture: (1) show global existence theorems for solutions to the
Einstein(-matter) equations in an appropriate time coordinate, (2) analyze asymptotic behavior of the
solutions and show inextendiblity of spacetime manifold. Thus, an important aspect of this strong cosmic
censorship conjecture is relation to the global Cauchy problem for the Einstein(-matter) equations.

Unfortunately, the problem of proving global existence theorems for the full Einstein-matter equations
is beyond the reach of the mathematics presently available. To make some progress, it is necessary to
concentrate on simplified models. The most common simplifications are to look at solutions with various
types of symmetry and solutions for small data.

Recently, new spacetimes which describe cylindrical gravitational waves in expanding universe are
proposed [3]. The metric of the (generalized) spacetimes is given by

g = −e2(η−U)dt2 + e2(η−U)dr2 + e2U (dx + Ady)2 + e−2UR2dy2, (1)

where ∂/∂x and ∂/∂y are Killing vector fields generating the U(1)×R group action, and η, U , A and R
are functions of t ∈ (0,∞) and r ∈ (0,∞). These new spacetimes would model localized inhomogeneities
in Big Bang cosmology. Now we put a gauge condition, R = rt [3]. The system of the evolution part of
the Einstein equations is equivalent with the following wave maps u : (M2+1, G) 7→ (N2, h):

SWM =
∫

dtdr
√
−GGαβhAB∂αuA∂βuB , (2)
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where

G = −dt2 + dr2 + t2r2dψ2, h = dU2 +
e4U

4r2t2
dA2.

One of our main results is to show existence of global solutions for the above system and by using this
we can prove the following theorem:

Theorem 1 Let (M, g) be the maximal Cauchy development of C∞0 initial data for the cylindrically
symmetric system. Then, M can be covered by Cauchy surfaces of constant time t with each value in
the range (0,∞). Moreover, this maximal Cauchy development is timelike future geodesically complete,
hence inextendible into the future direction.

The method of the proof is the standard energy estimate (so-called light cone estimate). Theorems of
Christodoulou-Tahvildar-Zadeh are also used [1, 2].

Another result is to construct Kasner-like (asymptotically velocity-terms dominated (AVTD)) so-
lutions as t → 0. To do this we will apply the Fuchsian algorithm developed by Kichenassamy and
Rendall [5] to our system. This algorithm consists of the following steps:

• Decompose the unknown into a prescribed singular part and a regular part U .

• If the system can be written as a Fuchsian system of the form

t∂tU + N(x)U = tαf(t, x,U , ∂xU), α > 0, (3)

one can use the following theorem:

Theorem 2 (Kichenassamy-Rendall [5]) Assume that N is an analytic matrix near x = 0 such
that there is a constant C with ‖ σN ‖≤ C for 0 < σ < 1, where σN is the matrix exponential of
N ln σ. Also, suppose that f is a locally Lipschitz function of U and ∂xU which preserves analyticity
in x and continuity in t. Then, the Fuchsian system (3) has a unique solution in a neighborhood of
x = 0 and t = 0 which is analytic in x and continuous in t, and tends to zero as t → 0.

Remark 1 The sufficient condition for N is non-negativity of eigenvalues of N .

Now, the Geroch-Ernst potential, given by

Ȧ = −Re−4Uw′, A′ = −Re−4U ẇ,

will be used for the convenience of computation. From this and replacing U by z/2, the evolution part
of the Einstein equations become

D2z − t2∆z = −e−2z
(
(Dw)2 − t2(∇w)2

)
, (4)

D2w − t2∆w = 2
(
DzDw − t2∇z∇w

)
, (5)

where
D := t∂t, ∆ := ∂2

r +
1
r
∂r +

1
r2

∂2
φ, ∇f∇g := ∂rf∂rg +

1
r2

∂φf∂φg.

To avoid a coordinate singularity at r = 0, the Cartesian coordinate will be used:

x = r cos φ, y = r sin φ, ∆ := ∂2
x + ∂2

y , ∇f∇g := ∂xf∂xg + ∂yf∂yg.

Note that the form of the evolution equations does not change. Dropping the spatial derivative parts
from equations (4) and (5) and solving the equations, we have the following formal solutions:

z(t, x, y) = k(x, y) ln t + φ(x, y) + tεu(t, x, y), (6)
w(t, x, y) = w0(x, y) + t2k(x,y) (ψ(x, y) + v(t, x, y)) , (7)
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where ε > 0 is a small constant. Next, the Fuchsian system (3) for u and v will be reduced with the
following conditions: α = 1, f = f(t, x, y,Ui) is a regular function and

U = (U1,U2,U3,U4,U5,U6,U7,U8)
:= (u,Du, t∂xu, t∂yu, v, Dv, t∂xv, t∂yv) (8)

N =




0 −1 0 0 0 0 0 0
ε2 2ε 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 2k 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




, 0 < ε < min{2k, 2− 2k}. (9)

By using the theorem 2, we have

Theorem 3 Suppose that k, φ, w0 and ψ are real analytic functions of r and 0 < ε < min{2k, 2− 2k}.
Then, there is a unique solution of the Einstein equations (4) and (5) of the form (6) and (7) in a
neighborhood of t = 0 such that u and v tend to zero as t → 0.

Thus, solutions become AVTD (Kasner-like) ones near singularities at t = 0. In this case, the Kretschmann
invariant RµνλδR

µνλδ blows up as t → 0, thus our spacetime is inextendible into the past direction if
the solution (6) and (7) is generic. Combining our two theorems, it has been verified the validity of the
strong cosmic censorship conjecture for our spacetimes.
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Abstract
We study a mechanism to produce the circular polarization of primordial gravita-
tional waves. The circular polarization is generated during the super-inflation driven
by the Gauss-Bonnet term in the string-inspired cosmology. The instability in the
tensor mode caused by the Gauss-Bonnet term and the parity violation due to the
gravitational Chern-Simons term are the essential ingredients of the mechanism. This
circularly polarized signal may be an interesting target for observations to verify the
superstring theory.

1 Introduction

It is widely believed that the most promising candidate for an unified theory including quantum gravity is
superstring theory. It is therefore interesting to prove or disprove superstring theory from an observational
point of view. To this end, primordial gravitational waves have been considered as the most efficient probe,
since the gravitational waves can carry the information of the universe at the Planck time.

In this paper, we focus on a robust prediction of superstring theory, namely, the parity violation
due to the gravitational Chern-Simons term. In fact, the Chern-Simons term appears in the Green-
Schwarz mechanism which is necessary to cancel the anomaly in the theory [1]. It also arises as a string
correction [2]. Intriguingly, the existence of the Chern-Simons term can be probed by the primordial
gravitational waves. This is because the Chern-Simons term can generate the circular polarization of
gravitational waves through the parity violation. While it is difficult to find other effects to produce the
circular polarization of primordial gravitational waves. Hence, if we detect the circular polarization in
the primordial gravitational waves, it would be a strong indication of existence of the Chern-Simons term
in the early universe. Thus, it can be interpreted as an evidence of superstring theory.

According to several works [3], it turned out that, however, there exists no observable amount of
circular polarization of gravitational waves, in the standard slow-roll inflation. The point is that the
Chern-Simons term is not the only term that could be induced by the stringy corrections. There is
another term, the so-called Gauss-Bonnet term. Taking into both term, we can expect a different result.
This is because there exists an instability in gravitational wave modes during the super-inflationary
stage [5]. It is this instability that generates the circular polarization of primordial gravitational waves.
In fact, we show the primordial gravitational waves are fully polarized due to the Gauss-Bonnet term [6].

2 Basic equations in Gauss-Bonnet-Chern-Simons Gravity

We start with the action motivated from string theory given by [4]

S =
1
2

∫
d4x

√
−gR −

∫
d4x

√
−g

[
1
2
∇µφ∇µφ + V (φ)

]
− 1

16

∫
d4x

√
−gξ(φ)R2

GB +
1
16

∫
d4x

√
−gω(φ)RR̃ , (1)

1E-mail:satoh@tap.scphys.kyoto-u.ac.jp
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where the first term of action is the Einstein-Hilbert term and g is the determinant of the metric gµν .
We have set the unit 8πG = 1. In the above action (1), we have taken into account the Gauss-Bonnet
term R2

GB and Chern-Simons term RR̃

R2
GB = RαβγδRαβγδ − 4RαβRαβ + R2 , RR̃ =

1
2
εαβγδRαβρσRγδ

ρσ , (2)

where εαβγδ is the Levi-Civita tensor density. We have also allowed the coupling of the inflaton field
both to the Gauss-Bonnet ξ(φ) and Chern-Simons terms ω(φ). Otherwise, these topological terms vanish
identically. It should be noted that, as is well known, the Chern-Simons term does not contribute to the
dynamics of the isotropic and homogeneous universe. From now on, for simplicity, we consider a typical
potential, V = 1/2m2φ2.

2.1 Background spacetime

Let us consider the background spacetime with spatial isotropy and homogeneity. Then, the metric is
given by

ds2 = gµνdxµdxν = a2(η)
[
−dη2 + δijdxidxj

]
. (3)

Here, we have also assumed the flat space and used the conformal time η. Taking the variations of the
action (1), we have equations

3H2 =
1
2
φ′2 +

1
2
m2a2φ2 +

3
2a2

H3ξ′ (4)

(2H′ + 3H2)
(

1 − 1
2a2

Hξ′
)

+ H2

(
1 +

H
2a2

ξ′ − 1
2a2

ξ′′
)
− m2a2φ2 = 0 (5)

φ′′ + 2Hφ′ +
3

2a2
H2H′ξ,φ + m2a2φ = 0, (6)

where we have defined H = a′/a. Here, the prime denotes the derivative with respect to the conformal
time η.

In the presence of the Gauss-Bonnet term, the force due to the Gauss-Bonnet term becomes dominant
for a large value of φ. If the scalar field start with a negative value, the force term accelerate the scalar
field and makes the kinetic term dominant. Hence, the situation, H2 ¿ φ′2,m2a2φ2 ¿ φ′2, is realized.
Thus, Eqs.(4) and (5) become

a2φ′2 + 3H3ξ′ = 0 (7)
(2H′ + 3H2)ξ′ + H (ξ′′ −Hξ′) = 0 . (8)

The scalar field φ rolls down from the negative side towards zero according to the above equations (7)
and (8). Now, it is easy to solve Eqs.(7) and (8) as

φ = −
√

15/16(−η)5/6 , a(η) = (−η)−1/6 , H =
1

(−6η)
, η < 0 . (9)

We note that the super-inflation H ′ > 0 is realized in this phase. Here, H = H/a is the Hubble parameter.
As the scalar field rolls down, the Gauss-Bonnet term decreases. Eventually, the conventional Hubble
friction overcome the Gauss-Bonnet effect and the slow-roll inflation commences. A typical evolution of
the spacetime is shown in Fig.1. In the super-inflationary phase H ′ > 0, the weak energy condition is
violated. Hence, the system may show the instability. Of course, as you can see in Fig. 1, this instability
is a transient one. This diagram shows that the super-inflationary phase will be followed by the standard
phase where the Hubble parameter is decreasing.

2.2 Action for gravitational waves

Let us consider the tensor perturbation

ds2 = gµµdxµdxν = a2(η)
[
−dη2 + (δij + hij)dxidxj

]
, (10)
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Figure 1: A typical evolution of the background spacetime is numerically calculated and displayed. A
short period of the super-inflationary phase is followed by a long period of the slow-roll inflationary phase.

where hij satisfies the transverse-traceless conditions hij,j = hii = 0. We expand hij by plane waves

hij(η,x)√
2

=
∑

A=R,L

∫
d3k

(2π)3
ψA

k (η)eik·xpA
ij , (11)

here pA
ij denotes polarization tensor for circular polarizations. Some calculations leads to the action for

gravitational waves

SGW =
∑

A=R,L

1
2

∫
dη

d3k

(2π)3

[
|µ′A

k |2 −
(

1 +
Hξ′

z2
A

− ξ′′

2z2
A

)
k2|µA

k |2 +
z′′A
zA

|µA
k |2

]
, (12)

where we have defined

zA = a(η)

√
1 − Hξ′

2a2
− λAk

ω′

2a2
, λR = 1 , λL = −1, (13)

and µA
k ≡ zA

k ψA
k . Thus, the equation of motion becomes

(µA
k )′′ +

[(
1 +

Hξ′

z2
A

− ξ′′

2z2
A

)
k2 − z′′A

zA

]
µA
k = 0 . (14)

The term z′′A/zA can be interpreted as the effective potential. The coefficient of the wavenumber k may
be interpreted as the square of the speed of sound waves.

3 A mechanism to produce Circular Polarization

Eq.(14) show that the speeds of sound for gravitational waves are different for right- and left-handed
waves. And if the square of the speed of sound becomes negative, exponentially growing mode appears.
Hence, we can expect that this growing mode appears only in one-handed waves. Actually, in sub-horizon
scale, H ¿ k or −kη À 1/6, this equation can be approximated as

(µA
k )′′ + k2

(
1 − λA 8

3
1

−kη

)
µA
k = 0 . (15)

This equation shows that only right-handed waves would be amplified exponentially.
What we want to calculate is the degree of the circular polarization defined as the difference between

the power of right and left-handed circularly polarized gravitational waves at the end of the super inflation
phase:

Π(k) ≡ 〈µR
k (ηend)〉2 − 〈µL

k(ηend)〉2

〈µR
k (ηend)〉2 + 〈µL

k(ηend)〉2
, (16)
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Figure 2: The degree of the polarization Π(k) as a function of wave numbers k is shown. As expected,
the gravitational waves are almost 100% circularly polarized.

where ηend represents the time when the super-inflation ends, and numerical result is shown inf Fig.2.
The resultant polarization is sufficiently large and hence detectable by BBO or DECIGO.

4 Conclusion

We have studied a mechanism to produce the circular polarization of gravitational waves in the string-
inspired cosmology. It turned out that the circularly polarized gravitational waves are ubiquitous in
string cosmology. There are two key terms in string theory, namely, the Chern-Simons term and the
Gauss-Bonnet term. The Chern-Simons term violates the parity invariance, therefore it makes a room
for the circularly polarized gravitational waves to be produced. However, in the previous works [3],
it had been shown that there is no significant circular polarization of gravitational waves within the
conventional inflationary scenario. In this paper, we have shown that the Gauss-Bonnet term reversed
the previous conclusion. The Gauss-Bonnet term has changed the background evolution in such a way
that the super-inflationary epoch appears during the conventional inflationary stage. During the super-
inflation, there exists an instability in the tensor modes. It is the instability that produces a significant
circular polarization Π ∼ 1. This result shows the possibility for verification of superstring theory by
observing circular polarization.
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Abstract
Recently, observational searches for gravitational wave background (GWB) have been
developed and given constraints on the energy density of GWB in a broad range of fre-
quencies. However, at 100 MHz, there is no strict upper limit from direct observation.
In this article, we will propose a direct observation with interferometers. We investi-
gated the detector designs, which can effectively respond to GW at high frequencies,
and an optimal location of two detectors for correlation analysis of GWB.

1 Introduction

There are many theoretical predictions of gravitational wave background (GWB) in a broad range of
frequencies, 10−18 − 1010 Hz. Some models in cosmology and particle physics predict relatively large
stochastic GWB at ultra high frequency ∼ 100MHz; the quintessential inflation model [1], preheating
[2], pre-big-bang scenarios in string cosmology [3], black strings in the Randall-Sundrum model [5], the
binary evolution and coalescence of primordial black holes produced in the early universe [4]. For the
inquiry of high energy physics, testing these models with gravitational wave (GW) detectors for high
frequencies is very important.

Upper limits on GWB in wide-frequency ranges have been obtained from various observations [6,
7]. Nevertheless, as far as we know, no direct experiment has been done above 105 Hz except for the
experiment by A. M. Cruise and R. M. J. Ingley [8]. They have used electromagnetic waveguides and
obtained an upper limit on the amplitude of GW backgrounds, h ≤ 10−14 corresponding to h2

100Ωgw ≤
1034 at 100MHz, where h100 is the Hubble constant normalized with 100 km sec−1 Mpc−1 and Ωgw is the
energy density of GWB per logarithmic frequency bin normalized by the critical energy density of the
universe [7]. This constraint is much weaker than the constraints at other frequencies. Therefore, a much
tighter bound above 105 Hz is needed to test various theoretical models.

In this paper, we propose a method of direct detection of GWB at 100MHz with laser interferometers.
At high frequencies, the GW wavelength is comparable to the size of a detector, for example, which is
the order of a few meters around 100MHz. Thus, a so-called long-wave approximation that the GW
wavelength is much larger than the detector size is not valid in the freqency band. In this case, the phase
of GW changes during the one-way trip of light between mirrors. Therefore, we have to use a detector
design that is able to integrate GW signals efficiently. In addition, to detect GWB with smaller amplitude
than detector noise, one has to take correlation of signals from two detectors in order to distinguish GW
signals from noises. The analytical method has been well developed [7, 11]. In these references, they
assume the long-wave approximaiton, however, which is not valid in our situation around 100MHz. This
means the relative location of the two SRIs significantly affects the correlation sensitivity to GWB and
the response function of a detector should be taken into account properly. Thus, in this paper, we will
extend the previous analytical method of correlation, including the response functions of the detectors,
and evaluate the dependence of the sensitivity on the relative location of two detectors.

1E-mail:atsushi.nishizawa@nao.ac.jp

1

212



2 Synchronous-recycling interferometer

Figure 1: Design of synchronous re-
cycling interferometer (SRI).

In our previous paper [9], we considered three
designs of a interferometer: synchronous recy-
cling interferometer (SRI) [10], ordinary Fabry-
Perot Michelson interferometer (FPMI), and
L-Shaped Michelson interferometer (LMI). Ac-
cording to the detailed investigation of the de-
tector response functions, we found that SRI
can effectively respond to GW at high frequen-
cies, where the wavelength of GW is compara-
ble to the detector size. The design is shown in
Fig. 1. The advantage of SRI is that GW sig-
nals at certain frequencies are effectively accu-
mulated and amplified because the light beams
experience GWs with the same sign of phases
during round trips in the folded cavity. The
GW signal of SRI resonates at 100MHz if one
select the arm length as L = 0.75m [14].

The GW response of a SRI can be written in the form δ̃Φ(f, Ω̂) = α(f) δ̃φ(f, Ω̂), where δ̃φ(f, Ω̂)
denotes the Fourier component of phase shift due to GW during the round trip of light in a recycling
cavity and α(f) denotes an optical amplification factor of light in the cavity [9]. The specific expressions
are written as

δ̃φ(f, Ω̂) = 2 ωτ e−2πifΩ̂·X⃗/c (1 − e−4πifτ )
∑

p

eph̃p :
1
2

[
(û ⊗ û)T (f, Ω̂ · û) − (v̂ ⊗ v̂)T (f, Ω̂ · v̂)

]
, (1)

α(f) = − RET 2
F

(RF − RE)(1 − RF RE e−8πifτ )
, (2)

T (f, Ω̂ · û) ≡ − e−2πifτ

2πfτ {1 − (Ω̂ · û)2}

[
sin(2πfτ) − i (Ω̂ · û)

{
e−2πifτ Ω̂·û − cos(2πfτ)

}]
, (3)

where τ ≡ L/c, ω is the angular frequency of laser, X⃗ is a position vector of the mirror M1, RF is
the amplitude reflectivity of a front mirror, and RE is the composite amplitude reflectivity of other
three mirrors of the cavity. û, v̂ are the unit vectors directed in the arms and Ω̂ is that directed
in GW propagation. We call T arm’s response function that describes the effect of finite arm length
on propagating light. In the detector whose arm length is much smaller than the wavelength of GW,
this function is approximated to unity, while in our detector whose detector size is comparable to GW
wavelength, the function significantly affects the response of the detector.

3 Correlation analysis

We use the formalism of correlation analysis for GWB in [7, 11] and extend it including the response
function of SRI. Details of this section is described in [13]. We assume that GWB is (i) isotropic, (ii)
unpolarized, (iii) stationary, and (iv) Gaussian, and (v) has small amplitude compared with that of noise.
The SNR for GWB is given by

SNR =
3H2

0

10π2

√
T

[∫ ∞

−∞
df

γ2(f)Ω2
gw(f)

f6P1(f)P2(f)

]1/2

, (4)
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where H0 = 100 h100 km s−1 Mpc−1, T is observation time. Pi(f), i = 1, 2 are the one-sided power
spectrum density of noise defined by 〈ñ∗

i (f)ñi(f ′)〉 ≡ 1
2δ(f − f ′)Pi(f), i = 1, 2 . γ(f) is called the overlap

reduction function and is given by

γ(f) ≡ 5
8π

∑
p

∫
S2

dΩ̂ e2πifΩ̂·∆X⃗/cF p ∗
1 (f, Ω̂)F p

2 (f, Ω̂) , (5)

where the separation of two detectors is ∆X⃗ ≡ X⃗1 − X⃗2. This function describes how GW signals in two
detectors are correlated, and equals unity for colocated and coaligned detectors in low frequency limit.
The angular response function Fp(f, Ω̂) and the detector tensor D(f, Ω̂) are defined by

Fp(f, Ω̂) ≡ D(f, Ω̂) : ep(Ω̂) .

D(f, Ω̂) ≡ 1
2

[
(û ⊗ û)T (f, Ω̂ · û) − (v̂ ⊗ v̂)T (f, Ω̂ · v̂)

]
. (6)

where ep(Ω̂), p = +,× are polarizarion tensors of GW, and T is the arm’s response function introduced in
Eq. (3). The meaning of γ(f) in this paper is slightly different from those in other papers [7, 11] because
it includes T and does not give unity even for colocated and coaligned detector at high frequencies.
Namely, the function means not only the overlap of GW signals in two detectors, but also the loss of GW
signals in each detector at high frequencies.

The SNR is significantly influenced by the relative location of two detectors through γ(f) when the
wavelength of GW is comparable to the size of a detector. γ(f) can be calculated numerically from Eq.
(5) using the arm’s response function T given in Eq. (3). We will fix the frequency at 100MHz and
consider γ(f), because SRI has a narrow frequency band and what we are most interested in is γ at
100MHz. Each configuration of detectors is characterized by the relative position ∆X⃗ = X⃗1 − X⃗2 and
the relative angle β. In Fig. 2 and Fig. 3, the angle of detectors is fixed and the locations are translated.
In an initially coaligned case (β = 0) in Fig. 2, γ(f) has its maximum at ∆X = 0 and keep the moderate
value in a range ∆X = ±0.2 m. However, the maximal value is ≈ 0.377, not unity. This is because we
defined γ(f) including T , which drops at high frequencies due to the effect of the phase change of GW
during the round trip of light in the detector. In an initially reversed case (β = π) in Fig. 3, when the
detector is translated to the direction (û+ v̂)/

√
2, the peak of γ(f) is shifted. This is because the overlap

of two detectors is better when their arms are overlapped geometrically.
We will calculate the sensitivity achievable with correlation analysis. From the results obtained above,

the best location is obviously colocated and coaligned case, and gives γ(f)|100 MHz ≈ 0.377 (this value is
not considerably affected if two detectors are in a range ±0.2 cm). Assuming the detectors are shot-noise
limited, with experimental parameters L = 0.75m, ω = 1.77× 1015 rad s−1, and α ≈ 105 at 100MHz, we
have the power spectral density of noise Pi(f) ≈ 4.65× 10−42 Hz−1, i = 1, 2 around 100MHz. Therefore,
from Eq. (4),one can calculate the cross-correlation sensitivity to GWB with flat spectrum [12] and
obtain h2

100Ωgw ≈ 1.4 × 1014.

4 Conclusions

In this paper, we investigated the optimal location of two SRI and derived its cross-correlation sensitivity
to GWB. At 100MHz, the wavelength of GW is comparable to the size of a detector, where the GW
response of the detector is less effective than one in long wavelength limit. In addition, the sensitivity
is significantly affected by the location of detectors. We included the effect due to the finite size of a
detector into the overlap reduction function and evaluated it. As a result, SNR is worsened by a factor
of (0.377)−1 ≈ 2.65 at 100MHz in contrast to the case where long wave approximation is valid. However,
SNR is almost optimal value if two detectors are in the range of ±0.2m and in coaligned. Using this
configuration and experimentally realized parameters of two SRIs, one can achieve the sensitivity to GWB
with flat spectrum, h2

100Ωgw ≈ 1.4 × 1014. This constraint on GWB would be much tighter than that
obtained by current direct observation [8].

This research was supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid
for Scientific Research (A), 17204018.
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Figure 2: Overlap reduction function when
the detector is initially colocated and
coaligned (β = 0) and is translated in cer-
tain directions. Each curve means the direc-
tion of translation. (+x,+y, 0), (−x,+y, 0),
and (0, 0, z) are the direction of (û+ v̂)/

√
2,

(û− v̂)/
√

2, and the direction perpendicular
to û v̂ plane, respectively.

Figure 3: Overlap reduction function when
the detector is initially colocated and re-
versed (β = π) and is translated in certain
directions. Each curve means the translation
to the same direction as shown in Fig. 2.
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Abstract
It has been recently debated whether a class of generalized uncertainty principles that
include gravitational sources of error are compatible with the holographic principle
in models with extra spatial dimensions. We had in fact shown elsewhere that the
holographic scaling is lost when more than four space-time dimensions are present.
However, we shall show here that the validity of the holographic counting can be
maintained also in models with extra spatial dimensions, but at the intriguing price
that the equivalence principle for a point-like source be violated and the inertial mass
differ from the gravitational mass in a specific non-trivial way.

1 Introduction

The topic of generalized uncertainty principles (GUP) is a rather old one. Recently, it has been revived
with the addition of gravitational contributions which provide a minimum length of the order of the
Planck scale (for a review and examples, see Ref. [1]). An attempt in this direction was taken by Ng and
van Dam [2] who suggested to include an error due to the space-time curvature induced by the measuring
device, the latter being described, along the lines of Wigner’s 1958 paper [3], as a system made of a clock,
a photon detector and a photon gun, with total mass m and diameter d = 2 a (spherical symmetry is
assumed for simplicity). A given length l is then measured by timing the photon travel from the gun
to a suitably placed (ideally weightless) mirror and back. Photons are also supposed to be emitted in
spherical waves, in order to avoid recoil and back-reaction effects on the clock’s position. This leads to
a GUP which yields the remarkable consequence of suggesting that four-dimensional space-time actually
contains (gravitational) degrees of freedom which scale in agreement with the holographic principle [4].

However, if one tries to extend this result to models with extra spatial dimensions [5, 6], the latter
property becomes questionable. It was in fact shown in Ref. [7] that a straightforward extension does not
work. Before we proceed, let us recall why it is sensible to place on the same footing a “fundamental”
uncertainty principle such as Heisenberg’s and an (apparently) phenomenological gravitational source of
error. On general grounds, one understands that in Einstein’s general relativity space-time is a dynamical
concept and its quantum description must involve uncertainty. Constructions such as that of Ref. [2] make
it clear that the two sources of uncertainty are closely related: the photon shot by the gun moves in a
Schwarzschild metric with ADM mass equal to m minus the photon energy E. Since we are timing the
photon’s travel, the time-energy uncertainty relation implies that E has an uncertainty ∆E ∼ h̄/∆tem
if ∆tem is the uncertainty in the time of emission. Correspondingly, we cannot determine with infinite
accuracy the length of the photon optical path, say from r0 > rg to r > r0 (in the detector’s frame), with
rg(m) = 2 GN m/c2, but can just find the lower and upper bounds

r∫

r0

dρ

1− r+
g
ρ

≡ c ∆tmax
>∼ c ∆t >∼ c ∆tmin ≡

r∫

r0

dρ

1− r−g
ρ

, (1)

where r±g = rg(m− E ±∆E). Ref. [2] then suggests to add to other sources of errors the uncertainty in
the length of the optical path as the difference

δlC ' c (∆tmax −∆tmin) . (2)
1E-mail: fabio@yukawa.kyoto-u.ac.jp
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The aim of this paper is to take the opposite perspective with respect to some previous works and
to show that the GUP of Refs. [2, 7] and the holographic principle can be both kept valid consistently.
However, we shall then show that this leads to another principle being violated, namely the detector’s
inertial mass and gravitational mass must differ in models with extra spatial dimensions. We shall write
explicitly the fundamental constants c, h̄ and Newton’s constant GN or, alternatively, the Planck length
`p = (GN h̄/c3)1/2 or mass Mp = h̄/2 c `p [respectively replaced by G(n+4), `(4+n) = (G(4+n) h̄/c3)

1
2+n

and M(4+n) = h̄/2 c `(4+n) in 4 + n dimensions].

2 Gravitational GUP

Suppose we wish to measure a distance l with the detector described in the Introduction. If ∆x is the
initial uncertainty in the position of the clock, after the time T = 2 l/c taken by the photon to return to the
detector, the uncertainty in the actual length of the segment l becomes ∆xtot = ∆x+T ∆v = ∆x+ h̄ T

2 m ∆x ,
where ∆v is the uncertainty in the detector’s velocity from Heisenberg’s principle. Upon minimizing ∆xtot

with respect to ∆x we obtain Wigner’s quantum mechanical error [3]

δlQM ' 2
(

h̄ l

m c

)1/2

, (3)

which we seem to be able to reduce as much as we want by choosing m very large. But gravity now gets
in the way as mentioned before. In fact, we need now to include in the computation the gravitational
error of Eq. (2) with r = a + l > r0 = a À rg. We consider for r±g the lower and upper bounds allowed
by total energy conservation, corresponding to the two limiting cases E − ∆E = 0 and E + ∆E = m,
respectively. This yields, for distances l >∼ a,

δlC ' rg log
(

a + l

a

)
>∼ rg log 2 ' rg

2
. (4)

Note that δlC increases with increasing detector’s mass and the total error becomes

δltot = δlQM + δlC ' 2
(

h̄ l

m c

)1/2

+
GN m

c2
. (5)

For a given l, this error can only be minimized with respect to the mass of the clock, which yields

(δltot)min ' 3
(
`2p l

)1/3
, (6)

for m = 2 Mp(l/lp)1/3. The global uncertainty on l therefore contains precisely the term proportional to
l1/3 required by the holography. Unfortunately, in 4 + n dimensions this does not seem to work. When
a + l is shorter than the size L of the extra dimensions, one can use the 4 + n-dimensional Schwarzschild
metric [8] ds2 = gµν dxµ dxν = −F (r) c2 dt2 + F (r)−1 dr2 + r2 dΩ2

n+2 , where Greek indices run from 0
to 3 + n (Latin indices will denote spatial coordinates) with

F (r) = 1− C/r1+n , and C =
16 π G4+n m

(2 + n) A2+n c2
, (7)

A2+n being the surface area of the unit (2+n)-sphere. Upon repeating analogous steps, one then finds [7]

(δltot)min ∼
(
a−n `2+n

(4+n) l
)1/3

. (8)

The above expression, even in the rather ideal case a ∼ `(4+n), yields the following scaling for the number
of degrees of freedom in a volume V of size l,

N (V ) =
(

l

(δltot)min

)3+n

∼
(

l

`(4+n)

)2 (1+ n
3 )

, (9)

and the holographic counting holds in four-dimensions (n = 0) but is lost when n > 0.
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3 GUP, Holography and the Equivalence Principle

Let us now point out that, beside the GUP proposed by Ng and van Dam, the result in Eq. (8) deeply
relies on the use of the black hole metric (7) and its dependence on the mass m. In particular, the
expression for the parameter C is obtained by taking the weak field limit [8] in which the metric can be
written as gµν = ηµν + hµν , with |hµν | ¿ 1 in the asymptotic region far from any source. The linearized
metric hµν , in the harmonic gauge, obeys the Poisson equation

∇2hµν = −16 π G4+n

c4
T̄µν , (10)

with a source T̄µν related to the stress-energy tensor by T̄µν =
(
Tµν − 1

2+n ηµν T
)

. The condition that
the system be non-relativistic means that time derivatives can be considered much smaller than spatial
derivatives, so that the components of the stress energy tensor can be ordered as |T00| À |T0i| À |Tij |.
A solution to Eq. (10) is then given by

hµν(x)' 16 π G4+n

(1 + n) A2+n c4

1
r1+n

∫
T̄µν d3+ny +

16 π G4+n

A2+n c4

xk

r3+n

∫
yk T̄µν d3+ny + . . . , (11)

where the approximate equality is obtained by expanding for r = |x| very large (far from the central
source). Myers and Perry define the 4 + n-dimensional ADM mass m as

∫
T̄00 d3+nx = mc2 , (12)

so that one obtains the natural generalization of the Newtonian potential to 4 + n dimensions, h00 '
C/r1+n . One can now wonder if the metric defined by Eq. (7) can be modified in such a way that the
holographic principle be fulfilled also in 4 + n dimensions, thus suitably changing the counting of degrees
of freedom given in Eq. (9). In other words, we shall assume the holographic principle as a constraint
to fix the form of the 4 + n-dimensional black hole metric. Of course, this new metric must still satisfy
the 4 + n-dimensional Einstein equations (10), which is a very strong constraint and it seems therefore
sensible to change the original metric (7) as little as possible. On the other hand, we note that the Myers-
Perry solution exhibits a complete 3+n-dimensional spherical symmetry, which means that it ignores the
weight of the brane. All things considered, the deformation of the metric (7) which we shall use consists
in allowing for a departure from a linear relation between the inertial mass and the gravitational ADM
mass of the form

∫
T̄00 d3+nx = M(4+n) c2

(
m

M(4+n)

)γ(n)

, (13)

where γ is a (yet) unspecified function of n. Although this ansatz is not the only one that can in principle
be conceived, it really is one of the simplest possible, as Eq. (13) means that the gravitational mass M
and inertial mass m of the source (the detector) are related by

M = M(4+n)

(
m

M(4+n)

)γ(n)

. (14)

The equivalence principle would thus be violated for any function γ 6= 1. Eq. (14) yields a total error in
length measurements given by

δltot = δlQM + δlC ' J√
m

+ Kmγ , (15)

where J = 2(h̄ l/c)1/2, K = 2n−1
n 2n an

16 π G4+n M
(1−γ)
4+n

(2+n) A2+n c2 . Upon minimizing δltot with respect to m, one
obtains

(δltot)min ∼ l
γ

2 γ+1 . (16)
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Hence, if we require that holography holds, namely (δltot)min ∼ (l)
1

3+n , we must also have γ/(2 γ + 1) =
1/(3 + n) . In this way we see that the holographic scaling can be preserved also in 4 + n dimensions,
with a Schwarzschild-like metric for point-like sources, provided we define the gravitational mass M as
in Eq. (14) with

γ =
1

1 + n
. (17)

Therefore, the equivalence principle must be violated at distances shorter than the size L of the extra
dimensions, as well as Newton’s law is modified in 4 + n dimensions (i.e., F ∼ 1/r2+n).

4 Conclusions

We have shown how a gravitational error originated by the quantum mechanical uncertainty in the ADM
mass of a detector inevitably affects any measurements of length. This leads to Ng and van Dam’s GUP,
which has the remarkable property of respecting the holographic counting in four dimensions. When
extra spatial dimensions are present, the holographic scaling is violated. However, holography can be
restored if one instead allows for a violation of the equivalence principle at short distances (below the
size of extra dimensions). This violation could in principle be tested (see, e.g., Ref. [9]), and its extent
is related to the number of extra dimensions. The connections of the present scenario with other models
where the equivalence principle is also violated are worth of further investigation. To this aim, the results
reported for example in Refs. [10] seem to be particularly promising. Such results, although sometimes
worked out in a stringy oriented scenario (for example D-brane induced gravity) or in the framework of
loop quantum gravity, seem anyway to match, at least for the key aspects, the more phenomenological
arguments given here.
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Abstract
We present our numerical comparisons between the BSSN formulation widely used in
numerical relativity today and its adjusted versions using constraints. We performed
three testbeds: gauge-wave, linear wave, and Gowdy-wave tests, proposed by the
Mexico workshop on the formulation problem of the Einstein equations. We tried
three kinds of adjustments, which were previously proposed from the analysis of the
constraint propagation equations, and investigated how they improve the accuracy
and stability of evolutions. As a result, we observe that in some cases (e.g., gauge-
wave or Gowdy-wave tests) the simulations using the adjusted systems last 10 times
as long as those using the original BSSN.

1 Introduction

Numerical integration of the Einstein equations is the only way to investigate highly dynamical and
nonlinear gravitational space-time. The detection of gravitational wave requires templates of waveform,
among them mergers of compact objects are the most plausible astrophysical sources. Numerical relativity
has been developed with this purpose over decades.

A number of scientific numerical simulations for compact binary sytems such as Neutron star (NS) -
NS binary, NS-Black hole (BH) binary, and BH-BH binary, have been done so far, and we are now at the
level of discussing the actual physics of the phenomena, including the effects of the equations of state,
hydrodynamics, and general relativity by evolving various initial data [1, 2, 3, 4].

Almost all the groups which apply the above conventional approach use the so-called BSSN variables,
which stands for Baumgarte-Shapiro [5] and Shibata-Nakamura [6], the modified Arnowitt-Deser-Misner
formulation initially proposed by Nakamura [6]. There have already been several efforts to explain why
the combination of this recipe works from the point of view of the well-posedness of the partial differential
equations (e.g. [7, 8]). However, the question remains whether there exists an alternative evolution system
that enables more long-term stable and accurate simulations. The search for a better set of equations for
numerical integrations is called the formulation problem for numerical relativity, of which earlier stages
are reviewed by one of the authors [9].

In this article, we report our numerical tests of modified versions of the BSSN system, the adjusted

BSSN systems, proposed by Yoneda and Shinkai [10]. The idea of their modifications is to add constraints
to the evolution equations like Lagrange multipliers and to construct a robust evolution system which
evolves to the constraint surface as the attractor. Their proposals are based on the eigenvalue analysis
of the constraint propagation equations (the evolution equations of the constraints) on the perturbed
metric. Our numerical examples are taken from the proposed problems for testing the formulations
of the Mexico Numerical Relativity Workshop 2001 participants [11], which are sometimes called the
Apples-with-Apples test.

2 Original and adjusted BSSN equations

We start by presenting the standard BSSN formulation, where we follow the notations of [5], which are
widely used among numerical relativists.

1E-mail:kiuchi@gravity.phys.waseda.ac.jp
2E-mail:shinkai@is.oit.ac.jp
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The idea of the BSSN formulation is to introduce auxiliary variables to those of the Arnowitt-Deser-
Misner (ADM) formulation for obtaining longer stable numerical simulations. The basic variables of the
BSSN formulation are (φ, γ̃ij , K, Ãij , Γ̃

i), which are defined by

φ =
1

12
log(detγij), (1)

γ̃ij = e−4φγij , (2)

K = γijKij , (3)

Ãij = e−4φ

[

Kij −
1

3
γijK

]

, (4)

Γ̃i = γ̃jkΓ̃i

jk
, (5)

where (γij , Kij) are the intrinsic and extrinsic ADM 3-metric. The conformal factor φ is introduced so as

to set γ̃ ≡ det[γ̃ij ] as unity, Ãij is supposed to be traceless, and Γ̃i is treated independently in evolution
equations. Therefore these three requirements turn into the new constraints [below (8)-(10)].

For saving the space, we don’t explicitly show the set of the BSSN evolution equations, but the
constraints equations in the BSSN system (see [13]). The two “kinematic” constraints, the Hamiltonian
and momentum constraint equations, are expressed in terms of the BSSN basic variables and are written
as

H = e−4φR̃ − 8e−4φ(D̃iD̃iφ + D̃iφD̃iφ) +
2

3
K2

− ÃijÃ
ij
−

2

3
AK ≈ 0, (6)

Mi = 6Ãj

i
D̃jφ − 2AD̃iφ −

2

3
D̃iK + D̃jÃ

j

i
≈ 0. (7)

Additionally, the BSSN formulation requires three “algebraic” constraint relations;

G
i = Γ̃i

− γ̃jkΓ̃i

jk
≈ 0, (8)

A = Ãij γ̃
ij
≈ 0, (9)

S = γ̃ − 1 ≈ 0, (10)

where (8) and (9) are from the definitions of (5) and (4), respectively. Equation (10) is from the require-
ment on γ̃.

To understand the stability property of the BSSN system, Yoneda and Shinkai [10] studied the struc-
ture of the evolution equations in detail, especially how the modifications using the constraints, (6)-(10),
affect to the stability. They investigated the signature of the eigenvalues of the constraint propagation
equations (dynamical equations of constraints), and explained that the standard BSSN dynamical equa-
tions are balanced from the viewpoints of constrained propagations, including a clarification of the effect
of the replacement using the momentum constraint equation.

Moreover, they predicted that several combinations of modifications have a constraint-damping nature,
and named them adjusted BSSN systems. (Their predictions are based on the signature of eigenvalues of
the constraint propagations, and the negative signature implies a dynamical system which evolves toward
the constraint surface as the attractor.)

Among them, in this work, we test the following three adjustments:

1. An adjustment of the Ã-equation with the momentum constraint:

∂tÃij = ∂B

t
Ãij + κAαD̃(iMj), (11)

where κ
A

is predicted (from the eigenvalue analysis) to be positive in order to damp the constraint
violations.

2. An adjustment of the γ̃-equation with G constraint:

∂tγ̃ij = ∂B

t γ̃ij + κγ̃αγ̃k(iD̃j)G
k, (12)

with κγ̃ < 0.
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Figure 1: Evaluation of the accuracy of (a) the one-dimensional gauge-wave and (b) Gowdy wave testbeds.
The lines in Fig. (a) are the L2 norm of the error in γxx with the plain BSSN, the adjusted BSSN with
A-equation, and with Γ̃-equation. The lines in Fig. (b) are the L2 norm of the error in γzz , rescaled by
the L2 norm of γzz, for the plain BSSN, adjusted BSSN with Ã-equation, and with γ̃-equation.

3. An adjustment of the Γ̃-equation with G constraint:

∂tΓ̃
i = ∂B

t Γ̃i + κΓ̃αGi. (13)

with κΓ̃ < 0.

These three adjustments are chosen as samples of “best candidates”, Eq. (4.9)-(4.11) in [10].

3 Numerical Testbed Models

Following the proposals of the Mexico Numerical Relativity Workshop [11], we perform three kinds of
tests;

• One dimensional Gauge wave test with amplitude 10−2

• One dimensional Linear wave test with amplitude 10−8

• One dimensional Gowdy wave test in collapsing direction

The details of the testbeds are represented in [11].

4 Numerical Results

For saving sapce, we only show the result of the Gauge wave and Gowdy wave test because the linear
wave testbed does not produce a significant constraint violation even for the plain BSSN system and the
adjusted system can reproduce the same result as the plain system.

In Fig. 1(a), we plot the L2 norm of the error in γxx with the function of time. Three lines correspond
to the result of the plain BSSN system, Ã-eq. adjusted, and Γ̃-eq. adjusted BSSN system, respectively.
The Γ̃-adjustment makes the life-time slightly longer than that of the plain BSSN, while Ã-adjustment
increases the life-time of the simulation by a factor of 10. However, it is also true that the error grows in
time in all the three cases.

Figure 1(b) shows the normalized error in γzz versus time for the plain BSSN, adjusted BSSN with
Ã-equation, and adjusted BSSN with γ̃-equation systems. We find that these three systems produce
accurate results up to t = 200, t = 1000, and t = 400, respectively. This proves that the adjustments
work effectively, i.e, they make possible a stable and accurate simulation, especially the A-adjusted BSSN
system.
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5 Summary and Discussion

In this article, we presented our numerical comparisons of the BSSN formulation and its adjusted versions
using constraints. We can summarize our tests as follows:

• Among the adjustments we tried, we observed that the adjusted BSSN system with the Ã-eq.
(11) is the most robust for all the testbeds examined in this study. It gives us an accurate and
stable evolution compared to the plain BSSN system. Quantitatively, the life-time of the simulation
becomes 10 times longer for the gauge-wave testbed and 5 times longer for the Gowdy-wave testbed
than the life-time of the plain BSSN system. However, it should be noted that for the gauge-wave
testbed, the convergence feature is lost at a comparatively early time, the 200 crossing-time in the
Hamiltonian constraint and the 50 crossing-time in the momentum constraint.

In [12], it is argued that the gauge condition in the Gauge wave testbed has a residual freedom in the form
H → eλtH , where λ is an arbitrary and H is a function in the Gauge wave testbed. Of course, our set up
corresponds to the λ = 0 case, but numerical error easily excites modes that result in either exponentially
increasing or decaying metric amplitude. Actually, we find the amplitude of the error decays with time
in this testbed. So, we conclude that due to the adjustment, the growing rate of the gauge mode is
suppressed and the life-time of the simulation is extended as a result.

• The other type of adjustments (12 and 13) show their apparent effects while depending on a problem.
The Γ̃-adjustment for the gauge-wave testbed makes the life-time longer slightly. The γ̃-adjustment
for the Gowdy-wave testbed makes possible a simulation twice as long as the plain BSSN system.

Although the testbeds used in this work are simple, it might be rather surprising to observe the
expected effects of adjustments with such a slight change in the evolution equations. We therefore think
that our demonstrations imply a potential to construct a robust system against constraint violations
even in highly dynamical situations, such as black hole formation via gravitational collapse, or binary
merger problems. We are now preparing our strong-field tests of the adjusted BSSN systems using large
amplitude gravitational waves, black hole space-time, or non-vacuum space-time, which will be reported
on in the near future.
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Gravitational self force on a particle in orbit around a
Schwarzschild black hole

Leor Barack and Norichika Sago1
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Abstract
We calculate the gravitational self force acting on a pointlike particle orbiting a

Schwarzschild black hole. For this purpose, first, we solve the (1+1)-dim field equa-

tions for the Lorenz-gauge perturbations by using a time-domain code. Then we

derive each multipole mode of the full force from the given perturbation. Finally,

we apply the “mode sum” scheme to obtain the physical self force. We evaluate the

correction to the orbital frequency due to the conservative self-force effect. We also

show that the temporal component of the self force balances with the total energy

flux of the gravitational-wave radiated to infinity and through the event horizon.

1 Introduction

The problem of calculating the back-reaction force, or self force (SF), experienced by a point particle
as it moves in curved spacetime is now understood well enough to allow actual computations of this
effect in systems comprising of a small object orbiting a large black hole. The fundamental formulation
of the problem and its solution was set in works by Mino, Sasaki and Tanaka [1] and Quinn and Wald
[2] for gravitational case. An alternative formulation was introduced by Detweiler and Whiting [3], also
clarifying the relation between the SF picture (“forced motion on a background geometry”) and the
standard description based on the principle of equivalence (“geodesic motion in a perturbed geometry”).
A number of authors later devised a practical method of calculating the SF in black hole spacetimes, so-
called the “mode sum scheme”, which is based on multipole decomposition of the retarded field, and relies
on standard methods of black hole perturbation theory [4]. This method has since been implemented
by various authors on a case-by case basis, so far mostly for calculations of the scalar field SF. The
gravitational SF has been calculated so far only for radial trajectories in Schwarzschild [5] and for static
particles in Schwarzschild [6]. The case of an orbiting particle has been tackled only under the post-
Newtonian (PN) approximation [7].

The main challenge in extending the analysis from the scalar-field toy model to the gravitational
case has to do with the gauge freedom in the latter case. The problem can be summarized as follows.
The gravitational perturbation in the vicinity of the point particle is best described using the Lorenz

gauge, which preserves the local isotropic nature of the point singularity. On the other hand, the field
equations that govern the global evolution of the metric perturbation are more tractable in gauges which
comply well with the global symmetry of the black hole background—best known examples of which
are the “radiation” gauges [8] or the Regge-Wheeler gauge [9]. Now, in calculating the local SF we
need, essentially, to subtract a suitable local, divergent piece of the perturbation from the full (retarded)
perturbation field. In doing so, both fields (local and global) must be given in the same gauge; the
“gauge problem” arises since the two fields are normally calculated in different gauges. Indeed, the only
fully-worked-out example of the gravitational SF so far is the case of radial orbits in Schwarzschild [5],
where the gauge problem is avoided simply because, in this particular setup, the singular piece of the
Regge-Wheeler perturbation happens to coincide with that of the Lorenz-gauge perturbation.

Our strategy to settle the problem is that we solve the perturbation equations directly in the Lorenz
gauge. The calculation is therefore done entirely within the Lorenz gauge, the “subtraction” procedure
necessary for constructing the SF is implemented in a straightforward way, and the gauge problem
is avoided altogether. Other advantages of working in the Lorenz gauge include the fact that the field
equations then take a fully hyperbolic form (making them especially suitable for time-domain integration);

1E-mail:sago@soton.ac.uk
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r0/M (M/µ)2F t (M/µ)2Ft/ut
0 (M/µ)2Ėtotal rel. diff.

6.0 −1.99476 × 10−3 9.40338 × 10−4 9.40190 × 10−4 1.6 × 10−4

10.0 −9.19067 × 10−5 6.15158 × 10−5 6.15047 × 10−5 1.8 × 10−4

20.0 −2.25549 × 10−6 1.87151 × 10−6 1.87111 × 10−6 2.2 × 10−4

50.0 −2.10849 × 10−8 1.96249 × 10−8 1.96203 × 10−8 2.3 × 10−4

100.0 −6.46305 × 10−10 6.23806 × 10−10 6.23628 × 10−10 2.9 × 10−4

150.0 −8.47172 × 10−11 8.27475 × 10−11 8.27279 × 10−11 2.4 × 10−4

Table 1: The t component of the SF, as a function of the orbital radius. The estimated fractional
error in F t is less than 10−4 for all radii considered. The third and fourth columns compare between
the work done by the temporal SF and the total flux of energy radiated in gravitational waves. The
error in the total flux is roughly estimated at O(10−4). The last column displays the relative difference
∣

∣

∣
Ėtotal/(Ft/ut

0) − 1
∣

∣

∣
, showing that the balance equation (1) is satisfied within the numerical accuracy,

and providing a strong quantitative check of our results.

and the fact that the Lorenz-gauge metric perturbation is better behaved near the particle compared with
the perturbation in other gauges [10] (which, again, makes it more suitable for numerical implementation).

Our “all-Lorenz-gauge” approach is made possible (at least is the Schwarzschild case) following a recent
work by Barack and Lousto [11], which provided a practical formulation of the Lorenz-gauge perturbation
equations in the Schwarzschild geometry and developed a time-domain code to solve them. Recently, by
using this approach, we calculated the gravitational SF for circular geodesic orbits in Schwarzschild
geometry. In this paper, we give a brief summary of the results we obtained in our recent work. The
details of our numerical code and full results are shown in [12].

Throughout this work, we denote the masses of a orbiting point particle and a central Schwarzschild
black hole as µ and M , respectively. Also we use standard geometrized units with c = G = 1 and metric
signature (−+++).

2 Results

Temporal component : We calculated the temporal component of the SF, F t, for 29 values of the
orbital radius r0, in the range from r0 = 6M to r0 = 150M . Some of the results are displayed in Table 1
(The full table is shown in [12]). The computation error in F t is estimated at <∼ 10−4 for all radii
considered.

The t component of the SF is related to the momentary rate of change of the specific orbital energy
parameter E as Ė = −(µut

0)
−1Ft, where an overdot denotes d/dt, and ut

0 = (1 − 3M/r0)
−1/2. If we

assume that the radiation reaction is negligible over an orbital period Torb, then, for a circular orbit,
Ė also represents the average rate of change of E over Torb. This must be balanced by the flux of
gravitational-wave energy radiated to infinity and through the horizon, averaged over Torb. If we denote
the former by Ė∞ and the latter by ĖEH, we have the energy balance formula

Ėtotal ≡ Ė∞ + ĖEH = −µĖ = Ft/ut
0. (1)

In Table 1, we also list −(µut
0)

−1Ft and Ėtotal. This shows, for each of the radii considered, how the
work done by the temporal component of the local SF is balanced by the total flux of radiated energy.

Radial component : We calculated the radial component of the SF, F r, for 29 values of the orbital
radius, in the range from r0 = 6M to t0 = 150M . We plot them as a function of r0 in Fig. 1. The radial
SF is “repulsive” (i.e, acting outward, away from the central black hole) for all r0. At large orbital radii
the numerical data can be fitted analytically as

F r(r0 ≫ M) ≃ µ2

r2
0

[

a0 + a1
M

r0
+ a2

(

M

r0

)2

+ a3

(

M

r0

)3
]

, (2)
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Figure 1: The radial component of the SF. The left figure shows F r(r0) for 6M ≤ r0 ≤ 150M . The right
shows a expansion of the ISCO area. The dashed line is a plot of the large-r0 fit given in Eq. (2).

with
a0 = 1.999991, a1 = −6.9969, a2 = 6.29, a3 = −24.6. (3)

This formula reproduces the numerical data within the numerical accuracy [<∼ 10−3] for all r0 ≥ 8M .
The leading-order term, F r ≃ a0µ

2/r2
0 ≃ 2µ2/r2

0 is consistent with the “Keplerian” SF describing the
back-reaction effect from the motion of the black hole about the system’s center of mass (cf. below).

Conservative effect on the orbital frequency : Given F r, we can calculate the shift in the orbital
frequency induced by the conservative SF effect as

Ω2 = Ω2
0

[

1 −
(

r0(r0 − 3M)

Mµ

)

Fr

]

+ O((µ/M)2), (4)

where Ω2
0 = M/r3

0. At large r0 we obtain, using Eq. (2),

Ω2(r0 ≫ M) ≃ Ω2
0

{

1 +
µ

M

[

−a0 + c1
M

r0
+ c2

(

M

r0

)2

+ c3

(

M

r0

)3
]}

, (5)

where c1 = 3a0 − a1, c2 = 3a1 − a2, and c3 = 3a2 − a3, with the coefficients an given in Eq. (3). The
term proportional to a0(≃ 2) is precisely the “Newtonian” SF, [see, e.g., Eq. (2) of [13]], which dominates
the SF effect at r0 ≫ M . This piece of the force is simply the O(µ) difference between the standard
Keplerian frequency Ω2 = (M + µ)/R3 (expressed in terms of the separation R) and Ω2

0 = M/r3
0, with

the separation R related to the “center-of-mass” distance r0 through M(R − r0) = µr0.

3 Summary

In this work, we compute the gravitational SF in an example of a particle orbiting a black hole, demon-
strating the applicability of our approach, whose main elements are (i) direct solution for the metric
perturbation, in the Lorenz gauge; (ii) numerical evolution in the time domain; and (iii) use of the mode-
sum scheme to derive the local SF. In the case of a strictly circular orbit, the analysis of the local SF
provides us with little new physics: The radiative effect is well known from energy-balance analysis, and
the conservative force does not have a strict gauge-invariant significance. Calculation of gauge invariant
conservative effects (like the shift in the ISCO frequency, or the correction to the rate of perihelion pre-
cession) requires analysis of non-circular orbits. In follow-up work we intend to extend our analysis to
eccentric orbits, which would gain us access to this more interesting physics.

Self-force calculations bring about major issues of computational cost and computational efficiency.
We need to sophisticate our time-domain code to studying more general orbits. There are a few obvious
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ways by which one may improve the efficiency of the numerical algorithm: (1) We may try to improve the
finite difference scheme used in our evolution code. In our current code, we adopt a 2nd-order-convergent
finite difference scheme. By replacing it to a higher order scheme, we can obtain more accurate results.
(We already have developed a code to solve the Lorenz-gauge perturbation equations by using 4th-order-
convergent scheme in our coming work [14].) (2) Our evolution code currently utilizes a uniform grid.
This is very inefficient, since the resolution requirement near the worldline is much higher than anywhere
else on the 2-dimensional grid. A mesh-refinement technique may settle this inefficiency [15].

Since our code is based on time-domain evolution (with no frequency decomposition), it is readily
extensible to deal with any orbit in Schwarzschild spacetime. The finite-difference algorithm would change
slightly, but the stability features and resolution requirements of the code would not change. Work to
extend our analysis to eccentric orbits is now in progress [14].

It is more challenging to apply our approach for orbits in Kerr spacetime. In this case we may no
longer rely on a spherical-harmonic decomposition of the field equations, and—insisting on a time-domain
analysis in the Lorenz gauge—we would have to apply time evolution in 2+1-D. The challenge here is
two-fold: Firstly, the solutions to the 2+1-D field equations are no longer continuous along the worldline
(as in the 1+1-D case), but rather diverge there logarithmically. Secondly, a stable numerical scheme for
evolution of Lorenz-gauge perturbations in 2+1D is yet to be developed. A numerical scheme for dealing
with the first of the above difficulties had been outlined in Sec. V of BL, and was recently implemented
for a scalar-field toy model [16].
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Abstract
We investigate the collapse of differentially rotating supermassive stars (SMSs) by
means of 3+1 hydrodynamic simulations in general relativity. We particularly focus
on the onset of collapse to understand the final outcome of collapsing SMSs. We find
that the estimated ratio between the black hole (BH) and the surrounding disk from
the equilibrium star is roughly the same as the results from numerical simulation.
This statement suggests that the picture of axisymmetric collapse is adequate in the
absence of nonaxisymmetric instabilities for illustrating the final state of the collapse.
We also find that when the newly formed BH is almost an extreme Kerr, a corotation
resonance can be triggered by the oscillation of a BH. In this case, nonaxisymmetric
instabilities are triggered by corotation resonance and make a significant difference in
the gravitational waveforms. This alternative scenario for the collapse of differentially
rotating SMSs might be observable by LISA.

There exists plenty of evidence that supermassive black holes (SMBHs) exists in the centre of galaxies,
but their actual formation process has been a mystery for many decades [1]. Several different scenarios
have been proposed, some based on stellar dynamics, others on gas hydrodynamics, and still others
that combine the processes. Here we consider a possibility of forming an SMBH from the collapse of a
supermassive star (SMS).

There are two categories of collapsing rotating SMSs based on their angular momentum distribution.
One is the collapse of a uniformly rotating SMS. This happens when momentum transport is large, either
through viscous turbulence or magnetic process, which drives the star to rotate uniformly. The other
is the collapse of differentially rotating SMSs. This happens when the viscous and the magnetic effects
are small, which allows the star to rotate differentially. One of the representative scenarios for forming a
differentially rotating star is as follows. First, a gas cloud gathers in an almost spherical configuration with
some amount of angular momentum in the system. Next the almost spherical star contracts, conserving
the specific angular momentum due to the lack of viscosity, to form a differentially rotating star, and
possibly a disk at the end of the contraction.

During the contraction of the differentially rotating SMS, prior to forming a supermassive disk, two
possible instabilities may arise that terminate the contraction. One is the post-Newtonian gravitational
instability, which leads the star to collapse dynamically. The other is the dynamical bar mode instability,
which changes the angular momentum distribution of the star to form a bar, and possibly leads to the
central core of the star collapsing to a black hole (BH) due to the angular momentum loss.

Here we focus on the post-Newtonian gravitational instability in differentially rotating SMSs. We
particularly focus on the case where the final estimated BH is very close to the extreme Kerr BH, which
potentially leads to rotational instabilities if they occur. In particular, we plan to answer the following
questions. Does the BH form coherently? What are the features of the dynamics? Does the newly formed
disk lead to contain various instabilities? Can this system act as an efficient source of gravitational waves
(GWs)? In order to answer these questions, three dimensional general relativistic hydrodynamics are
desirable. A more detailed discussion will be presented in the forthcoming paper [2]. Throughout this
paper, we use the geometrized units with G = c = 1 and adopt Cartesian coordinates (x, y, z) with the
coordinate time t.

1Email address: ms1@maths.soton.ac.uk
2Email address: I.Hawke@soton.ac.uk
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Table 1: Four different rotating equilibrium SMSs for evolution.
Model ρmax

0
(a) M (b) J/M2(c) M/Re

(d) mdisk
(e) (a/M)(BH)(f)

I 1.56× 10−5 4.88 0.99 2.56× 10−2 0.044 0.98
II 1.56× 10−5 5.07 1.03 2.63× 10−2 — >∼ 1
III 1.56× 10−5 5.31 1.07 2.78× 10−2 — >∼ 1
IV 1.56× 10−5 5.75 1.10 3.47× 10−2 — >∼ 1

(a): Maximum rest mass density

(b): Gravitational mass

(c): J : Total angular momentum

(d): Re: Equatorial proper radius

(e): Ratio of the estimated rest mass of the disk from the equilibrium star to the rest

mass of the equilibrium star

(f): Estimated Kerr parameter of the final hole from the equilibrium star

We perform 3+1 hydrodynamic simulations in general relativity using CACTUS3 (gravitational
physics), CARPET4 (mesh refinement of space and time), WHISKY5 (general relativistic hydrody-
namics). Spacetime is evolved using the BSSN formulation with generalised hyperbolic K-driver for the
lapse and generalised hyperbolic Γ̃-driver for the shift (e.g. [2]). We set the outermost boundary of the
computational grid for all direction as xmax = 111 – 131M , imposing plane symmetry across the z = 0
plane, and use 4 – 10 refinement levels.

We first investigate the onset of collapse by evolving four differentially rotating equilibrium stars. We
use the perfect fluid approximation with a Γ-law equation of state, choosing Γ = 4/3 to represent a SMS
(the pressure is dominated by radiation pressure). We also impose a high degree of differential rotation,
Ωc/Ωe ≈ 10, to construct the equilibrium star, where Ωc and Ωe represents the angular velocity at the
center and the equatorial surface, respectively. We choose the z-axis as the rotational one of the equilib-
rium star. The character of the equilibrium stars is summarized in Table 1. Since we use the polytropic
equation of state P = κρΓ

0 (P : pressure, κ: constant, ρ0: rest mass density, Γ: adiabatic exponent) when
constructing initial data sets, all physical quantities are rescalable in terms of κ. Therefore, we represent
all physical quantities in a nondimensional one in this paper, which is equivalent to setting κ = 1. To
trigger collapse we deplete pressure by 1%. Checking the maximum rest mass density of the rotating
stars throughout the evolution, we conclude that models I and II are radially unstable, while models III
and IV are stable [2].

Next we trace the mass and angular momentum of the newly formed BH throughout the evolution
using the technique of dynamical horizon. A dynamical horizon is defined as the spacelike marginally
trapped tube which is composed of future-marginally trapped surface, i.e. apparent horizon. In order to
compute the gravitational mass and the total angular momentum of the BH locally, we need to construct
the timelike and the rotational Killing vectors intrinsic to the horizon, should they exist on the horizon
numerically (e.g. [3]). Using these Killing vectors, we monitor the gravitational mass, total angular
momentum and the Kerr parameter of the newly formed BH throughout the evolution (Fig. 1). The BH
mass, the spin and the Kerr parameter increase monotonically after the BH has formed, by swallowing
much of the surrounding material. This stage lasts roughly until the matter is swallowed, located inside
the radius of the innermost stable circular orbit of the final BH.

We have also confirmed that the estimated mass and spin of the BH from the equilibrium configuration
of the collapsing SMS are in good agreement with the results from the dynamics. For instance, the
estimated Kerr parameter from the equilibrium star of model I is 0.98 (Table 1), while the result of
numerical simulation is ≈ 0.97 (Fig. 1). Also the ratio between the estimated rest mass of the disk
and the rest mass of the equilibrium star of model II is 0.044 (Table 1), while the result of numerical
simulation is ≈ 0.05 (Fig. 2).

3http://www.cactuscode.org
4http://www.carpetcode.org
5http://www.whiskycode.org
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Figure 1: Gravitational mass (M(BH)), total angular momentum (J(BH)) and Kerr parameter
((J/M2)(BH)) of a newly formed BH as a function of time. Solid and dashed line represent models I
and II, respectively. Hereafter tdyn represents the dynamical time defined as tdyn =
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Figure 2: (Left panel) Disk mass as a function of time. We defined the disk mass as the rest mass
outside the apparent horizon of the newly formed BH. Solid and dashed line represent models I and II,
respectively.
(Right panel) Snapshot of the rest mass density in the meridional plane for model III at t = 3.82tdyn.
The contour lines denote ρ0/ρmax

0 = 10−0.4(20−i) (i = 1, · · · , 20), where ρmax
0 = 8.56 × 10−5. Note that

the radius of the apparent horizon in the equatorial plane is r ≈ 0.16M in coordinate units.

We furthermore study the formation of a massive disk from the collapse of differentially rotating
SMSs. We trace the rest mass of the disk by defining the rest mass outside the apparent horizon of
the newly formed BH for models I and II (Fig. 2). The rest mass of the disk monotonically decreases
once the BH has formed, since the newly formed BH grows monotonically by swallowing the surrounding
materials. One noticeable feature in Fig. 2 is that there is a plateau at the final stage of model II. This
indicates that the self gravity, the centrifugal force, and the pressure gradient are roughly balanced so
that the disk can maintain Keplarian orbital motion around the BH. We also illustrate the snapshot of
the rest mass density in the meridional plane of model II (Fig. 2). The maximum of the rest mass density
is located around r ≈ 2M in coordinate units.

Finally we investigate the gravitational waveform from the collapsing object. We introduce the Weyl
scalar Ψ4 to study the outgoing gravitational waves. If we put the observer sufficiently far from the
source, the Weyl scalar Ψ4 roughly represents the outgoing gravitational waves, ignoring the radiation
back scattered by the curvature. We observe the waveform (the real component of Ψ4) along the x-axis
in the equatorial plane at coordinate location r ≈ 60M for models I and II. Note that the equatorial
radius of the equilibrium star is r ≈ 38.0M – 39.1M for models I and II. We find that the waveform
contains three different stages. The first stage is the burst. This happens around horizon formation of
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Figure 3: Gravitational waveform measured with the Weyl scalar Ψ4 observed along the x-axis in the
equatorial plane at r = 61.43M for model I and r = 59.20M for model II. Note that the time at which
the apparent horizon is first detected is t = 676M for model I and t = 788M for model II, respectively.
Taking the wave propagation time from the source to the observer into account, the apparent horizon
formation in the waveform is roughly just before the peak due to the burst.

collapsing SMS. The dominant contribution of the burst comes from the axisymmetric mode due to the
radial instability. The second stage is the quasinormal ringing of a newly formed BH. The dominant
contribution is again the axisymmetric mode. The final stage might be related to an instability in the
disk, and only appears in the model II. In fact when the spin of the newly formed BH is very close to
the extreme Kerr, the amplitude of the gravitational wave signal gradually grows after the quasinormal
ringing. We also check the azimuthal m modes of the rest mass density traced at the certain radius in
the equatorial plane, and found that the m = 2 mode starts growing exponentially after the ringdown.
One possible explanation for the exponential growth of the m = 2 mode at late times is the existence
of corotation resonance of the newly formed disk triggered by the vibration of the hole. The dominant
quasinormal mode of the BH has the frequency is Mωqnm = 0.43 for a/M = 0.9998 [4], where ωqnm is a
frequency of the quasinormal mode and a is the Kerr parameter. If the corotation resonance is triggered
by quasinormal ringing, the necessary condition for triggering a corotation resonance is ωqnm = mΩ (e.g.
[5]) at a certain radius of the star, where Ω is the angular velocity. Since the inner part of the disk has
MΩ ≈ 0.38 and r ≈ 0.79M in coordinate unit (Fig. 2), there exists a radius inside the disk which satisfies
the above condition. In order to confirm the growth in the amplitude and the possible interpretation
as corotation resonance, further time integration from our termination time of the three dimensional
hydrodynamics in general relativity is necessary. Since we terminate the time integration by hand, there
is no obstacle of continuing our simulation except for the computational time.

We investigate the collapse of differentially rotating SMSs, especially focusing on the post BH forma-
tion stage, by means of three dimensional hydrodynamic simulations in general relativity. We particularly
focus on the onset of collapse to form a rapidly rotating hole as the final outcome.

We have found that the evolutional results about the feature of the final hole and the disk behaves
quite similar to the estimation from the equilibrium configuration when the estimated, final BH has
J(BH)/M

2
(BH) < 1. This result suggests that in the absence of a nonaxisymmetric instability, the estimation

of the BH mass and the disk mass agree with a simple axisymmetric picture that the specific angular
momentum is conserved throughout the evolution and the newly formed BH swallows the matter up to
the radius of the innermost stable circular orbit.

We have also found that when the newly formed BH is “very” close to the extreme Kerr with sufficient
matter around it, a corotational resonance of the matter may be triggered by the quasi-normal mode of
the BH. As the Kerr parameter goes to 1, the radius of the innermost stable circular orbit coincides with
that of the event horizon. Hence the necessary condition for the corotation resonance triggered by the
vibration of the BH is satisfied. Therefore the system potentially emits gravitational waves effectively
due to the resonance. However, further time integration of the post BH formation stage is necessary to
confirm the above statement.
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Time-Symmetric Initial Data of
Brane-Localized Black hole in RS-II Model
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Abstract
In the aim of shedding a new light on the classical black hole evaporation conjecture,
we investigate time-symmetric initial data with a brane-localized apparent horizon
(AH) and analyzed its properties. As a result, we unambiguously confirm that initial
data with an arbitrarily large AH area do exist. We compare the ADM mass and the
horizon area of our initial data with that of the black string (BS) solution, and further
investigate what kind of configuration realizes the minimum mass for the same AH
area. All the results of the analysis are consistent with the classical BH evaporation
conjecture.

1 Introduction

The Randall-Sundrum II (RS-II) model [1] is a brane world model, which provides a way to realize our
four-dimensional world in a higher-dimensional spacetime. RS-II model is composed of five-dimensional
bulk spacetime with negative cosmological constant and a four-dimensional brane with positive tension.
It is known that the weak gravitational field on the brane obeys the usual four-dimensional Newton law
with a correction suppressed at a large distance from the gravitational source [1, 2], though the extra-
dimension extends infinitely in this model. This fact means that it is difficult to distinguish this model
from an ordinary four-dimensional model as long as we investigate the weak gravity regime. Thus we
turn focus on strong gravity phenomena, such as gravitational collapse on the brane.

Naively, a static black hole (BH) whose horizon is localized near the brane will be formed as a final
state of gravitational collapse on the brane. There is an exact static solution with an event horizon, which
is black string (BS) [3], but it seems unlikely that a BS is formed as a result of gravitational collapse
since it is singular and also unstable due to so-called Gregory-Laflamme instability [4]. A static solution
of a large BH localized on the brane, however, has not been discovered yet, despite lots of effort on this
issue (e.g. Ref. [5]. Numerical solution of a static brane-localized BH has been constructed when the
horizon size is not much larger than the bulk curvature scale, but the construction becomes harder as
the horizon size becomes larger [6, 7]. This fact does not exclude the possibility that a static solution
of brane-localized BH larger than the bulk curvature scale does exist, but we do not have any strong
evidence of its existence. As an explanation of the lack of static solution, there is a conjecture that
brane-localized static BHs larger than bulk curvature scale do not exist in RS-II model based on the
AdS/CFT correspondence [8, 9].

There are several works related to this conjecture (e.g. [10,11]), but no definite conclusion is obtained
yet. It is desirable to investigate the properties of static black hole solution directly in order to test the
validity of this conjecture, but it is technically difficult to construct a static large BH solution numerically.
Thus, we consider time-symmetric initial data which have a brane-localized apparent horizon (AH) [12],
expecting that their properties may give some insight into the brane-localized BH.

2 Initial data construction method

In this section we introduce a construction method of time-symmetric initial data with a brane-localized
AH in RS-II model. The model is composed of two copies of five-dimensional empty bulk with negative
cosmological constant Λ separated by a Z2-symmetric positive tension brane. The tension of the brane

1E-mail:tanahashi@tap.scphys.kyoto-u.ac.jp
2E-mail:tama@scphys.kyoto-j.ac.jp
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satisfies the RS condition λ = 3k/4πG5 with k =
√
−Λ/6, where G5 is the five-dimensional gravitational

constant. The setup is compatible with a Minkowski brane with AdS bulk with the bulk curvature length
being k−1. The initial data we consider have O(3)-symmetry in the spacelike dimension as well as the
symmetry with respect to time reversal. These symmetries are property shared with static brane-localized
BH solutions. Hence, we think it appropriate to restrict our attention to this class of initial data.

The starting point of our construction procedure is to choose an asymptotically AdS vacuum solution
of the Einstein equations with negative cosmological constant Λ. In this study, we use the well-known
AdS Schwarzschild (the case with β = +1 below) solution and its extensions (the cases with β = 0 and
−1 below), which are called “topological BH in AdS” [13]. The metric is given by

ds2 = −U(r)dt2 +
dr2

U(r)
+ r2σIJ(x)dxIdxJ , (1)

where

U(r) = β + k2r2 − µ

r2
(β = +1, 0,−1), σIJ(x)dxIdxJ =





dχ2 + sin2 χdΩ2
II (β = +1)

dχ2 + χ2dΩ2
II (β = 0)

dχ2 + sinh2 χdΩ2
II (β = −1)

.

Here µ is the mass parameter and dΩ2
II = dθ2 + sin2 θ dφ2. The spacetime described by this metric is

asymptotically AdS, and has an spherical event horizon at r = rg where U(r) vanishes when β = +1.
In the other two cases (β = 0 and −1), r = rg defined by U(rg) = 0 becomes a surface on which the
expansion Θ of the outgoing null geodesic congruence vanishes. We refer to these solutions as spherical
(β = +1), flat (β = 0) and hyperbolic (β = −1) AdS BHs, respectively, in this literature. In the following
discussion we set k to unity by rescaling the unit of length. In this sense, this background spacetime has
only one free parameter µ, which becomes one of free parameters of the initial data.

Let us consider a three surface on a t =constant hypersurface Σt. If the expansion Θ of the outgoing
null geodesic congruence on this three-surface vanishes, it becomes a candidate of an AH. Even if the
surface is not closed in the original spacetime, it might be made compact after we introduce a Z2-
symmetric brane. Hence, we refer to such a surface with Θ = 0 as an apparent horizon candidate (AHC).
We denote the unit vector normal to an AHC in Σt as si. Here Latin indices starting from the middle of
the alphabet (i, j, · · · ) run over all spatial coordinates. Then the condition of vanishing expansion of the
outgoing null geodesic congruence emanating from this AHC is given by K −Kijs

isj −Dis
i = 0, where

Kij is the extrinsic curvature of the surface Σt and K is its trace. Di is the covariant differentiation with
respect to the induced metric on Σt. Since we have Kij = 0 by the assumption of time-symmetric initial
data, this equation is reduced to

Dis
i = 0, (2)

which determines the position of the AHC. Assuming O(3)-symmetry of AHC, we specify its trajectory
by (r, χ) = (rAH(ζ), χAH(ζ)), where ζ is the proper radial length along the AHC measured from the axis
of the O(3)-symmetry. These rAH(ζ) and χAH(ζ) satisfy

U−1r′2AH + r2
AH χ′2AH = 1, (3)

where a prime means a differentiation with respect to the argument, which is ζ here. Then, the spacelike
unit vector normal to the AHC is

sµ =
(√

UrAHχ′AH,− r′AH√
UrAH

)
. (4)

Then Eq. (2) and Eq. (3) can be recasted into a set of two ordinary differential equations, whose explicit
form for the spherical AdS BH bulk is given by
√

UrAH

r′AH

χ
′′
AH + 4

√
Uχ

′
AH −

2 cot χAH√
UrAH

r
′
AH = 0, − 1√

UrAHχ′AH

r
′′
AH + 3

√
Uχ

′
AH +

r′AH

2U3/2rAHχ′AH

„
dU

dr
r
′
AH − 4Uχ

′
AH cot χAH

«
= 0.

(5)

The expression for the hyperbolic AdS BH bulk is obtained by simply replacing cotχAH with coth χAH.
We solve this equation setting χAH(0) = 0. We can freely choose the value of rAH(0), which specifies the
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position of the AHC in the background spacetime. This rAH
0 ≡ rAH(0) becomes one of free parameters

of the initial data we construct. The boundary condition at ζ = 0 is given by r′AH(0) = 0, which comes
from the regularity of the AHC on the axis. We solve Eq. (5) with this boundary condition numerically
to obtain the trajectories of AHCs.

Next we put a vacuum brane with Z2-symmetry in the AdS BH bulk. We denote the unit normal of
the brane by s̃µ. We take this s̃µ in the direction toward the bulk from the brane. We introduce the
induced metric γ̃µν ≡ gµν − s̃µs̃ν on the brane. The extrinsic curvature K̃ab on the brane is defined by
K̃ab = −γ̃ µ

a γ̃ ν
b ∇µs̃ν . Here Latin indices starting from the beginning of the alphabet (a, b, · · · ) run the

four-dimensional coordinates on the brane. A vacuum brane has the four-dimensional energy-momentum
tensor localized on the brane given by Tab = −λγ̃ab. Israel’s junction condition [14] on the brane is given
by K̃ab − K̃γ̃ab = 1

2 · 8πG5Tab, where we used Z2-symmetry across the brane. At the moment of the
time-reversal symmetry, we only have to solve the Hamiltonian constraint, which is the (t, t)-component
of the junction condition. Using the normal vector s̃µ, this equation is written as

Dis̃
i = −3k. (6)

As before, we assume O(3)-symmetry, and we specify the brane trajectory by (r, χ) = (rb(ξ), χb(ξ)),
where ξ is the proper radial length along the brane. The spacelike unit normal s̃µ is given by Eq. (4),
replacing rAH and χAH with rb and χb respectively. Then the Hamiltonian constraint (6) becomes a
second order ODE of rb(ξ) and χb(ξ). The explicit expression for the spherical AdS BH becomes Eq. (5),
replacing rAH and χAH with rb and χb on the left hand sides, and 0 with −3k on the right hand sides.

bulk

3-surface on which (expansion)=0

AdS BH

rg rAH0
r

si

si˜

Figure 1: Schematic figure of the
initial data.

As we are not interested in the spacetime interior of the AHC, we
solve the brane trajectory from a point on the AHC. The choice of
the starting point on the AHC is arbitrary. This degree of freedom
becomes one of free parameters of the initial data we construct. The
boundary condition for Eq. (6) at this point is determined by the
regularity of the AH across the brane. Namely, the AH should intersect
the brane perpendicularly, i.e. s̃µsµ = 0. This leads to the condition,

(r′b, χ
′
b) =

(√
UrAH χ′AH,− r′AH√

UrAH

)
, at the crossing point. We solve

Eq. (6) numerically to obtain the brane trajectory. Once the AHC
is truncated by the brane, it becomes a closed surface with vanishing
expansion, Θ = 0. However, the AH is not simply a compact surface
with Θ = 0 but it must be the outermost one among such surfaces.
Thus we have to check if there is no other Θ = 0 hypersurface in the
region outside of the AHC. If there is no such a hypersurface with
Θ = 0, the original AHC is the genuine AH. In the case that true AH
exists outside AHC, such initial data will be also given by other values of free parameters in the parameter
space. Hence, we just discard such initial data, and analyze only the data which have no outer AH.

3 Analysis of the Initial Data Property and Discussion

We find that a three-parameter family of such initial data can be constructed by simply placing a brane
on a constant time surface of Schwarzschild anti-de Sitter space. Since there is no static brane-localized
BH solution with a large horizon area, one may suspect that time-symmetric initial data with a large AH
do not exist. However, we found no difficulty in constructing initial data with a large AH. Our method of
constructing the initial data requires just solving ordinary differential equations. Hence, the conclusion
that initial data with an arbitrarily large AH area exist is quite robust.

We can calculate the four-dimensional ADM mass of the initial data from the induced metric on the
brane. We compared this ADM mass and the horizon area of our initial data with that of the black
string (BS) solution. If there is a sequence of static brane-localized BH solutions, such solutions should
be contained in the time-symmetric initial data. Moreover, if they are stable, it will have a smaller
mass compared with the BS solution with the same horizon area. However, we found that any initial
data constructed by this method do not have a smaller mass than the BS solution when the horizon
area is larger than the size determined by the bulk curvature scale. In the following sense, this result
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is consistent with the scenario that these initial data evolve into configurations similar to BS, which is
unstable through Gregory-Laflamme instability. The event horizon, which must exist outside the AH
area, should have a larger area than AH. The area theorem tells that the area of the event horizon does
not decrease as a course of time evolution, while the mass will not increase when there is no incoming
energy flux from infinity. Hence, if there is an initial data whose horizon area is significantly larger than
that of BS with the same mass, such an initial data cannot evolve into the configuration close to BS.

We further investigated what kind of configuration realizes the minimum mass for the same AH area.
The configuration that realizes the smallest mass turned out to be the one close to the BS truncated by
a cap. One may think that this indicates the existence of a static brane-localized BH solution. However,
since our three-parameter family of initial data does not include the configuration resembling the BS
solution, this minimum of mass may just reflect the expected minimum of mass corresponding to the BS
solution.

We conducted the same analysis also in the case of four-dimensional bulk spacetime since the situation
looks quite different in this case. The BS solution does not exist, but we have an exact brane-localized
BH solution found by Emparan, Horowitz and Myers (EHM), instead. Nevertheless, the results of the
analyses as to the time-symmetric initial data were quite similar to the five-dimensional case. We found
that the area of the initial data is always larger than the EHM solution with the same mass, which
is in harmony with the naive expectation that the EHM solution is the most stable black object in
four-dimensional RS-II model.

These results were all consistent with the classical BH evaporation conjecture, but unfortunately they
did not provide a strong indication about the classical evaporation conjecture because the initial data
that we examined were very limited. However, it is a remarkable progress that we have shown that
time-symmetric initial data with a large AH area can be constructed. As a next step, we can consider
the time evolution of these initial data. The family of initial data we constructed in this study will be a
good starting point for researches in this direction.
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A counterexample of the self-similarity hypothesis
for perfect fluid gravitational collapse
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Abstract
It has been postulated as the so-called self-similarity hypothesis that a self-similar
behavior may be an attractor behavior which becomes dominant near a central dense
region as gravitational collapse starting from generic initial conditions proceeds to
final stages. Whether this hypothesis holds is an important problem for understanding
the geometrical structure and the fluid motion at final stages in gravitational collapse.
In this paper, through the analytical treatment of the Einstein’s equation for the
perfect fluid, we show that the self-similarity hypothesis does not necessarily hold for
spherically symmetric gravitational collapse of a low pressure perfect fluid.

1 Introduction

Spherically symmetric gravitational collapse of a perfect fluid with pressure P given by the equation of
state P = αρ has been extensively studied in general relativity to understand fundamental features of
relativistic motion of non-dust fluids and geometrical structure in gravitational contraction. In particular,
some attention after the discovery of the critical phenomena has been given to generality of the self-similar
behaviors governed by the Einstein’s equations reduced to a set of ordinary differential equations with
respect to a dimensionless variable such as z ≡ r/t, where r and t may be comoving radial and time
coordinates. For this problem the self-similarity hypothesis proposed by Carr (see [1] for a recent review)
may assert that a self-similar behavior is a general behavior which becomes dominant near the central
dense region in the final or intermediate stage of the initially non-self-similar gravitational collapse starting
from general initial conditions. Though this hypothesis strongly motivates us to study extensively self-
similar hydrodynamics, the prerequisites for it should be also understood through detailed comparisons
between evidence and counterevidence.

The remarkable evidence for the self-similarity hypothesis was given by the numerical simulations for
the parameter range 0 < α <∼ 0.03 [2] which showed the appearance of a self-similar behavior in the final
stage for some initial data sets. In addition it was also shown that such a self-similar behavior can be well
described by the general relativistic Larson-Penston solution or the flat Friedmann solution. However we
recently showed that the flat Friedmann solution for sufficiently small values of α (0 < α ≪ 1) is unstable
for spherically symmetric non-self-similar and inhomogeneous perturbations. This suggests that for a
variety of initial data sets, the spacetime metrics and the fluid motion in the final stage are always well
approximated by the general relativistic Larson-Penston solution. It is interesting to note that the general
relativistic Larson-Penston solution for the parameter range 0 < α <∼ 0.0105 describes the shell-focusing
naked singularity formation [4]. Whether the transition to the general relativistic Larson-Penston stage
occurs for all possible initial conditions is an important problem to be examined in the light of the
analytical treatment of the dynamical field equations in relation to not only the universality of the final
stage dynamics but also the cosmic censorship conjecture.

In this paper we analytically study spherically symmetric perfect fluid gravitational collapse through
the non-perturbative analysis of the Einstein’s field equations. Using the rescaling formula such as
z → x ≡ z/α3/2 and the low pressure limit α → 0, we reduce the several partial differential field
equations to the single master equation without vanishing the effects of pressure. By analyzing this
master equation, we succeed in the derivation of the sufficient condition with respect to the initial density
profile for non-appearance of a self-similar behavior in the final stage.

1E-mail: emitsuda@gravity.phys.nagoya-u.ac.jp
2E-mail: atomi@gravity.phys.nagoya-u.ac.jp
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2 Field equations for the low pressure perfect fluid

Throughout this paper, we consider spherically symmetric line element given by

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)dr2 + R2(t, r)
(
dθ2 + sin2 θdϕ2

)
(1)

with the comoving coordinates t and r. As was mentioned in Sec. 1, the collapsing matter is assumed to
be a prefect fluid with the equation of state P = αρ for a constant α lying in the range 0 < α ≤ 1, where
P and ρ are the pressure and the energy density, respectively. To discuss the self-similar behavior later,
we use a new variable z defined by z ≡ r/t, instead of r. In addition we also introduce the following
dimensionless functions:

S(t, z) ≡ R

r
, η(t, z) ≡ 8πr2ρ , M(t, z) ≡ 2m

r
, (2)

where the function m(t, r) is the Misner-Sharp mass.
From the Einstein’s field equations, we can obtain the four equations governing the functions ν, λ, S

and η. By virtue of the choice of the comoving coordinates, the two equations lead to the relations

eν = Cν(t)(z2)α/(1+α)η−α/(1+α) , (3)
eλ = Cλ(r)η−1/(1+α)S−2 , (4)

where Cν and Cλ are arbitrary functions. Thus the remaining two equations become the equations for
only the two unknown functions S and η and are written by

M + M ′ = ηS2(S + S′) , (5)
Ṁ − M ′ = −αηS2(Ṡ − S′) , (6)

M(t, z) = S

{
1 + e−2νz2

(
Ṡ − S′

)2

− e−2λ (S + S′)2
}

, (7)

where the dot and the prime represent the partial derivative with respect to log |t| and log |z|, respectively.
It was pointed out in [4] that the general relativistic Larson-Penston solution does not correspond to

the Lemáıtre-Tolman-Bondi solution even in the limit α → 0. In order to examine the generality of the
transition to the general relativistic Larson-Penston stage in the low pressure limit α → 0, we introduce
the following rescaled variables:

S0(t, x) ≡ αS, η0(t, x) ≡ η/α3, x ≡ −z/α3/2 . (8)

By taking the low pressure limit α → 0 with keeping the functions S0 and η0 and the variable x finite,
we can derive the following single partial differential equation for only S0 from the field equations (5),
(6) and (7):

V 2
0 − 1

(S0 + S′
0)

2 (S′′
0 + S′

0) + y2
(
S̈0 − 2Ṡ′

0 − Ṡ0

)
+

1
2S2

0

− 2
S0

= 0 , (9)

where the function V0 is defined as
V0(t, x) ≡ x (S0 + S′

0) . (10)

This master equation is expected to be useful for the analytical study of various classes of motions of the
low pressure perfect fluid. The remaining two variables η0 and M are given by

M = 1 , η0 = S−2
0 (S0 + S′

0)
−1

. (11)

It should be noted that the function V0 can be written as

V0 = V/
√

α , V (t, z) ≡ zeλ−ν . (12)

The function V means the velocity of z = const. surface relative to the fluid element. Thus the point
x = xs(t) at which V 2

0 = 1 is called as the sonic point. It is easily found from Eq. (9) that the second
derivative of the function S0 with respect to x cannot be determined at the sonic point. This makes us
confirm that our method do not miss the pressure effect by virtue of the rescaling formula (8). It should
be also noted that the last term in the left hand side of Eq. (9) also appears by virtue of the rescaling
formula.
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3 Asymptotic solution and initial density profiles

It is easily found that there is a class of solutions of Eq. (9) for which the functions V0 and S−1
0 become

much larger than unity in the region x ≫ 1. In the region x ≫ 1 the function S0 for such a class of
solutions is approximated by

S0(t, x) ≅
{

3(1 + K(r̃)x)
2x

}2/3

, (13)

where K is an arbitrary function dependent on only r̃ defined as r̃ ≡ r/α3/2. It should be noted that
the function S0 for the flat Friedmann solution and the general relativistic Larson-Penston solution is
expressed by this asymptotic form in the region x ≫ 1. Although this may not necessarily hold for all
physically allowable self-similar or non-self-similar solutions, we focus on the solutions approximated by
Eq. (13) in the region x ≫ 1 in this section.

In order to see the relation between the arbitrary function K and the initial density profile, we consider
the coordinate transformation as r → r∗ defined as

r∗ = r

{
3
2

(
K

α3/2
− L

r

)}2/3

, (14)

where L is an arbitrary constant. Then we can rewrite the asymptotic form of the area radial function
R to the same form as R for the marginally bound Lemáıtre-Tolman-Bondi solution as follows,

R(t, r∗) ≅ r∗

{
1 +

3
2

√
r(r∗)
r3
∗

(t − L)

}2/3

. (15)

Because the area radial function R corresponds to the radial coordinate r∗ at t = L, we regard the
constant L as the initial time. The initial density profile ρ(L, r∗) ≡ ρinit(r∗) is given from the field
equations as

ρinit(r∗) =
1

4πr2
∗

dm

dr∗
. (16)

From Eq. (11), the Misner-Sharp mass m is found to be written as

m(r∗) = r(r∗)/2 . (17)

This equation and Eq. (16) mean that if the initial density profile is determined, then the function K is
also determined through Eq. (14).

In general, the initial density profile ρinit is expanded around the regular center r∗ = 0 as

ρinit(r∗) =
3

4πL2

{
1 −

(
r∗
r0

)2
}

+ O(r3
∗) , (18)

where r0 is positive constants. Note that the value of ρinit at the center r∗ = 0 is uniquely determined
as 3/(4πL2) because we define the time coordinate t so that the central singularity appears at t = 0.
Eq. (18) corresponds to the following expansion of the function K:

K(r̃) = K0r̃
−1/3 + O(r̃1/3) , (19)

where K0 is a constant explicitly given by A and B. The validity of the expansion (18) is restricted to
the region r∗ ≪ r0. At t = L this region corresponds to

x ≪
(

r0√
αL

)3

. (20)

Hence, if the constants L and r0 satisfy the condition
r0

L
≫

√
α , (21)

then the asymptotic form of the solution S0 in the region 1 ≪ x ≪ {r0/(
√

αL)}3 is given by

S0(t, x) ≅

[
3

{
1 + K0x

2/3(−t)−1/3
}

2x

]2/3

. (22)
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4 Conclusion

Now let us consider the behavior of the solution S0 for the initial density profile satisfying the condition
(21). It is easily found from the asymptotic form (22) that the solution S0 monotonically increases to
the infinity with non-self-similar manner in the region 1 ≪ x ≪ {r0/(

√
αL)}3 as t → 0 along a x = const

line. In order to see whether a self-similar behavior appears in the central region 0 ≤ x <∼ 1, we would
like to note that the value of the function S0 for the self-similar solutions must be 1/4 at the sonic point
because of the regularity, which is easily understood from the master equation (9). That is, the value
of the function S0 at the sonic point x = xs(t) must approach 1/4 with lapse of time if the system near
the central region in the final stage is approximately described by the general relativistic Larson-Penston
solution. Next, we note that the function S0 for the solutions describing the monotonical gravitational
contraction must monotonically decrease with respect to x at any fixed time t. This means that the value
of the function S0 at the sonic point cannot settle on 1/4 because S0 in the region 1 ≪ x ≪ {r0/(

√
αL)}3

monotonically increases to the infinity with lapse of time. This leads us to the conclusion that a self-similar
behavior does not appear even in the central region.

In this paper we have derived the sufficient condition (21) as to the initial density profile for non-
appearance of a self-similar behavior in the final stage of spherically symmetric low pressure perfect fluid
collapse. The constant r0 in this condition can be regarded as the scale of the inhomogeneity near the
center. Therefore we can give a physical interpretation of the condition (21) such that the speed of the
collapse of the inhomogeneity scale to the singularity is much larger than the speed of sound.
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Abstract
We reconsider spherically symmetric black hole solutions in Einstein-Aether theory
with the condition that this theory has identical PPN parameters as those for general
relativity, which is the main difference from the previous research.

1 Introduction

Identifying the contents of dark energy and dark matter (DE/DM) is one of the most important subjects
in cosmology. It is frequently argued that gravitational theories are an alternative to DE/DM. Recently,
tensor-vector-scalar (TeVeS) theories have attracted much attention since they do not only explain galaxy
rotation curves but also satisfy many constraints from solar experiments [1].

However, it is nontrivial whether or not these theories satisfy the constraints by strong gravity tests.
To study vector fields in a general form is difficult. Thus, as a first step, it is important to investigate
a simplified model which is tractable and instructive for general cases. One such useful model would
be Einstein-Aether (EA) theory [2], where all parameterized post-Newtonian (PPN) parameters can be
the same as those in GR [3]. In EA theory, strong gravitational cases including black holes have been
analyzed to some extent [4, 5, 6, 7]. Nevertheless, the analysis of black holes has been limited to the
case in which the event horizon coincides with the spin-0 horizon [5], and this case does not necessarily
satisfy weak fields tests. Thus, it is interesting to ask whether or not significant differences from the
Schwarzschild black hole appear when weak fields tests are satisfied. For this reason, we argue black
holes with the case in which the EA theory has identical PPN parameters as in GR [8]. We use units in
which c = 1 and the sign convention (−,+,+,+) for metrics.

2 Einstein-Aether theory

We consider the following action:

I =
1

16πG

∫

d4x
√−g R−Kab

cd∇au
c∇bu

d + λ(u2 + 1) , (1)

Kab
cd := c1g

abgcd + c2δ
a
c δ

b
d + c3δ

a
dδ

b
c − c4u

aubgcd , (2)

where ua is a vector field and u2 := uaua. ci (i = 1, 2, 3, 4) are theoretical parameters in EA theory. λ is
a Lagrange multiplier ensuring the vector field ua to be unit timelike vector everywhere.

Varying this action with respect to λ and ua, we have

u2 + 1 = 0 , c4u̇
m∇aum + ∇mJ

m
a + λua = 0 , (3)

where Ja
m := Kab

mn∇bu
n, u̇b := ua∇au

b. Multiplying Eq. (3) by ua, we have

λ = c4u̇
2 + ua∇mJ

m
a . (4)

Varying the action with respect to the metric, we have

Gab = ∇m

[

Jm
(aub) − J m

(a ub) + J(ab)u
m

]

+ c1 (∇aum∇bu
m −∇mua∇mub) + c4u̇au̇b + λuaub − 1

2
gabLu ,
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where Lu := Kab
cd∇au

c∇bu
d.

If we assume the weak field and slow-motion limits in EA theory [3], we have to take Newton’s
gravitational constant as GN =

(

1 − c1+c4
2

)−1
G, to reproduce Newtonian gravity correctly. For all the

PPN parameters to coincide with those in GR, we have

c2 =
−2c21 − c1c3 + c23

3c1
, c4 = −c

2
3

c1
. (5)

From the maximum mass of neutron stars ∼ 2M�, we have c1 + c4 ≤ 0.5 ∼ 1.6 [7]. In [9], the sound
modes are analyzed by expanding the metric and the Aether around the Minkowski metric. For these
sound velocities to be equal to or larger than the photon velocity, or, to ensure stability against linear
perturbation in Minkowski (or FRW) background and linearized energy positivity, we have [9, 10, 11]

0 < c+ < 1 , 0 < c− := c1 − c3 <
c+

3(1 − c+)
. (6)

Radiation damping was also analyzed in [12], which almost restricts c+ as a function of c− based on the
observation of, say, B1913+16.

3 Analysis in a single-null coordinate system

Our purpose in investigating black holes in EA theory is not to give a further restriction but to understand
generic features of vector-tensor theories under the condition that weak gravity tests are satisfied. From
this point of view, we take the following strategy. (i) We assume (5) since the constraints by the solar
experiments are severe. (ii) We assume (6). Otherwise, a naked singularity appears outside the event
horizon in general. Constraints from neutron stars and from radiation damping are related to strong
gravity tests at least partially. For the above reasons, we do not impose these constraints. Thus, we have
two theoretical parameters (c+, c−) with the condition (6).

We write a static and spherically symmetric line element in a single null coordinate system as,

ds2 = −N (r)dv2 + 2B(r)dvdr + r2dΩ2 . (7)

In this coordinate, the vector field takes the form of u = a(r)∂v + b(r)∂r. b(r) �= 0 means that the Aether
is not aligned with the timelike Killing field, which is inevitable because of the event horizon. From
Eq. (3), −Na2 + 2Bab = −1. We can eliminate λ with Eq. (4). Then, we obtain basic equations, which
can be written schematically as

N ′ = f1(B,N, a, a′) , B′ = f2(B,N, a, a′) , a′′ = f3(B,N, a, a′) , (8)

where the prime denotes the derivative with respect to r.
The boundary condition at the horizon rh is N(rh) = 0. We set B(rh) = 1. We can also set rh = 1

since there is no scale in the present theory. In this sense, it is assumed that the area coordinate r
is normalized by the horizon radius below. If we use a rescaling freedom of v as dv′ = B(∞)dv, the
asymptotic form of the metric is written as ds2 = − N(∞)

B(∞)2 dv
′2 + 2dv′dr + r2dΩ2. Thus, the boundary

condition at spatial infinity for the asymptotic flatness is N(∞) = B(∞)2. We should require b(∞) = 0,
for the Aether to be aligned with the timelike Killing field. Then, we have a(∞) = −B(∞)−1. We can
determine the pair of ah := a(rh) and a′h := a′(rh) as shooting parameters, one of which is fixed by
a(∞) = −B(∞)−1. Thus, there remains one freedom. Fixing this freedom is done as follows. Even in
the spherically symmetric case, there is a spin-0 mode. The freedom mentioned above is fixed by the
requirement that the regularity at the spin-0 horizon which is inside the event horizon.

However, since the asymptotic observer is insensitive to the regularity at the spin-0 horizon, we permit
the singularity at the spin-0 horizon. For this reason, we leave one freedom. In concrete terms, we obtain
ah iteratively for some a′h, which is regarded as a free parameter.
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4 Properties of solutions

We show several asymptotically flat solutions in Figs. 1 (a) and (c) for c+ = 0.4 and c− = 0.1. Figure 1
(a) shows that we can determine an ah that satisfies the asymptotic condition for various values of a′h.
Figure 1 (c) shows a “mass” function. If we define the mass function m(r) by m(r) := r

2G

(

1 − N
B2

)

, we
can interpret m(∞) as ADM mass MADM. As we can see, m(r) monotonically decreases. This is not
surprising since energy conditions are not necessarily satisfied in EA theory [11].

Since Figs. 1 show that the deviation from the Schwarzschild black hole is largest for the smallest
value of a′h, it is natural to ask whether or not there is a lower limit a′h,crit below which there is no regular
solution. We show the relation a′h and MADM for various values of c+ and c− in Fig. 2 (a). Typically,
MADM is smaller than that of a Schwarzschild black hole by about 10%, which is consistent with the
result in [5]. For a′h < a′h,crit, we cannot find an appropriate value of ah. a′h,crit depends on c+ and c−.
As a′h approaches a′h,crit, dMADM/da

′
h tends to diverge.

We consider the possibility of distinguishing black holes in EA theory from Schwarzschild black hole
by observation. In Ref. [7], the innermost stable circular orbit (ISCO) for neutron stars in EA theory was
analyzed. The result is that the deviation from the Schwarzschild black hole is at most several percent.
But this is not necessarily the case in the present situation, as shown below. The differences occur since
we have the freedom parameterized by a′h and the Aether is not static. These facts will be important if we
consider observations such as Constellation-X, which tracks the motion of individual elements near black
holes. We show the dependence of rISCO (normalized by rh) on a′h in Fig. 2 (b). Notice that rISCO = 3
for the Schwarzschild black hole. Therefore, the difference is nearly 10% for a′h � a′h,crit.
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Figure 1: Field configurations for c+ = 0.4 and c− = 0.1.

5 Discussion

We have reanalyzed black hole solutions in EA theory while assuming that all the PPN parameters are
the same as those for GR, resulting in two theoretical parameters c+ and c−. As another difference, we
do not assume regularity at the spin-0 horizon since this is inside the event horizon. Interestingly, we
find a′h,crit below which there is no regular black hole solution. Near a′h,crit, the deviation of black hole
mass MADM and ISCO rISCO from those for the Schwarzschild black hole become large.

These results are instructive for other cases. If we consider the case with rotation, freedom of the vector
field is added. Then, it also contributes the kinetic term of the vector field, enhancing the differences
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Figure 2: (a) a′h v.s. GMADM and (b) a′h v.s. rISCO.

from the vacuum solution. This would also be true in other vector-tensor theories. For this reason, it is
important to consider rotational black holes in vector-tensor theories, if we are to constrain them.
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Abstract
We study the properties of chaos in the motions of a charged test particle confined
in a dipole magnetic field around a Kerr black hole. We characterize the chaos using
the power spectrum of the time series of the particle’s position. We find that the
pattern of the power spectrum shows not only white noise but also 1/f fluctuation,
depending on the values of the system parameters (the black hole’s spin, the strength
of the magnetic field, the total energy, and the total angular momentum). So we
succeed in classifying the chaotic motions into the two distinct types. One is 1/f ,
and the other is white noise. Based on this classification, we obtain “phase diagram”
for the properties of the chaos. This phase diagram enables us to guess the black
hole’s spin and the strength of the magnetic field by observing the dynamics of the
charged particle, even if the motion is chaotic.

1 Introduction

Black hole and accretion disk system, like as a central engine of AGN, compact X-ray sources and GRB,
is astrophysically important, and has been investigated by many authors. Observationally, we can obtain
X-ray spectrum and time variability data, and near future we may see black hole shadow. We are
interested in such magnetic phenomena near a black hole, and our motivation is to understand property
of magnetosphere near a black hole. So we assume global magnetic fields in black-hole geometry. The
problem is how to get peculiar informations about the black hole and the surrounding magnetic fields.

Now we go back to a basic subject that motions of a charged test particle in black hole magneto-
sphere. Firstly we consider test-particle motions around a Kerr black hole. In this system, number of
spacetime dimension is 4, and number of constants of motion is also 4. That is, rest mass, energy, angular
momentum, and Carter constant [1]. Then this system is integrable, and the particle’s orbits are regular.
Next, we consider charged-particle motions in the dipole magnetic field around a Kerr black hole [2]. In
this system, number of spacetime dimension is 4, but number of constants of motion is 3. That is, rest
mass, energy, and angular momentum. The separation of variable has not been found, and this system
can show nonintegrability [3]. So the particle motions in this system can be chaotic and complicated. In
this way, nature is filled with phenomena that exhibit chaotic behavior.

In roughly speaking, motions of a charged particle in dipole magnetic field near Kerr black hole can
be explained as following [3]. A charged particle can be trapped in the doughnut-like shaped zones which
is similar to Van Allen belt in Earh’s magnetic field. The particle motions are combination of gyration,
bouncing and drifting. The particle gyrates around the magnetic field line, oscillates in the poloidal plane
along the magnetic field line, and drifts in the toroidal direction. Chaotic sea in the Poincare maps have
been confirmed [4].

Having found the existence of chaotic motions, we should now characterize and quantify the chaos to
clarify the effect of the black-hole spin and the magnetic field. Then, in this paper, we look for statistical
laws in the chaotic motions in the dipole magnetic field around a Kerr black hole to classify the chaos.
Indeed, we can hardly learn anything about the chaos if we judge it only from the randomness of the
distribution of the points in Poincaré maps or the positiveness of the Lyapunov exponents. Not a few
people believe that chaotic system is simply random and completely unpredictable. Of course, we cannot
predict the time evolution of the state of the test particle exactly, when its system is chaotic. However,
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even in such cases, we can frequently find some statistical laws which are proper to the system. One
possible measure of chaos is the power spectrum of the time series. In our previous paper [5], we have
succeeded to classify the chaos in the motions of a spinning test particle around Schwarzschild black hole,
using the power spectrum of the time series of the particle’s position. We have found out that the pattern
of the power spectra are divided into two distinct types depending on the system parameters (spin and
angular momentum) [5]. One is 1/f -type fluctuations and the other is white noise. In this paper, we
apply this method to characterize chaos in the motions of a charged test particle confined in the dipole
magnetic field around a Kerr black hole. Our goal is to clarify the effect of the spin of the black hole and
the magnetic field into the chaos in the particle’s motions.

Our strategy to characterize the chaos in this paper is as follows. First, we introduce the power
spectrum of the time series of z components of the particle’s position. Then we characterize the properties
of the chaos in the charged-particle motions in the dipole magnetic field in Kerr spacetime, using the
pattern of the power spectrum. It is found that the pattern of the power spectrum can be classified as
1/f or white noise. That is, we succeed in classifying the chaotic motions into two distinct types. Based
on this classification, we plot phase diagrams for properties of the chaos.

2 Equations for a charged particle around a black hole

We solve the motion of a charged test particle in a dipole magnetic field around a Kerr black hole.
The metric is written by the Boyer-Lindquist coordinates (t, r, θ,φ) with c = G = 1, and the non-zero
components of the contravariant metric gµν are given by

gtt =
A

∆Σ
, gtφ =

2Mar

∆Σ
, gφφ = −1 − 2Mr/Σ

∆ sin2 θ
, grr = −∆

Σ
, gθθ = − 1

Σ
, (1)

where ∆ ≡ r2 − 2Mr + a2, Σ ≡ r2 + a2 cos2 θ, and A ≡ (r2 + a2)2 −∆a2 sin2 θ. M is mass of the black
hole, and a is the spin parameter. The Hamiltonian for the charged particle is

H =
1
2
gµν (πµ − qAµ) (πν − qAν) , (2)

where πµ is the canonical momentum, q is charge, and Aµ is the 4-potential of the electromagnetic field.
The equations of motion are given by the Hamilton’s equations,

dxµ

dλ
=

∂H(xν ,πν)
∂πν

,
dπµ

dλ
= −∂H(xν ,πν)

∂xν
. (3)

The 4-momentum of a charged particle are given by

pµ ≡ dxµ

dλ
= gµν(πν − qAν). (4)

The magnetic field configuration is assumed by dipole magnetic field [2], which is a solution of vacuum
Maxwell equations in Kerr geometry. The non-zero components of Aµ are given by

At =
−3µ

2γ2Σ

{ [
r(r − M) + (a2 − Mr) cos2 θ

] 1
2γ

ln
(

r − r−
r − r+

)
− (r − M cos2 θ)

}
, (5)

Aφ =
−3µ sin2 θ

4γ2Σ

{
(r − M)a2 cos2 θ + r(r2 + Mr + 2a2)

−
[
r(r3 − 2Ma2 + a2r) +∆a2 cos2 θ

] 1
2γ

ln
(

r − r−
r − r+

) }
, (6)

where µ is a dipole moment, γ ≡
√

M2 − a2 and r± ≡ M ± γ.
The rest mass of the charged particle, m, is defined by m2 ≡ −pµpµ. m is constant. In addition,

from the stationary and axial symmetry of both the electromagnetic field and the spacetime geometry,
energy and angular momentum, E ≡ πt = pt + qAt and L ≡ −πφ = −(pφ + qAφ), respectively, are
also constants of motion. That is, number of constants of motion is 3. On the other hand, number of
spacetime dimension is 4. Then, the particle’s orbits in this system can be chaotic. We solve Eqs. (3) by
the Runge-Kutta method numerically.
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3 Phase diagram for the properties of chaos

In this section, we characterize the chaos in the charged particle motions in dipole magnetic field around
Kerr black hole. Here we analyze the time series of the particle position. In order to that, first, we
introduce the power spectrum. The power spectrum of the time series of z components of the particle’s
position, Pz(ω), is defined by

Pz(ω) =

∣∣∣∣∣
1
T

∫ T

0
z(t)eiωtdt

∣∣∣∣∣

2

. (7)

We test the pattern of the power spectrum Pz(ω) for various grid points in the parameter space, and
show the results in Figs. 1 and 2. Here we define the parameter Q as Q ≡ 3qµ/(4M2m). The value of
L/M is fixed to −7.

In Fig. 1 we test the pattern of the power spectrum Pz(ω) of the chaotic orbits for grid points in
two-dimensional (a/M, E/m) configuration. The value of Q is fixed to −30 in Fig. 1 . In the region
where the symbols (©) are marked the power spectrum Pz(ω) shows 1/f -type spectrum. On the other
hand, in the region where symbols (!) are marked, the power spectrum Pz(ω) shows white noise. At the
points where the symbols (×) are marked, the orbits are not chaotic but regular.

In Fig. 2 we test the pattern of the power spectrum Pz(ω) for grid points in two-dimensional (a/M, Q)
configuration. At the points where the symbols (©) are marked, the 1/f -type power spectrum is observed.
At the points where the symbols (∆) are marked, the 1/f -type power spectra are observed for low energy,
and the white-noise power spectra are observed for high energy. At the points where the symbols (+)
are marked, the orbit apparently behaves regular for low energy, and the white-noise power spectra are
observed for high energy.

Figs. 1 and 2 can be considered as “phase diagrams” for the properties of chaos. These phase diagrams
illustrate the effect of the black-hole spin and the strength of the magnetic field. When the black hole is
slowly rotating, or when the magnetic field is not weak, the pattern of the power spectrum Pz(ω) of the
chaotic orbits shows 1/f fluctuation for low energy, and shows white noise for high energy. On the other
hand, when the black hole is rapidly rotating and the magnetic field is weak, we cannot observe such 1/f
fluctuations. The particle’s orbits are regular for low energy, and Pz(ω) of the chaotic orbits shows white
noise for high energy. These phase diagrams (Figs. 1, 2) enables us in principle to guess the black hole’s
spin and the strength of the magnetic field, even if the particle’s motion is chaotic.

4 Summary

In this paper we have investigated the properties of chaos in the motions of a charged particle in dipole
magnetic field around a Kerr black hole. We have characterized the chaos using the power spectrum of
the time series of z components of the test particle’s position, Pz(ω). We have found that the pattern of
the power spectrum Pz(ω) can be divided into distinct 2 types, 1/f and white noise, depending on the
system parameters (black hole’s spin and magnetic field). Based on this classification, we have obtained
“phase diagrams” for the property of chaos (Figs. 1, 2). These phase diagrams illustrate the effect of the
black-hole spin and the strength of the magnetic field. The chaos we found in this system is not always
merely random. Using the various properties of chaos, we have presented new possibility to estimate
black hole’s spin and magnetic field.
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the orbits are regular (not chaotic) for low energy, and the white-noise power spectra are observed for
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Abstract
Parametric photon creation via the so called dynamical Casimir effect is calculated nu-
merically. We consider a model where a three-dimensional resonant cavity is bisected
by a semiconductor diaphragm, which is irradiated by a pulse laser with frequency of
the GHz order. Our preliminary results show that the photon number density depends
on where the diaphragm is placed with the midpoint giving the largest contribution.

1 Introduction

In the pursuit of an experimental verification of the dynamical Casimir effect (DCE), the problem arises of
how to oscillate a cavity wall with an extremely high frequency of the GHz or THz order? A particularly
nice idea was by Yablonovitch [1], also see references in [2], who proposed an optical excitation of valence
electrons of a semiconductor into the conduction band by a pulse laser, which makes the semiconductor
metallic. The metallized semiconductor wall reflects electromagnetic waves and thus the semiconductor
diaphragm (SCD) acts like an oscillating cavity wall. Quite recently, experimental schemes to detect
DCE photons have been proposed using a semiconductor wall irradiated by a pulse laser [3].

From a theoretical standpoint there have been been some works on the SCD idea [2, 4, 5]. However, in
[5] the prerequisite guaranteeing a perturbative treatment is not satisfied when the SCD is placed far from
the cavity wall and a numerical approach should be used, e.g. [6]. Also, recently the work of Dodonov &
Dodonov [7] discussed some possible problems with the SCD idea, relating to that fact that the dielectric
constant of the semiconductor has a large positive imaginary part in the conducting (irradiated) state,
which therefore leads to dissipative effects. A possible resolution to this problem was advocated in [8] by
applying a single mode phenomenological dissipation model. The purpose of this work is to discuss how
the location of the SCD affects the number of created photons assuming the SCD is a perfect conductor
when irradiated (unitary evolution). Furthermore, we find that when the SCD is not attached to one of
the cavity walls, such as at the midpoint, then the single mode approach used in [8] should somehow be
generalized to multimode coupling.

2 Model for TE Modes

We evaluate numerically the number density for TE photons for an SCD placed in an aluminum cavity
with dimensions Lx × Ly × Lz(Lx = Ly ≡ L = 5 cm, Lz = 2L) which is bisected by an n-type semicon-
ductor diaphragm (SCD) placed at a position d from the left wall along the z-axis (the exact details of
the experimental design & detection will be presented elsewhere [9]). Electromagnetic waves in a vacuum
can be conveniently decoupled into two scalar functions (or scalar Hertz potentials as they are commonly
known) ψE and ψM instead of the usual scalar & vector potential (φ,A), e.g. see [10]. This allows us to
find solutions for each respective scalar Klein-Gordon equation:

[∇2 − 1
c2
∂2

∂t2
]ψE(x, y, z, t) = V (t)δ(z − d)ψE(x, y, z, t) (1)

where the subscript E will be used to denote the TE mode. Similarly to the work of [4, 5], we model the
SCD by a Dirac delta function, δ(z−d) with potential V (t) = 4πρe(t)∆ze2/m∗c2; where ρe is the density
of conduction electrons, ∆z is the effective thickness of the SCD for laser absorption, e is the electronic
charge and m∗ the effective mass of the conduction electrons in the SCD with m∗ = 0.07m0 (m0 being
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the electron rest mass and c, the velocity of light). Estimating a pulse laser power of around 100 J/pulse
then we find ρe∆z ∼= 1× 1013 cm−2, where we have assumed a donor density of 1018 atoms cm−3 and an
energy interval of 10 meV between the conduction band minimum and donor level (at a temperature of
1 K). Thus one obtains the following maximum and minimum values for V (t) of Vmax = 500 cm−1 and
V0 ≈ 0 cm−1.

In the following we shall assume that the period of the laser pulse is set to T = 149.07 ps, which
corresponds to a frequency of about three GHz for the TE fundamental modes: (1, 0, 1) & (0, 1, 1)
respectively. The overall shape of V (t) is assumed to asymmetric because the SCD excitation and
recombination times are expected to differ [7]. We use a profile for V (t) of the form of one Gaussian of
half-width σ1 = 4 ps going from V0 to Vmax where saturation at the maximum lasts for tsat = 7 ps with
the second Gaussian with σ2 = 11 ps going back down to V0 . We assume the pulse is offset by 30 ps.
In practice these times can be measured experimentally and for example lifetimes of the order of 10 ps
may be achievable. In order to avoid strong dissipation effects in the SCD we have also set the saturation
time to a short time tsat = 7 ps.

The scalar function ψE represents the longitudinal component of the magnetic field Bz and satisfies
Dirichlet boundary conditions (BCs) on the longitudinal boundary and Neumann BCs on the transverse
boundaries. Thus, the solution for the TE mode takes the form

ψE(x, t) =


√

2
Lx

cos
(
πmxx
Lx

)√
2
Lz

cos
(
πmyy
Ly

)
×AEm

√
1
d sin (kmz) 0 < z < d√

2
Lx

cos
(
πmxx
Lx

)√
2
Lz

cos
(
πmyy
Ly

)
×BEm

√
1

Lz−d sin (km(Lz − z)) d < z < Lz
,

(2)
where mx and my are integers (0, 1, 2, 3, . . .) with mx = my 6= 0 and m (dropping subscript z) denotes
the eigenvalues of the function km(t) in the z-direction AEm is a normalization constant satisfying

(ψn, ψn)E =
(

1− sin(2dkn)
2dkn

)
(AEn )2 +

(
sin(2kn(Lz − d))

2kn(d− Lz)
− 1
)

(BEn )2 = 1 . (3)

The SCD δ-function in the wave equation leads to a discontinuity in the spatial derivative at z = d, while
the field itself is continuous:

ψI(z = d, t) = ψII(z = Lz − d, t) (4)

∂

∂z
ψI(z = d, t)− ∂

∂z
ψII(z = Lz − d, t) = −V (t)ψ(z = d, t) (5)

From the above relations, we obtain the following continuity and eigenvalue relations for the TE mode:

AEm
BEm

=
√

d

Lz − d
sin(km(Lz − z))

sin(kmd)
sin(kmLz)

sin(km[Lz − d]) sin(kmd)
= −V (t)Lz . (6)

In this work we solve for the eigenvalues km(t) exactly.

3 Photon Number Density

The second quantization of the equations of motion using the instanteneous basis approach leads to a set of
infinitely coupled equations [11]. The TE field is quantized as ψE(x, t) =

∑
m Cm

[
amum(x, t) + a†mu

∗
m(x, t)

]
with the standard harmonic oscillator solution um(x, t) = e−iω

0
mt/(

√
2ω0

m)ψm(x, 0) for t < 0, before ir-
radiation and the instantaneous basis us(x, t ≥ 0) =

∑
m P

(s)
m (t)ψm(x, t) for t ≥ 0 while irradiated. On

substituting this expression into the wave equation (1) we obtain, after using orthonormality,

P̈ (s)
n + ω2

n(t)P (s)
n = −

∞∑
m

[(
2Ṗ (s)

m k̇m + P (s)
m k̈m

)
gA
mn + P (s)

m k̇2
mg

B
mn

]
, (7)

where

gA
mn =

δmxnx
δmyny

(ψn, ψn)

(
∂ψm
∂km

, ψn

)
gB
mn =

δmxnx
δmyny

(ψn, ψn)

(
∂2ψm
∂2km

, ψn

)
. (8)
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The gAmn and gBmn are very complicated functions and would require numerical integration in general (we
have verified numerically that gAnn = 0 in all cases). However, for special cases (such as at the midpoint
and for d = Lz/3) they can be integrated exactly to give a complicated function of kn(t). The wave
number at a given instant of time is

ω2
n(t) = k2

n(t) +
(
nxπ

Lx

)2

+
(
nyπ

Ly

)2

ωm(0) = ω0
m . (9)

and imposing continuity of un and u̇n at t = 0 leads to the following initial conditions: P (s)
m (0) = 1/

√
2ω0

m

and Ṗ
(s)
m (0) = −i

√
ω0
m/2.

As has been well discussed in the literature [12] the number density, Nm, in a particular mode m is2

Nm =
1
C2
m

∑
n

C2
n|βmn|2 C2

m = 8π/

[(
πmx

Lx

)2

+
(
πmy

Ly

)2
]

(10)

where Cm is a TE normalization [10] and βmn is a Bogolubov coefficient [12]. These can be calculated
by choosing the solution in um(t) for time t ≥ 0 as the out basis states and use the continuity conditions
valid for t < 0 for the in basis states. A straightforward calculation leads to

βmn(t) =

√
ωm(t)

2

(
P (n)
m (t)− i

ωm(t)

[
Ṗ (n)
m (t) +

∑
`

gA`m(t)P (n)
` (t)

])
, (11)

with αmn given by the complex conjugate. The choice of normalization in equation (11) is defined to
satisfy the continuity conditions, which implies αmn(0) = δmn and βmn(0) = 0. By solving equation (7)
numerically we can find βmn(t) and hence the photon number density via equation (10).

4 Results & Discussion

There are various approaches to solve the set of equations (7), e.g. [6], and what we try here is to just
solve the equations directly in MATHEMATICA. It may be worth mentioning that the larger the power
of the pulse laser the more pulses which can fit into a given carrier wave pulse. In our case we expect
the carrier wave pulse to be about 5000 ps long and thus the fundamental TE mode would contain about
33 pulses. However, due to limitations with our code we can only integrate the equations up to 1000 ps,
about 7 pulses. In the numerics we went up to a given cutoff mmax in equation (7) such that the results
converged, which we checked by verifying that the unitarity constraint,

∑
n(|αmn|2 − |βmn|2) = 1, [12]

is satisfied to a given accuracy, see Figure 1. For the midpoint this was at mmax = 17 while that for
d/Lz = 1/3 was at mmax = 10.

A further point is that due to the δmxnx
, δmyny

terms in gAmn and gBmn we only consider the coupling
of the modes in the z-direction to the (1, 0, 1) mode: with (1, 0, nz). The equations effectively become
equivalent to those of a one-dimensional massive scalar field in a cavity with Dirichlet BCs [6], where the
effective mass acts as a damping term. Thus, although there are some limitations with the code (larger
the cutoff mmax the slower the code), these results at the very least give an upper bound on the number
of photons produced for 1000 ps.

The results are presented in Figure 1 and show that the largest amount of photon production occurs
for the SCD placed at the midpoint (at least as compared to the case d/Lz = 1/3 for 1000 ps). Also our
numerics show that assuming single mode coupling leads to an over-prediction in the number of photons
produced, which is simply because we must include the damping terms coming from the effective scalar
field mass (though there are cases where the effective damping is negligible, see [6]).

We are now currently writing code in FORTRAN to deal with the limitations of the integration of
equation (7) over time, the cutoff mmax (which must be increased as we go to larger times) and the fact
that the values for the gAmn and gBmn also require numerical integration in general. However, although
the results presented here have their limitations, if the results are converging then we should be able to
partially extraploate themto larger times.

2The method of detection relies on a Rydberg atom beam which can detect individual photons of single frequency [9].
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Figure 1: Top: the number of photons produced in the (1, 0, 1) fundamental mode against time. Bottom:
the unitarity constraint

∑
n(|αmn|2 − |βmn|2) = 1. Left & right panels are for the SCD at the midpoint

and d/Lz = 1/3 respectively.
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Abstract
We study a special model able to describe child universe formation by using a sphere
of strings separating two domains of spacetime (the exterior one of the Schwarzschild
type). We show that no energy barrier for the process exists and we discuss conse-
quences and possible refinements of the model.

In general relativity the dynamics of spacetime is very rich and often we have to face situations which
seem counterintuitive if interpreted with a Newtonian mind. This is also the case when considering what
are known as child universes [8, 7]. Child universes (or vacuum bubbles [13, 14, 12, 15, 32, 26, 31, 25, 29])
are regions of spacetime that expand up to very large size without displacing the surrounding space (parent
space), which is often modelled using Schwarzschild spacetime (non-asymptotically flat generalizations
have also been considered [1, 2]). The fact that the expanding child universe does not (and, actually,
cannot) displace the parent space, is assured by the pressure gradient, which is always pointing from the
parent space toward the child universe. Nevertheless the bubble can actually have another way to expand,
thanks to the structure of the maximally extended manifold. Indeed, if wormholes can be realized, then
the child universe can make its own space on the other side of the wormhole throat (where other means,
with respect to the one in which an observer in the parent space is living): as the child universe grows, the
wormhole will be increasingly thinned, until its throat will collapse and the child universe will continue
its expansion finally disconnecting from the parent spacetime.

The above picture has been a preferred model for inflationary bubbles. Referring to the literature
[22, 23, 6, 8, 16, 18, 17] for details, often a model with three parameters is used: these are the energy
density inside the vacuum bubble, Λ, a parameter describing the matter content of the bubble surface4 ,
σp, and the total mass-energy of the parent spacetime, M . Depending on their values child universes can
be formed or not and there are two reasons why a generic choice might not give birth to a child universe.
The first one is that there can be no solution which is small enough at earlier times and big enough
at later ones, as when, for instance, there is a potential barrier separating small bubble configurations
from large ones (this is often the case). The second one is, instead, related to the geometrodynamics
of the problem, since it can happen that a wormhole is not created. To have a child universe both the
above “environmental” conditions must be favorable (although the first one can be relaxed using quantum
tunnelling under the potential barrier [16, 18, 17]: this does not substantially modify the main results
of the following discussion). It then turns out that, in the existing models of classical child universe
creation, these conditions are fulfilled only provided M exceeds a critical value Mcr. It is thus interesting
to ask if this is a necessary condition. That there may be a negative answer to this question can be
conjectured by considering appropriate limits of well known models [8], which are characterized by p = 2,
i.e. in which the surface of the bubble has a constant surface energy density σ2 and the familiar equation
of state (surface energy density) = −(pressure) holds. More precisely, we are interested in the limits

1E-mail:ansoldi@dimi.uniud.it
2E-mail:guendel@bgu.ac.il
3silon@bgu.ac.il
4The notation which we are going to use is such that in the symbol σp the subscript p remembers that the total mass

energy of the vacuum bubble surface is proportional to σpRp. For instance, in the case of pressureless dust p = 0 and σ0

is the total mass energy of the system; a matter which obeys the equation of state (surface energy density) = −(pressure),
will instead correspond to p = 2, so that the corresponding constant surface energy density will be σ2, and so on. In this
contribution we will also be interested in the case of a string gas living on the bubble surface, in which case p = 1 and the
corresponding parameter will be denoted, accordingly, as σ1.
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in which the volume energy density Λ and/or the surface energy density σ2 become very large; it has,
indeed, been proved that in this cases Mcr can be made very small [19].

We will briefly review this argument. When we consider the models parametrized by Λ, M and σ2,
all the relevant quantities depend only on the following dimensionless parameters

a =
2M

(3/Λ)1/2
, b =

12πσ2

Λ

provided we measure the radius of the child universe in units of the square root of the inverse cosmological
constant

x =
r

(3/Λ)1/2
.

In particular the potential of the effective one dimensional problem that describes the radial motion is
given by

V (x) = −a2 + 2a(b2 − 1)x3 − 4b2x4 + (1 + b2)2x6

4b2x4
.

This potential tends to −∞ when, both, x → 0+ and x → +∞, so it will have at least one maximum
point; it is, in fact, possible to show that it has exactly one maximum point, located at xmax, defined as

x3
max =

a

2
Z(b), where Z(b) =

b2 − 1 + (9 + 14b2 + 9b4)1/2

(b2 + 1)2
.

The value of the potential at the maximum, V (xmax), is given by

V (xmax) = −N(a, b)
D(a, b)

, where D(a, b) = 4bx2
max and N(a, b) = a4/3W (b)

with
W (a; b) = a2/3

[
1 + (b2 − 1)Z(b)− (b2 + 1)2Z2(b)/4

]
− 22/3b2Z4/3(b).

Since D(a, b) ≥ 0, it turns out that the condition V (xmax) ≥ 0 is satisfied if W (a; b) ≤ 0, i.e. if

a ≤ acr. = 2
[

b2Z4/3(b)
1 + (b2 − 1)Z(b) + (b2 + 1)2Z2(b)/4

]3/2

.

The value of M corresponding to acr.,

Mcr. =
(

3
Λ

)1/2 [
b2Z4/3(b)

1 + (b2 − 1)Z(b) + (b2 + 1)2Z2(b)/4

]3/2

(where we remember that b is an expression containing both Λ and σ2), is the critical mass of the system.
Following [19] we now observe that:

1. in the case in which Λ is very large (mathematically Λ→ +∞) and σ2 is kept fixed, we have b→ 0;
correspondingly Z(b)→ 2 and we see that quite generally Mcr. → 0;

2. when σ2 is very large (i.e in the limit σ2 → +∞) but Λ is kept fixed, we have b→∞; nevertheless,
again Z(b) is bounded in the limit and, actually, Z(b)→ 0 as 4b−2, so that Mcr. → const.× b−1, so
that, again, Mcr. → 0.

Thus we see that5 when the child universe is characterized by a very high volume/surface energy density
the critical mass above which the creation process can happen becomes very small. Even if we were
interested in the more elaborated tunnelling process, it turns out that the upper bound for M , close to

5It is straightforward to verify that, as expected, if both σ2 and Λ are very large, the above conclusion is not altered;
indeed, when σ2 → +∞ and Λ → +∞, if one of the two parameters scales faster than the other, we trivially recover
the already discussed cases. Otherwise, i.e. when they scale in the same way σ2 ∼ Λ, b is a constant as Z(b), so that
Mcr. → const.× Λ−1/2 → 0.
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which a limited amount of tunnelling is required, becomes smaller and smaller. This seems to indicate
that the presence of a critical mass is not a necessary feature in the child universe creation process.

To support this conjecture, recently, another minimal realization was found [4]. This new model
corresponds to a situation in which Λ = 0 and p = 1, so that σ1 describes a gas of strings [11, 27, 3, 10].
In this case, if σ1 > 2/G (G is the gravitational constant) child universes can be created for arbitrary M ;
in other words, if the string content of the surface of the child universe is transplanckian, creation can
again happen at an arbitrary small value of M , i.e. the critical mass threshold is completely absent. As an
additional result, this model shows that creation can take place out of almost empty space, since the only
matter-energy content of the spacetime is the string gas on the surface of the bubble which is the newly
formed child universe (the exterior Schwarzschild and interior Minkowski regions are, obviously, empty).
It appears that this essential model can be generalized without affecting the conclusions. In particular
it is possible i) to add a non zero vacuum energy Λ in the interior of the child universe and/or ii) to
also add a standard surface energy density σ2 (as required by conventional field theoretical models of the
child universe formation process) and/or iii) to consider the effect of magnetic monopoles in appropriate
configurations [20, 28, 33, 9, 30]: in all these cases the possibility of creating the child universe without
the existence of a critical mass threshold, or with a critical mass threshold Mcr. which can be arbitrarily
small as the energy density of the child universe is increased, remains [5].

The crucial point of the above discussion is that it supports the idea that child universe creation
is more likely to happen when the energy density of the child universe becomes bigger and bigger: in
field theoretical realizations of child universe creation, the energy density in spacetime is related to the
vacuum expectation value of a scalar field; the higher its energy density the more excited the state (false
vacuum). In this sense child universes with a higher energy density are more excited than child universes
with a lower energy density and following our discussion above, it seems that the creation of more and
more excited child universes is more and more likely. In this sense, the above results support the idea
that transplanckian child universe creation can be unsuppressed.

Since the classical process might be affected by the presence of singularities, it may be interesting to
consider what happens if we would like to try to avoid them by using quantum tunnelling. In this case we
welcome the existence of a potential barrier, through which we may be able to tunnel from a nonsingular
bounded solution into an infinitely expanding bounce one, thereby allowing for a late evolution of the
vacuum bubble that resembles the evolution of the present universe while starting from a less troubled
initial configuration. We thus now that, in this case, a mass threshold Mcr. will be, indeed, present. We
also know that to have a potential barrier, we will need to have 0 < M < Mcr.. On the other hand as
the energy density of the newly formed child universe becomes bigger and bigger we also know that Mcr.

becomes smaller and smaller. This will likely make the value of the action for the tunnelling trajectory
also smaller, i.e. give a higher probability for the tunnelling process to actually take place. When the
tunnelling occurs in the ambient spacetime a black hole is left, with mass M . Since this mass must be
smaller than the critical mass, we see that the more the child universe is excited, the smaller the mass
of the formed black hole will be. Thus, always from the point of view of the ambient spacetime, smaller
mass black holes, which more rapidly evaporate, are more likely to be associated to the bay universe
formation process, which seems highly consistent from the point of view of the ambient spacetime.

In the above picture, it is suggestive to consider child universes with high energy density as models
for ultraviolet excitations in quantum gravity. In this sense, the higher the energy density of such an
excitation, the higher the probability that it will disappear from our universe and be realized as a child
universe, leaving a small mass, rapidly evaporating black hole behind. In this sense, unsuppressed child
universe creation might, in fact, significantly soften ultraviolet problems in quantum gravity, since super
heavy states arising in the spectrum of the theory or in the interaction picture could be removed, being
realized as causally disconnected child universes. The evaporating black hole will radiate back in the
ambient space a flux of renormalized energy, while the child universe evolves independently and causally
disconnected (at least at the classical level). In this sense child universe might stabilize our spacetime
against ultraviolet catastrophe. The same process will, of course, also be relevant in connection with the
vacuum of the theory: in an unsuppressed production framework condensation processes are likely to occur
and, maybe, help to address the cosmological constant problem. Another potentially relevant application
is in connection with unitarity and information loss [21], since states “eaten up” in the unsuppressed
creation process, would then evolve in a region of spacetime causally disconnected from the one in which

3
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they were before. Last, but not least, it could be interesting to analyze various aspects of the child universe
formation process in the framework of analog models of gravity [24], where an experimental contact with
the signature of unsuppressed child universe creation might be found and provide an invaluable guidance
in identifying this process in (and/or at the very beginning of) our universe. Some of these ideas will be
presented elsewhere [5].
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Abstract
The role of topology change in a fundamental theory of quantum gravity is still a mat-

ter of debate. However, when regarding string theory as two-dimensional quantum

gravity, topological fluctuations are essential. Here we present a third quantization

of two-dimensional surfaces based on the method of causal dynamical triangulation

(CDT). Formally, our construction is similar to the c = 0 non-critical string field

theory developed by Ishibashi, Kawai and others, but physically it is quite distinct.

Unlike in non-critical string theory the topology change of spatial slices is well con-

trolled and regulated by Newton’s constant.

1 Causal quantum gravity, topology change and Euclidean quan-

tum gravity

Why do we study two-dimensional quantum gravity? Firstly, one can test quantisation procedures for
gravity in a simple setting. Secondly, it has long been known that string theory can be viewed as two-
dimensional quantum gravity coupled to matter fields. This particular view of string theory spawned
the development of the dynamical triangulation (DT) approach to quantum gravity. This method is
particularly powerful in two dimensions, since exact nonperturbative solutions can be obtained by loop
equations or matrix models.

In the nineties the DT approach was invoked in an attempt to nonperturbatively define four-dimensional
quantum gravity through computer simulations [1]. The results were not satisfactory however since no
suitable semiclassical limit was found.

To improve this state of affairs the method of causal dynamical triangulation (CDT) was developed
[2]. Contrary to the aforementioned applications of DT, CDT incorporates some essential Lorentzian
features. Recent computer simulations indicate that in four dimensions CDT does lead to a sensible
classical limit [3], unlike in earlier attempts employing DT.

To better understand the relation between the Euclidean (DT) and the causal (CDT) approach we
study a generalisation of the 2d CDT model [4, 5]. Let us start with a discussion of the original 2d CDT
model as introduced in [2].

A natural amplitude in CDT is the so-called proper-time propagator. This amplitude is computed
by a functional integral over all “causal” geometries with topology S1 × [0, 1]. It computes the transition
amplitude between an initial and a final boundary, where all points on the initial boundary are separated a
geodesic distance t from the final boundary. Here the term causal geometry refers to Euclidean geometries
that can be obtained from Lorentzian geometries through a Wick rotation defined in the discrete formalism
of CDT. This restriction requires spatial sections of the geometries to be a single S1 and not change as
a function of time. Formally, the proper-time propagator is given by the following equation

Gλ(x, y; t) =

∫

D[gµν ] e−S[g
µν

], S[gµν ] = λ

∫

d2ξ
√

det gµν(ξ) + x

∮

dl1 + y

∮

dl2, (1)

where λ is the cosmological constant, x and y are the boundary cosmological constants and gµν is the
causal world sheet metric. By taking the continuum limit of a discrete iteration equation it can be shown
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that the proper-time propagator satisfies the equation

∂

∂t
Gλ(x, y; t) = − ∂

∂x

[

(x2 − λ)Gλ(x, y; t)
]

, (2)

which can be solved in a straightforward manner to obtain Gλ(x, y; t). For some purposes it can be more
convenient to study correlators Gλ(l1, l2; t) where the lengths of the boundaries are fixed rather than the
boundary cosmological constants. Since the lengths of the boundaries are conjugate to the corresponding
boundary cosmological constants, the different propagators are related by Laplace transformations,

Gλ(x, y; t) =

∫ ∞

0

dl2

∫ ∞

0

dl1 Gλ(l1, l2; t) e−xl1−yl2 . (3)

Strictly speaking it is not possible to define a disc function for a Lorentzian theory of two-dimensional
quantum gravity, assuming that the disc boundary represents an instance of constant time. The reason
is that it is impossible to cover the disc with an everywhere nondegenerate Lorentzian metric. This is
however possible if one excises one point. Consequently one can define the CDT disc function by the
ensemble of punctured discs which is given by

Wλ(x) =

∫ ∞

0

dt Gλ(x, l2 = 0; t) =
1

x +
√

λ
. (4)

Starting from the discrete setup one can now also include the possibility of the spatial topology to change
as a function of proper time t keeping the space-time topology fixed to be S1 × [0, 1]. In [2] it was shown
that the corresponding propagator is given by the partial differential equation

aε ∂

∂t
Gλ,g(x, y; t) = − ∂

∂x

[(

a(x2 − λ) + 2g aη−1Wλ,g(x)
)

Gλ,g(x, y; t)
]

. (5)

Here a is a ultraviolet cutoff, η and ε are the scaling exponents of the regularized disc function and time
respectively, and g is a coupling constant assigned to each splitting of the spatial universe. In [2] it was
shown that if the coupling constant does not scale, there are only two possible scaling relations:

(i) Wreg −−−→
a→0

aη Wλ(x), η < 0,

treg −−−→
a→0

t/aε, ε = 1,

(ii) Wreg −−−→
a→0

const. + aη Wλ(x), η = 3/2

treg −−−→
a→0

t/aε, ε = 1/2.

The first possibility (i) corresponds to the scaling of causal quantum gravity for η = −1. Inserting this
scaling relation into (5) implies that g must be set to zero and one recovers (2) in which no spatial
topology changes are allowed.

For the scaling (ii) one recovers 2d Euclidean quantum gravity as defined through Liouville theory or
matrix models. In this case the kinetic term is subdominant and the dynamics is purely governed by the
splitting of spatial universes, i.e.

∂

∂t
Ge

λ(x, y; t) = − ∂

∂x

[

2g W e
λ,g(x)Ge

λ(x, y; t)
]

. (6)

It is possible to show that in this continuum limit there is a baby universe at every point in the quantum
geometry. One can see this by contracting the final boundary of the propagator. After contraction the
propagator reduces to the disc function with a marked point that can be located anywhere in the bulk,
i.e.

∂W e
λ,g(x)

∂λ
=

∫ ∞

0

dt Ge
λ,g(x, l2 = 0; t). (7)

Inserting this into (6) and absorbing the dimensionless factor 2g in the cosmological constant, one obtains
the disc function of 2d Euclidean quantum gravity

W e
λ(x) =

(

x − 1

2

√
λ

) √

x +
√

λ. (8)

2

262



2 Taming the topology changes

In the previous section we showed how starting from 2d CDT one can obtain 2d Euclidean quantum
gravity when allowing for spatial topology changes. Under the scaling relations (i) and (ii) discussed
above, there was only the possibility of either zero or infinite numbers of spatial topology changes.
However, in [4] it was shown that there exists a unique renormalization of the coupling constant that
leads to a well defined double scaling limit

g = gsa
3. (9)

In this scaling limit spatial topology changes are included in a controlled manner. The partial differential
equation for the propagator then reads

∂

∂t
Gλ,g

s

(x, y; t) = − ∂

∂x

[(

(x2 − λ) + 2gs Wλ,g
s

(x)
)

Gλ,g
s

(x, y; t)
]

. (10)

Interestingly, the model described by (10) can be solved to all orders in the coupling constant [4]. In
particular, one obtains for the disc function [4] that

Wλ,g
s

(x) =
−(x2 − λ) + (x − α)

√

(x + α)2 − 2gs/α

2 gs
, α = u

√
λ, u3 − u +

gs

λ3/2
= 0. (11)

For gs = 0 one recovers the disc function of the pure CDT model without any spatial topology changes,
however, as shown in [4], it is not possible to obtain the disc function of Euclidean quantum gravity as
an analytic continuation in gs.

It is interesting to give a gravitational interpretation to the coupling constant gs. As was mentioned
above, the disc function of a Lorentzian theory of 2d quantum gravity needs one point of the manifold to
be excised. Since each baby universe that splits off is essentially a disc function, a surface with N baby
universes contains N punctures. Because of the Gauss-Bonnet theorem each puncture is associated with
a factor of one inverse Newton constant 1/GN . Hence, we can make the identification g0(a)=e−1/G

N
(a),

where GN (a) denotes the “bare” gravitational coupling constant. One can introduce a renormalized

gravitational coupling constant by

1

Gren
N

=
1

GN (a)
+

3

2
ln λa2, (12)

which leads to the identification e1/Gren

N = gs/λ3/2. The corresponding scaling limit of 2d Euclidean
quantum gravity reads

1

Gren
N

=
1

GN (a)
+

5

4
ln λa2. (13)

3 A string field theory for causal and Euclidean quantum grav-

ity

In string field theories (SFT) one defines operators that can create and annihilate strings. From the
2d quantum gravity point of view we thus have a third quantization of gravity, where one-dimensional
universes can be created and annihilated. Such a formalism was developed in [6] for non-critical strings,
i.e. 2d Euclidean quantum gravity and recently in [5] as a third quantization for CDT reproducing the
results of the previous section.

The starting point is the assumption of a vacuum from which universes can be created. We denote
this state by |0〉 and define creation and annihilation operators:

[Ψ(l), Ψ†(l′)] = lδ(l − l′), Ψ(l)|0〉 = 〈0|Ψ†(l) = 0. (14)

The Hamiltonian for the CDT SFT is given by [5]

Ĥ = Ĥ0 − gs

∫

dl1

∫

dl2Ψ
†(l1)Ψ

†(l2)Ψ(l1 + l2)

− αgs

∫

dl1

∫

dl2Ψ
†(l1 + l2)Ψ(l2)Ψ(l1) −

∫

dl

l
ρ(l)Ψ(l), (15)
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The first term is the “second-quantized” Hamiltonian of the pure CDT model,

Ĥ0 =

∫

dl

l
Ψ†(l)H0(l)Ψ(l), H0(l) = −l

∂2

∂l2
+ λl. (16)

The third term corresponds to the splitting of strings with the assigned coupling gs and the fourth term
to the joining of strings. The last term, the tadpole, is responsible for the termination of a string into the
vacuum and is simply given by ρ(l) = δ(l), meaning that only strings of length zero can be terminated.

The disc function of the model can be written in the string field theory language as follows,

Wλ,g
s

(l) = lim
t→∞

Wλ,g
s

(l, t) = lim
t→∞

〈0| e−tĤΨ†(l)|0〉. (17)

In SFT one derives the amplitudes by solving the so-called Dyson-Schwinger (DS) equations,

0 = lim
t→∞

∂

∂t
Wλ,g

s

(l, t) = lim
t→∞

〈0|e−tĤ [Ĥ, Ψ†(l)]|0〉. (18)

These equations express the fact that the solution should be slowly varying in time for t → ∞. In the
limit where the joining of strings is forbidden (α → 0), the DS equation (18) leads to a closed equation
for the disc function,

∂

∂x

(

(x2 − λ)Wλ,g
s

(x) + gsW
2
λ,g

s

(x)
)

= 1. (19)

The solution of equation (19) is again given by (11). This shows that the diagrammatic techniques of
[4] are equivalent to the string field theory techniques of [5]. For finite α the DS equations become
considerably more complicated as they cannot be written in closed form. To evaluate the higher-genus
disc functions, say, one also requires knowledge of the higher-loop correlators.

4 Discussion

In this contribution we recalled that the loop-loop correlator used in c = 0 non-critical string theory can
be obtained by extending the formalism of CDT by allowing the topology of spatial slices to fluctuate. In
the non-critical string theory these spatial topology fluctuations dominate the dynamics completely. It
was seen that by introducing a coupling constant and a suitable double-scaling limit one can obtain a 2d
quantum gravity theory where the changes of spatial topology are well controlled [4]. The amplitudes of
this theory have been computed to all orders in the coupling constant. Evaluation can be done both by
diagrammatic techniques [4] or by a string field theory [5]. Within the string field theory it is in principle
possible to compute diagrams of arbitrary space-time topology. When introducing the merging process
of strings in the Hamiltonian, one can iteratively solve the corresponding Dyson-Schwinger equations.
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Abstract
We calculate the black hole entropy in loop quantum gravity considering the general
area spectrum. Although its spectrum has a complex expression, we obtained that
black hole entropy is proportional to its area as in previous works which used the
simplified area formula. This confirms the idea that black hole entropy is obtained
by counting the degrees of freedom of the spin-network.

1 Introduction

Black hole thermodynamics is one of the most exciting arenas for those investigating quantum gravity.
Recently, the origin of black hole entropy is interpreted by Loop Quantum Gravity(LQG), which has
background independent formulation. The spin-network has played a key role in the development of this
theory [1]. Basic ingredients of the spin-network are edges. Edges are expressed by lines lebeled by j = 0,
1/2, 1, 3/2, . . . reflecting the SU(2) nature of the gauge group. A vertex is an intersection between edges.
For three edges having spin j1, j2, and j3 that merges at an arbitrary vertex, we have

j1 + j2 + j3 ∈ N , (1)
ji ≤ jj + jk, (i, j, k different from each other.) (2)

to garantee the gauge invariance of the spin-network.
Using this formalism, general expressions for the spectrum of the area and the volume operators can

be derived [2, 3]. For example, the area spectrum A is

A = 4πγ
∑ √

2ju
i (ju

i + 1) + 2jd
i (jd

i + 1) − jt
i (j

t
i + 1) , (3)

where γ is the Immirzi parameter related to an ambiguity in the choice of canonically conjugate variables
[4]. The sum is added up all intersections between a surface and edges. Here, the indices u, d, and t
means edges above, below, and tangential to the surface, respectively (We can determine which side is
above or below arbitrarily).

In [5], it was proposed that black hole entropy is obtained by counting the number of freedom in j
when we fix the horizon area where simplified area formula

A = 8πγ
∑ √

ji(ji + 1) , (4)

is used. This is obtained using the assumption that there is no edges tangential to the horizon, i.e.,
jt
i = 0. Then, by using (2), we obtain ju

i = jd
i := ji. This idea has been elaborated in [6] (ABCK

framework) which is explained in Sec.2. This takes into account the quantum geometrical states based
on the isolated horizon proposal. In concrete, [6] divides the Hilbert space H into the isolated horizon
Hilbert space HIH and the Hilbert space outside the horizon HΣ and write H as the direct product as
H = HIH ⊗HΣ. They count the freedom related to HIH where (4) is also used. The standard procedure
is to impose the Bekenstein-Hawking entropy-area law for large black holes in order to fix the value of γ.

The value of γ obtained in [6] has been corrected in [7, 8] which gives γ = 0.237 · · ·. It is also
discused that j should also be an independent freedom since it makes the area eigenvalue [9–12]. It is
also important that whether or not using (4) is verified in the ABCK framework. Thiemann in [13] used

1E-mail:tomo@gravity.phys.waseda.ac.jp
2E-mail:tamaki@gravity.phys.waseda.ac.jp
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the boundary condition that there is no other side of the horizon, i.e., jd
i = 0. Then, by using (2), we

obtain ju
i = jt

i := ji which gives

A = 4πγ
∑ √

ji(ji + 1) . (5)

Based on this proposal, the number counting has been performed in [14] which gives γ = 0.323 · · ·.
However, the fundamental problem is that we should not but use classical conditions to divide H

into HIH and HΣ. It is natural that we describe all the space-time by only using the spin-network. In
this case, we should consider (3) which is also pointed out in [15]. Then, it is quite difficult to take into
account the condition as a black hole. Is there anything we can do ?

Fortunately, the value of γ in [6] is qualitatively same as that infered in [5] which count the j freedom
without taking into acconut the black hole condition. For this reason, counting the j freedom using
(3) would be meaningful. In particular, it is important to clarify whether or not black hole entropy is
proportional to its area. Otherwise, we might doubt the idea that black hole entropy is obtained by
counting the degrees of freedom of the spin-network.

This paper is organized as follows. In section 2, we summarize and reconsider the framework [6] that
is necessary in counting the number of states of black holes. In section 3, we determine the number of
states. In section 4, we summarize our results.

2 ABCK framework

We briefly introduce and consider the ABCK framework in [6]. One usually considers the event horizon,
which is determined after the complete evolution of spacetime, when one describes black hole thermody-
namics. Thus, it would be too restrictive to establish a thermodynamical situation in which the system is
isolated. To explore this idea appropriately, the isolated horizon(IH) is defined in the ABCK framework.
The main difficulty in defining IH is to establish the surface gravity or black hole thermodynamics when,
in general, there is no global Killing field. For details, see [16]. Because of the requirement at IH, we can
reduce the SU(2) connection to the U(1) connection. Using the curvature Fab of the U(1) connection,
we can express the boundary condition between IH and the bulk as

Fab = −2πγ

A
Σi

abri, (6)

where A is the area of IH. Σi
ab is related to a triad density Ea

i as

Ea
i = γηabcΣbci, (7)

where ηabc is the Levi-Civita 3-form density.
∑i

ab
ri is its pull back to IH and ri is unit normal. (6)

plays an important role in determining the condition (iv) below.
Usually, we consider the Hilbert space using the spin-network in LQG. When there is IH, we decompose

the Hilbert space as the tensor product of that in IH HIH and that in the bulk HΣ, i.e., H = HIH ⊗HΣ.
First, we consider HΣ. Using edges having spin (j1, j2, · · · , jn) which pierce IH, we can write HΣ as

the orthogonal sum

HΣ =
⊗
ji,mi

Hji,mi

Σ , (8)

where mi takes the value −ji,−ji + 1, · · · , ji − 1, ji. This is related to the flux operator eigenvalue
emi

s′ that is normal to IH (s′ is the part of IH that has only one intersection between the edge with spin
ji.)

emi

s′ = 8πγmi. (9)
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The area operator eigenvalue Aj is obtained by operating the area operator Â to the IH wave function
ΨIH and that of the bulk ΨΣ as ÂΨIHΨΣ = AjΨIHΨΣ. Then, it is natural to adopt (5). In this case,
Aj should satisfy

(i) Aj = 4πγΣi

√
ji(jj + 1) ≤ A. (10)

Here, though we consider A not an interval [A − δA,A + δA], this does not affect the final results.
Because of the expression (19), S := lnW := ln(dN

dA δA) is equal to ln N for A → ∞.
Next, we consider HIH . We have, in general, difficulty in constructing HIH . However, if we fix the

horizon area A as

A = 4πγk, (11)

where k is a natural number, which is called the level of the Chern-Simons theory, we can construct HIH

using a function which is invariant under the diffeomorphism and the Zk gauge transformation, i.e., a
‘quantized’ U(1) gauge transformation. In addition to this condition, it is required that

(ii) we should fix an ordering(j1, j2, · · · , jn). (12)

At IH, we do not consider the scalar constraint, since the lapse function disappears. As a result, HIH

is written as an orthogonal sum similar to (8) by eigenstates Ψb of the holonomy operator ĥi, i.e.,

ĥiΨb = e
2πibi

k Ψb. (13)

From the quantum Gauss-Bonnet theorem that guarantees that IH is S2, we require

(iii)
n∑

i=1

bi = 0 mod k. (14)

Finally, we should consider the quantization of the boundary condition between IH and the bulk (6).
Since only the exponential version exp(iF̂ ) is welldefined on HIH , we consider

(
exp(iF̂ ) ⊗ 1

)
Ψ =

(
1 ⊗ exp(−i

2πγ

A
Σ · r)

)
Ψ, (15)

where Ψ expresses the state in HIH ⊗ HΣ. From this, we have

(iv) bi = −2mi mod k. (16)

All we need to consider in number counting is (i)–(iv).

3 Consideration of the general area spectrum

For the case we use (4) or (5), it is known that the only condition which affects the number of freedom
is (i) if we take the large area limit A → ∞. Here, we assume that this holds even if we use (3). Then
conditon (i) is replaced by (i)’.

(i)′ Aj = 4πγ
∑ √

2ju
i (ju

i + 1) + 2jd
i (jd

i + 1) − jt
i (j

t
i + 1) ≤ A. (17)

We denote the number of states about j as N(A). Then, we obtain the recursion relation

N(A) =
∞∑

n=1

[
n∑

s=1

n∑
t=s

2(n + 1)N(A − x) +
0∑

s=0

n∑
t=0

(n + 1)N(A − x)

]
, (18)
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where x in this formula is 1
2

√
2n + n2 + s2 − t(t + 1). If we assume the relation

N(A) = Ce
AγM
4γ , (19)

where C is a constant, we obtain

1 =
∞∑

n=1

[
n∑

s=1

n∑
t=s

2(n + 1) exp(−2πγMx) +
0∑

s=0

n∑
t=0

(n + 1) exp(−2πγMx)

]
(20)

by plugging (19) into (18) and taking the limit A → ∞. Then we require S = A/4, we have γ = γM =
0.7847 · · · which is larger compared with that of previous work [7–14].

4 Conclusion

In this paper, we considered the general area formula to derive the number of states of black holes. It
is surprising that we obtained the black hole entropy proportional to the horizon area even in this case.
This suggests the validity that black hole entropy is obtained by counting the degrees of freedom of the
spin-network. By taking into account the horizon condition should be elaborated in future.
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Abstract
We study the stability of 5-dimensional Myers-Perry black holes with equal angular

momenta. Using the symmetry of these black hole spacetimes, U(2), we derive master

equations for a part of the metric perturbations relevant to the stability. The stability

is shown for these modes. Our result gives a strong evidence for the stability of Myers-

Perry black holes.

1 Introduction

It is important to study the stability of Myers-Perry black holes [1], which are the higher dimensional
generalization of Kerr black holes. The stability of higher dimensional Schwarzschild black holes has been
proved in [2, 3]. In the case of rotating black holes, the stability analysis becomes di�cult because of
the di�culty of separation of variables in perturbation equations. However, it is possible to analyze the
stability of Myers-Perry black holes with equal angular momenta. In the case of odd dimensions higher
than �ve, equations for the special modes can be reduced to single ordinary di�erential equations [4].
There, the stability of Myers-Perry black holes for these modes is shown. In �ve dimensions, the stability
of Myers-Perry black holes for the most symmetric mode has been shown [5]. In our previous work, we
have developed a method to analyze the stability of �ve dimensional Myers-Perry black holes with equal
angular momenta by focusing on the spacetime symmetry U(2) [6]. The same method has been proved
to be useful for the stability analysis of other U(2) symmetric black holes [7]. In this paper, making use
of this formalism, we will study the stability of 5-dimensional Myers-Perry black holes with equal angular
momenta.

2 Background spacetime and its perturbations

The metric of 5-dimensional Myers-Perry black hole with equal angular momenta is given by

ds2 = −dt2 +
dr2

G(r)
+

r2

4
{(σ1)2 + (σ2)2 + (σ3)2} +

2µ

r2

(
dt +

a

2
σ3

)2

, (1)

G(r) = 1 − 2µ

r2
+

2µa2

r4
. (2)

Here, we have de�ned the invariant forms σa (a = 1, 2, 3) of SU(2) as

σ1 = − sinψdθ + cos ψ sin θdφ , σ2 = cos ψdθ + sin ψ sin θdφ , σ3 = dψ + cos θdφ , (3)

where 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π. It is easy to check the relation dσa = 1/2εabcσb ∧σc. Because
σa are invariant under SU(2) group, the spacetime (1) has SU(2) symmetry. From the metric (1), we
can also read o� the additional U(1) symmetry, which keeps the part of the metric, σ2

1 + σ2
2 invariant.

Thus, the symmetry of 5-dimensional degenerate Myers-Perry black hole becomes SU(2)×U(1) ' U(2).
The horizon r = r+ is located at G(r+) = 0 and it is given by r2

+ = µ +
√

µ(µ − 2a2). There exists
the horizon for the parameter range

a2 ≤ µ/2 ≡ a2
max

. (4)
1E-mail:murata@tap.scphys.kyoto-u.ac.jp
2E-mail:jiro@tap.scphys.kyoto-u.ac.jp
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The angular velocity of horizon is given by ΩH = a/r2
+.

To study the stability of this spacetime, we perturb the metric as gµν → gµν + hµν . From Einstein
equation, we get the partial di�erential equations for metric perturbation hµν(t, r, θ, φ, ψ). This partial
di�erential equation can be reduced to ordinary di�erential equations by mode decomposition. Because
the Myers-Perry spacetime (1) has the U(2) symmetry, the perturbation equation can be separated by
irreducible representations of U(2). The irreducible representations are called Wigner functions denoted
by DJ

KM (θ, φ, ψ), where J,K,M are integers satisfying |K|, |M | ≤ J . They are de�ned by

L2DJ
KM = J(J + 1)DJ

KM , LzD
J
KM = MDJ

KM , WDJ
KM = KDJ

KM , (5)

where Lα (α = x, y, z) and W are generators of SU(2) and U(1) respectively. We can also construct
vector and tensor types of irreducible representations of U(2). Those are denoted as DJKM

i and DJKM
ij ,

where i = θ, φ, ψ. DJKM
i is de�ned for |K| ≤ J +1, |M | ≤ J and DJKM

ij is de�ned for |K| ≤ J +2, |M | ≤
J . Making use of these mode functions, we can separate the perturbation equations and get ordinary
di�erential equations labelled by J,K,M . Because of SU(2) × U(1) symmetry, each eigen mode is
decoupled from others. In general, there are many physical degrees of freedom for each (J,K,M).
However, we see that only one physical degree of freedom is contained in (J = 0,M = 0,K = 0, 1) and
(J,M,K = J + 2) modes, respectively. We will study the stability of the Myers-Perry black holes for
these modes.

3 Stability Analysis

3.1 (J = 0,M = 0, K = 0) mode

First, we consider the (J = 0,M = 0,K = 0) mode. The stability for this mode has been already
shown in [5]. However, we will show the stability again using our formalism. For this mode, we get the
Schrödinger type master equation,

−d2Φ0

dr2
∗

+ V0(r)Φ0 = ω2Φ0 , dr∗ =
(r4 + 2µa2)1/4

r2G(r)
dr , (6)

where

V0(r) =
G(r)

4(3r4 + 2µa2)2(r4 + 2µa2)3r2

[
315r20 + 162µr18 + 2430µa2r16 + 1392µ2a2r14 + 5400µ2a4r12

+ 5808µ3a4r10 + 2608µ3a6r8 + 6080µ4a6r6 − 2064µ4a8r4 + 32µ5a8r2 − 160µ5a10
]

, (7)

The typical form of potential is shown in Figure.1. We have veri�ed the positivity of the potential. This
proves the stability of Myers-Perry black hole for this mode.

3.2 (J = 0,M = 0, K = 1) and (J,M,K = J + 2) modes

In this subsection, we consider (J = 0,M = 0,K = 1) and (J,M,K = J + 2) modes. The master
equations for these modes can be written as

−d2ΦK

dr2
∗

+ VK(r)ΦK = [ω − 2KΩK(r)]2ΦK , (8)

where K = 1, J + 2. Here, ΩK(r) and VK(r) are de�ned by

Ω1(r) =
2µa

r4 + 2µa2

(
1 − a2r4(5r4 + 6µa2)G(r)

4(r10 + 2µa2r6 + µ2a6)

)
,

ΩJ+2(r) =
2µa

r4 + 2µa2
.

(9)
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Figure 1: Typical pro�les for the potential V0(r) are depicted. We used the normalization µ = 1. From the
bottom to the top, each curve represents the potential for a/amax = 0.1, 0.8, 0.99. We see the positivity
of these potentials.

The potential functions are given by

V1(r) =
G(r)

4r2(r4 + 2µa2)3(r10 + 2µa2r6 + µ2a6)2
[35r32 + 18µr30 + 310µa2r28 + 160µ2a2r26

+ 1192µ2a4r24 + 2µ2a4(152µ − 75a2)r22 + 3068µ3a6r20 − 64µ3a6(2µ + 15a2)r18

+ 5208µ4a8r16 − 16µ4a8(30µ + 133a2)r14 + 3µ4a10(1424µ + 5a2)r12 − 1654µ5a12r10

+ 2µ5a12(432µ + 25a2)r8 − 168µ6a14r6 + 68µ6a16r4 − 24µ7a16r2 + 56µ7a18] ,

VJ+2(r) =
G(r)

4r2(r4 + 2µa2)3
[(4J + 7)(4J + 5)r12 + 18µr10 + 2µa2(16J2 + 32J + 5)r8

− 40µ2a2r6 − 4µ2a4(16J + 35)r4 + 8µ3a4r2 − 40µ3a6] .

(10)

For K = 1 and K = J + 2, Eq. (8) gives a master equation for (J = 0,M = 0, K = 1) mode and
(J,M,K = J + 2) modes, respectively.

Because the master equation (8) is not a Schrödinger form, we cannot show the stability of black
holes for these modes from the potential form of VK . Therefore, we have to resort to the numerical
analysis. We use the strategy adopted to show the stability of Kerr black holes [4, 8]. We start from the
assumption that this Myers-Perry black holes are stable for su�ciently small rotation parameter a. This
is a reasonable assumption because higher dimensional Schwarzschild black holes are stable [2]. From
this assumption, there are only solutions with Imω < 0 for small a, i.e., quasinormal modes. However,
if there is an instability for large a, the imaginary part of some mode becomes positive, Imω > 0, as
a becomes large. It means that one of quasinormal modes must cross the real axis in the complex ω
plane for some a. Therefore, if the black hole is unstable for large a, there is some critical value a = acrit
for which there exists a mode with real ω whose boundary condition is the same as that of quasinormal
modes. We will search for such a value acrit numerically.

For the purpose of searching for acrit, we assume that ω is real. The boundary condition we adopt is

ΦK → e−i(ω−2KΩH)r∗ (r → r+) , ΦK → Zoute
iωr∗ + Zine

−iωr∗ (r → ∞) . (11)

From the constancy of Wronskian for ΦK and Zin = 0, we can get the inequality,

0 ≤ ω ≤ 2KΩH . (12)

This is the region we should search for.
We integrate the master equation (8) from r = r+ to r = ∞ numerically. We adopt ingoing boundary

condition at the horizon and, at r = ∞, we check the ratio of amplitudes of outgoing mode and ingoing
mode, Z(ω, a) = |Zout|2/|Zin|2. This ratio can be calculated for each ω and a in the domain de�ned by
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Eq. (4) and (12). If Zin = 0 at r = ∞ for some ω and a, the function Z(ω, a) will diverge. It is a signal
of instability. We plot Zmax(a) in Figure. 2, which is a maximum value of Z(ω, a) for �xed a. From these
�gures, we see that Zmax(a) does not diverge for a2 < µ/2. Therefore, we conclude that Myers-Perry
black holes are stable for these modes.
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Figure 2: Functions Zmax(a) are plotted. The left and right �gures are for (J = 0,M = 0,K = 1) mode
and (J,M,K = J + 2) modes, respectively. In the right �gure, we have plotted Zmax for J = 0, 1, 2 from
the top to the bottom. We see that these do not diverge for a < amax.

4 Conclusion

We have studied the stability of 5-dimensional Myers-Perry black holes with equal angular momenta.
We have obtained the master equations for the relevant modes to the stability analysis and shown the
stability of Myers-Perry black holes for these modes. Strictly speaking, we have not shown the stability
of Myers-Perry black holes completely, because we have analyzed the restricted modes. Empirically,
however, the instability appears in the lower modes. For example, the Gregory-La�amme instability
appears in a s-wave. Therefore, our result for (J = 0,M = 0,K = 0, 1, 2) modes gives a strong evidence
for the stability of Myers-Perry black holes.

This work is supported in part by JSPS Grant-in-Aid for Scienti�c Research, No.193715 (K.M.), No.
18540262 (J.S.) and also by the 21COE program �Center for Diversity and Universality in Physics,� Kyoto
University.
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Abstract
We construct new supersymmetric black ring solutions on the Eguchi-Hanson base
space as solutions of five-dimensional minimal supergravity. The solutions have the
same two angular momentum components and the asymptotic structure on timeslices
is asymptotically locally Euclidean. The S1-direction of the black ring is along the
equator on a S2-bolt on the Eguchi-Hanson space. We also investigate the limit to a
black hole, which describes the BMPV black hole with the topology of the lens space
L(2; 1) = S3/�2.

1 Introduction and Conclutions

A lot of physicists are also specially attracted with black hole solutions with asymptotically Euclidean
time slices since they would be a good idealization in the situation such that we can ignore the tension
of the brane and the curvature radius of the bulk, or the size of extra dimensions. However, from
more realistic view point, we need not impose the asymptotic Euclidean condition toward the extra
dimensions. In fact, higher dimensional black holes admit a variety of asymptotic structures: Kaluza-
Klein black hole solutions [1, 2] have the spatial infinity with compact extra dimensions; Black hole
solutions on the Eguchi-Hanson space [3] have the spatial infinity of topologically various lens spaces
L(2n; 1) = S3/Z2n (n:natural number). Since the latter black hole spacetimes are asymptotically locally
Euclidean, we cannot locally distinguish these asymptotic structure. In spacetimes with such asymptotic
structures, furthermore, black holes have the structures considerably different from the black hole with
the asymptotically Euclidean structure. For instance, the Kaluza-Klein black holes [1, 2] and the black
holes on the Eguchi-Hanson space [3] can have the horizon of lens spaces in addition to S3.

As solutions in five-dimensional Einstein-Maxwell theory with a positive cosmological constant, black
hole solutions on Taub-NUT space [4] and Eguchi-Hason space [5] were also constructed by the present
authors. These multi-black hole solutions describe the non-trivial coalescence of black holes, which is
brought about by the non-trivial asymptotic structure. In the reference [5], we investigated how the
coalescence of five-dimensional two black holes depends on the asymptotic structure of spacetime and
compared with the five-dimensional Kastor-Traschen solution. Namely, two black holes with the topology
of S3 coalesce into a single black hole with the topology of the lens space L(2; 1) = S3/Z2, while in the
Kastor-Traschen solution, two black holes with the topology of S3 coalesce into a single black hole with
the topology of S3. The difference helps us know what kind of asymptotic structure we live in the world
with. In general, the toplogy of the spatial infinity and the spatial toplogy of a black hole horizon are
very related to the number of nuts in the space because the toplogy of the closed surface surrounding
n nuts is homeomorphic to the lens space S3/Zn. (There is a single nut on the four-dimensional Euclid
space, while the Eguchi-Hanson space has two nuts on the S2-bolt.) Hence in a spacetime with n nuts,
the spatial infinity also has the toplogical structure of the lens space S3/Zn. If in such a spacetime there
is no nut outside the black hole horizon, the spatial cross section of the horizon is homeomorphic to the
spatial infinity. Therefore, since in both the Kastor-Traschen solutions and the our solutions in Ref.[5],
there is no nut outside the horizons at the late time, the toplogies of the black holes after the coalescenses
become S3 and S3/Z2, respectively. In the context of Kaluza-Klein theory and string theory, nuts also
appear as monopoles in the effective four-dimesional theory. Therefore, it is impotrant to study what

1E-mail:tomizawa@sci.osaka-cu.ac.jp
2E-mail:ishihara@sci.osaka-cu.ac.jp
3E-mail:mkimura@sci.osaka-cu.ac.jp
4E-mail:matsuno@sci.osaka-cu.ac.jp
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happens in the exsitence of nuts, in particular, it is an interesting issue and gives us some suggestions
to investigate the possible topology of an event horizon. This is why we need to study a black object
solution with such non-trivial asymptotic structure.

Our end is to construct new supersymmetric stationary black ring solutions on the Eguchi-Hanson
space which has asymptotically locally Euclidean timeslices as solutions of five-dimensional minimal
supergravity [6]. The black ring has two equal angular momentum components in two orthogonal planes.
Interestingly, the S1-direction of the black ring must be along the equator on a S2-bolt since, otherwise,
a Dirac-Misner string would arise near the nuts on the S2-bolt.

2 Black ring solutions

The construction of our solutions [6] is essentially based on the program to classification of solutions
in the five-dimensional minimal supergravity [7]. From the requirement of the absence of Dirac-Misner
strings and asymptotic condition, we obtain the following metric and the gauge potential

ds2 = −H−2
[

dt+ ω0

(a

8
dψ + ϕφdφ

)

+ ω̃φdφ
]2

+H
[

Hk(dr2 + r2dΩ2
S2) +H−1

k

(a

8
dψ + ϕφdφ

)2
]

, (1)

A =
√

3
2

[

H−1
(

dt+ ω0

(a

8
dψ + ϕφdφ

)

+ ω̃φdφ
)

−H−1
k

k1

r

(a

8
dψ + ϕφdφ

)

+ k1 cos θ
]

, (2)

respectively, where dΩ2
S2 = dθ2 + sin2 θdφ2. The coordinates r, ψ, φ, θ run the ranges

r > 0, 0 ≤ ψ ≤ 4π, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π. (3)

The five functions Hk, H, ω0, ω̃φ and ϕφ are given by

Hk =
a

8

(

1
Δa

+
1

Δ−a

)

, (4)

H = 1 +
l1
r

+
8k2

1ΔaΔ−a
ar2(Δa + Δ−a)

, (5)

ω0 = 2k1

(

−3
a

+
3
r

+
6(l1 + r)ΔaΔ−a
ar2(Δa + Δ−a)

+
32k2

1Δ
2
aΔ

2
−a

a2r3(Δa + Δ−a)2

)

, (6)

ω̃φ =
3k1

4ΔaΔ−a
[(r + a)(Δ−a − Δa) + ((r + a)(Δ−a + Δa) − 2Δ−aΔa) cos θ], (7)

ϕφ =
a

8

(

a(Δ−a − Δa) + r(Δa + Δ−a) cos θ
ΔaΔ−a

)

, (8)

where Δ±a =
√
r2 ± 2ar + a2 and r = |r| (r denotes the position vector on a three-dimensional Euclid

space). It is noted that our solutions have three independent parameters l1, k1 and a, where k1 and l1
are related to the dipole charge q of the black ring and the total electric charge Qe by k1 = −q/2 and
al1 = 4G5Qe/(

√
3π) − q2, and a is the radius of the S2-bolt on the Eguchi-Hanson space. Furthermore,

we impose the following conditions on these parameters

k1 < 0, l1 > −4k1. (9)

These are the conditions for the absence of closed timelike curves everywhere outside the event horizon.
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3 Properties

3.1 Asymptotic structure

Let us introduce a new coordinate defined by r̃2 := ar. Then the asymptotic form of the metric for
r → ∞ becomes

ds2 �
(

−1 +
2(4k2

1 + l1a)
r̃2

)

dt2

−k1(3a2 + 8k2
1 + 3al1) cos θ
r̃2

dtdφ− k1(3a2 + 8k2
1 + 3al1)

2r̃2
dtdψ

+dr̃2 +
r̃2

4

[

(

dψ

2
+ cos θdφ

)2

+ dθ2 + sin2 θdφ2

]

, (10)

which means that the spatial infinity is topologically the lens space L(2; 1) = S3/Z2. The asymptotic
form of the metric on t =constant surfaces resembles the four-dimensional Euclid space, but they differ
from each other in the topology of r = constant surfaces on timeslices. We can regard S3 and the lens
space L(2; 1) = S3/Z2 as S1 bundle over S2. The difference between these metric appears in the term of
dψ in (10). If dψ/2 in Eq.(10) is replaced by dψ, the topology of r = constant surfaces is S3, i.e., the
timeslices is asymptotically Euclidean. Furthermore, we introduce new angular variables φ̃ = (2φ+ψ)/4,
ψ̃ = (−2φ + ψ)/4 and Θ = θ/2. The ADM mass and angular momentums of our solutions can be
computed as

MADM =
√

3
2

|Qe| =
3π
8G5

(4k2
1 + al1), (11)

Jφ̃ = Jψ̃ = − π

4G5
k1(a2 + 8k2

1 + 3al1). (12)

From the relationship between the mass and the electric charge, we see that the BPS inequality is
saturated. It is worth noting that two angular momentums of our solutions are equal in contrast to the
black ring solutions on a flat base space [8]. The property in that solutions have the same two angular
momentum components is similar to that of the BMPV black hole solutions.

3.2 Near-horizon geometry

First, let us shift a origin of three-dimensional Euclid space so that Δ−a → r, Δa → Δ2a and r → Δa.
Next, we introduce the coordinate (x, y, φ̂, ψ̂) defined by

r = −ax+ y

x− y
, cos θ = −1 + 2

1 − x2

y2 − x2
= 1 − 2

y2 − 1
y2 − x2

, (13)

φ = φ̂− ψ̂, ψ = φ̂+ ψ̂. (14)

As seen later, the horizon is located on y = −∞. Furthermore, let us define a new coordinates (z, ζ)
given by

z = −P
y
, x = cos ζ, (15)

where P is a constant with dimension of length. The location of the event horizon corresponds to z = 0.
To see the geometry in the neighborhood of the event horizon, we introduce the following coordinates
(v, φ̂′, ψ̂′)

dt = dv −
(

B0 +
B1

z
+
B2

z2

)

dz, (16)

dφ̂ = dφ̂′ −
(

C0 +
C1

z

)

dz, (17)

dψ̂ = dψ̂′ −
(

C0 +
C1

z

)

dz, (18)
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where the constants B2, C1 and B1 are chosen to cure the divergences 1/z in gψ̂′z, 1/z2 and 1/z in gzz,
respectively. C0 and B0 are determined so that gzz = O(z) for z → 0. Then, under the choice of these
constants, the metric behaves as

ds2 � a2C1

2k1P
dvdz − a[(48k4

1 − 12ak2
1l1 + al31) + (−48k4

1 + 3k2
1l

2
1)] cos ζ

16k2
1P

√

3l21 − 48k2
1

(dzdφ̂′ + dzdψ̂′)

+
(

k2
1 sin2 ζ +

3(l21 − 16k2
1)a

2

256k2
1

)

(dφ̂′2 + dψ̂′2)

+2
(

−k2
1 sin2 ζ +

3(l21 − 16k2
1)a

2

256k2
1

)

dφ̂′dψ̂′ + k2
1dζ

2, (19)

for z → 0. Since each component take the finite value, we see that (v, φ̂′, ψ̂′, z, ζ) are good coordinates
in the neighborhood of the event horizon. Hence, z = 0 corresponds to the Killing horizon since the
Killing vector ∂/∂v becomes null there. For z → 0, the induced metric on v, z =constant surfaces, i.e.,
the spatial cross section of the event horizon becomes

ds2|H � 3(l21 − 16k2
1)a

2

256k2
1

dφ2
2 + k2

1(dζ2 + sin2 ζdφ2
1), (20)

where φ1 := φ̂′ − ψ̂′ = φ̂− ψ̂ = φ and φ2 := φ̂′ + ψ̂′. It should be noted that ∂/∂φ2|z=0 = ∂/∂ψ|z=0 and
0 ≤ φ1 ≤ 2π. This implies that the spatial topology of the event horizon is S1 × S2.

3.3 Black hole limit

Finally, we consider the limit of our black ring to the black hole. Setting l1 = μ/a (μ > 0 : constants)
and taking the limit of a→ 0 in our solution yields the following metic

ds2 = −
(

1 +
4k2

1 + μ

r̃2

)−2 [

dt+
k1(8k2

1 + 3μ)
2r̃2

(

dψ

2
+ cos θdφ

)]2

+
(

1 +
4k2

1 + μ

r̃2

)

[

dr̃2 +
r̃2

4
dΩ2

S2 +
r̃2

4

(

dψ

2
+ cos θdφ

)2
]

. (21)

This is equal to the metric of the BMPV black hole solutions with the mass parameter m = 4k2
1 + μ and

the angular momentum parameter j = k1(8k2
1 +μ) except that dψ is replaced with dψ/2. This difference

means that they differ in the topology of r̃ = constat, i.e., while the BMPV black hole has a squashed S3

horizon, the spatial topology of the black hole horizon in (21) is the squashed lens space L(2; 1) = S3/Z2.
If we do not set l1 = μ/a and take the limit a → 0, the metric coincides with that of the BMPV black
hole with j = m3/2, whose horizon topology is the squashed lens space L(2; 1) = S3/Z2.
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Abstract
We numerically study event horizon of coalescing black holes solution in five dimen-
sions. Effects of a difference in space-time topology on the black hole coalescence
process is discussed.

1 Introduction

Black hole coalescence is one of the most interesting issue in relativity, but to treat the coalescencing
process is difficult in general. However, if mass and electric charge of each black hole are equal we can
construct exact solutions which describe the coalescencing proseces driven by a positive cosmological
constant.

In five dimensional case, the metric and gauge 1-form of Kastor-Traschen solution(5DKT)[1, 2] are
given by

ds2 = −H−2dt2 + He−λt
[
dx2 + dy2 + dz2 + dw2

]
, (1)

A = ±
√

3
2

H−1dt (2)

where

H = 1 +
1

e−λt

(
m1

r2
+

+
m2

r2−

)
, (3)

r± =
√

x2 + y2 + z2 + (w ∓ a)2. (4)

Here λ = 2
√

Λ/3 and Λ is a positive cosmological constant. This solution describes that two black holes
with the topology of S3 coalesce into a single black hole with the topology of S3.

Recently, coalescing black hole solution on Eguchi-Hanson space(CBEH)[3] were found as other exact
solutions in five dimensions. The metric and gauge 1-form of this solution are given by

ds2 = −H−2dt2 + He−λt
[
V −1(dx2 + dy2 + dz2) + V ((a/8)dψ + ω)2

]
, (5)

A = ±
√

3
2

H−1dt, (6)

where

H = 1 +
1

e−λt

(
M1

R+
+

M2

R−

)
, (7)

V −1 =
a/8
R+

+
a/8
R−

, (8)

rot ω = grad V −1, (9)

R± =
√

x2 + y2 + (z ∓ a)2. (10)
1E-mail:mkimura@sci.osaka-cu.ac.jp
2E-mail:ishihara@sci.osaka-cu.ac.jp
3E-mail:matsuno@sci.osaka-cu.ac.jp
4E-mail:tomizawa@sci.osaka-cu.ac.jp
5E-mail:yoo@yukawa.kyoto-u.ac.jp
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Here, we note that the square bracket in (5) is the metric of the Eguchi-Hanson space[4, 5] which has
non-trivial asymptotic structure called lens space L(2; 1) = S3/Z2.

This solution describes the physical process such that two black holes with the topology of S3 coalesce
into a single black hole with the topology of the lens space L(2; 1) due to the non-trivial asymptotic
sturucrure[3]. To see this, we shall see the behaver of the metric at early time τ → −∞ and at late time
τ → −0 following the discussion of [3]. At early time t → −∞ and Ri → 0, the metric behaves as

ds2 ' −
(

1 +
mi

e−λtr2
i

)−2

dt2

+
(

1 +
mi

e−λtr2
i

)
e−λt

[
dr2

i +
r2
i

4

(
dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2

)]
, (11)

where we introduce a new radial coordinate r2
i := Ria/2 and mi := Mia/2. This is the same form of the

metric of five-dimensional Reissner-Nordström-de Sitter solution with mass parameter mi written in the
cosmological coordinate. Therefore, we can see that there are two black holes with the topology of S3 at
early time. On the other hand, at late time t →∞ and R →∞, the metric behaves as

ds2 ' −
(

1 +
2(m1 + m2)

r2

)−2

dt2

+
(

1 +
2(m1 + m2)

e−λtr2

) [
dr2 +

e−λtr2

4

(
dθ2 + sin2 θdφ2 +

(
dψ

2
+ cos θdφ

)2
)]

, (12)

where we introduce the new radial coordinate r2 := aR. This resembles the metric of the five-dimensional
Reissner-Nordström-de Sitter solution with mass equal to 2(m1 +m2) but the topology of horizon is lens
space L(2; 1). Therefore, we can see the solution (5) describes the process such that two black holes with
S3 at the early time coalesce into a single black hole with lens space L(2; 1) at late time.

However, since in this discussion we only compared the behavor of the metric at early time and that
of late time, it is not clarified how two black holes with S3 coalesce into a single black hole with lens
space L(2; 1). So, in the following sections, we numerically investigate the event horizon of the solution
(5) and make clear the process of the coalesecnce.

2 Event Horizons of Coalescing Black Holes in Five Dimensions

Event horizon is the boudary of the causal past of I+ and we can caluculate the event horizon numerically
by solving null geodesics backward from the future to the past.

For 5DKT case, we plot the coordinate values τ := e−λt, w, x of the event horizon in Fig.1. Note
that it is sufficient that we only plot the x coordinate out of x, y, z coordinates because of the SO(3)
symmetry in (x, y, z) space. From Fig.1 we can see that the contact point of black holes for 5DKT is
given by τ = const., x = y = z = w = 0 then the topology of this point is a point.

On the other hand, for CBEH case, we plot the coordinate values τ := e−λt, z, x of the event horizon
in Fig.2. Note that it is sufficient that we only plot the x coordinete out of x, y coordinates because of
the SO(2) symmetry in (x, y) space, and we omit the ψ direction which is S1 in Fig.2 because ∂ψ is a
Killing vector. From Fig.2 we can see that the contact point of black hole coalescence for CBEH is given
by τ = const., x = y = z = 0.

Here considering the fact that the S1 direction is omitted in Fig.2, the topology of contact point of
black hole coalescence for CBEH is not a point but S1. This is the specific difference in topology changing
process S3 into lens space L(2; 1).

3 Change of Time Slices

As discussed in [6, 7], the coalescence of black holes is characterized invariantly by the structure of crease
set, where crease set is a set of end points of null geodesics on the event horizon and the event horizon
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Figure 1: Event horizon of five dimensional Kastor-Traschen solution. (m1 = m2 = 1, a = 1, λ = 1/(2
√

2))
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Figure 2: Event horizon of coalescing black holes on Eguchi-Hanson space. (M1 = M2 = 2, a = 1, λ =
1/(2

√
2))

is indifferentiable on these points. The intermediate evolution of black hole coalescence depends on the
choise of time slice in general.

For the 5DKT case, the crease set is given by τ = τ(w), x = y = z = 0,−a < w < a, then
the topology of crease set is R1. On the other hand, for the CBEH case, the crease set is given by
τ = τ(z), x = y = 0,−a < t < a, then the topology of the crease set is R1×S1, where S1 is generated by
∂ψ. Clearly, the dimension of crease sets of 5DTK and CBEH are different.

To see the difference of intermediate evolutions explicitely, we consider another time slice, τ ′ =const.,
shown in Fig.3 for the both 5DKT and CBEH cases. For simplicity, we assume the spatial symmetry is
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Figure 3: Schematic figure of the side view of the event horizon of 5DKT and CBEH. A time slice
τ ′ = τ ′(τ, z). is depicted.

the same as τ =const. surface. The central part of the intersection of τ ′ = const. surface and the event
horizon makes a three-dimensional closed surface. This is the event horizon at τ ′ =const. surface.

In the case of 5DKT, because of the existence of SO(3) symmetry in (x, y, z) space, where the points
A and B in Fig.3 are fixed points, the closed surface is topologically S3. Then, the intermediate object is
a black hole with the S3 horizon. For more general time slice, a number of black holes with S3 horizons
can appear in the 5DKT case.

In contrast, in the case of CBEH, because of SO(2) symmetry in (x, y) space, where A and B are
fixed points, and the existence of S1, which is supressed in Fig.3, the intersection of τ ′ =const. surface
and the event horizon is topologically S2 × S1. Then a black ring S2 × S1 is formed in the time slice
τ ′ = const. during coalescence of two black holes in CBEH case. This is due to the defferences of the
structure of crease set.
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Gravitational energy in higher dimensions
— Asymptotically flat case1 —
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Abstract
We propose a higher (even spacetime) dimensional generalization of the Bondi energy
within the framework of conformal infinity and Hamiltonian formalizm, employing the
Gaussian null conformal gauge as a natural global specification which admits compact,
spherical cross-sections of null infinity. Our Bondi energy expression takes a universal
form in arbitrary (even spacetime) dimensions greater than or equal to four.

1 Introduction

There is considerable theoretical interest in gravitational theories in higher dimensions, and it is therefore
important to define a precise notion of the total energy of an isolated gravitational system in higher
dimensions. Such a notion may be given by generalizing to higher dimensions the notion of asymptotic
flatness and associated energy of the ADM-type [1] and Bondi-type [2]. In particular, the latter type
energy—if generalized to higher dimensions—may be used to probe extra dimensions with gravitational
radiation.

An attempt to define a higher dimensional Bondi energy has previously been made by S. Hollands and
the present author [3], employing a particular gauge condition—the Minkowskian conformal gauge—which
requires a conformal background geometry to be locally, exactly Minkowskian in some neighborhood of
conformal null infinity I . This gauge is convenient for writing down some key geometrical quantities
in terms of (unphysical conformal) curvature tensor since it simplifies relevant computations to certain
extent. However, this gauge—which can be taken, at least, locally—is not globally well-defined in the
sense that under that gauge condition, cross-sections of conformal null infinity I become anisotropic
and, actually, non-compact; they are sphere with a single point removed and hence do not naturally
reflect the topology of I . For the purpose of computing the Bondi-energy in general, asymptotically flat
radiative spacetimes and obtaining physical consequences, it would be much preferable that the Bondi-
energy is defined under gauge conditions that can be taken globally in a neighborhood of I so that the
Bondi-energy is evaluated on a compact cross-section of I .

The purpose of this article is to introduce briefly the main results of the paper [4], in which a higher
dimensional Bondi energy is re-formulated by employing the Gaussian null conformal gauge, which admits
a global specification of background structure with compact, spherical cross-sections of I , in contrast to
the case of the Minkowskian conformal gauge [3].

2 Main results

2.1 Asymptotic flatness at null infinity and Gaussian null conformal gauge

Let (M̃, g̃ab) and (M̄, ḡab) be an unphysical conformal spacetime and background geometry associated
with a physical spacetime, (M, gab). The two fictitious metrics, g̃ab and ḡab, are related to the physical
metric, gab, and the Minkowski metric, ηab, via a smooth conformal factor, Ω, as g̃ab = Ω2gab and
ḡab = Ω2ηab so that one can attach a boundary I at Ω = 0 to M such that there exists an open
neighborhood of I in M̃ = M ∪ I which is diffeomorphic to an open subset of the manifold M̄ , and
I is mapped to a subset of the boundary of M̄ . (See [3] for more details.) We assume that I be

1KEK-Cosmo-5 KEK/TH/1215
2E-mail: akihiro.ishibashi@kek.jp
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topologically R×Sd−2 so that it is consistent with the notion of a (higher dimensional version of) weakly
asymptotically simple spacetime.

Following the standard procedure (see, e.g., Appendix A of [5]), we can construct a coordinate system
xµ = (u, Ω, xA) with A = 1, . . . , d − 2 on a (sufficiently small open) neighborhood, O, of an arbitrary
point of I in M̃ such that in O, the unphysical metric takes the following form,

ds̃2 = g̃µνdxµdxν = α̃du2 + 2dudΩ + 2β̃AdudxA + γ̃ABdxAdxB , (1)

where u parametrizes a congruence of null generators of I ∩ O with (∂/∂u)a being a tangent vector
field of the congruence, and where Ω, chosen to be Ω = 0 on I ∩ O, is an affine parameter of null
geodesics which are orthogonal to each (u, Ω) = const. surfaces B(u,Ω) in O and transverse to I ∩O so
that g̃ab(∂/∂Ω)a(∂/∂u)b = 1, and where α̃, β̃A, γ̃AB are smooth functions with α̃ = 0 = β̃A on I ∩ O.
Note that xA = (x1, . . . , xd−2) may be regarded as local coordinates on B(u,Ω) and also that γ̃AB is
a Riemaniann (d − 2)-metric, which does not necessarily coincide with the induced metric on B(u,Ω)
when Ω 6= 0. The chart, (O, xµ), is called the Gaussian null coordinate system with respect to the null
hypersurface I ∩ O.

It is, a priori, not obvious when one can construct a Gaussian null coordinate system that covers the
entire I so that, in particular, the set of B(u) = B(u,Ω = 0) becomes a global foliation of I ; each B(u)
is, in general, an open subset of global cross-sections of I and one may need to patch together more
than one coordinate chart to cover the whole I . However, when, for example, a null hypersurface is
ruled by some Killing vector field which generates a one-parameter group of isometries, one can construct,
by patching together local results, essentially a global Gaussian null coordinate system that covers the
null hypersurface (see e.g., [6]). Although asymptotically flat spacetimes we are concerned with do not
necessarily have a Killing symmetry, they do admit asymptotic symmetries, ξa, which are tangent to
I and play a similar role of a Killing symmetry on I . Therefore there seems to be no obstruction in
assuming that one always be able to construct a desired, global Gaussian null coordinate system in some
neighborhood O of I in M̃ such that B(u) appropriately foliate I as global cross-sections of I with
topology B(u) ≈ Sd−2, reflecting I ≈ R× Sd−2.

For our background geometry (M̄, ḡab), the above coordinate system (O, xµ) yields

ᾱ = −Ω2 , β̄A = 0 , γ̄AB = σAB , (2)

with σAB being the metric of (d − 2)-dimensional unit round sphere, and covers I = ∂M̄ globally. We
shall view σAB as a global specification of cross-sections of I . In the following we call the gauge choice,
eqs. (1) and (2), the Gaussian null conformal gauge.

A general, stable definition of asymptotic flatness at I in higher dimensions (d > 4 and even) has been
given in [3], which arrived at via stability analysis of conformal null infinity against linear gravitational
perturbations. In terms of the Gaussian null conformal gauge, the flatness (fall off at I ) conditions given
in [3] are rewritten as

γ̃AB = σAB + O(Ω(d−2)/2) , γ̃AB ∂

∂u
γ̃AB = O(Ωd/2) , γ̃AB ∂

∂Ω
γ̃AB = O(Ω(d−2)/2)

β̃A , β̃A = O(Ωd/2) , α̃ = −Ω2 + O(Ω(d+2)/2) . (3)

(Note that the fall off conditions for d = 4 differ from the above ones [4]. See also [7].)

2.2 Bondi energy in Gaussian null conformal gauge

Once boundary conditions for asymptotic flatness are established, one can introduce the notion of asymp-
totic symmetries and then define conserved quantities associated with the (infinitesimal) symmetries ξa.
(See [4] for details of our definition of asymptotic symmetries at null infinity in higher dimensions.) A
general strategy for defining conserved quantities associated with symmetries that preserve given bound-
ary conditions has been developed by Wald and Zoupas [8]. We apply the formula of Wald and Zoupas
to asymptotically flat, vacuum solutions to Einstein’s equations. For this purpose, we introduce

S̃ab ≡ 2
d− 2

R̃ab − 1
(d− 1)(d− 2)

R̃g̃ab , (4)
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where R̃ab is the Ricci tensor with respect to g̃ab. We note here that the Minkowskian conformal gauge
requires the background geometry to be exactly flat in a neighborhood of I and thus yields

S̃ab = O(Ω(d−4)/2) , (5)

while the Gaussian conformal gauge yields

S̃uu = Ω2 + O(Ωd/2) , S̃uΩ = −1 + O(Ω(d−2)/2) , S̃uA = O(Ωd/2) , S̃ΩA, S̃AB = O(Ω(d−4)/2) . (6)

We define a higher dimensional news tensor under the Gaussian null conformal gauge by

Nab ≡ ζ∗
(
Ω−(d−4)/2qm

aqn
bS̃mn

)
− Ω−(d−4)/2σab , (7)

where qab ≡ g̃ab − 2˜̀
(añb) with ˜̀

a = (du)a and ña = (dΩ)a and ζ∗ denotes the pull back to I . This
is a global definition as it involves the (d − 2)-dimensional round-sphere metric σab, which specifies
a background structure at I and looks a natural higher dimensional generalization of the news tensor,
Nab = ζ∗(S̃ab)−ρab, in 4-dimensions, given by Geroch [9]. (In 4-dimensional case, the global specification,
ρab, is defined by equation (33) in [9] and can be taken such that ρab = σab [8].) Note that the previous
definition of the news tensor under the Minkowskian conformal gauge (eq. (61) of [3]) does not include
σab.

We now introduce the following vector field associated with asymptotic time-translations ξa = τ ña

(with τ = const. on I ),

P a[ξ] ≡ 1
8(d− 3)πG

(
Ω−(d−4)/2ξ[aqb]dNdeq

ceCf
bc

˜̀
f − Ω−(d−3)C̃abcdξb

˜̀
cnd

)
, (8)

where Cc
ab denotes the connection defined by, (∇̃a − ∇̄a)ωb = Cc

abωc, for an arbitrary 1-form ωc and
C̃abcd the Weyl curvature tensor with respect to g̃ab. Note that in 4-dimensions, the above formula,
eq. (8), agrees with the known, 4-dimensional Bondi energy-momentum integrand. We now state our
main results in the following theorem.

Theorem: Consider an even-dimensional d > 4 vacuum spacetime (M, gab) which is asymptotically
flat at null infinity I , satisfying the boundary conditions, eq. (3) (for d = 4, see [4]). Let O ⊂ M̃
be a neighborhood of I in which the Gaussian null conformal gauge eq. (1), can be taken. In O, the
divergence, ∇̃aP a, of P a introduced by eq. (8) smoothly extends to I and solves

∇̃aP a = − τ

32πG
NabNab + O(Ω) . (9)

Proof is given in [4]. Then, following the Wald-Zoupas formula, we find the charge associated with
the asymptotic symmetry ξa = τ ña,

Hξ =
∫

B

(d−2)ε̃ P a ˜̀
a , (10)

with (d−2)ε̃ being a natural volume element on a closed (d − 2)-surface B on I induced from g̃ab. (See
[4] for details.) We propose to take the charge Hξ defined above with P a given by eq. (8) as a natural
higher dimensional generalization of the Bondi-energy.

It should be noted that although the divergence ∇̃aP a—whose integral over a segment of I gives rise
to a flux formula—is well-defined, the limit to I of P a itself does not appear to exist under our boundary
conditions. This, however, does not necessarily imply that the integral of P a ˜̀

a over a compact cross-
section B of I also would be singular for general, asymptotically flat radiative spacetimes. Attempts
to justify P a given by eq. (8) as the legitimate Bondi energy-momentum integrand are made [4] by
discussing the case in which an asymptotically flat, radiative spacetime has a stationary region in some
neighborhood of spatial infinity i0, and also by considering gravitational perturbations off of Minkowski
spacetime. Therefore, although we have not yet fully justify the regularity of P a for generic case, in full
non-linear theory, we would like to make the following conjecture.
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Conjecture: For any asymptotically flat (at null infinity I ) spacetime and any cross-section B of I ,
the integral of P a ˜̀

a given by eq. (8) over a (d− 2)-closed surface S in O always has a well-defined limit
as S approaches B, and the limit is independent of how S approaches B, so that the integral, eq. (10),
is well-defined.

We should keep in mind that the vector P a has degrees of freedom in the addition of a vector field of
the form ∇̃bX

ab with Xab being an arbitrary anti-symmetric tensor field on M̃ ; P ′a = P a + ∇̃bX
ab also

solves eq. (9) if P a does. A relevant question is then whether there exists a P ′a for which P ′a ˜̀
a smoothly

extends to I and yields an equivalent formula for the higher dimensional Bondi-energy. This problem is
left open for future work. Also, more work on non-linear analysis of asymptotic flatness conditions need
to be done.
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Abstract
Using the WKBJ approximation we obtain numerical plots of the power emission
spectrum for the evaporation of massless bulk Dirac fermions from six dimensional
black holes off a tense 3-brane with codimension two. We also present the multiplicity
factors for eigenvalues of the deficit four sphere and show that these reduce to the
usual case in the tenseless limit.

1 Introduction

One of the most distinct predictions of large extra-dimensional models [1] is the production of black holes
(BHs) at particle accelerators such as the LHC [2]. In these models the standard model (SM) fields are
restricted to motion along a 3-brane in the extra dimensions, while the gravitational field can propagate
isotropically. By readjusting the fundamental cut-off scale one can simultaneously resolve the gauge-
hierarchy problem and give some explanation for the observed weakness of gravity relative to the other
forces. Recently, a metric describing a BH located on a 3-brane with finite tension, embedded in locally
flat 6-dimensional (6D) spacetime was discovered [7]. Before this, no exact solution that incorporated
brane tension was known and the effect of brane tension on the observational signatures of mini BHs was
largely ignored.

While early incarnations of large extra dimensional models assumed that only gravitational fields
existed in the space off the brane (known as the bulk), over time more elaborate scenarios were devised
that required other bulk fields. Split fermion models [3] are examples of this kind. In split fermion
models proton decay inducing operators can be suppressed while simultaneously giving the correct SM
mass hierarchies. The result is achieved by using a kink configuration of a bulk scalar field to localise
quarks and leptons and the left- and right- chiral components of the fermion fields to different locations
in the higher dimension(s). In supersymmetric versions of this idea the scalars that localise the bulk
fields will also have bulk fermionic superpartners.

Having a larger number of degrees of freedom propagating in the bulk would lower the probability of
witnessing a BH event at the LHC i.e., evaporation into bulk modes would reduce the amount radiation
seen from the brane thereby lowering the chance of identifying a BH event 5. Regardless of which model
you prefer, there is clearly an imperative to determine precisely how bulk modes effect the Hawking
emission spectrum so that in the event that a mini BH is observed the correct extra dimensional model
may be able to be inferred.

In what follows we study the effect of brane tension on the BH emission spectrum of massless bulk
fermions. The analogous emission rates for scalar, gauge boson and graviton bulk fields were calculated
in [8], however as we will be using the WKBJ approximation our treatment differs somewhat to theirs.

1htcho”at”mail.tku.edu.tw
2cornell@ipnl.in2p3.fr
3j.doukas”at”physics.unimelb.edu.au
4naylor”at”se.ritsumei.ac.jp
5While the missing energy may be some evidence for extra dimensions it would not conclusively identify a BH event.
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The metric for a black hole residing on a tensional 3-brane embedded in a six-dimensional spacetime
is [7, 9]:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

4 , f(r) = 1−
(rH

r

)3

(1)

where the radius of the horizon is given by

rH =
(µ

b

)1/3

µ ≡ MBH

4π2M4∗
(2)

and MBH is the mass of the black hole. The parameter b is a measure of the conical deviation from a
perfect sphere and has the following angle element:

dΩ2
4 = dθ2

3 + sin2 θ3

(
dθ2

2 + sin2 θ2

(
dθ2

1 + b2 sin2 θ1dφ2
))

, 0 < b ≤ 1. (3)

For b = 1 this is the line element of the unit sphere S4 and corresponds to zero brane tension. In the
case of non-vanishing brane tension the parameter b < 1 is a measure of the deficit angle about an axis
parallel to the 3-brane in the angular direction φ, such that the canonically normalized angle φ′ = φ/b
runs over the interval [0, 2π/b]. It can be expressed in term of the brane tension λ as:

b = 1− λ

4πM4∗
, (4)

where M∗ is the fundamental Planck constant of six-dimensional gravity. As can be seen the tension of
the brane (b → 0) increases the radius of the horizon.

The Dirac operator on this metric is solved by use of the conformal transformation:

gµν → gµν = Ω2gµν , (5)

ψ → ψ = Ω−5/2ψ, (6)
γµ∇µψ → Ω7/2γµ∇µψ, (7)

where Ω = 1/r, the metric in equation (1) then separates into a t− r part and a deficit 4-sphere part:

ds2 =
1
r2

(
−f(r)dt2 +

1
f(r)

dr2

)
+ dΩ2

4. (8)

The massless Dirac equation, γµ∇µψ = 0, can then be written:

[(
γt∇t + γr∇r

)⊗ 1
]
ψ +

[
γ5 ⊗ (

γa∇a

)
S4

]
ψ = 0, (9)

where (γ5)2 = 1 and ψ = r5/2ψ. Note that from this point on we shall change our notation by omitting
the bars.

The eigenvalues, κ, for the eigenspinors of the deficit 4-sphere,

(γa∇a)S4
χ

(±)
l = ±iκχ

(±)
l , (10)

where found in [10] and are given by

κ(n,m) = n + 2 + |m|
(

1
b
− 1

)
, (11)

where n = 0, 1, 2, . . . and m = ±1/2,±3/2, . . . ,±(n + 1/2). After a little algebra [10], the radial part of
the Dirac equation reduces to a Schrödinger-like equation in the tortoise coordinate r∗:

(
− d2

dr2∗
+ V1

)
G = E2G , (12)

where dr = f(r)dr∗, and the potential is given by V1(r) = κ2 f
r2 + κf d

dr

[√
f

r

]
.

2

286



0 2 4 6 8
¶

0

0.02

0.04

0.06

0.08

0.1

d
2
 
E

�
�
�
�
�
�
�
��
�
�
��
�

d
E
d
t

Bulk emission rates in units of rH-1

b=1

b=0.8

b=0.6

b=0.2

Figure 1: We display the results of third order WKBJ, which show the variation of the Hawking radiation
spectrum with brane tension. Increasing brane tension (decreasing b), while holding rH and M∗ fixed,
results in a reduction of the emitted power.

2 Absorption probability and emission rates

When the BH perturbation equation takes the Schrödinger form as in equation (12) an adapted form of
the WKBJ method [5] can be employed to find the absorption probability. The absorption probability is
written:

|Aκ(E)|2 =
1

1 + e2S(E)
, (13)

where S(E) is calculated to third order in [10, 5]. In our case it will be convenient to make a change of
variables to x = Er [4]. This leads to the following form of the potential:

Q(x∗) = 1− κ2 f

x2
− κf

d

dx

[√
f

x

]
, f(x) = 1−

( ε

x

)d−3

, (14)

where E2Q(x∗) = E2 − V1, and ε = rHE. As such, the Schrödinger equation (12) becomes:
(

d2

dx2∗
+ Q

)
G = 0 . (15)

The emission rate for a massless fermion from a BH is related to the cross-section by a d5k dimensional
momentum integral times a fermionic thermal temperature distribution:

dE
dt

=
∑

λ,E

σλ,E
E

e
E

TH + 1

d5k

(2π)5
, (16)

where TH is the Hawking temperature, σλ,E are the greybody factors and the sum is a generic sum over
all angular momentum and momentum variables. The greybody factor can be related to the absorption
probability by considering the results of reference [6]:

σλ,E =
1

2Ω4

(
2π

E

)4 ∑
κ

Dκ|Aκ(E)|2 . (17)

The degeneracy, Dκ, of eigenspinors for the deficit four sphere is found to be:

Dκ(n, |m|) =
n∑

n2=|m|−1/2

2
n2∑

n1=|m|−1/2

2,

= 2
(

n− |m|+ 5
2

)(
n− |m|+ 3

2

)
. (18)
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Summing over |m| reproduces to the degeneracy calculated in [11] for the regular four sphere:

D4(n) =
∑

|m|=1/2,...,n+1/2

2
(

n− |m|+ 5
2

)(
n− |m|+ 3

2

)
,

=
2
3
(n + 1)(n + 2)(n + 3), (19)

Given that
∫

d5k =
∫

Ω4E
4dE, and using the fact that the Hawking temperature is TH = 5/(4πrH), we

obtain:
d2E
dEdt

=
1

πrH

∑
κ>0

ε

e
4πε
5 + 1

Dκ|Aκ(ε)|2 . (20)

3 Results and Conclusion

The power emission for various values of the tension parameter b are overlaid in figure 1. In plotting the
graphs as a function of epsilon we have implicitly assumed that the horizon radius is fixed, i.e., ε = ErH .
Since rH = (µ

b )1/3 depends on b, the ratio µ
b is also fixed, this can be done, see equation (2), by fixing

the fundamental scale, M∗, and changing the mass of the black hole proportionally with b.
We find that for increased tension (b → 0) the emitted power due to Hawking radiation is reduced.

These results are consistent with the those made for the integer representations of the Poincare group in
[8], and completes a missing piece of the picture of emission from BHs off tense branes in being the first
time that the power emission spectrum from massless spin 1/2 fields has been calculated.
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Self-similar cosmological solutions with dark energy

Tomohiro Harada1
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Abstract
Based on the asymptotic analysis of ordinary differential equations, we classify
all spherically symmetric self-similar solutions to the Einstein equations which are
asymptotically Friedmann at large distances and contain a perfect fluid with equa-
tion of state p = (γ−1)ρ with 0 < γ < 2/3. The expansion of the Friedmann universe
is accelerated in this range of the parameter due to anti-gravity. For asymptotically
Friedmann solutions, we find eight classes of possible asymptotic behaviours. In par-
ticular, we find that there are asymptotically quasi-static and quasi-Kantowski-Sachs
solutions which are analytically extendible. This opens up the possibility of physically
interesting cosmological solutions, in which any physical scale increases in proportion
to time. We study these solutions numerically and consider their physical interpre-
tation. In particular, we consider whether there are physically realistic self-similar
solutions in which a primordial black hole is attached to an exact or asymptotically
Friedmann model. This would correspond to the black hole growing at the same
rate as the universe. In fact, there are genuinely asymptotically Friedmann solutions
containing a black hole. This suggests that black holes in cosmological models with
dark energy can grow as fast as the cosmological horizon. We also find self-similar
cosmological wormhole and white hole solutions.

1 Introduction

There are accumulating observational evidences supporting that our Universe is on an accelerated ex-
panding phase at present epoch. Assuming the Einstein equation with homogeneity and isotropy, we lead
to the violation of the strong energy condition. This is often referred to as “anti-gravity” because the
violation of the strong energy condition implies repulsive force in terms of the Raychaudhuri equation.
We do not know what causes the cosmic acceleration at all. However, the phenomenological analysis of
the observational data implies that more than 70 % of energy in our Universe is in the matter field which
causes the cosmic acceleration, which is called dark energy. The simplest candidate for dark energy is
the cosmological constant, which can be described by a perfect fluid with the equation of state p = −ρ.
However, this needs incredibly fine tuning by one part in 10120. To relax this problem, one can consider
a matter field, whose energy density was higher in the early universe. Such a matter field can be param-
eterised by a perfect fluid with the equation of state p = wρ, where w < −1/3 should hold to violate
the strong energy condition. Here, we consider a perfect fluid p = (γ − 1)ρ, where γ is a constant and
0 < γ < 2/3.

It is usually assumed that black holes are stationary and asymptotically flat with an event horizon in
vacuum, which are uniquely described by the Kerr solution. However, black holes in our Universe cannot
be stationary or asymptotically flat or in vacuum. We now study black holes in an expanding universe,
which are called cosmological black holes. Little is known about the properties of cosmological black holes
in contrast to stationary, asymptotically flat and vacuum black holes. In general, it is difficult even to
define the notion of black holes in the cosmological context. The notion of future outer trapping horizons
probably provides the most general and physical definition of black holes. In our case, we assume a flat
Friedmann universe where a black hole is embedded and then define a future event horizon due to the
existence of future null infinity.

1E-mail:harada@rikkyo.ac.jp
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2 Self-similar black holes in a flat Friedmann universe

To study black holes embedded into a flat Friedmann universe, self-similar solutions can play crucial
roles [2, 3]. Remember that since the Minkowski spacetime is static, one can have static black holes
which are asymptotically flat. Analogously, since the power-law flat Friedmann solution is self-similar,
one might have self-similar black holes which are asymptotically Friedmann. Self-similar black holes
grow as fast as the Hubble length. We can covariantly define self-similar spacetimes by the existence of
homothetic Killing vector. For spherically symmetric spacetimes, this condition results in the following
metric form:

ds2 = −e2Φ(z)dt2 + e2Ψ(z)dr2 + r2S2(z)(dθ2 + sin2 θdφ2), (1)

where z = r/t. A hypersurface on which z =const is called a similarity surface. A null similarity surface
is called a similarity horizon. Similarity horizons are analogous to Killing horizons for static spacetimes
and can be identified with event horizons. To see the causal structure, we define a velovity function
V ≡ |z|eΨ−Φ. If (V − 1) is zero, positive and negative, the similarity surface is null, spacelike and
timelike, respectively. The Einstein equation reduces to a set of ordinary differential equations. See
Ref. [1] for self-similar solutions in general relativity in more general context.

Since we adopt a perfect fluid with the equation of state p = (γ − 1)ρ for 0 < γ < 2/3, we have
no critical point in the ordinary differential equations except for z = ±0,±∞. We need very careful
treatment to get the physical insight into the solutions of the ordinary differential equations. All details
are described in [4, 5]. In the following we only quote some of the results.

3 Analytical result

There are two exact solutions in this self-similar system. One is the Friedmann solution and the other is
the Kantowski-Sachs solution. Although the static solution is possible in the positive pressure case, it is
not in the negative pressure case.

Table 1: Asymptotic behaviours. The abbreviations are the following: Q=Quasi, F=Friedmann,
S=Static, KS=Kantowski-Sachs, CV=Constant-Velocity, PMS=Positive-Mass Singular, NMS=Negative-
Mass Singular

Name z #param Extension Structure Distance
F ±0 1 n/a Spacelike ∞

QF ±0 1 n/a Spacelike ∞
QF ±∞ 1 n/a Timelike 0
QS ±∞ 2 t = ±0 Spacelike ∞

QKS ±∞ 2 r = ±∞ Timelike Intermediate
CV ±∞ 1 n/a Timelike ∞

PMS z∗ 2 n/a Spacelike 0
NMS z∗ 2 n/a Timelike 0

We also find various asymptotic behaviours. They are summarised in Table I. Note that, in our
coordinates, z = 0 and z = ∞ correspond to infinity and regular centre for the Friedmann solution,
respectively. There are solutions which are asymptotic to the exact solutions. There are also solutions
of which the asymptotic form is similar to the exact solutions but the coefficients are different even at
the lowest order. We add a term “quasi” to the name of the exact solutions to describe such asymptotic
behaviours. Note that asymptotically quasi-static and quasi-Kantowski-Sachs solutions are analytically
extendible beyond z = ±∞.
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4 Numerical result

We also integrate the ordinary differential equations numerically. We set the initial condition to be an
asymptotically Friedmann form for small z, which are parameterised by one parameter. We numeri-
cally integrate the equations and extend it beyond z = ∞ into the negative z region if the solution is
asymptotically quasi-static or quasi-Kantowski-Sachs.
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0
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-0.1

Figure 1: Velocity function. There are shown naked singularity solutions (0.02, 0.01), the flat Friedmann
solution (0), black hole solutions (-0.01, -0.02), wormhole solutions (-0.03, -0.0404, -0.06) and white hole
solutions (-0.08, -0.1).

Figure 1 shows the behaviours of V for the numerical solutions. The horizontal axis denotes −1/z,
while the vertical axis denotes V . Each curve is labelled by the value for the parameter. The behaviour
of V determines whether a similarity horizon is null, spacelike or timelike. Moreover, to determine the
causal structure of the numerical solutions for z = ±0,±∞, the result of the asymptotic analysis is
essentially considered. We have found a variety of solutions, including naked singularities, black holes,
wormholes and white holes.
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Figure 2: Cosmological black hole solution

Then, we have found interesting solutions, which describes a black hole in an accelerated expanding
universe. The Penrose diagram for this solution is shown in Fig. 2. There are a one-parameter family of
such solutions, implying that such solutions will not require fine-tuning of the initial data. This result
shows that black holes can grow self-similarly in an accelerated expanding universe filled with the present
model for dark matter. These solutions are actually parameterised by the physical radius of the black
hole event horizon normalised by the Hubble length. It is interesting to note that there is an upper bound
' 0.7 on this normalised black hole radius.
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Table 2: Classification of the numerical solutions. A0 parameterises asymptotically Friedmann solutions
and hence does the numerical solutions obtained here. α1 ' −0.0253, α2 ' −0.0404, α3 ' −0.0780 and
α4 ' −0.108 for the choice of the gauge constants a0 = b0 = 1. The abbreviations are SH=similarity
horizons and TH=trapping horizons.

A0 Spacetime Asymptote # SH # TH
Naked singularity F-NMS 1 1

0 Friedmann universe F 1 1
Black hole F-QKS-PMS 2 2

α1 Black hole F-QKS-PMS 2 1 (d)
Wormhole F-QKS-QF 2 0

α2 Wormhole F-QKS-F 2 0
Wormhole F-QKS-QF 2 0

α3 – – – –
White hole F-QS-PMS 2 0

α4 White hole F-QS-PMS 1(d) 0
White hole F-QS-PMS 0 0

We have also found a one-parameter family of wormhole solutions. These solutions connect a flat
Friedmann universe and a distinct (quasi-) Friedmann universe with a throat of nonzero finite radius. It
should be noted that the throat is not traversable, which is consistent with Hayward’s theorem on the
violation of null energy condition for traversable dynamical wormholes [6]. The numerical solutions are
summarised in Table II.

5 Summary

We study self-similar solutions with a perfect fluid with the equation of state p = (γ − 1)ρ as a model
for dark energy. There are two exact solutions, the flat Friedmann solution and the Kantowski-Sachs
solutions. There are eight possible asymptotic behaviours, among which quasi-Kantowski-Sachs and
quasi-static solutions are extendible beyond z = ∞. We have numerically integrated the field equations
from the asymptotically Friedmann solution at very small z. Then, we have found a one-parameter
family of black hole solutions, which implies effective accretion onto black holes in the accelerating
universe. We have also found naked singularity solutions, wormhole solutions and white hole solutions
which all are asymptotically Friedmann at spatial and null infinity. The present suggests that black
holes in cosmological models with dark energy can grow as fast as the cosmological horizon. This relates
to the issue of whether supermassive black holes in galactic nuclei could be generated by accretion of
quintessence onto primordial black holes. See Ref. [4, 5] for details.

References

[1] B. J. Carr and A. A. Coley, Class. Quant. Grav. 16, R31 (1999).

[2] Y. B. Zeldovich and I. D. Novikov, Sov. Astronomy, 10, 602 (1967).

[3] B. J. Carr and S. W. Hawking, Mon. Not. R. astr. Soc. 168, 399 (1974).

[4] T. Harada, H. Maeda and B. J. Carr, Phys. Rev. D77, 024022 (2008).

[5] H. Maeda, T. Harada and B. J. Carr, Phys. Rev. D77, 024023 (2008).

[6] S. A. Hayward, Int. J. Mod. Phys. D8, 373 (1999).

4

292



293



!

! " # $ % & ' ( ) $ * + ! " , % " "

-
*
)#
$
%
&
+.
/'
0
1
+2
(%
)*
,

! / $
0
'
/ ) 3
"
!
+ 4
5

* $ *
6 - *

) # $ %
& +

. / '
0 1 +

2 ( % )
* , !

#
/ $
'
( ) *
,
+ 4
5

!

! " # $ % & ' ( ) $ * + ! " , % " "

-
*
)#
$
%
&
+.
/'
0
1
+2
(%
)*
,

!
/ $ 0 ' / ) 3 " ! + 4 5 7

* $ *
6 - *

) # $ %
& +

. / '
0 1 +

2 ( % )
* , !

294



" 8 # 9

#

2 ( ' . / " + " : - ) / ) . % ) - & + ; $ ) * (
!

# $ <

- * 2 ( ' . / " + " : - ) / ) . % ) - & + ; $ ) * (

!

# $ #
%

2 ) 3 "

! ) 2 ( ' * 0 " + # % $ & +

( = " + > ? + . % ' * "

/ ' % , " + / $ 0 ' / ) 3 " ! + 4 5

2 ( '
.
/ "
+ # / $
'
( ) *
,
+ 4
5

# / $ ' ( ) * ,

4 52 & ' / / + / $ 0 ' / ) 3 " ! + 4 5

295



296



Second-order power spectra of CMB anisotropies due to
primordial random perturbations in flat cosmological models

Kenji Tomita1

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606–8502, Japan

Abstract
Second-order power spectra of Cosmic Microwave Background (CMB) anisotropies
due to random primordial perturbations are studied, based on the relativistic second-
order theory of perturbations in flat cosmological models and on the second-order
formula of CMB anisotropies. The second-order density perturbations are small, com-
pared with the first-order ones. The second-order power spectra of CMB anisotropies,
however, are not small at all, compared with the first-order power spectra, because
at the early stage the first-order integrated Sachs-Wolfe effect is very small and the
second-order integrated Sachs-Wolfe effect may be dominant over the first-order ones.
So their characteristic behaviors may be measured through the future precise obser-
vation and bring useful informations on the structure and evolution of our universe
in the future.

1 Introduction

In most studies of Cosmic Microwave Background (CMB) anisotropies, the comparison between observed
and theoretical quantities have so far been done, assuming the linear approximation for cosmological
perturbations. The present state of our universe is, however, locally complicated and associated with
nonlinear behavior on various scales, and so the observed quantities of CMB anisotropies may include
some effects caused by various primordial perturbations through nonlinear process.

In recent years we studied these nonlinear effects of inhomogeneities on CMB anisotropies, based
on the relativistic second-order theory of cosmological perturbations, which we have recently derived[1],
and on the second-order formula of CMB anisotropies[2]. We studied the second-order effects of local
large-scale inhomogeneities on CMB anisotropies, paying attention to the interaction between them and
primordial perturbations[3, 4, 5, 6, 7].

In the present work we study the nonlinear effect of only primordial random perturbations
on CMB anisotropies and derive the power spectra. The second-order density perturbations are small,
compared with the first-order ones. The second-order power spectra of CMB anisotropies, how-
ever, are not small at all, compared with the first-order power spectra, because at the early stage the
first-order integrated Sachs-Wolfe effect is very small and the second-order integrated Sachs-Wolfe
effect may be dominant over the first-order ones. Their characteristic behaviors may be measured
through the future precise observation and bring useful informations on the structure and evolution of
our universe in the future. In §2, we derive the temperature fluctuations corresponding to simple density
perturbations of top-hat type, and show their dependence on Ω0 and z. In §3, we treat second-order
power spectra due to primordial random perturbations.

2 Temperature fluctuations in a simple model of top-hat type

First we consider a first-order spherical density perturbation with the top-hat type and the corresponding
second-order perturbation. In this case the potential function F is related to the density perturbation
δ1 ρ/ρ as δ1 ρ/ρ ∝ −∆F , which has the form shown in Fig.1. Here it is assumed that the radius in the
perturbed spherical region is much smaller than the cosmic horizon scale and its center is at an epoch
with redshift z.

1E-mail:tomita@yukawa.kyoto-u.ac.jp
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Figure 1: The matter density contrast for a top-hat
type spherical lump.
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ond order temperature fluctuations with Ω0 for
a light path passing through the center in the
nonzero-Λ models, where we assume the redshift
z = 0.035, the density perturbation εmc = 0.3 and
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Next we consider first-order and second-order CMB temperature fluctuations caused by the above
density perturbations through the Sachs-Wolfe effect, and derive the Ω0 dependence of the amplitudes of
temperature fluctuations at the present epoch (shown in Fig.2). From this you can see that for Ω0 ≈ 1
the first-order temperature fluctuation is nearly zero but the corresponding second-order temperature
fluctuation is not small. It should be noticed that the density parameter Ω(z) at epochs with redshift
z increases with z. For z $ 1, Ω(z) ≈ 1. The change in the first-order and second-order temperature
fluctuations with redshift z are shown in Fig.3. We can see a characteristic peak in the second-order
fluctuations, while the first-order fluctuations decrease monotonically with the increase of z. The details
are shown in our paper[8]. So at the early stage with large z, the second-order temperature
fluctuation is relatively important, compared with the first-order one.

3 Second-order power spectra of temperature fluctuations caused by the
primordial random density perturbations

We consider primordial scalar perturbations with F defined by

F =
∫

dkα(k)eikx, (1)

where the spatial average for α(k) is given by

〈α(k)α(k̄)〉 = (2π)−2PF (k)δ(k + k̄), (2)

with
PF (k) = PF0k

−3(k/k0)n−1T 2
s (k), (3)

where Ts(k) is the matter transfer function and PF0 is the normalization constant.
Then the first-order temperature perturbations are

δ
1
T/T ≡ ΘP = −1

2

∫
dkα(k)

∫ λe

λo

dλP ′(η)(kµ)2eikx, (4)

where P (η) is the growth factor of density paertubations, x = re, kx = krµ, µ ≡ cos θk and θk is the
angle between the wave vector ki and a unit vector ei.

In order to derive the power spectra, we take the statistical average 〈〉 for the primordial perturbations,
and 〈(δT/T )2〉 is expressed for the first-order anisotropies as

〈(δ
1
T/T )2〉 = 〈(ΘP )2〉 = (T0)−2

∑

l

2l + 1
4π

Cl. (5)

The power spectra Cl are

Cl = (T0)2
∫

dkk2PF (k)|H(l)
P (k)|2, (6)

where T0 is the present CMB temperature and the expressions for H(l)
P (k) are omitted here.

For the two directions with unit vectores e1 and e2, we have the correlation

(T0)2〈ΘP (e1)ΘP (e2)〉 =
∑

l

2l + 1
4π

ClPl(cos β). (7)

where the product e1e2 is equal to cos β.
For the second-order temperature anisotropies, we obtain

δ
2
T/T =

∫ ∫
dkdk̄α(k)α(k̄)

{1
8

∫ λe

λo

∫ λe

λo

dλdλ̄P ′(λ)P ′(λ̄)(kek̄e)2ei(kx+k̄x̄)

+
∫ λe

λo

dλ
[1
8
P ′(λ)

(
3kek̄e + 2(ke)2 −

1
2
kk̄

)
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+
1
56

P (λ)P ′(λ)
(
19kek̄ekk̄ − 26(kek̄e)2 − 3(kk̄)2 + 3k2(k̄)2

)

+
1

112
Q′(λ)(ke + k̄e)2

(
k2k̄2 − (kk̄)2

)
/(k + k̄)2

]
ei(k+k̄)x

+
1
4

∫ λe

λo

dλ
[
P ′′(λ)

∫ λ

λo

dλ̄P (λ̄)(kek̄e)2
]
ei(kx+k̄x̄)

}
, (8)

where ke = ke, P ′(λ) ≡ dP (λ)/dλ, and P ′(λ̄) ≡ dP (λ̄)/dλ̄. Here temperature fluctuations due to
emitter’s and observer’s motions were neglected, because we pay attentions to the Sachs-Wolfe effect
after the recombination epoch. It is found from the above equation that the average 〈δ2 T/T 〉 does not
vanish in contrast to the vanishing first-order one (〈δ1 T/T 〉).

The total average of (δT/T )2 is expressed as

〈(δ T/T )2〉 = 〈(δ
1
T/T )2〉 + (〈δ

2
T/T 〉)2 + 〈(δ

2
T/T − 〈δ

2
T/T 〉)2〉

= 〈Θ2
p〉 + (〈δ

2
T/T 〉)2 + 〈Θ2

pp〉, (9)

where Θpp ≡ δ2 T/T − 〈δ2 T/T 〉.
Now let us make a reduction of 〈Θ2

pp〉. It is expressed as

〈Θ2
pp〉 = 〈

(
δ
2
T/T (α(k)α(k̄))− 〈δ

2
T/T 〉

)(
δ
2
T/T (α(¯̄k)α(¯̄̄k))− 〈δ

2
T/T 〉

)
〉, (10)

where δ2 T/T (α(k)α(k̄)) is given by Eq.(8) and δ2 T/T (α(¯̄k)α(¯̄̄k)) is obtained from Eq.(8) by replacing
k, k̄ by ¯̄k,

¯̄̄k.
Then the correlation reduces to

(T0)2〈Θpp(e1)Θpp(e2)〉 =
∑

n

2n + 1
4π

C(2)
n Pn(cos β), (11)

where
C(2)

n =
4π

2n + 1
(T0)2

∑

l,l′

(
BI

ll′ + BII
ll′ + BIII

ll′

)
bll′n, (12)

where the expressions for BI
ll′ , BII

ll′ , BIII
ll′ are shown in a recent paper[9].

The formulas for 〈δ2 T/T 〉, 〈(Θpp)2〉 and 〈Θpp(e1)Θpp(e2)〉 are our new result which will be useful to
derive the second-order power spectra.

The author thanks K.T. Inoue for helpful discussions.
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Inclusion of the first-order vector- and tensor-modes in the
second-order gauge-invariant cosmological perturbation theory

Kouji Nakamura1
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Abstract
Gauge-invariant treatments of the second-order cosmological perturbation in a four
dimensional homogeneous isotropic universe are formulated without any gauge fixing.
We have derived the Einstein equations in the case of the single perfect fluid without
ignoring any modes. These equations imply that any types of mode-coupling arise
due to the second-order effects of the Einstein equations.

The second-order general relativistic cosmological perturbation theory has very wide physical moti-
vation. In particular, the first order approximation of our universe from a homogeneous isotropic one is
revealed by the recent observations of Cosmic Microwave Background (CMB) by Wilkinson Microwave
Anisotropy Probe[1], which suggests that the fluctuations of our universe are adiabatic and Gaussian at
least in the first order approximation. One of the next theoretical researches is to clarify the accuracy of
this result through the non-Gaussianity, or non-adiabaticity, and so on. To carry out this, it is necessary
to discuss the second-order cosmological perturbations.

However, general relativistic perturbation theory requires delicate treatments of “gauges” and this
situation becomes clearer by the general arguments of perturbation theories. Therefore, it is worthwhile
to formulate the higher-order gauge-invariant perturbation theory from general point of view. According
to this motivation, we proposed the general framework of the second-order gauge-invariant perturbation
theory on a generic background spacetime[2]. This general framework was applied to cosmological per-
turbation theory[3] and all components of the second-order perturbation of the Einstein equation were
derived in gauge invariant manner. The derived second-order Einstein equations are quite similar to the
equations for the first-order one but there are source terms which consist of the quadratic terms of the
linear-order perturbations.

In this article, we show the extension of the formulation in Refs. [3] to include the first-order vector-
and tensor-modes in the source terms of the second-order Einstein equation, which were ignored in
Refs. [3].

As emphasized in Refs.[2, 3], in any perturbation theory, we always treat two spacetime manifolds.
One is a physical spacetime Mλ and the other is the background spacetime M0. In this article, the
background spacetime M0 is the Friedmann-Robertson-Walker universe filled with a perfect fluid whose
metric is given by

gab = a2(η)
(
−(dη)a(dη)b + γij(dxi)a(dxj)b

)
, (1)

where γij is the metric on maximally symmetric three space. The physical variable Q on the physical
spacetime is pulled back to XQ on the background spacetime by an appropriate gauge choice X which is
an point-identification map from M0 to Mλ. The gauge transformation rules for the pulled-back variable
XQ, which is expanded as XQλ = Q0 + λ

(1)
X Q + 1

2λ2(2)
X Q, are given by

(1)
YQ − (1)

XQ = £ξ(1)Q0,
(2)
YQ − (2)

XQ = 2£ξ(1)

(1)
XQ +

{
£ξ(2) + £2

ξ(1)

}
Q0, (2)

where X and Y represent two different gauge choices, ξa
(1) and ξa

(2) are generators of the first- and the
second-order gauge transformations, respectively. The metric ḡab on the physical spacetime Mλ is also
expanded as ḡab = gab + λhab + λ2

2 lab under a gauge choice. Inspecting gauge transformation rules
(2), the first-order metric perturbation hab is decomposed as hab =: Hab + £Xgab, where Hab and Xa

1E-mail:kouchan@th.nao.ac.jp
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are transformed as YHab − XHab = 0, and YXa − XXa = ξ(1)a under the gauge transformation (2),
respectively[3]. The gauge invariant part Hab of hab is given in the form

Hab = −2a2
(1)

Φ (dη)a(dη)b + 2a2 (1)
νi (dη)(a(dxi)b) + a2

(
−2

(1)

Ψ γij+
(1)
χij

)
(dxi)a(dxj)b, (3)

where Di
(1)
νi =

(1)
χ[ij] =

(1)

χi
i = Di

(1)
χij = 0 and Di := γijDj is the covariant derivative associate with

the metric γij . In the cosmological perturbations[5], {
(1)

Φ ,
(1)

Ψ},
(1)
νi , and

(1)
χij are called the scalar-, vector-

, and tensor-modes, respectively. We have to note that we used the existence of the Green functions
∆−1 =: (DiDi)−1, (∆ + 2K)−1, and (∆ + 3K)−1 to accomplish the above decomposition of hab.

As shown in Ref.[2], through the above variables Xa and hab, the second order metric perturbation
lab is decomposed as lab =: Lab + 2£Xhab +

(
£Y − £2

X

)
gab The variables Lab and Y a are the gauge

invariant and variant parts of lab, respectively. The vector field Ya is transformed as YYa − XYa = ξa
(2)

+ [ξ(1), X]a under the gauge transformations (2). The components of Lab are given by

Lab = −2a2
(2)

Φ (dη)a(dη)b + 2a2 (2)
νi (dη)(a(dxi)b) + a2

(
−2

(2)

Ψ γij+
(2)
χij

)
(dxi)a(dxj)b, (4)

where Di
(2)
νi =

(2)
χ[ij] =

(2)

χi
i = Di

(2)
χij = 0. As shown in Ref.[2], by using the above variables Xa and Ya,

we can find the gauge invariant variables for the perturbations of an arbitrary field as

(1)Q := (1)Q − £XQ0, ,
(2)Q := (2)Q − 2£X

(1)Q −
{
£Y − £2

X

}
Q0. (5)

As the matter contents, in this article, we consider a perfect fluid whose energy-momentum tensor is
given by T̄ b

a = (ε̄ + p̄) ūaūb + p̄δ b
a . We expand these fluid components ε̄, p̄, and ūa as

ε̄ = ε + λ
(1)
ε +

1
2
λ2 (2)

ε , p̄ = p + λ
(1)
p +

1
2
λ2

(2)
p , ūa = ua + λ

(1)
u a +

1
2
λ2 (2)

u a p. (6)

Following the definitions (5), we easily obtain the corresponding gauge invariant variables for these
perturbations of the fluid components:

(1)

E :=
(1)
ε −£Xε,

(1)

P :=
(1)
p −£Xp,

(1)

Ua:=
(1)

(ua) −£Xua,
(2)

E :=
(2)
ε −2£X

(1)
ε −

{
£Y − £2

X

}
ε,

(2)

P :=
(2)
p −2£X

(1)
p −

{
£Y − £2

X

}
p,

(2)

Ua:=
(2)

(ua) −2£X
(1)
ua −

{
£Y − £2

X

}
ua.

Through ḡabūaūb = gabuaub = −1, the components of
(1)

Ua and
(2)

Ua are given by

(1)

Ua= −a
(1)

Φ (dη)a + a

(
Di

(1)
v +

(1)

Vi

)
(dxi)a,

(2)

Ua=
(2)

Uη (dη)a + a

(
Di

(2)
v +

(2)

Vi

)
(dxi)a, (7)

(2)

Uη:= a

{(
(1)

Φ
)2

−
(2)

Φ −

(
Di

(1)
v +

(1)

Vi −
(1)
νi

) (
Di (1)

v +
(1)

Vi −
(1)

νi

)}
(8)

where Di
(1)

Vi = Di
(2)

Vi = 0.
We also expand the Einstein tensor as Ḡ b

a = G b
a + λ(1)G b

a + 1
2λ2(2)G b

a . From the decomposition of
the first- and the second-order metric perturbation into gauge-invariant parts and gauge-variant parts,
each order perturbation of the Einstein tensor is given by

(1)G b
a = (1)G b

a [H] + £XG b
a , (2)G b

a = (1)G b
a [L] + (2)G b

a [H,H] + 2£X
(1)G b

a +
{
£Y − £2

X

}
G b

a (9)

as expected from Eqs. (5). Here, (1)G b
a [H] and (1)G b

a [L] + (2)G b
a [H,H] are gauge invariant parts of the

first- and the second- order perturbations of the Einstein tensor, respectively. On the other hand, the
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energy momentum tensor of the perfect fluid is also expanded as T̄ b
a = T b

a + λ(1)T b
a + 1

2λ2(2)T b
a and

(1)T b
a and (2)T b

a are also given in the form

(1)T b
a = (1)T b

a + £XT b
a , (2)T b

a = (2)T b
a + 2£X

(1)T b
a +

{
£Y − £2

X

}
T b

a (10)

through the definitions (7) of the gauge invariant variables of the fluid components. Here, (1)T b
a and

(2)T b
a are gauge invariant part of the first- and the second-order perturbations of the energy momentum

tensor, respectively. Then, the first- and the second-order perturbations of the Einstein equation are
necessarily given in term of gauge invariant variables:

(1)G b
a [H] = 8πG(1)T b

a , (1)G b
a [L] + (2)G b

a [H,H] = 8πG (2)T b
a . (11)

In the single perfect fluid case, the traceless scalar part of the spatial component of the first equation

in Eq.(11) yields
(1)

Ψ =
(1)

Φ due to the absence of the anisotropic stress in the first order perturbation of the
energy momentum tensor and the other components of Eq. (11) give well-known equations[5]. We show
the expression of the second-order perturbations of the Einstein equation after imposing these first-order
perturbations of the Einstein equations. Though we have derived all components of the second equation
in Eq. (11), we only show their scalar parts of it for simplicity:

4πGa2
(2)

E =
(
−3H∂η + ∆ + 3K − 3H2

) (2)

Φ −Γ0 +
3
2

(
∆−1DiDjΓ

j
i − 1

3
Γ k

k

)
−9

2
H∂η (∆ + 3K)−1

(
∆−1DiDjΓ

j
i − 1

3
Γ k

k

)
, (12)

8πGa2(ε + p)Di

(2)
v = −2∂ηDi

(2)

Φ −2HDi

(2)

Φ +Di∆−1DkΓk

−3∂ηDi (∆ + 3K)−1

(
∆−1DiDjΓ

j
i − 1

3
Γ k

k

)
, (13)

4πGa2
(2)

P =
(
∂2

η + 3H∂η − K + 2∂ηH + H2
) (2)

Φ −1
2
∆−1DiDjΓ

j
i

+
3
2

(
∂2

η + 2H∂η

)
(∆ + 3K)−1

(
∆−1DiDjΓ

j
i − 1

3
Γ k

k

)
, (14)

(2)

Ψ −
(2)

Φ =
3
2

(∆ + 3K)−1

(
∆−1DiDjΓ

j
i − 1

3
Γ k

k

)
. (15)

where H := ∂ηa/a. Γ0, Γi and Γij in Eqs. (12)-(15) are defined by

Γ0 := +8πGa2 (ε + p)Di

(1)
v Di (1)

v −3Dk

(1)

Φ Dk
(1)

Φ −8
(1)

Φ ∆
(1)

Φ −3
(

∂η

(1)

Φ
)2

− 12
(
K + H2

) (
(1)

Φ
)2

−4
(

∂ηDi

(1)

Φ +HDi

(1)

Φ
) (1)

Vi −2HDk

(1)

Φ
(1)

νk +8πGa2 (ε + p)
(1)

Vi

(1)

Vi +
1
2
Dk

(1)
νl D(k

(1)

νl) +3H2
(1)

νk(1)
νk

+DlDk

(1)

Φ
(1)

χlk −2HDk
(1)

νl (1)
χkl −

1
2
Dk

(1)

νl ∂η
(1)
χlk

+
1
8
∂η

(1)
χlk ∂η

(1)

χkl +H
(1)
χkl ∂η

(1)

χlk −1
8
Dk

(1)
χlm Dk

(1)

χml +
1
2
Dk

(1)
χlm D[l

(1)

χk]m −1
2

(1)

χlm (∆ − K)
(1)
χlm,

Γi := −16πGa2

(
(1)

E +
(1)

P
)

Di

(1)
v +12H

(1)

Φ Di

(1)

Φ −4
(1)

Φ ∂ηDi

(1)

Φ −4∂η

(1)

Φ Di

(1)

Φ

−16πGa2

(
(1)

E +
(1)

P
)

(1)

Vi −2Dj
(1)

Φ Di
(1)
νj +2DiD

j
(1)

Φ
(1)
νj +2∆

(1)

Φ
(1)
νi +

(1)

Φ ∆
(1)
νi +2K

(1)

Φ
(1)
νi

−4H
(1)

νj Di
(1)
νj +2Dj

(1)

Φ ∂η
(1)
χji −2∂ηDj

(1)

Ψ
(1)
χij

+2DkD[i

(1)
νm]

(1)

χkm +2D[k
(1)

νj] Dj
(1)
χki +2K

(1)

νj (1)
χij −

(1)

νj ∆
(1)
χji −

1
2
∂η

(1)

χjk Di
(1)
χkj +2

(1)

χkj ∂ηD[j

(1)
χi]k, (16)
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Γij := 16πGa2 (ε + p)Di

(1)
v Dj

(1)
v −4Di

(1)

Φ Dj

(1)

Φ −8
(1)

Φ DiDj

(1)

Φ

+

{
6Dk

(1)

Φ Dk
(1)

Φ +8
(1)

Φ ∆
(1)

Φ +2
(

∂η

(1)

Φ
)2

+ 16H
(1)

Φ ∂η

(1)

Φ +8
(
2∂ηH + K + H2

) (
(1)

Φ
)2

}
γij

+32πGa2 (ε + p)D(i

(1)
v

(1)

Vj) −4∂η

(1)

Φ D(i

(1)
νj) +4∂ηD(i

(1)

Φ
(1)
νj) +

(
4∂ηDk

(1)

Φ
(1)

νk +4HDk

(1)

Φ
(1)

νk

)
γij

+16πGa2 (ε + p)
(1)

Vi

(1)

Vj −2
(1)

νk DkD(i

(1)
νj) +2

(1)
νk DiDj

(1)

νk +Di

(1)

νk Dj
(1)
νk +Dk (1)

νi Dk
(1)
νj

+

(
−Dk

(1)
νl D[k

(1)

νl] −Dk
(1)
νl Dk

(1)

νl −2
(1)
νk ∆

(1)

νk −4∂ηH
(1)
νk

(1)

νk +6H2 (1)
νk

(1)

νk

)
γij

−4H∂η

(1)

Φ
(1)
χij −2∂2

η

(1)

Φ
(1)
χij −4Dk

(1)

Φ D(i

(1)
χj)k +4Dk

(1)

Φ Dk
(1)
χij −8K

(1)

Φ
(1)
χij +4

(1)

Φ ∆
(1)
χij

−4DkD(i

(1)

Φ
(1)

χj)k +2∆
(1)

Φ
(1)
χij +2DlDk

(1)

Φ
(1)

χlk γij

−2Dk (1)
ν(i ∂η

(1)
χj)k −2

(1)

νk ∂ηD(i

(1)
χj)k +2

(1)

νk ∂ηDk
(1)
χij +Dk

(1)

νl ∂η
(1)
χlk γij

+∂η
(1)
χik ∂η

(1)

χ k
j +2D[l

(1)
χk]i Dk

(1)

χ l
j −1

2
Dj

(1)
χlk Di

(1)

χlk −
(1)

χlm DiDj
(1)
χml +2

(1)

χlm DlD(i

(1)
χj)m

−
(1)

χlm DmDl
(1)
χij +

(
−3

4
∂η

(1)
χlk ∂η

(1)

χkl +
3
4
Dk

(1)
χlm Dk

(1)

χml −1
2
Dk

(1)
χlm Dl

(1)

χmk +K
(1)
χlm

(1)

χlm

)
γij ,

and Γ j
i := γjkΓik. These equations (12)-(15) coincide with the equations derived in Refs.[3] except for

the definition of the source terms Γ0, Γi, and Γij . Further, as shown in Refs.[3], the equations (12) and

(15) are reduced to the single equation for
(2)

Φ . We also derived the similar equations in the case where
the matter content of the universe is a single scalar field[4].

In summary, we have extended our formulation without ignoring the first-order vector- and tensor-
modes. As the result, these equations imply that any types of mode-coupling arise due to the second-order
effects of the Einstein equations, in principle. In some inflationary scenario, the tensor mode are also
generated by the quantum fluctuations. This extension will be useful to clarify the evolution of the second
order perturbation in the existence of the first-order tensor-mode. Further, to apply this formulation to
clarify the non-linear effects in CMB physics[6], we have to extend our formulation to multi-field system
and to the Einstein-Boltzmann system. These extensions will be one of our future works.
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Abstract
We study the cosmic microwave background (CMB) anisotropy generated by nonlin-
ear structures in a flat universe with a cosmological constant. We model a spherical
compensated void/lump by a family of Lemaitre-Tolman-Bondi spacetimes, and nu-
merically solve the null geodesic equations together with the Einstein equations. We
find that voids redshift CMB photons regardless of Ω (or z), while lumps blueshift
CMB photons if Ω (or z) is small. Those nonlinear structures could be observed as
cold/hot spots in the CMB sky map.

1 Introduction

Recently it has been argued [1, 2] that the anomalies of the cosmic microwave background (CMB) such as
octopole planarity and the alignment between quadrupole and octopole components [3], anomalously cold
spots on angular scales ∼ 10◦ [4], and asymmetry in the large-angle power between opposite hemispheres
[5] could be explained by the Rees-Sciama (RS) effect [6] of nonlinear large-scale structures.

To test such a conjecture, we study the RS effect due to nonlinear structures in a flat universe with a
cosmological constant Λ. We model a spherical compensated void/lump by a family of Lemaitre-Tolman-
Bondi (LTB) spacetimes, and numerically solve the null geodesic equations together with the Einstein
equations. In the literature [7] the CMB signature of voids/lumps has been extensively studied, using
LTB spacetimes; however, Λ = 0 has been assumed in all the papers. In this paper, we consider large
voids/lumps (> 100Mpc) in a flat universe with Λ > 0, as suggested by recent observations.

2 Model and Basic Equations

Consider a family of spherically symmetric spacetimes with dust and a cosmological constant. Their
general solutions are represented by the LTB metric,

ds2 = −dt2 +
R′2(t, r)

1 + f(r)
dr2 + R2(t, r)(dθ2 + sin2 θdϕ2), (1)

which satisfies the Einstein equations,

Ṙ2 =
2Gm(r)

R
+

Λ

3
R2 + f(r), ρ(t, r) =

m′(r)

4πR2R′
, (2)

where ′ ≡ ∂/∂r and ˙ ≡ ∂/∂t. ρ is energy density of matter, and m(r) and f(r) are arbitrary functions,
which should be fixed by initial conditions.

Our model of a void/lump is composed of three regions: the outer flat Friedmann-Robertson-Walker
(FRW) spacetime (r > r+), the inner open FRW spacetime (r < r−) and the intermediate shell region
(r− < r < r+). Hereafter we denote quantities in r > r+ and in r < r− by subscripts + and −,
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Figure 1: Examples of initial and evolved profiles of ρ(t, r). (a) and (b) represent a void (δ < 0) and a
lump (δ > 0), respectively.

respectively. At the initial time t = ti we give small perturbations on ρ in such a way that ρ−(ti) =
ρ+(ti)(1 + δi) with δi � 1 and in the shell,

ρ(ti, r) =























ρ− for r ≤ r−,
ρc − ρ−

16
(3X5

− − 10X3
− + 15X− + 8) + ρ− for r− ≤ r ≤ rc,

ρ+ − ρc

16
(3X5

+ − 10X3
+ + 15X+ + 8) + ρc for rc ≤ r ≤ r+,

ρ+ for r ≥ r+,

(3)

where rc ≡ r+ + r−
2

, w ≡ r+ − r−
2

, X± ≡ r − rc ∓ w/2

w/2
, (4)

and ρc ≡ ρ(rc) is determined by the boundary condition at r = r+. Examples of initial and evolved
configurations of ρ(t, r) are shown in Fig. 1.

As for initial values of H(t, r) ≡ Ṙ/R, we assume H(ti, r) = H+(ti) = H−(ti). We fix the gauge of
the radial coordinate as r = R(ti, r). In this model there are four dimensionless parameters,

Ω ≡ 8πGρ+

3H2
+

, δ ≡ ρ−
ρ+

− 1,
R(rc)

H−1
+

,
w

rc

, (5)

which should be fixed at a certain time.
Let us consider a photon which passes the center, r = 0. The geodesic equations with the metric (1)

are given by

dt

dλ
= kt,

dr

dλ
= kr, kθ = kϕ = 0, kr = ε

√
1 + f

R′
kt, ε ≡ sign

(

dr

dt

)

, (6)

dkt

dλ
= − ˙grr

2
(kr)2,

d

dλ
(grrk

r) =
grr

′

2
(kr)2, grr ≡ (R′)2

1 + f
(7)

By numerical integration of the null geodesic equations (6) and (7) together with the Einstein equation
(2), we evaluate temperature fluctuations,

∆T

T
=

kt

kt
+

− 1, (8)

where kµ
+ is the null vector of another photon which passes the homogeneous region, and given by

kt
+ ∝ 1/a+.
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Figure 2: Temperature fluctuations of photons passing through a void (a) and a lump (b). We put
δo = ∓0.3, Ωo = 0.24, Ro(rc) = 0.1H−1

o and w/rc = 0.1. The arrow indicates the traveling direction of a
photon.

Figure 3: Temperature fluctuations for a large void with Ro(rc) = 0.1H−1
o . (a) shows ∆T/T versus Ωo

with δo = −0.3. The dotted line indicated by “thin shell” shows ∆T/T for the thin-shell model [2]. (b)
shows ∆T/T versus δo with Ωo = 0.24 and w/rc = 0.3 The dashed line indicated by “linear approx.”
shows a linear extrapolation from the values for |δo| ≤ 0.1.

3 Results and Discussions

Figure 2 shows temperature fluctuations of photons passing through a void/lump. The subscript o denotes
quantities at the time to when a photon comes out of a void/lump. Although ∆T/T temporarily becomes
∼ 10−3, it finally reduces to ∼ 10−5 because of mass compensation of a void/lump.

In what follows we discuss only the eventual values of ∆T/T measured outside a void/lump. Figure
3 shows ∆T/T for a large void. (a) indicates how ∆T/T depends on Ωo and the width of the shell w/rc.
We find our result is consistent with that for the thin-shell model [2], and that ∆T/T decreases as w/rc

increases. (b) shows that the nonlinear effects enhance ∆T/T .
In Fig. 4 we plot ∆T/T for a large lump. According to Mart́ınez-González and Silk [8], lumps redshift

CMB photons in the Einstein-de Sitter universe (Ω = 1, Λ = 0), just like voids. In contrast, we find in
(a) that lumps blueshift CMB photons in low-Ω universes. That is, large lumps at high-z and at low-z
have opposite effects on the CMB anisotropy. We also see that our result is consistent with that for
the top-hat model calculated by the second-order perturbation [9]. (b) shows that the nonlinear effects
reduce ∆T/T , in contrast to those for a void.
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Figure 4: Temperature fluctuations for a large lump. (a) shows ∆T/T versus Ωo with δo = 0.3, Ro(rc) =
0.09H−1

o and w/rc = 0.1. The dotted line indicated by “top hat (2nd)” shows ∆T/T for the top-hat
model calculated by the second-order perturbation [9]. (b) shows ∆T/T versus δo with Ωo = 0.24,
Ro(rc) = 0.1H−1

o and w/rc = 0.2.

Our results indicate that, if quasi-linear (|δ| ∼ 0.3) and extra-large (R ∼ 0.1H−1) voids/lumps exist,
they could be observed as cold/hot spots in the CMB sky map. Furthermore, with such observations we
could estimate the quantity of dark matter in voids.
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Wave scattering in the black hole magnetosphere
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Abstract
Low-frequency disturbances in a stationary and axisymmetric force-free black hole
magnetosphere is studied. We investigate time-dependent axisymmetric linear per-
turbations on the split-monopole magnetic field around the slowly rotating black hole.
Imposing boundary conditions on the event horizon and the outer light surface, we
obtain the specific solution representing waves from vertical direction to be scattered
and absorbed by the black hole. Then, the global energy transport in this process is
investigated.

1 Introduction

The rotating black hole surrounded by a magnetosphere is believed to be an important energy source
in astrophysical systems. Blandford & Znajek developed general theory of stationary and axisymmet-
ric black hole magnetospheres in the strong magnetic field limit (so called force-free limit). They also
demonstrated the possibility that rotational energy of the black hole can be extracted through the elec-
tromagnetic process[1]. This Blandford-Znajek effect is believed to be a plausible process for powering
jets in active galactic nuclei and gamma-ray bursts.

Though most of foregoing works on this subject were concerned with stationary configurations, recent
general relativistic magnetohydrodynamic simulations have been able to remove this restriction. Some
works investigated time evolution of a magnetized torus surrounding the Kerr black hole and found the
realizable structure of the magnetic field developed by accretion flows (e.g. [2]). Most important results in
these simulations is that, in polar regions, the rate-time structure of the magnetic field corresponds to the
stationary field found in [1] and these Poynting-dominated jets are consistent with being powered by the
Blandford-Znajek effect. In this sense, some perturbation analysis around this stationary configurations
would be also important to clarify effects brought by disturbances. Especially, there are important issues
such as wave propagation or stability of stationary and axisymmetric configurations.

One can see importance of wave propagation analysis in clarifying the physical differences between
magnetohydrodynamic wave modes; the Alfvén mode and the fast magnetosonic mode. In connection
with this, Uchida investigated linear perturbations in the force-free, stationary and axisymmetric black
hole magnetospheres[3]. He considered the high-frequency limit and derived the local dispersion rela-
tions in order to investigate properties of each mode; such as way of wave propagation or possibility of
super-radiant scattering. On the other hand, one can also see importance of wave propagation analysis
in investigation of the global energy and angular momentum transport in the black hole magnetospheres.
This involves wave scattering and is an interesting issue as an extension from the vacuum to the non-
vacuum case. The purpose of this paper lies in this direction.

For this purpose, we consider axisymmetric linear perturbations in the typical stationary and axisym-
metric force-free black hole magnetosphere. Though the high-frequency limit is crucial for separating
perturbations into two modes and for general analysis without detailed knowledge of the unperturbed
configurations, we prefer the low-frequency limit. This is because we assume the generation of external
disturbances in electromagnetic fields and would like to estimate the energy and angular momentum
transport from the large distance to the black hole; this involves knowledge about global evolution of
waves and that can not be obtained in the high-frequency limit. Moreover, analysis of low-frequency
waves might be important in connection with the eigenvalue problems. Especially, it is known that the
kink instability of the magnetic field is a prior non-axisymmetric mode which work on low-frequency
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waves[4] and it may suppress the Blandford-Znajek mechanism. In this sense, though we only treat
axisymmetric waves as a first step, the extension of this work to non-axisymmetric case is also important.

2 Axisymmetric force-free field in the Kerr space-time

The force-free black hole magnetosphere is determined by Maxwell’s equations and the force-free condi-
tions;

Fµν
;ν = 4πjµ, F[µν;λ] = 0, Fµνj

ν = 0. (1)

Here, since the gravitational field induced by the electromagnetic field and plasma around the black hole
is weak, we assume the background geometry of the magnetosphere is described by the Kerr metric and
use the Boyer-Lindquist coordinates. For non-stationary and axisymmetric fields, (1) reduce to the eight
equations (B10)–(B17) given in [5] and we follow this notation. These equations determine eight quan-
tities; the toroidal component of the vector potential Aφ, the toroidal magnetic field BT, the current jµ

and ψθ, ψr. Measured by a ZAMO, −ψr, −
√

∆ψθ are r and θ components of the electric field. Here, as
usual, ∆ ≡ r2 − 2Mr + a2, M and a is the mass and specific angular momentum of the black hole.

Especially for stationary fields, the force-free black hole magnetosphere is characterized by two func-
tions of Aφ, ΩF(Aφ) interpreted as the electromagnetic angular velocity and BT(Aφ). In the slow rotation
limit of the black hole, the split-monopole solution was derived in [1]. We only note here that Aφ is given
by the form Aφ =−C cos θ+CΩ2

FA (r) sin2 θ cos θ+O(a/M)4 , where A (r) is regular on the event horizon
and ΩF is related to the angular velocity of the black hole as ΩF = ΩH/2. We use this solution as the
background fields. The reason for this choice comes from mathematical simplicity. Moreover, recent
simulations suggest that this solution is consistent with the simulation in the polar region[2].

In the black hole magnetospheres, unlike in the vacuum case, some singular surfaces of magnetohy-
drodynamic flows exist. In case of the force-free limit, there are two singular surfaces which are called
light surfaces and coincident with the singular surfaces of Alfvén waves. For the split-monopole magnetic
field around the slowly rotating black hole, one of them degenerates to the event horizon. The other is in
the large distance and defined by rΩF sin θ ' 1 (light cylinder). In this work, we assume the generation
of electromagnetic disturbances outside the light cylinder and treat accretion of low-frequency waves into
the black hole. For this purpose, we would set the split-monopole fields as the unperturbed fields because
it is valid to the distance well beyond the light cylinder. On the other hand, for perturbed fields, we have
to demand the regularity of the fields as the boundary condition on the light cylinder (and on the event
horizon). This causes difficulty of global analysis of the black hole magnetospheres.

3 Linear perturbations in force-free black hole magnetospheres

For above eight quantities f , we consider axisymmetric linear perturbations δf on the background split-
monopole fields fB as f =fB + δf and derive equations for δf . Because we are interested in the distur-
bances exited within the timescale of rotational period of the black hole, we assume frequency of wave
ω as ω <∼ ΩF(=ΩH/2). To manage the difficulty of the treatment of the light cylinder, we follow the
following procedure in the investigation of perturbed fields. To begin with, though we focus on accretion
of waves from the large distance toward the black hole, we first solve the perturbation equations around
the black hole with the slow rotation approximation of it. In this approximation, we can regard MΩF as
a small parameter and neglect higher order terms of it. Though, even in this case, rΩF could be large
in the large distance and this treatment is valid only for r� 1/ΩF. Then, we extend these solutions to
the larger distance in the flat space-time approximation. This treatment is justified by the fact that the
overlap region M�r�1/ΩF exists in this case. This procedure has the advantage that we can separate
“effect of the black hole” and “effect of the light cylinder” because we need not care the light cylinder
for r� 1/ΩF. In this way, we can investigate behavior of waves come from the large distance toward
the black hole. In the following, we only show the solution δAφ and omit the other seven quantities.
Moreover, by the symmetry, we only consider the region 0≤θ<π/2.
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3.1 Accretion of waves into the black hole

Now, using the slow rotation approximation, we expand perturbations as δf=
∑∞

n=N (a/M)nδf(n)e
−iω(t+r∗).

Here, r∗ is defined by dr∗/dr = (r2 + a2)/∆ and N determines the dependence of a/M in the lead-
ing order. To begin with, we determine N for each perturbation. In view of the force-free equations
δFµνj

ν+Fµνδj
ν =0, a natural choice is to follow the background field. As a result, in the determinations

of N , we follow the background except for δAφ and choose N = 2 for δAφ. Of course this choice is
not unique one, this is also favorable for the boundary conditions on the pole θ = 0. Then, requiring
the ingoing wave condition and the regularity of the electromagnetic fields on the event horizon as the
boundary condition, we obtain a solution

δAφ = −2δC
[
Ω2

F

(
r2 +

4M
3
r +

28M2

9

)
sin2 θ cos θ +O(a/M)3

]
e−iω(t+r∗), (2)

where δC is a constant representing the intensity of disturbances and δC/C must be small enough to
neglect non-linear terms. As mentioned above, this solution is valid only for r�1/ΩF.

3.2 Wave inflow in the distant region

Now, we consider perturbations in the far region M�r with the flat space-time approximation. In this
region, we can neglect A (r) and obtain the single equation for δAφ;[

%2− 1
sin2 θ

]
δAφ,%%%−

[
iσ%2−4%+

iσ

sin2 θ

]
δAφ,%%+

[
σ2%2−4iσ%+2− σ2

sin2 θ
+L̂2(θ)−

1
%2
L̂1(θ)

]
δAφ,%

−
[
iσ3%2+2iσ+

iσ3

sin2 θ
+iσL̂2(θ)+

(
iσ

%2
− 2
%3

)
L̂1(θ)

]
δAφ ' 0. (3)

Here, we have defined L̂1(θ)≡cscθ∂/∂θ (cscθ∂/∂θ), L̂2(θ)≡(∂/∂θ+3 cot θ) (∂/∂θ−2 cot θ), % ≡ rΩF and
σ ≡ ω/ΩF . Though δAφ has the θ-dependence of sin2 θ cos θ in the region %�1, we can find that some
other θ-dependence arises as % glows and the light cylinder becomes a singular surface for this equation.
This causes difficulty of analysis in the magnetospheres and we can not assume a specific separation of
variables in the distant region any more.

To handle this difficulty, we consider a expansion

δAφ =
∞∑

n=1

an(%) sin2n θ cos θ e−iω(t+r). (4)

Then demanding each coefficient of sin2l θ cos θ to be zero, (3) reduces to recurrence equations for an(%).
For example, the relation between a1(%) and a2(%) is

a2 = −1
8
%2a1,%% +

i

4
σ%2a1,% +

3
4
a1 + δC%2, (5)

where we have integrated the equation. Other recurrence equations relate al+2(%) to al+1(%) and al(%),
where l represents positive integers. To solve these equation, we would impose two boundary conditions.
Of course, one of them is the matching boundary condition of the solution in the overlap region M�r�
1/ΩF. Namely, in this overlap region, we assume al+1(%) =O(%3) and obtain the approximate solution
of (5) as a1(%) = −2δC%2 +O(%3) which connects with (2). One the other hand, the other boundary
condition should be imposed on the light cylinder. We can show that (3) intrinsically contains solutions
which can not pass the light cylinder from the outside of it. Because the light cylinder is the critical
surface for ingoing Alfvén waves, these solutions might represent ingoing Alfvén waves and we require
the absence of these waves.

In this manner, al(%) can be uniquely determined in principle. However, we have no idea to separate
out going terms from ingoing ones, we restrict our treatment for low frequency limit σ�1 in the following.
To this end, regarding δAφ as functions of σ% and θ, we rewrite (3) with σ% and take the limit σ → 0
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(Though σ is small, we keep σ% to treat disturbances in the large distance.). To this end, we obtain the
equation of δAφ in this limit;[

∂2

∂%2
+

2
%

∂

∂%
+ σ2

(
1− 2iσ

%

)
+

1
%2
L̂2(θ)

]
δAφ = 0. (6)

Again, if we consider the expansion (4) and impose the boundary conditions we can determine δAφ.
Moreover, in this low-frequency limit, we can pick out the pure outgoing wave part δA(out)

φ in it;

δA(out)

φ = −δC
σ2

[
S(θ) +

3i
σ%

sin2 θ

]
ei(σ%−ωt), (7)

where S(θ) ≡ [17 sin2 θ−8−8 csc2 θ+(12+8 csc2 θ) cos θ+ 12sin2 θ log{(1+cos θ)/2}]/10. On the other
hand, the ingoing wave part δA(in)

φ is more complex and we only derive the approximate form of it for
σ%=rω�1;

δA(in)

φ = −8iδC
σ2

[
σ%(1− cos θ) +O(σ%)0

]
e−i(σ% cos θ+ωt). (8)

As a result our solution represents the scattering of waves coming from vertical directions.

4 Global energy transport

Because we have found the perturbations of the electromagnetic fields δFµν , we can investigate the
global energy and angular momentum transport. Here, we only show the energy transport. Because the
first order energy-momentum tensor vanishes after they have been averaged over periods, we consider
the time-averaged second order energy-momentum tensor and introduce the time-averaged conserved
energy flux as usual; E µ =−

[
δFλµδFλt−δµ

tδF
λτδFλτ/4

]
/(4π). To begin with, we consider the energy

inflow in the large distance. Because we know the ingoing wave parts of δFµν for the region r� 1/ω
(e.g.(8)) and they come from vertical directions, we integrate the energy flux of ingoing wave parts on
z ≡ r cos θ = constant plane of radius w ≡ r sin θ in this region. Then the net energy inflow can be
obtained as E(in) ' −2

∫
2πwE z

(in)dw ' 4δC2Ω6
F(r sin θ)4. Next, let us consider the scattered energy

flow. Because the scattered waves propagate along radial dirrections (see (7)), we integrate the energy
flux brought by them on the sphere of radius r. Then the net energy outflow can be obtained as
E(out) ' 2

∫ π/2

0
2πr2 sin θE r

(out)dθ ' δC2Ω6
F/(3ω

4). Finally, the net energy inflow into the black hole is
given by E(BH)' δC2Ω2

F/3. Because we have regarded ω and r as ω� 1/ΩF and r� 1/ω to derive (8),
the relation E(BH)�E(out)�E(in) must be satisfied. Then most of the energy inflow E(in) is stored in
the disc (θ=π/2). As a summary, let us pay attention the ratios,

E(BH)/E(out)∼(ω/ΩF)4, E(BH)/E(in)∼(rΩF sin θ)−4, E(out)/E(in)∼(rω sin θ)−4. (9)

All of them are independent of the mass M . The first ratio is consistent with the well-known result in case
of vacuum; higher frequency waves are absorbed by the black hole better than lower ones. Moreover, it
shows that the energy given to the black hole is brought by energy inflow beyond the light cylinder radius
rather than the black hole radius. This is because, even though waves come from vertical directions far
from the black hole, they are scattered by the non-vacuum fields and collimated into radial directions.
In fact, the first and second ratios depend on the parameter of the unperturbed fields ΩF. Though, it is
interesting that the third ratio does not depend on it.
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Abstract
It is well known that higher-dimensional black objects with translational invariance
are unstable, which is called Gregory-Laflamme instability. There is a question if
this instability is eliminated by adding a scalar hair to the black objects. For the
first step, we investigate a regular topological string solution and its stability in the
5-dimensional Einstein-Higgs system. Linear analysis shows that the string solution
is stable against non-uniform perturbations.

1 Introduction

In higher-dimensional spacetime there is variety of black objects such as a black string, a black ring, and
black branes aside from a black hole. The black string and black branes have translational invariance
along one or some spatial direction(s). It is shown that these objects are unstable against the non-uniform
perturbation, which is known as Gregory-Laflamme instability[1]. What is their final state? This is a
question which attracted much attention in the last decade. Analysis beyond perturbation is necessary
to answer this question. The numerical approach is the only method, and static solutions with nontrivial
horizon geometry were constructed in 6-dimensional spacetime[2]. They are candidates for the final state.
There are, however, other candidates. For instance, the horizon is pinched and continues to shrinks with
infinite time[3].

Dynamical stability is the one of the aspects of the system. Thermodynamical stability is another
aspect. It was proposed that dynamical stability is strongly related to thermodynamical stability, which is
called Gubser-Mitra conjecture[4]. It states that for systems with a translational symmetry and an infinite
extent dynamical Gregory-Laflamme instability arises precisely when the system is thermodynamically
unstable. There are a lot of examples which support Gubser-Mitra conjecture in vacuum and electro-
vacuum systems.

The black object has an event horizon, and we do not know what matters were distributed before the
gravitational collapse. It is natural, however, to assume that the initial object has the same translational
symmetry as the black objects. Topological defects such as a vertex (sting) and a domain wall are regular
objects with the symmetry. Besides, they have the different type of stability, i.e., topological stability.
Although perturbative analysis of dynamical stability shows local stability, topological stability indicates
global stability in flat spacetime. When gravity is taken into account, global stability is not guaranteed.
An event horizon may be formed in the middle of the transition to the “globally stable solution”. Then
all the energy density may be swallowed into the event horizon, and a vacuum black object remains.

In 4-dimensional spacetime, a static black hole solution with a scalar hair was discovered[5]. It is called
a monopole black hole. Although its field configuration of far region is similar to the global monopole,
the monopole black hole has an event horizon around the center. In 5-dimensional spacetime, a black
string solution with the analogous scalar hair exists. Then what happens if a non-uniform perturbation
is added to it? Which win, dynamical instability or topological stability? In this paper we investigate
stability of the regular global string solution in 5-dimensional spacetime as the first step, because the
above question is almost trivial if the global string is unstable against non-uniform perturbation.

The organization of this paper is as follows. In the next section, we construct the global string solution
in 5-dimenion. In Sec. 3, we perform a perturbative analysis and give a result.

1E-mail: torii@ge.oit.ac.jp
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2 Global String

We consider a real triplet scalar field Φa (a = 1, 2, 3) which has spontaneously broken internal O(3)
symmetry, and minimally couples to gravity. The action is

S =
∫
dx5√−g

[
R

16πG
− 1

2
∂µΦa∂µΦa − λ

4
(ΦaΦa − v2)2

]
, (1)

where R is the Ricci scalar of 5-dimensional spacetime. λ and v are the self-coupling constant and the
vacuum expectation value (VEV) of the scalar field, respectively.

We shall assume that spacetime is static and has translational invariance along one of the spatial
direction. The metric form is

ds2 = −f(r)e−2δ(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2) + w(r)dz2. (2)

Basic equations becomes simpler by adopting function z(r) defined by gww = ez(r). However, since the
function w(r) is useful when gzz → 0, we use w(r).

The scalar field is assumed to have unit winding number and so-called hedge-hog configuration,

Φa = h(r)
xa

r
, (3)

where xa (a = 1, 2, 3) are the Cartesian coordinates for the fixed z.
There are two physical parameters λ and v in this system. By scaling the variables as

x̄µ = v
√
λxµ, Φ̄a =

Φ
v
, (4)

the action can be rewritten as

S̄ =
∫
d5x

√−g
[

R̄

16πv2
− 1

2
∂µΦ̄a∂µΦ̄a − 1

4
(
Φ̄2 − 1

)2
]
, (5)

In this formula, the coupling constant λ is scaled out. The VEV appears only in the denominator of
curvature term and affects the system only when self-gravity is taken into account.

The basic equations are

f ′

r
+
w′f ′

4w
+
w′′f
2w

− 1
r2

+
fw′

rw
+
f

r2
− w

′2f

4w2
= −2πv2(h2 − 1)2 − 4πv2fh

′2 − 8πv2h2

r2
, (6)

w′′

2w
− w

′2

4w2
+

2δ′

r
+
w′δ′

2w
= −8πv2h

′2, (7)

1
r2

(
f − 1 + rf ′ − rfδ′

)− fw′

2rw
+
w
′2f

4w2
− w′f ′

2w
+
fw′δ′

2w
− w′′f

2w
= −8πv2h

2

r2
, (8)

h′f ′ + h′′f − h′fδ′ +
2h′f
r

− 2h
r2

+
h′fw′

2w
− (h2 − 1)h = 0, (9)

where a prime denotes a derivative with respect to the radial coordinate. We have omitted the bar of the
variables.

Basic equations are solved with suitable boundary conditions. Putting the regularity condition at the
axis r = 0, we will obtain the self-gravitating global vertex solution. The variables are expanded as

f(r) = 1− 2πv2

9
(1 + 18h 2

1 )r2 + . . . , w(r) = w0

(
1− 4πv2

9
r2 + . . .

)
,

δ(r) = δ0 +
πv2

9
(1− 18h 2

1 )r2 + . . . , h(r) = h1r − h1

10

[
1− 2πv2

9
(7 + 54h 2

1 )
]
r3 + . . . .
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Figure 1: The field configurations of the static global string in 5-dimensional spacetime (left: v = 0.15,
center: v = 0.19, right: v = 0.20). The solid, the dashed, and the dot-dashed lines show the field variables
h, f , and w, respectively.

δ0 and w0 are not determined by the regularity condition. However, we can assume δ0 = 1 and w0 = 1
without loss of generality because of scaling of the coordinates t and z. Therefore, the free parameter is
just h1.

At infinity r →∞, the variables are expanded as

f(x) = 1− 8πv2 + f1x+
[
1
4
w2

1(1− 8πv2)− 1
4
w1f1 − 40

3
πv2

]
x2 + · · · ,

w(x) = w∞

(
1 + w1x+

1
2
w2x

2 + · · ·
)
, δ(x) = δ∞ +

w1

2
x+

1
8
(3w2

2 − 2w2
1)x

2 + · · · ,

h(x) = 1− x2 − 3− 16πv2

2
x4 + · · · .

where x := 1/r, and

w2 =
[

1
8πv2 − 1

(
32πv2

3
+ f1w1

)
+ w2

1

]
.

w∞ and δ∞ are determined by solving the basic equations from the axis to infinity. The solution is
characterized by the boundary values f1 and w1. f1 corresponds to the mass observed at infinity r →∞.
w1 has following physical meaning. Since there is the translational invariance along the z axis, the
spacetime can be reduced to a 4-dimensional system by Kaluza-Klein dimensional reduction. Then the
metric function w(r) becomes a dilaton field. w1 is related to the scalar charge of this dilaton field.

The first step to obtain the static solution is choosing a value of h1 at the axis. And secondary, we
integrate numerically the basic equations from the axis to r → ∞. The field variables diverge at finite
r in the most cases, and hence, the value of h1 should be tuned to satisfy the boundary condition at
infinity by iterative method. In this sense, h1 is a shooting parameter.

Fig. 1 shows the field configurations of the static global string in 5-dimensional spacetime. For the
large VEV (v ≈ 0.20), the metric function w vanishes and the numerical calculation stops at finite r.

3 Stability analysis

In this section, we analyze stability of the global string solution obtained in the previous section. The
metric is perturbed as

gµν(t, xa) = ḡµν(xa) + hµν(t, xa), (10)

where ḡµν(xa) is the static solution and hµν(t, xa) is perturbation function. Here, we define a new variable
by

ψµν = hµν − 1
2
ḡµνh, (11)

3

315



-10

-5

0

5

0 2 4 6 8 10 12 14 16

Figure 2: The configuration of the perturbation functions (left: v = 0.15, k = 0.5, σ = 0, right: v = 0.15,
k = 0.5, σ = 1.0). The solid, the dotted, the dashed and the dot-dashed lines show the field variables η,
N , L, and z, respectively.

where h = h λ
λ , and adopt the gauge condition ψ λ

µ ;λ = 0. The perturbation of the scalar field is

Φa(t, xa) = Φ̄(xa) + δΦa(t, xa), (12)

where φ̄(xa) is the static solution.
We assume that perturbation does not depend on θ and φ and adopt the metric perturbation as

ψµν = ei(σt+kw)




−fe−2δN iStr 0 0 Stz

iStr f−1L 0 0 iSrz

0 0 r2T 0 0
0 0 0 r2T sin2 θ 0
Stz iSrz 0 0 wSzz



, (13)

where the functions N , L, T , Str, Srz, Stz, Szz are the functions of r. The perturbation of the scalar
field is assumed as

δΦa = η(r)
xa

r
. (14)

The perturbation equations are obtained by substituting these ansätze. They are, however, tedious and
we do not show them here explicitly.

The perturbation equations are integrated with the regular boundary condition at the axis. If there are
bound states with σ2 < 0, the perturbation grows exponentially with time, and the solution is found out
to be unstable. By our analysis, however, we cannot find such modes. Configurations of the perturbation
functions with σ2 = 0 are shown in Fig. 2. In case where unstable modes exist, the perturbation functions
with σ2 = 0 usually have extremum points and nodes. But we cannot find them in Fig. 2. These facts
imply that the static global solutions are stable against the perturbation assumed above. All the details
will be reported elsewhere[6].
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Induced Gravity in Deconstructed Space at Finite Temperature
— Self-consistent Einstein Universe —
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Abstract
We study self-consistent cosmological solutions for an Einstein Universe in a graph-
based induced gravity model. The graph-based field theory has been proposed by
the present authors to generalize dimensional deconstruction. In this paper, we con-
sider self-consistent Einstein equations for a “graph theory space”. Especially, we
demonstrate specific results for cycle graphs.

1 Pre-history

1.1 Induced Gravity

Induced Gravity or Emergent Gravity has been studied by many authors. The idea of induced gravity
is, “Gravity emerges from the quantum effect of matter fields.” The one-loop effective action can be
expressed as the form:

−1
2

∫
dt

t

∑

i

Tr exp
[
−(−∇2 + M2

i )t
]
. (1)

In curved D-dimensional spacetime, the trace part including the D-dimensional Laplacian becomes

Tr exp
[
−(−∇2)t

]
=

√
|det gµν |
(4π)D/2 t−D/2(a0 + a1t + · · ·), (2)

where the coefficients depend on the background fields. In four-dimensional spacetime, the coefficients
are a0 = 1 and a1 = R/6 for a minimal scalar field, a0 = −4 and a1 = R/3 for a Dirac field, a0 = 3 and
a1 = −R/2 for a massive vector field, where R is the scalar curvature.

In Kaluza-Klein (KK) theories, inducing Einstein-Hilbert term were also studied [1]. In Dimensional
Deconstruction (see the next subsection), we also have constructed models of induced gravity based on a
graph [2].

1.2 Dimensional Deconstruction

Dimensional Deconstruction (DD) [3] is equivalent to a higher-dimensional theory with discretized extra
dimensions at a low energy scale. The Lagrangian density for vector fields is

L = − 1
2g2

N∑

k=1

trF 2
µνk +

N∑

k=1

tr |DµUk,k+1|2 , (3)

where F
µν
k = ∂µAν

k − ∂νA
µ
k − i[Aµ

k ,Aν
k] is the field strength of U (m)k and µ, ν = 0, 1, 2, 3, while g is the

gauge coupling constant. We should read Aµ
N+k = Aµ

k , etc. Uk,k+1, called a link field, is transformed as

Uk,k+1 → LkUk,k+1L
†
k+1 , Lk ∈ U (m)k, (4)

under U (m)k. The covariant derivative is defind as DµUk,k+1 ≡ ∂µUk,k+1 − iAµ
kUk,k+1 + iUk,k+1A

µ
k+1.

1E-mail:kan@yamaguchi-jc.ac.jp
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We may use a “moose” or “quiver” diagram to describe this theory. In such a diagram, gauge groups
are represented by open circles, and link fields by single directed lines attached to these circles. Open
circles and single directed lines are sometimes called sites and links. The geometry built up from sites,
links, and faces is sometimes called “theory space”. These geometrical objects are identified as gauge
groups, fields and potentials in the action. The moose diagram characterizing the transformation (4) is
an N -sided polygon.

We assume that the absolute value of each link field |Uk,k+1| has the same value, f . Then Uk,k+1 is
expressed as

Uk,k+1 = f exp(iχk/f) . (5)

The Uk,k+1 kinetic terms go over to a mass-matrix for the gauge fields. The gauge boson (mass)2 matrix
for N = 5 is

g2f2




2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2




. (6)

We obtain the gauge boson mass spectrum:

M2
p = 4g2f2 sin2

(πp

N

)
, p ∈ Z , (7)

by diagonalizing (6).
For |p| ¿ N , the masses become

Mp ' 2π|p|
r

, (8)

where r ≡ Nb and b ≡ 1/gf . This is precisely the Kaluza-Klein spectrum for a five-dimensional gauge
boson compactified on a circle of circumference r.

1.3 Spectral Graph Theory

In general, the theory space does not necessarily have a continuum limit. Sites can be complicatedly
connected by links. Such a connection is a graph. We identify the theory space as a graph consisting of
vertices and edges, which correspond to sites and links, respectively. Therefore, DD can be generalized
to field theory on a graph [4].

A graph G consists of a vertex set V (G) 6= ∅ and an edge set E(G) ⊆ V (G) × V (G), where an edge is
an unordered pair of distinct vertices of G. The degree of a vertex v, denoted by deg(v), is the number
of edges incident with v.

There are various matrices that are naturally associated with a graph. The graph Laplacian (or com-
binatorical Laplacian ) ∆(G) is defined by

(∆)vv′ =





deg(v) if v = v′

−1 if v is adjacent to v′

0 otherwise
. (9)

For example, we consider a cycle graph, which is equivalent to a moose diagram. The cycle graph
with p vertices is denoted by Cp. For C5, the Laplacian matrix takes the form:

∆(C5) =




2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2




. (10)

Up to the dimensionful coefficient g2f2, this matrix is identified with the gauge boson (mass)2 matrix
(6). We find, indeed, any theory space can be associated with the graph and the (mass)2 matrix for a
field on a graph can be expressed by the graph Laplacian owing to the Green’s theorem for a graph.
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2 Our story thus far

We have constructed models of induced gravity by using several graphs [2]. With the help of knowledge
of spectral graph theory, we can easily find that the UV divergent terms concern the graph Laplacian in
DD or theory on a graph. Therefore, the UV divergences can be controlled by the graph Laplacian and
we can construct the models of one-loop finite induced gravity from a graph.

In the model [2], the one-loop finite Newton’s constant is induced and the positive-definite cosmological
constant can also be obtained.

3 Self-consistent Einstein Universe (T × S3)

The metric of the static Einstein Universe [5][6] is given by

ds2 = −dt2 + a2 [
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

]
, (11)

where a is the scale factor and 0 ≤ χ ≤ π, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. At finite temperature T , the
one-loop effective action is regarded as free energy F (a, β) and the Einstein equation becomes

∂(βF )
∂β

=
∂(βF )

∂a
= 0, (12)

where β ≡ 1/T . In this paper, we study self-consistent Einstein Universe in theory on a graph. In our
models, four-dimensional fields are on cycle graphs. The first model is that scalar fields are on 8 CN/2,
U (1) vector fields on 4 CN and Dirac fermions on 2 CN/2 + 3 CN . The second model is that scalar fields
are on 16 CN/4 + 2 CN/2, vector fields on 5 CN and Dirac fermions on 4 CN/4 + 3 CN + 2 CN/2. In
each model, Newton’s constant and the cosmological constant are calculable and are not given by hand.

4 Results

We exhibit βF for the first model in Fig. 1 and for the second in Fig. 2, for large N . The horizontal axis
indicates the scale factor a, while the vertical one indicates the inverse of temperature T . The scale of
each axis is in the unit of N/f . In the first model, the cosmological constant is zero and the solution can
be found at the maximum of βF , corresponding to be in Casimir regime [5]. In the second model, the
solution in Casimir regime and the solution in Planck regime [5] are found.

5 Summary and Prospects

We have studied self-consistent Einstein Universe in the graph theory space. The solutions can be
systematically obtained with the help of the graph structure.

As the future works, we should investigate the possibility of obtaining the small cosmological constant
and the large Plank scale in a model that scalar fields are on 4 G(1), vector fields on 4 G(2) and Dirac
fermions on G(1) + 3 G(2), while #V (G(1)) = #V (G(2)). We also should investigate the model with the
time-dependent scale factor, a(t).

In the present analysis, we have constructed models by using cycle graphs, but we are also interested
in the model of general graphs. For a k-regular graph, the trace formula [7] is useful if we have a single
mass scale. Field theory on weighted graphs, which might correspond to warped spaces in the continuous
limit or not, is also interesting. A quasi-continuous mass spectrum is conceivable and dynamics of graphs
such as Hosotani mechanism is also thinkable.

We expect that the knowledge of spectral graph theory produces useful results on deconstructed
theories and open up another possibilities of gravity models.
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Figure 1: A contour plot of βF in
the first model, in which scalars
on 8 CN/2, vectors on 4 CN and
Dirac fermions on 2 CN/2+ 3 CN .
A solution of the Einstein equa-
tion can be found at the maxi-
mum point.

Figure 2: A contour plot of βF
in the second model, in which
scalars on 16 CN/4+2 CN/2, vec-
tors on 5CN and Dirac fermions
on 4 CN/4 + 3CN + 2 CN/2. Two
solutions of the Einstein equa-
tion can be found at the maxi-
mum and at the saddle point.
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Normal Modes of Scalar Fields in BTZ Black Hole Spacetime

Maiko Kuwata1, Masakatsu Kenmoku 2 and Kazuyasu Shigemoto3

1,2
3

Abstract
Study of BTZ black hole spacetime becomes important and interesting recently. We
obtained all the normal models and eigenfunctions for the scalar fields in (2+1) BTZ
black hole spacetime. We impose Dirichlet boundary condition at infinity and Dirich-
let or Neumann boundary condition at horizon. We studied the effect by negative
cosmological constant and the effects by rotation extensively.

1 Scalar field in BTZ spacetime

This section is preparation of definitions and notations in the following sections. For the negative cos-
mological constant (Λ = −1/`2) in (2+1) dimension, the Black Hole metric is obtained by Banados,
Teitelboim and Zanelli (BTZ) [1]:

ds2 = gttdt
2 + gφφdφ

2 + 2gtφdtdφ+ grrdr
2

gtt = M −
r2

`2
, gtφ = −

J

2
, gφφ = r

2 , grr =

µ
−M +

J2

4r2
+
r2

`2

¶−1

,

where M and J are mass and angular momentum of black hole respectively. Outside and inside horizon
are defined by:

r2
± =

M`2

2

Ã
1±

r
1−

J2

M2`2

!
. (1)

The action of complex scalar field Φ(x) of mass µ is

Iscalar = −

Z
dtdrdφ(−g)1/2(gµν∂µΦ

∗(x)∂νΦ(x) +
µ

`2
Φ∗(x)Φ(x)) . (2)

The scalar field is written in the form of separation of variables Φ = e−iωt+imφR(r) with frequency ω and
azimuthal angular momentum m. Then the equation for radial wave function R(z) is obtained :Ã

grr

µ
ω −

J

2r2
m

¶2

−
m2

r2
+
1

r
∂r

r

grr
∂r −

µ

`2

!
R(r) = 0 . (3)

Introducing variable z = (r2 − r2
+)/(r

2 − r2
−) and function F (z) = z

iα(1− z)−βR(z), the Hypergeometric
differential equation is obtained :

z(1− z)
d2F

dz2
+ (c− (1 + a+ b)z)

dF

dz
− abF = 0 . (4)

The parameters a, b, c are defined :

a = β − i
`2

2(r+ + r−)

³
ω +

m

`

´
, b = β − i

`2

2(r+ − r−)

³
ω −

m

`

´
, c = 1− 2iα , (5)
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1

321



α =
`2r+

2(r2
+ − r

2
−)
(ω − ΩHm) , β =

1− (1 + µ)1/2

2
, (6)

where ΩH = J/2r
2
+ is angular velocity at horizon. General solution of Hypergeometric differential equation

is expressed by linear combination of two independent solutions at horizon or infinity.

2 Eigenstate problem of scalar field

We set up Dirichlet boundary condition of eigenstate problem for normal modes at infinity because BTZ
solution is asymptotic AdS spacetime:

R∞ =
z−iα(1− z)β(1− z)c−a−b

Γ(c− a− b+ 1)
F (c− a, c− b, c− a− b+ 1; 1− z) . (7)

This solution is also expressed near horizon as outgoing wave and incoming wave to black hole as:

R∞ =
Γ(1− c)

Γ(1− a)Γ(1− b)
Rr+,in +

Γ(c− 1)

Γ(c− a)Γ(c− b)
Rr+,out .

where ingoing wave is expressed: Rr+,in = z−iα(1 − z)βF (a, b, c; z) and outgoing wave is Rr+,out =
ziα(1− z)βF (1 + b− c, 1 + a− c, 2− c; z). Eigenvalue equations for normal modes are obtained for each
boundary condition:

(i) Eigenvalue equation for Dirichlet boundary condition:

(ω − ΩHm)r∗,H + γ0(ω) = −π

µ
n+

1

2

¶
for n = 0, 1, 2, · · · , (8)

(ii) Eigenvalue equation for Neumann boundary condition:

(ω − ΩHm)r∗,H + γ0(ω) = −πn for n = 0, 1, 2, · · · , (9)

where the phase function γ0(ω) is defined :

γ0(ω) =
`2r+(ω − ΩHm)

2(r2
+ − r

2
−)

log

µ
4r2

+

r2
+ − r

2
−

¶
+ arg

µ
Γ(c− 1)

Γ(c− a)Γ(c− b)

¶
. (10)

The number n labels each quantum state and the horizon expressed by tortoise coordinate with regular-
lization parameter ² is: r∗,H ' `2r+ log (²/2r+)/2(r

2
+ − r

2
−) .

Square of absolute value of eigenfunction at horizon with respect to frequency ω is shown in Figure
1, where the zeros correspond to normal frequencies ω for Dirichlet boundary condition. In this report,
only Dirichlet boundary condition is considered. Square of absolute values of eigenfunction with respect
to radial coordinate r for lowest two state (n = 0, 1) are shown in Fig. 2. The sets of eigenvalue (ω,m)
for each fixed n in case without rotation (J = 0) form convex curves due to the negative cosmological
constant effects shown in left hand side of Fig. 3. Curves become flat for the case that ` is set to larger
value 2` and M to 4M shown in the right hand side of Fig. 3. The rotation effects to the eigenvalue
(ω, m) are shown in Fig. 4. Eigenvalues (ω, m) rotate corresponding to the angler velocity ΩH for the
cases of J = 0.2 (Fig. 4) compared with the cases of J = 0 (Fig. 3).

3 Summary

(1) The set of eigenvalues (ω,m) forms curved lines in (ω,m) plane for fixed n. The coefficient to
ω is invariant but the coefficient to m decrease as 1/λ in parameters a, b and c under the scalar
transformation : `→ λ`, M → λ2M, (0 · λ) . Therefore the slope of eigenvalue becomes more
flat for more small cosmological constant (`→ λ`).

(2) Eigenvalues (ω,m) rotate corresponding to the angular velocity ΩH. Then the allowed region of
0 < ω for J = 0 becomes 0 < ω − ΩHm for J 6= 0.

The eignvalues for normal modes relate the super-radiant problem [2, 3] and statistical mechanics of
scalar fields around BTZ black hole [4].
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Figure 1: Square of absolute value of eigenfunction with frequency

Figure 2: Square of absolute value of eigenfunctions with radial coordinate for n=0,1

Figure 3: Eigenvalue map in (m,ω) plane without rotation
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Figure 4: Eigenvalue map in (m,ω) plane with rotation
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Coalescence of Rotating BlackHoles on Eguchi-Hanson space
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Abstract
We obtain new charged rotating multi-black hole solutions on the Eguchi-Hanson space in the
five-dimensional Einstein-Maxwell system with a Chern-Simons term and a positive cosmo-
logical constant. In the two-black holes case, these solutions describe the coalescence of two
rotating black holes with the horizon topologies of S3 into a single rotating black hole with the
horizon topology of the lens spaceL(2; 1) = S3/Z2. We discuss the differences in the horizon
areas between our solutions and the two-centered Klemm-Sabra solutions which describe the
coalescence of two rotating black holes with the horizon topologies of S3 into a single rotating
black hole with the horizon topology of S3.

1 Solutions

We construct new multi-black hole solutions on the Eguchi-Hanson base space in the five-dimensional Einstein-
Maxwell system with a Chern-Simons term and a positive cosmological constantΛ > 0 [1]. The metric and the
gauge potential 1-form are given by

ds2 = −H−2
[
dτ + αV−1 (dζ + ω)

]2
+ Hds2

EH, (1)

ds2
EH = V−1

(
dr2 + r2dΩ2

S2

)
+ V (dζ + ω)2 , (2)

A =

√
3

2
H−1

[
dτ + αV−1 (dζ + ω)

]
, (3)

whereH, V−1 andω are givenby

H = λτ +
M1

|r − r1|
+

M2

|r − r2|
, V−1 =

N
|r − r1|

+
N

|r − r2|
, ω = N

(
z− z1

|r − r1|
+

z− z2

|r − r2|

)
dϕ, (4)

with the constantsM1, M2, N, α andλ = ±2
√
Λ/3. dΩ2

S2 = dθ2 + sin2 θdϕ2 denotes the metric ofthe unit two-
sphere. The coordinates run the range of−∞ < τ < ∞, 0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and 0≤ ζ ≤ 4πN. The
equation (2) denotes the metric of the Eguchi-Hanson space in the Gibbons-Hawking coordinate.r i = (xi , yi , zi)
(i = 1, 2) denote the position vectors of thei-th nut singularity characterized byN on the three-dimensional flat
space. The functionsH andV−1 are the harmonics on the three-dimensional flat space. The 1-formω is determined
by the equation∇ × ω = ∇ V−1.

For the appearance of the first term inH, the solution (1) is dynamical, i.e., it admits no timelike Killing vector
field. The parameterα in the metric (1) is an additional parameter to the solution in [2]. Ifα = 0 then the solution
(1) describes the coalescence of two non-rotating black holes on the Eguchi-Hanson space [2]. Here and after, we
restrict ourselves to considering the contracting phase withλ = −2

√
Λ/3 < 0 and the rangeof timeτ = (−∞, 0).

We focus on the regions of the neighborhood ofr = r i (i = 1, 2) and the asymptotic regionr ≃ ∞ in the
solution (1). In the neighborhood ofr = r i , the above metric (1) approaches to that of the Klemm-Sabra solution
[3]. Similarly, in the asymptotic regionr ≃ ∞, the local geometry of the metric (1) can be regarded as that of the
Klemm-Sabra solution. So, we review the physical properties of the Klemm-Sabra solution.

1E-mail: matsuno@sci.osaka-cu.ac.jp
2E-mail: ishihara@sci.osaka-cu.ac.jp
3E-mail: mkimura@sci.osaka-cu.ac.jp
4E-mail: tomizawa@sci.osaka-cu.ac.jp
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2 Review ofKlemm-Sabra Solution

We review here properties of the Klemm-Sabra solution [3], which is the BMPV black hole [4] with a cosmological
constant. The metric and the gauge potential 1-form in the cosmological coordinates (τ,R) are given by

ds2 = −
(
λτ +

m
R2

)−2 [
dτ +

j
2R2

(dψ + cosθdϕ)
]2

+

(
λτ +

m
R2

) [
dR2 +

R2

4

{
dΩ2

S2 + (dψ + cosθdϕ)2
}]
, (5)

A =

√
3

2

(
λτ +

m
R2

)−1 [
dτ +

j
2R2

(dψ + cosθdϕ)
]
, (6)

wheremand j are constants which specifythe mass and the angular momentum, and 0≤ ψ ≤ 4π.

Figure 1: This figureshows the region of parameters
such that the solutions have no naked singularity.

The curvature singularity exists atλτR2 = −m. One
obtains the expansionsθ± of the outgoing and ingoing
null geodesics for theτ = const. andR = const. surface

asθ± = λ ± 2x
[
(x+m)3 − j2

]−1/2
, where we introduced

a coordinatex = λτR2. Thus, the horizon occur atx such
that

λ2
[
(x+m)3 − j2

]
− 4x2 = 0. (7)

The equation (7) has three real rootsx−, x+, xc (x− ≤
0 ≤ x+ ≤ xc), wherex−, x+, xc correspond to the in-
ner horizon, the black hole horizon and the cosmological
horizon, respectively, if the mass parameterm and the
angular momentum parameterj satisfies the following
conditions,

0 ≤ mλ2 ≤ 2
3
, j2−(m)≤ j2 ≤ j2+(m), (8)

where j2±(m) = 4
[
9mλ2(8− 3mλ2) − 32± 8

√
2(2− 3mλ2)3/2

]/ (
27λ6

)
. In thecase ofj = j+, the black hole hori-

zonx+ coincides with the inner horizonx−, and in the case ofj = j−, the black hole horizonx+ coincides with the
cosmological horizonxc. The naked singularity appears ifm and j are out of the ranges (8). We draw the region
of (m, j) satisfying the condition (8) in FIG.1. Next, we focus on the conditions for the absence of closed timelike
curves (CTCs) outside the black hole horizonx+(m, j). These CTCs occur if and only if the two dimensional
(ψ, ϕ) part of the metric (5), namely,g2D has a negative eigenvalue. In this case, it is sufficient to showgψψ > 0
and detg2D > 0 on the horizonx+ for the absence of CTCs. Actually, we see that

gψψ =

[
x+

λ(x+ +m)

]2

> 0, detg2D =
x2
+ sin2 θ

4λ2(x+ +m)
> 0,

for x+ > 0 andm> 0. Fortunately, we obtain the regular black hole solutions with parameters (m, j) satisfying the
condition (8) which have no CTC outside the black hole horizon.

3 Coalescence of Rotating Black Holes

Asymptotic Behaviors at Early Time and Late Time First, we investigate the asymptotic behaviors of the
metric (1) in the neighborhood ofr = r i (i = 1, 2). In this region, the metric (1) takes the form of

ds2 ≃ −
(
λτ +

mi

r̃2

)−2 [
dτ +

j
2r̃2

(dψ + cosθdϕ)
]2

+

(
λτ +

mi

r̃2

) [
dr̃2 +

r̃2

4

{
dΩ2

S2 + (dψ + cosθdϕ)2
}]
, (9)

where we introduced thecoordinates ˜r2 = 4Nr, ψ = ζ/N, mi = 4NMi and j = 8αN3. This metric is equal to that of
the Klemm-Sabra solutions (5) with the mass parametersmi and the angular momentum parameterj. This solution
(9) admits three horizons atx = x±, xc, in the coordinatex = λτr̃2. At the early timeτ ≃ −∞, sufficiently small
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squashed S3 centered atr = r i are always outer trapped since there are solutions forθ+ = 0 at r̃2 = x+(mi , j)/(λτ).
Because there is an apparent horizon in the neighborhood of each point sourcer = r i (i = 1, 2), we can find two
rotating black holes with the horizon topology S3 at the early time.

Next, we focus on the asymptotic region of the solution (1),r ≃ ∞. We assume the separation of two black
holes|r1 − r2| is much smaller thanr. In this region, the metric (1) behaves as

ds2 ≃ −
[
λτ +

2(m1 +m2)
ρ2

]−2 [
dτ +

8 j
2ρ2

(
dψ
2
+ cosθdϕ

)]2

+

[
λτ +

2(m1 +m2)
ρ2

] dρ2 +
ρ2

4

dΩ2
S2 +

(
dψ
2
+ cosθdϕ

)2

 , (10)

where we introduced thecoordinatesρ2 = 8Nr, ψ = ζ/N and the parametersmi = 4NMi and j = 8αN3, as same
as in (9). This metric (10) resembles that of the Klemm-Sabra solution (5) with the mass parameter 2(m1+m2) and
angular momentum parameter 8j. Like the Klemm-Sabra solution (5), at the late timeτ ≃ 0, a sufficiently large
squashed S3 becomes outer trapped, sinceθ+ = 0 atρ2 = x+ (2(m1 +m2), 8 j) /(λτ), which give an approximately
large sphere. However, we see this solution (10) differs from the Klemm-Sabra solution (5) in the following point;
eachρ = const. surface in theτ = const. hypersurface of the metric (10) denotes topologically the lens space
S3/Z2, while in the Klemm-Sabra solution (5), it is diffeomorphic to S3. The difference between these metrics
appears in (9) and (10): the termdψ in the S3 metric (9) is replaced by the termdψ/2 in the S3/Z2 metric (10).
Therefore, at the late timeτ ≃ 0, the topology of the outer trapped surface is the lens space S3/Z2.

Hence, we find that the solution (1) describes the dynamical evolution such that two rotating black holes with
the spatial topologies of S3 coalesce and convert into a single rotating black hole with the spatial topology of the
lens space S3/Z2. At the early time, there are two rotating black holes specified by (m1, j) and (m2, j), and at the
late time, there is a single rotating black hole specified by (2(m1 +m2), j). Here and after, we call such relations
“mapping rule”.

Typical Processes We restrict ourselves to the solution (1) with the same mass parametersm= m1 = m2.

Figure 2: This figureshows typical processes described
by our solutions (1).

According to the “mapping rule” of our solutions (1),
the dimensionless parametersmλ2 and j2/m3 are mapped
as (mλ2, j2/m3) →

(
4mλ2, j2/m3

)
(see FIG.2). Any so-

lutions lying in the regionODEC describe regular ini-
tial condition such that there exist two isolated appar-
ent horizons. In contrast, according to the “mapping
rule” of our solution (1), any solutions lying in the re-
gion OAFC describe a single rotating black hole with
the S3/Z2 horizon at the late time. So, any solutions ly-
ing in the regionOABC describe a coalescence of two
rotating black holes. There are four types of regions,
namely,OABC, ADEB, CBF and outside ofDEBFC.
These regions correspond to the four kinds of process.
The dashed arrows represent typical processes. The pro-
cessd→ d′describes the situation such that two rotating
black holes with the S3 horizon coalesce and convert into
a single rotating black hole with the S3/Z2 horizon. The
arrow e → e′describes the situation such that there are

two isolated apparent horizons at the early time, and there exist a naked singularity at the late time. The process
f → f ′describes the situation such that there is not an apparent horizon but CTCs at the early time, while at the
late time, there exist a single rotating black hole with the S3/Z2 horizon and there is no CTC outside the horizon.

Comparison of Horizon Areas We compare the area of a single rotating black hole formed by the coalescence
of two rotating black holes at the late time. We assume that each black hole in our solution (1) has the same mass,
angular momentum and horizon area as that in the two-centered Klemm-Sabra solution at the early time. In this
case, the “mapping rule” for the two-centered Klemm-Sabra solution becomes as follows: At the early time, there
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are two rotatingblack holes specified by (m, j) and (m, j). At the late time, there is a single rotating black hole
specified by (2m,2 j). The total horizon areas in the two-centered Klemm-Sabra solutions and our solutions at the
early time,A(e)

Flat andA(e)
EH, are given by

A(e)
Flat = A(e)

EH = 2× 2
λ

x+(m, j)AS3, (11)

whereAS3 denotes the area ofthe unitS3. On the other hand, according to the “mapping rules” of both solutions,
the horizon areas at the late time,A(l)

Flat andA(l)
EH, are given by

A(l)
Flat =

2
λ

x+(2m, 2 j)AS3, A(l)
EH =

2
λ

x+(4m, 8 j)
AS3

2
, (12)

respectively.Note the factor 1/2 in A(l)
EH reflects the fact that the black hole at the late time after coalescence of two

black holes is topologically the lens space S3/Z2.

Figure 3: This figureshows the dependence of the ratio
A(l)

EH

/
A(l)

Flat onmλ2 (horizontal axis) andj2/m3 (vertical

axis). The curves in this figure denoteA(l)
EH

/
A(l)

Flat =

const.

In turn, to clarify the differences in the ratio of
the horizon areas of the two-centered Klemm-Sabra so-
lution to that of our solution, we consider the ratio
A(l)

EH

/
A(l)

Flat. FIG.3 shows the dependence ofA(l)
EH

/
A(l)

Flat

on (mλ2, j2/m3). The behavior ofA(l)
EH

/
A(l)

Flat along the
boundaryOA corresponds to thej = 0 case which was
discussed in [2]. In the non-rotating case, the ratio al-
ways satisfies

√
2 < A(l)

EH

/
A(l)

Flat < 4. However in the

rotating case there is the case such that 0< A(l)
EH

/
A(l)

Flat <√
2 in the regionOSCin FIG.3.

Both solutions in this paper describe the coalescence
of black holes by virtue of a positive cosmological con-
stant. Nevertheless, inλ → 0 limit our results would
suggest some information about the coalescence of two
rotating supersymmetric black holes on the flat space
(BMPV solutions) and on the Eguchi-Hanson space.
Therefore, let us discuss the limitλ → 0. Two rotating
supersymmetric black holes characterized by the param-
eters (m,j) with a total horizon areaA(e) coalesce into a
single rotating supersymmetric black hole with a horizon
areaA(l)

Flat =
√

(2m3 − j2)/(m3 − j2)A(e)
Flat on the flat space,

while on the Eguchi-Hanson spaceA(l)
EH = 2A(e)

EH, which
is independent of parameters (m, j). In the FIG.3, the be-
havior of A(l)

EH

/
A(l)

Flat along the boundaryOC corresponds

to that in thisλ → 0 limit. For the large angular momentum, i.e., 2/3 < j2/m3 < 1, the area of black hole horizon
after the coalescence on the Eguchi-Hanson space is smaller than that on the flat space, i.e., 0< A(l)

EH

/
A(l)

Flat < 1.
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Gravitational time delays along multiple light paths as a probe
of physics beyond Einstein gravity
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Abstract
The gravitational time delay of light is reexamined, allowing for various models of
modified gravity. We clarify the dependence of the time delay (and induced frequency
shift) on modified gravity models and investigate how to distinguish those models,
when light propagates in static spherically symmetric spacetimes.

1 Introduction

Recent observations such as the magnitude-redshift relation of type Ia supernovae (SNIa) and the cosmic
microwave background (CMB) anisotropy by WMAP strongly suggest a certain modification, in whatever
form, in the standard cosmological model. We are forced to add a new component into the energy-
momentum tensor in the Einstein equation or modify the theory of general relativity itself. Indeed, there
have been a lot of proposals motivated by, for instance, scalar tensor theories, string theories, higher
dimensional scenarios and quantum gravity. Therefore, it is of great importance to observationally test
these models.

The theory of general relativity has passed “classical” tests, such as the deflection of light, the perihe-
lion shift of Mercury and the Shapiro time delay, and also a systematic test using the remarkable binary
pulsar “PSR 1913+16” [1]. In the twentieth century, these tests proved that the Einstein’s theory is
correct with a similar accuracy of 0.1%.

Since the time delay effect along a light path in the gravitational field was first noticed in 1964
by Shapiro [2], this effect has successfully tested the Einstein’s theory [3]. A significant improvement
was reported in 2003 from Doppler tracking of the Cassini spacecraft on its way to the Saturn, with
γ − 1 = (2.1± 2.3)× 10−5 [4]. Here, γ is one of parameters in the parameterized post-Newtonian (PPN)
formulation of gravity [1]. The sensitivity in the Cassini experiment approaches the level at which,
theoretically, deviations 10−6 − 10−7 are expected in some cosmological models [5, 6]. Therefore, it is
important to investigate the Shapiro time delay with such a high accuracy.

Here, we discuss the dependence of the time delay (and induced frequency shift) on modified gravity
models and investigate how to distinguish those models by using the Shapiro time delay [7]. An important
point in this paper is that we allow for various modified gravity theories beyond the scope of the PPN
formulation. Introducing a new energy or length scale (e.g. extra dimension scale) may make changes
in functional forms of the gravitational field. Thus it is worthwhile to investigate how to probe such a
modified functional form, by using the light propagation in the solar system. Throughout this paper, we
take the units of G = c = 1.

2 Shapiro Time Delay

Let us assume that the electromagnetic fields propagate in four-dimensional spacetimes (even if the
whole spacetime is higher dimensional). Thus photon paths follow null geodesics (as the geometrical
optics approximation of Maxwell equation).

We shall consider a static spherically symmetric spacetime, in which light propagates, expressed as

ds2 = −A(r)dt2 + B(r)dr2 + r2dΩ2, (1)

1E-mail:asada@phys.hirosaki-u.ac.jp
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where r and dΩ2 denote the circumference radius and the metric of the unit 2-sphere, respectively. The
functions A(r) and B(r) depend on gravity theories.

The time lapse along a photon path is obtained as

t(r, r0) =
∫ r

r0

dr

b

√
B(r)
A(r)

1√
A(r0)

r2
0

− A(r)
r2

, (2)

where b and r0 denote the impact parameter and the closest point, respectively. Their relation is b2 =
r2
0/A(r0).

For practical calculations, we keep only the leading term at a few AU in the corrections. Namely,
A(r) and B(r) are approximated as

A(r) ≈ 1 − 2M

r
+ Amrm, (3)

B(r) ≈ 1 +
2M

r
+ Bnrn, (4)

where M denotes the mass of the central body.
Examples of modified gravity theories are as follows. (1) n = 1/2, An = −2Bn = −2

√
M/r2

c for DGP
model with rc that is the extra scale within which gravity becomes five dimensional [8]. (2) n = 3/2,
An = (2/3)m2

g

√
2M/13 and Bn = −m2

g

√
2M/13 with graviton mass mg for one of massive gravity

models [9, 10]. (3) n = 2, An = −Bn = −Λ/3 for the Schwarzschild-de Sitter spacetime, that is, general
relativity with the cosmological constant Λ as a possible candidate for the dark energy, though this is
not a manifest modification of gravity.

Up to the linear order, the extra contribution to time delay due to modified gravity is

δt = rn+1
0

(∫ RE

1
+

∫ RR

1

)
dR

×
(
−An

Rn+3 − 2Rn+1 + R

(R2 − 1)3/2
+ Bn

Rn+1

√
R2 − 1

)
, (5)

where we define R ≡ r/r0.
It is convenient to use the relative change in the frequency, which is caused by the gravitational time

delay. This frequency shift is defined as y = −d(∆T )/dt.
The general relativistic contribution is expressed as [1]

yGR = 4
M

b

db

dt
. (6)

For n &= 1, the extra frequency shift becomes

δy = −An + Bn

n − 1
{rn−1

E + rn−1
R − (n + 1)rn−1

0 }bdb

dt
, (7)

while we obtain δy = −(An + Bn)[ln(rErR/r2
0) − 1]bdb/dt for n = 1.

Here, we make an order-of-magnitude estimate of the frequency shift. First, we obtain yGR ∼
10−9(M/M")(r"/b)(ḃ/vE), where the dot denotes the time derivative, and vE is the orbital velocity
of Earth (∼ 30 km/s).

For a receiver at rR > rE , the extra frequency shift is

δy ∼ (An + Bn)rn
R

b

rR

db

dt

∼ 10−17

(
10AU

r"

)n (
(An + Bn)rn

"
10−10

) ( rR

10AU

)n−1
(

b

r"

)(
db/dt

vE

)
, (8)

where 10AU/r" ∼ 2 × 103. The larger the index of n, the longer the delay δy.
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Figure 1: Dependence of the frequency shift on the distance rR and the index n. The long dashed, short
dashed and dotted curves denote the frequency shift for (n, rR) = (3/2, 10AU), (n, rR) = (2, 10AU),
(n, rR) = (2, 1AU), respectively. The long dashed curve for n = 3/2 and rR = 10 AU is overlapped with
the solid curve denoting the general relativistic case. Here, we assume (An + Bn)rn

" = 3 × 10−11.

Figure 1 shows that an extra distortion due to δy would appear especially in the tail parts of y − t
curves. One can distinguish modified gravity models, which are characterized by various values of n, An,
Bn, from observations using receivers at very different distances from Sun, as shown by Fig. 1.

Figure 2 shows the dependence of δy on n and An + Bn. Hence, one can put a constraint on n and
An + Bn from δy observed.

3 Multiple Paths

We consider three light paths, for which the impact parameters of the photon paths are almost the same
(several times of the solar radius) for convenience sake. The locations of the receivers are denoted as rR1,
rR2 and rR3, where the subscripts from 1 to 3 denote each light path. We assume that rE is constant in
time for simplicity. It is a straightforward task to take account of the eccentricity of the Earth orbit and
a difference between the impact parameters.

We make use of a difference such as y2 − y1 and y3 − y1, in order to cancel out general relativistic
parts. We find

y2 − y1 =
An + Bn

n − 1
(rn−1

R1 − rn−1
R2 )b

db

dt
. (9)

It should be noted that y2 − y1 is proportional to An + Bn. Hence, the following ratio depends only on
n as

y3 − y1

y2 − y1
=

rn−1
R1 − rn−1

R3

rn−1
R1 − rn−1

R2

. (10)

Thereby, one can determine the index n. Next, one obtains An + Bn by substituting the determined n
into Eq. (9).

4 Conclusion

In summary, we have clarified the dependence of the gravitational time delay on modified gravity models
[7]. For neighboring light rays, the time delays become almost the same so that one can hardly distinguish
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Figure 2: Contours of δy on the n - |An + Bn|rn
" plane. The solid, long-dashed and short-dashed curves

correspond to δy = 10−14, 10−17, 10−20, respectively, where we assume rE = 1 AU, rR = 40 AU, b ∼ r"
and db/dt ∼ vE . The limit due to the current technology is δy ∼ 10−17. The shaded region above the
dotted curve (δy = 10−14 for rR = 8.43 AU) has been excluded by the Cassini experiment.

models of gravity. This implies that we should prepare receivers at very different distances from Sun.
Furthermore, b becomes the same order of rE , rR for future space-borne laser interferometric detectors

such as LISA, DECIGO and especially ASTROD [11]. Namely, rR and b change with time. Therefore, the
sophisticated experiments by space-borne laser interferometric detectors, which are originally designed
to detect time-dependent part of gravity, i.e. gravitational waves, could probe also a time-independent
part of gravity at the relative level of∆ y ∼ ∆ν/ν ∼ ∆L/L < 10−20.

References

[1] C. M. Will, Theory and experiment in gravitational physics (Cambridge Univ. Press, Cambridge,
1993).

[2] I. I. Shapiro, Phys. Rev. Lett. 13, 789 (1964).

[3] C. M. Will, Living Rev. Relativity 9, 3 (2006), http://relativity.livingreviews.org/Articles/lrr-2006-3.

[4] B. Bertotti, L. Iess and P. Tortora, Nature, 425, 374 (2003).

[5] T. Damour and A. M. Polyakov, Nucl. Phys. B 423, 532 (1994).

[6] T. Damour, F. Piazza and G. Veneziano, Phys. Rev. D 66, 046007 (2002).

[7] H. Asada, arXiv:0710.0477 [gr-qc]

[8] G. R. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B 485, 208 (2000).

[9] A. I. Vainshtein, Phys. Lett. B 39, 393 (1972).

[10] T. Damour, I. I. Kogan and A. Papazoglou, Phys. Rev. D 67, 064009 (2003).

[11] W. T. Ni et al., J. Phys. 32, 154 (2006).

4

332



Does Astronomical Unit increase?:
Cosmological Expansion and Solar System Dynamics
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Abstract
Based on Robertson-McVittie metric, we re-examined whether the cosmological ex-
pansion causes the increasing of Astronomical Unit (of length) reported by Krasinsky
and Brumberg (2004). We investigated the influence of cosmological expansion on the
motion of test particle in this spacetime. We found the cosmological expansion affects
these three aspects however they are negligible small. Therefore we confirmed that
the cosmological expansion does not give an explanation of the observed dAU/dt.

1 Introduction

Recent years, the accuracy of the positional observations of celestial bodies in the solar system is drasti-
cally improved and this improvement is in progress. For example, the planetary radar measurement
achieves the observational accuracy of the distance within a few 100 [m], the spacecraft ranging a
few [m] and the lunar laser ranging a few [cm]. Using such a accurate observational data, the vari-
ous astronomical constants are derived. Especially the astronomical unit of length (hereafter abbre-
viated as AU) is currently determined within the accuracy of 0.1 [m] or 12 digits level as 1AU =
1.49597870696.0×1011±0.1 [m]. [1] AU is one of the fundamental and important astronomical constants
which gives the relation of two units of length; the AU of astronomical system of units and the meter of
SI ones. Then AU, as the astronomical constant, fundamentally must be the time-independent. However
thees days, Krasinsky and Brumberg [2] reported that from the analysis of the data of planetary radar
(Mercury, Venus and Mars) and the martian spacecraft ranging (Viking I/II, Mars Pathfinder, Mariner
9, Mars Global Surveyor, and Mars Odyssey), AU increases monotonically with respect to meter as
dAU/dt = 15 ± 4 [m/cent]. This value is about 100 times larger than the recent determination error of
AU, ∼ 0.1 [m]. The similar variation of AU is also corroborated by Standish and Pitjeva. [3]

The observable quantity of the planetary radar and the spacecraft ranging is the round-trip time of
light/signal. Then the positive dAU/dt means the lengthening of light/signal path between Earth and
objective planet/spacecraft with the time because of the principle of the constancy of the speed of light.

Krasinsky and Brumberg investigated the possibility that the cosmological expansion prolongs the
light/signal path and causes the increasing of AU. From the Einstein equation they derived the approxi-
mate cosmological model which is regarded as FLRW universe including the gravity of the single central
body, and studied not only the planetary motion around Sun but also the light/signal propagation and
time scale transformation between the coordinate time t and proper time τ of the atomic clocks on Earth.
They found there appear comparatively large effects due to the cosmological expansion, but the contri-
bution on the planetary motion is completely cancelled out by that on the time scale transformation
relating with the light/signal propagation. Therefore they concluded the cosmological expansion does
not give an explanation of positive dAU/dt. So far, the problem “the cosmological expansion affects the
gravitationally bound local system or not” has sometimes awakened the interest and been investigated
by many authors. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] However they took into account the
effect on the planetary motion only and the contributions on light/signal propagation and the time scale
transformation were not made consideration.

In order to verify whether the cosmological expansion induces the detectable traces in the solar system
and provides an explanation of dAU/dt, we will re-examine its contributions on the planetary motion, the
light/signal propagation, and the time scale transformation by means of Robertson-McVittie solution.

1E-mail:arakida@edu.waseda.ac.jp
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2 Motion of Test Particle in Robertson-McVittie Spacetime

Robertson-McVittie metric is given by, [18, 4]

ds2 = −

(
1 − GM

2c2ra(t)

1 + GM
2c2ra(t)

)2

c2dt2 +
(

1 +
GM

2c2ra(t)

)4

a2(t)(dr2 + r2dθ2 + r2 sin2 θdφ2), (1)

where G is the gravitational constant, M is the mass of central body, c is the speed of light in vacuum,
and a(t) is a scale factor. We impose two transformations, [18, 5]

R = a(t)r
(

1 +
GM

2c2ra(t)

)2

, cT = ct +
H0

c

∫
RdR(

1 − 2GM
c2R − H2

0
c2 R2

) √
1 − 2GM

c2R

, (2)

where the Hubble constant H(t) is supposed to be that at present, H0 = (h0/3.08)×10−17 [1/s], h0 = 0.7
since it is considered to be constant in the order of 100 [yr]. Using (2) and limiting the planar motion in
the equatorial plane θ = π/2, we obtain,

ds2 = −
(

1 − 2GM

c2r
− H2

0

c2
r2

)
c2dt2 +

(
1 +

2GM

c2r
+

H2
0

c2
r2

)
dr2 + r2dφ2, (3)

here we expanded the coefficient of dr2 and replaced T → t and R → r, respectively.
First, let us examine the planetary motion in Robertson-McVittie spacetime. The equations of motion

of r, φ become, neglecting O(GM/c4,H2
0/c2) and the higher order terms,

d2r

dt2
− r

(
dφ

dt

)2

+
GM

r2
=

GM

c2

[
2GM

r3
+

3
r2

(
dr

dt

)2

− 2
(

dφ

dt

)2
]

+ H2
0r (4)

d

dt

(
r2 dφ

dt

)
=

2GM

c2

dr

dt

dφ

dt
. (5)

In order to extract the dominant contributions due to cosmological expansion, we restrict ourselves here
to the quasi-Newtonian equations of motion,

d2r

dt2
− r

(
dφ

dt

)2

+
GM

r2
= H2

0r, r2 dφ

dt
= constant. (6)

Further we suppose the planetary orbit is initially circular one, r0 = 1.5× 1011 [m]. The mean motion n
is written by,

n ' n0 + δn, δn = −n0
r3
0H

2
0

2GM
∼ 1.0 × 10−28 [rad/s], (7)

where n0 =
√

GM/r3
0 ∼ 2.0× 10−7 [rad/s]. From (7) the variation of longitude φ is evaluated in 100 [yr]

as,
δφ = δn(t − t0) ∼ −3.5 × 10−18 [rad]. (8)

The orbital period of planet becomes,

T =
2π

n
' T0 + δT, δT = T0

r3
0H

2
0

2GM
∼ 7 × 10−26, (9)

here T0 = 2π/n0. Putting r = r0 + δr and inserting into (6), it yields,

δr =
r4
0H

2
0

GM

(
1 +

r3
0H

2
0

GM

)
∼ 2.0 × 10−11 [m]. (10)

Rounding up the results, the estimated orbital variations δr, δφ and change of orbital period δT are much
smaller than the observed dAU/dt = 15 [m/cent] and the measurement limit of light/signal propagation,
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that is, the relative error of atomic clocks on Earth, ∼ 10−8 [s]. Therefore the effect of cosmological
expansion on the planetary motion does not induce the observed increasing of AU.

The observable quantity of the planetary radar and the spacecraft ranging is the round-trip time of
light/signal. Hence it is important to deal with the light propagation in Robertson-McVittie spacetime.
So that, we derive the extra time delay due to the cosmological expansion. The world line of light/signal
is the null geodesic, ds2 = 0, then it results,

t(r, r0) = t1PN(r, r0) + tCosmo(r, r0) (11)

t1PN(r, r0) =
1
c

√
r2 − r2

0 +
2GM

c3
ln

(
r +

√
r2 − r2

0

r0

)
+

GM

c3

√
r − r0

r + r0
(12)

tCosmo(r, r0) =
H2

0

6c3

√
r2 − r2

0

(
2r2 − r2

0

)
, (13)

here t1PN is the Shapiro’s time delay in 1st post-Newtonian approximation, and tCosmo is the extra one
caused by the cosmological expansion. If we assume Earth E and objective planet/spacecraft R are
almost at rest during the round-trip of light/signal, the round-trip time T becomes,

T = T1PN + TCosmo = 2[t(rE , r0) + t(rR, r0)]. (14)

and the time delay produced by the cosmological expansion is,

TCosmo =
H2

0

3c3

[√
r2
E − r2

0

(
2r2

E − r2
0

)
+

√
r2
R − r2

0

(
2r2

R − r2
0

)]
. (15)

The measurement of round-trip time is actually carried out by the atomic clocks on Earth moving around
Sun, which ticks the proper time τ . Therefore, we must convert T into the proper time scale. It is sufficient
to consider the quasi-Newtonian approximation,

dτ

dt
= 1 − GM

c2r
− v2

2c2
− H2

0

2c2
r2. (16)

Taking the orbital radius, rE and the orbital velocity, vE of Earth, the round-trip time T̄ measured in
proper time scale is given by,

T̄ =
(

1 − GM

c2rE
− v2

E

2c2
− H2

0

2c2
r2
E .

)
T . (17)

Making use of (14), the contribution of cosmological expansion, T̄Cosmo is,

T̄Cosmo =
H2

0

c3

{
1
3

[√
r2
E − r2

0

(
2r2

E − r2
0

)
+

√
r2
R − r2

0

(
2r2

R − r2
0

)]
− r2

E

(√
r2
E − r2

0 −
√

r2
R − r2

0

)}
. (18)

Roughly estimating, T̄Cosmo has the order T̄Cosmo ∼ H2
0r3

E/c3 ∼ 6.5×10−28 [s]. Since the present internal
error of the atomic clocks on Earth is about 10−9 [s], therefore the T̄Cosmo is much smaller than the
current measurement limit.

Conversely, the time transformation from the proper time to the coordinate one is needed when
obtaining the position/velocity of planet/spacecraft at certain proper time τ on Earth. To this end, we
integrate (16) assuming Earth moving along the circular orbit rE = 1.5 × 1011 [m]. Then the difference
between coordinate time and proper one due to the cosmological expansion is in the order of 100 [yr],

τCosmo = −H2
0r2

E

2c2

∫ t

t0

dt = −H2
0r2

E

2c2
(t − t0) ∼ −4.1 × 10−20 [s], (19)

which is much smaller than the relative error of atomic clocks on Earth 10−9 [s] and then cτCosmo ∼
10−12 [m] that is also much smaller than the observed dAU/dt.
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3 Conclusions

We re-examined whether the cosmological expansion explains the observed increasing of AU. As the cos-
mological model, we adopted Robertson-McVittie metric which is regarded as FLRW universe including
the gravitation of single point mass, and then analyzed the motion of test particle in this spacetime; the
planetary motion, the light/signal propagation and the time scale transformation between the coordinate
time and the proper one. We found the cosmological expansion affects these dynamical and kinematical
aspects, however the estimated corrections are much smaller than the observed dAU/dt and the measur-
ing limit, namely the internal error of atomic clocks on Earth, 10−9 [s]. In consequence, we confirmed
the cosmological expansion does not provide a explanation of the increasing of AU.

In order to investigate the influence of cosmological expansion on the gravitationally bound system,
the metric must be fundamentally the function of the time. But our metric (3) expresses the completely
static gravitational field. Therefore, it is important to examine the motion of test particle in the time-
dependent gravitational field. This subject will be investigated at some future time.
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Abstract
We present a class of dynamical solutions for an intersecting D4-D8 brane system in

ten-dimensional type IIA supergravity. The dynamical solutions reduces to a static

warped AdS6 × S4 geometry in a certain spacetime region. We also consider lower-

dimensional effective theories for the warped compactification of general p-brane sys-

tem. It is found that an effective p+1-dimensional description is not possible in gen-

eral due to the entanglement of the transverse coordinates and the p + 1-dimensional

coordinates in the metric components. Then we discuss cosmological solutions. We

find a solution that behaves like a Kasner-type cosmological solution at τ → ∞, while

it reduces to a warped static solution at τ → 0, where τ is the cosmic time.

1 Introduction

Recently studies on dynamical solutions of supergravity have been a topic of great interest. Conven-
tionally time dependent solutions of higher dimensional supergravity are discussed in the context of
lower dimensional effective theories after compactifying the internal space. However, it is unclear how
far this effective low-dimensional description is valid. Thus it is much more desirable to discuss the
four-dimensional cosmology in terms of the dynamics of the original higher-dimensional theory. This is
particularly true in string cosmology in which the behavior of the early universe is to be understood in
the light of string theory. Indeed, it was pointed out that the four-dimensional effective theory for warped
compactification of ten-dimensional type IIB supergravity allows solutions that cannot be obtained from
solutions in the original higher-dimensional theories [1].

In the present work, we consider dynamical solutions for intersecting D4-D8 brane systems in the ten-
dimensional type IIA supergravity model[2]. In § 2, we first consider p-brane systems in D-dimensions
and derive a class of dynamical solutions under a certain metric ansatz. In § 3, focusing on intersecting
D4-D8 brane systems in the ten-dimensional type IIA supergravity, we extend the metric ansatz used
in the previous section to intersecting branes and obtain a class of dynamical solutions. Then further
specializing the form of the metric, we consider a cosmological solution. Interestingly, this solution is
found to approach a warped static solution as τ → 0 and a Kasner type anisotropic solution as τ → ∞,
where τ is the cosmic time. Finally we conclude in § 4.

2 Dynamical p-brane solutions

We consider a gravitational theory with the metric gMN , dilaton φ, and an anti-symmetric tensor field of
rank (p + 2) in D dimensions. This corresponds to a p-brane system in string theory. The most general
action for the p-brane system in the Einstein frame can be written as

S =
1

2κ2

∫
(

R ∗ 1D − 1

2
dφ ∧ ∗dφ − 1

2
e−cφF(p+2) ∧ ∗F(p+2)

)

, (2.1)

1
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where κ2 is the D-dimensional gravitational constant, ∗ is the Hodge dual operator in the D-dimensional
spacetime, and c is a constant given by c2 = 4 − 2(p + 1)(D − p − 3)(D − 2)−1. The expectation values
of fermionic fields are assumed to be zero.

To solve the field equations, we assume the D-dimensional metric in the form

ds2 = ha(x, y)qµνdxµdxν + hb(x, y)uijdyidyj , (2.2)

where qµν is a (p + 1)-dimensional metric which depends only on the (p + 1)-dimensional coordinates
xµ, and uij is the (D − p − 1)-dimensional metric which depends only on the (D − p − 1)-dimensional
coordinates yi. The parameters a and b are given by a = −(D − p − 3)(D − 2)−1, b = (p + 1)(D − 2)−1.

Furthermore, we assume that the scalar field φ and the gauge field strength F(p+2) are given by

eφ = h−c/2, F(p+2) =
√−qd(h−1) ∧ dx0 ∧ dx1 ∧ · · · ∧ dxp. (2.3)

Here, q is the determinant of the metric qµν . Let us first consider the Einstein equations. Using the
assumptions (2.2) and (2.3), the Einstein equations are given by

hRµν(X) − DµDνh − a

2
qµν

(

△Xh + h−1△Yh
)

= 0, Rij(Y) − b

2
uij

(

△Xh + h−1△Yh
)

= 0, ∂µ∂ih = 0,

(2.4)

where Dµ is the covariant derivative with respective to the metric qµν , △X and △Y are the Laplace
operators on the space of X and the space Y, and Rµν(X) and Rij(Y) are the Ricci tensors of the metrics
qµν and uij , respectively. From the third equation of (2.4), the warp factor h must be in the form
h(x, y) = h0(x) + h1(y). Let us next consider the gauge field. Under the assumption (2.3), we find
dF(p+2) = 0. Thus, the Bianchi identity is automatically satisfied. Also the equation of motion for the

gauge field becomes d
[

e−cφ ∗ F(p+2)

]

= 0. Hence, the gauge field equation is automatically satisfied under
the assumption (2.3).

Let us consider the scalar field equation. Substituting the forms of the scalar and the gauge field
(2.3), and the warp factor h(x, y) = h0(x) + h1(y) into the equation of motion for the scalar field, we
obtain

ch−b
(

△Xh0 + h−1△Yh1

)

= 0. (2.5)

Thus, unless the parameter c is zero, the warp factor h should satisfy the equations △Xh0 = 0 and
△Yh1 = 0. If F(p+2) 6= 0, the function h1 is non-trivial. In this case, the Einstein equations reduce to

Rµν(X) = 0, Rij(Y) = 0, DµDνh0 = 0. (2.6)

On the other hand, if F(p+2) = 0, the function h1 becomes trivial. Namely the internal space is no longer
warped [1].

Here we mention an important fact about the nature of the dynamical solutions described in the
above. In general, we regard the (p + 1)-dimensional spacetime to contain our four-dimensional universe
while the remaining space is assumed to be compact and sufficiently small in size. Then one would usually
think that an effective (p + 1)-dimensional description of the theory should be possible at low energies.
However, solutions of the field equations have the property that they are genuinely D-dimensional in
the sense that one can never neglect the dependence on Y, say of h. This is clear from an inspection
of Eqs. (2.4). In particular, the second equation involves the Laplacian of h with respect to the space
X. Hence the equations determining the internal space Y cannot be determined independently from the
geometry of the space X. The origin of this property is due to the existence of a non-trivial gauge field
strength which forces the function h to be a linear combination of a function of xµ and a function of
yi, instead of a product of these two types of functions as conventionally assumed. This fact is in sharp
contrast with the case when one is allowed to integrate out the internal space to obtain an effective lower
dimensional theory.

Finally we comment on the exceptional case of c = 0, which happens when (D,p) = (10, 3), (11, 5),
(11, 2). The scalar field becomes constant because of the ansatz (2.3), and the scalar field equation is
automatically satisfied. Then, the Einstein equations become

Rµν(X) = 0, Rij(Y) =
b

2
(p + 1)λuij(Y), DµDνh0 = λqµν(X), (2.7)
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where λ is a constant. As seen from these equations, the internal space Y is not necessarily Ricci flat,
and the function h0 becomes more complicated. For example, when the metric qµν is Minkowski, h0 is
no longer linear in the coordinates xµ but quadratic in them [3].

3 Dynamical solutions for D4-D8 brane system

Now we consider dynamical solutions for the D4-D8 brane system which appears in the ten-dimensional
type IIA supergravity. The bosonic action of D4-D8 brane system in the Einstein frame is given by

S =
1

2κ2

∫
(

R ∗ 1 − 1

2
dφ ∧ ∗dφ − 1

2 · 4!
eφ/2F(4) ∧ ∗F(4) −

1

2
e5φ/2m2 ∗ 1

)

. (3.1)

In the following, we look for a solution whose spacetime metric has the form

ds2 = h1/12(z)
[

h
−3/8
4 (x, r, z)qµνdxµdxν + h

5/8
4 (x, r, z)

(

dr2 + r2uijdyidyj + dz2
)

]

, (3.2)

where qµν is the five-dimensional metric depending only on the coordinates xµ of X5, and uij is the
three-dimensional metric depending only on the coordinates yi of Y3. As for the scalar field and the
4-form field strength, we adopt the following assumptions

eφ = h−5/6h
−1/4
4 , F(4) = e−φ/2 ∗

[√−qd(h−1
4 ) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4

]

. (3.3)

Let us first consider the Einstein equations. Under the assumptions (3.2) and (3.3), the Einstein
equations give h4(x, y, z) = H0(x) + H1(r, z). Let us next consider the gauge field F(4). Under the
assumptions (3.2) and (3.3), the Bianchi identity dF(4) = 0 gives

∂2
rh4 + (3/r)∂rh4 + ∂2

zh4 + (1/3)∂z ln h ∂zh4 = 0 , ∂µ∂rh4 = 0 , ∂µ∂zh4 = 0 . (3.4)

The last two equations are consistent with the result h4(x, y, z) = H0(x)+H1(r, z). Then the first equation
(3.4) becomes

∂2
rH1 + (3/r)∂rH1 + ∂2

zH1 + (1/3)∂z ln h ∂zH1 = 0 . (3.5)

The gauge field equation d(eφ/2 ∗ F(4)) = 0 is automatically satisfied under the assumption (3.3) and the
form of h4 given by h4(x, y, z) = H0(x) + H1(r, z).

Next we consider the scalar field equation. Substituting the assumptions for the metric (3.2), the
scalar and gauge fields (3.3), and the form of h4(x, y, z) = H0(x)+H1(r, z) into the scalar field equation,
we find

△X5
H0 + (5/4)

[

(4/9)(∂z ln h)2 + (2/3)h−1∂2
zh − m2h−2

]

= 0 , (3.6)

where △X5
is the Laplace operator on the space X5, and we used the equation (3.5).

Inserting Eqs. (3.5) and (3.6) into the Einstein equations, we find for non-trivial H1,

Rµν(X5) = 0, Rij(Y3) = 2uij, DµDνH0 = 0 , △X5
H0 = 0 , 4 (∂zh)

2
/9 − m2 = 0 , ∂2

zh = 0 , (3.7)

where Rµν(X5), Rij(Y3) are the Ricci tensors of the metric qµν and uij , respectively, Dµ is the covariant
derivative with respective to the metric qµν . The last two equations of (3.7) is immediately solved to give
h(z) = 3m(z−z0)/2, where z0 is an integration constant (corresponding to the position of the D8-brane).
Below we set z0 = 0 without loss of generality. Then (3.5) gives the solution H1(r, z) = c1(r

2+z2)−5/3+c2,
where c1 and c2 are constant parameters.

Let us investigate the geometrical properties of the D4-D8 brane system. As a particular solution
to the 3-dimensional metric uij which satisfies the second equation of (3.7), we take the space Y3 to
be a three-dimensional sphere S3. Then if we make a change of coordinates, z = r̃ sinα, r = r̃ cos α
(0 ≤ α ≤ π/2), the metric reads

ds2 = h1/12
[

h
−3/8
4 qµνdxµdxν + h

5/8
4 (dr̃2 + r̃2dΩ2

4)
]

, (3.8)
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where dΩ2
4 = dα2 + cos2 αdΩ2

3 , h4(x, r̃) = H0(x) + c1r̃
−10/3 , h(r̃, α) = (3m/2)r̃ sin α . Here dΩ2

3 and
dΩ2

4 denote the line elements of the three-dimensional sphere S3 and the four-dimensional sphere S4,
respectively.

Now we further define a new coordinate U by r̃2 = U3. In the case qµν is the five-dimensional
Minkowski metric ηµν , the ten-dimensional metric in the limit U → 0 reduced to a warped AdS6 × S4

space [2].
Let us consider the case qµν = ηµν in more detail. In this case, the solution for the warp factors h4 and

h can be obtained explicitly as h4(t, r̃) = βt + H1(r̃), h(r̃, α) = (3m/2)r̃ sinα , where H1(r̃) = c1r̃
−10/3,

and β is a constant parameter.
If we introduce a new time coordinate τ by τ/τ0 = (βt)13/16, βτ0 = 16/13, the ten-dimensional metric

is given by

ds2 = h1/12
(

1 + (τ/τ0)
−16/13H1

)−3/8 [(

−dτ 2 + (τ/τ0)
−6/13δabdxadxb

)

+
(

1 + (τ/τ0)
−16/13H1

)

(τ/τ0)
10/13

(

dr̃2 + r̃2dΩ2
4

)

]

, (3.9)

where the metric δab is the spatial part of the five-dimensional Minkowski metric ηµν . If we set H1 = 0,
the scale factor of the four-dimensional space is proportional to τ−6/13, while that for the remaining
five-dimensional space is proportional to τ 10/13. Thus in the limit when the terms with H1 are negligible,
which is realized in the limit τ → ∞, we have a cosmological solution. Although this cosmological solution
is by no means realistic, it is interesting to note that this cosmological solution is asymptotically static
in the past τ → 0.

4 Conclusion

In this work, we investigated dynamical solutions of higher-dimensional supergravity models. We found a
class of time-dependent solutions for an intersecting D4-D8 brane system. These solutions were obtained
by replacing a constant A in the warp factor h = A + h1(y) of a supersymmetric solution by a function
h0(x) of the coordinates xµ [3], where the coordinates yi would describe the internal space and xµ would
describe our universe if the spatial dimensions of our universe were four instead of three. In the D4-D8
brane solution, the geometry was found to approach a warped static AdS6 ×S4 in a certain region of the
spacetime.

In particular, we found an interesting solution which is warped and static as τ → 0 but approaches
a Kasner-type solution as τ → ∞, where τ is the cosmic time. Although the solution itself is by no
means realistic, its interesting behavior suggests a possibility that the universe was originally in a static
state of warped compactification and began to evolve toward a universe with a Kaluza-Klein compactified
internal space.

Conventionally one would expect an effective theory description in lower dimensions to be valid at
low energies. However, as clearly the case of the cosmological solution mentioned above, the solutions we
found have the property that they are genuinely D-dimensional in the sense that one can never neglect
the dependence on yi, say of h. Thus our result indicates that we have to be careful when we use a four-
dimensional effective theory to analyse the moduli stabilisation problem and the cosmological problems
in the framework of warped compactification of supergravity or M-theory.
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Abstract
We study the boundary value problem for asymptotically flat stationary black ring
solutions to the five-dimensional vacuum Einstein equations. Assuming the existence
of two additional commuting axial Killing vector fields and the horizon topology
of S1 × S2, we show that the only asymptotically flat black ring solution with a
regular horizon and without conical singularity is the Pomeransky-Sen’kov black ring
solution.

1 Introduction

In recent years, studies of black holes in higher dimensions have attracted much attention in the context
of string theory and the brane world scenario. In fact, it has been predicted that higher-dimensional
black holes would be produced in a future linear collider. Such physical phenomena are expected not
only to give us a piece of evidence for the existence of extra dimensions but also to help us to draw some
information toward quantum gravity. Studies on stationary black hole solutions are important since we
may detect the Hawking radiation after the formation of stationary black holes in a collider.

A striking feature of asymptotically flat stationary black hole solutions in five dimensions is that they
admit event horizons with non-spherical topologies in contrast to four dimensions. For instance, the
topology of the event horizon in higher dimensions cannot be uniquely determined [1, 2, 3] in contrast to
four-dimensional ones, which is restricted only to the two sphere [4, 5]. In five dimensions, however, the
possible geometric types of the horizon topology are S3 and S1 × S2 [1], and in dimensions higher than
five, more complicated [2, 3]. The black ring solutions with the horizon topology S1 × S2, which rotate
along the S1 direction, were found by Emparan and Reall as solutions to the five-dimensional vacuum
Einstein equations [6]. This is the first example of black hole solution with non-spherical topology. In
addition to the black ring solution, the rotating black hole solution with S3 horizon topology had been
already found by Myers and Perry [7]. Remarkably, within some range of the parameters, there are one
black hole and two black rings with the same values of the mass and the angular momentum, which
means the violation of the uniqueness known in four dimensions. Subsequently, other black ring solutions
were found. The black ring solutions with a rotating two sphere were found by Mishima and Iguchi [8],
and moreover, one with two angular momenta was constructed by Pomeransky and Sen’kov [9] by using
the inverse scattering method [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

For the asymptotically flat, static solutions of higher-dimensional vacuum Einstein equations, the
Schwarzschild-Tangherlini solution [22] is the unique solution [23], and moreover, which is stable against
linear perturbations [24]. It has been shown that the five-dimensional Myers-Perry solution is unique if
the topology is restricted to S3 and the spacetime admits three commuting Killing vectors [25]. Hence it is
natural to ask whether the Pomeransky-Sen’kov black ring solution is also unique under the assumptions of
the existence of three commuting Killing vector field and the horizon topology of S1 × S2. As mentioned
above, however, there are two different black ring solutions for the same mass and the same angular
momenta. Therefore, we must add some additional information to consider the boundary value problem
for black ring solutions. One of the examples is the rod structure introduced by Harmark [26]. By
introducing the rod structure, Hollands and Yazadjiev [27] applied the discussion in Ref. [25] to the case
of non-spherical horizon topology and showed that two asymptotically flat and five-dimensional black
hole solutions with the same topology, the same mass, the same angular momenta and the same rod
structure are isometric to each other.
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2 General Black Ring

The metric of general black ring solution, which in general has a conical singularity, is given by

ds2 = −H(y, x)
H(x, y)

(dt + Ω)2 − F (x, y)
H(y, x)

dφ2 − 2
J(x, y)
H(y, x)

dφdψ +
F (y, x)
H(y, x)

dψ2

+
2k2H(x, y)

(x− y)2(1− ν)2

(
dx2

G(x)
− dy2

G(y)

)
, (1)

where the C-metric coordinates x, y run the ranges of −1 ≤ x ≤ 1 and (−λ +
√

λ2 − 4ν)/2 ≤ y < ∞
or −∞ < y ≤ −1, respectively. The solution has parameters satisfying the inequalities 0 ≤ ν < 1,
2
√

ν ≤ λ < 1 + ν, k > 0 and c ≤ b < 1 with c =
√

λ2 − 4ν/(1− ν). The function G appearing in the
metric is defined as G(x) = (1−x2)(1+ λx+ νx2). Since the other functions H, J, F and the one-form Ω
have considerably complicated forms, we do not write it here. The explicit expressions of them are given
in the full version of this article [28]. As shown there, this solution has the four independent parameters
since there are the seven parameters λ, ν, q, α, b, c, k and the three relations between them. Under the
choice of the parameters b = 2c/(1 + c2), which is the condition for a conical singularity inside the black
ring to vanish, the metric reduces to that of the Pomeransky-Sen’kov black ring solution [9].

3 Conclusions

Since there are two black ring solutions with different shapes for the same mass and the same angular
momenta [6, 9], we must introduce some additional geometrical information in order to consider the
uniqueness of black rings as the boundary value problem. By introducing the rod structure [26], Hollands
and Yazadjiev applied the discussion in Ref. [25] to the case of non-spherical horizon topology and showed
the following theorem in Ref. [27].

Theorem 1 Consider two stationary, asymptotically flat, vacuum black objects spacetimes of the five-
dimensions with commuting two axial Killing vector fields and a timelike Killing vector field. Then, if
both solutions have the same topology, the same rod structure and the values of the mass M and angular
momenta J1, J2, they are isometric.

However, even if we restrict the horizon topology to S1 × S2, this theorem does not imply that the
Pomeransky-Sen’kov black ring solution is the only conical-free black ring solution within the class of
these solutions since there may exist another conical-free black ring solution with the same mass and two
angular momenta and different rod structure data. Our purpose in this article is to prove the uniqueness
of the Pomeransky-Sen’kov black ring solution by showing that the black rings with the rod structures
different from that of the Pomeransky-Sen’kov black ring solution have conical singularities. Our proof
is composed of two steps: First, we show the existence of asymptotically flat black ring solution with
conical singularities and without curvature singularities such that they coincides with the Pomeransky-
Sen’kov black ring solution under the condition of no conical singularity; next, once these black ring
solution is given, using the theorem 1 obtained by Hollands and Yazadjiev, we can show the uniqueness
of the black ring solution (1) in this class of the solutions admitting three mutually commuting Killing
vector fields, i.e., a timelike Killing vector field and two axial Killing vector fields. However, we should
note the following point. If we apply the Hollands-Yazadjiev’s theorem to this black ring solution (1),
it seems to be specified by the asymptotic charges M, Jφ, Jψ and the additional parameters z1, z2, z3

appearing in the rod data, although all of these six parameters are not independent. In fact, the only
four parameters M,Jφ, Jψ and c are independent, where M, JI(I = φ, ψ) denote the mass and angular
momenta, respectively, and the constant c has the geometrical meaning of the ratio of the radius of S2

to the radius of S1. In terms of these parameters, we obtain the following result:

Corollary 1 Consider asymptotically flat black ring solutions to the five-dimensional vacuum Einstein
equations admitting three commuting Killing vector fields, i.e., two axial Killing vector fields and a timelike
Killing vector field. Then, in this class of solutions, the only solution with the horizon topology of S1×S2

is the black ring solution (1) specified by a mass M , two angular momenta Jφ, Jψ and the ratio c of the
radius of S2 to the radius of S1.
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In particular, if we impose that the black ring solutions do not admit a conical singularity, we obtain the
main result in this article:

Theorem 2 The only asymptotically flat, five-dimensional black ring solution with commuting two axial
Killing vector fields and a timelike Killing vector field and without a conical singularity is the Pomeransky-
Sen’kov solution.
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Abstract
Dilatonic domain-like space-time is investigated in arbitrary D-dimensions. We find a
class of the static solutions depend only on a space-like co-ordinate for Einstein-dilaton
theory with the cosmological constant and with the Maxwell field. The space-time
can be interpreted as dilatonic D − 1 dimensional domain-like universe.

1 Introduction

In the present report, dilatonic domain-like space-time is investigated in arbitrary D-dimensions. We find
a class of the static solutions depend only on a space-like co-ordinate for Einstein-Dilaton theory with
the cosmological constant and with the Maxwell field. The space-time can be interpreted as dilatonic
D − 1 dimensional domain-like universe.
First we shall find static domain-like solutions of the action:

S =
∫

dxN+1√−g

{
R − 4

N − 1
(∂φ)2 − e4bφ/(N−1)Λ

}
, (1)

where R is the scalar curvature and Λ is the cosmological constant. The scalar φ is the dilaton field. The
constant b represents the dilaton coupling constant to Λ as a general free parameter in this framework.
We consider the metric given by

ds2 = −eρ0dt2 + eρ1dz2 +
N∑

i=2

eρidx2
i , (2)

where t is a time-like co-ordinate while z and xi are space-like co-ordinates.
In order to find the static space-time solutions that depend only on a space-like co-ordinate, we suppose
that all the components of the metric depend only on z.
Furthermore we choose the following ansatz:

ρ1 = ρ0 +
N∑

i=2

ρi . (3)

Defining a variable ψ1(z) as

ψ1 := ρ0 +
N∑

i=2

ρi + 4bφ/(N − 1) , (4)

the field equations can be obtained as the following simple form:

ρ̈µ = − 4
N − 1

Λeψ1 , φ̈ =
b

2
Λeψ1 (5)

1E-mail: maki@jwcpe.ac.jp
2E-mail: shiraish@sci.yamaguchi-u.ac.jp
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and we obtain the equation of motion for the variable ψ1 as

ψ̈1 =
2(b2 − N)

N − 1
Λeψ1 . (6)

where i, j, k = 2, 3, · · ·, N and µ, ν = 0, 2, 3, · · ·, N , and the dot denotes the derivative with respect to z.
Also we obtain the Hamiltonian constraint

1
2

∑
ν 6=µ

∑
µ

ρ̇µρ̇ν = − 8
N − 1

φ̇2 − 2Λeψ1 . (7)

Eq.(6) is the Liouville equation for ψ1 when b 6= 2 and can be analytically soloved:

eψ1 =
(

2c1(N − 1)
| (b2 − N)Λ |

)/ (
e
√

c1/2(z−z01) − εe−
√

c1/2(z−z01)
)2

, (8)

where c1 and z01 are integration constants and the symbol ε denotes the signature of (b2 − N)Λ, i.e.
when (b2 − N)Λ > 0, ε = +1 and then −∞ < c1 < ∞, while (b2 − N)Λ < 0 corresponds ε = −1 and
0 < c1 < ∞.
Substituting this solution into the r.h.s. of Eq.(5), one can obtain the general solutions:

ρ1 =
(

2N

(b2 − N)

)
ln

(
e
√

c1/2(z−z01) − εe−
√

c1/2(z−z01)
)

+ d1z + d′
1, (9)

ρµ =
(

2
(b2 − N)

)
ln

(
e
√

c1/2(z−z01) − εe−
√

c1/2(z−z01)
)

+ dµz + d′
µ, (10)

φ =
(

b(N − 1)
2(b2 − N)

)
ln

(
e
√

c1/2(z−z01) − εe−
√

c1/2(z−z01)
)

+ dφz + d′
φ, (11)

where dµ, d′
µ (µ = 0, 2, 3, · · ·, N), dφ and d′φ are the integration constants which satisfy

d1 =
∑

µ

dµ = − 4b

N − 1
dφ, d′

1 =
∑

µ

d′
µ = ln

2c1(N − 1)
| (b2 − N)Λ |

. (12)

The Hamiltonian constraint (7) gives the relation among the constants of integration:

c(N − 1)
2(N − b2)

=
4(b2 − N + 1)

(N − 1)2
d2

φ − 1
4

∑
µ

d2
µ. (13)

One can interpret z as a ‘radius’ co-ordinate and another space-like co-ordinate, for example x2, as ‘angle’.
Planer dilatonic domain-like brane Universe has also been studied in [3].

2 Charged Dilatonic Domain-like Universe

We shall study the static one-parameter solutions of Einsetin-dilaton-Maxwell theory with non-zero cos-
mological constant:

S =
∫

dxN+1√−g

{
R − 4

N − 1
(∂φ)2 − e−4aφ/(N−1)F 2 − e4bφ/(N−1)Λ

}
. (14)

Using the variable ψ’s the field equations can be written by

ψ̈µ = 4
∑
α

ηµαqαqµeψµ +
4(a2 − 1)

N − 1

∑
α,β

ηαβqαqβeψα +
2(ab − 1)
N − 1

Λeψ1 , (15)

ψ̈1 =
4(ab − 1)
N − 1

∑
µ,ν

ηµνqµqνeψµ +
2(b2 − N)

N − 1
Λeψ1 , (16)

φ̈ = a
∑
µ,ν

ηµνqµqνeψµ +
b

2
Λeψ1 , (17)
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where ηµν = diag.(−1,+1, +1, ...,+1) and qµ = (qe, qmj) are the constants of integration with respect to
the Maxwell field:

F1µ = Ȧµ = qµeψµ . (18)

Then the Hamiltonian constraint is

1
2

∑
ν 6=µ

∑
µ

ρ̇µρ̇ν =
−8

N − 1
φ̇2 − 4

∑
α,β

ηαβqαqβeψα − 2Λeψ1 . (19)

(1) electric solutions with vanishing cosmological constant
In this case, i.e. qµ = (qe, 0, 0, · · ·, 0) and Λ = 0, the field equations are

ψ̈0 = −4
(

1 +
a2 − 1
N − 1

)
q2
eeψ0 , ψ̈j = −4

(
a2 − 1
N − 1

)
q2
eeψ0 , (20)

ρ̈0 = −4(1 − 1
N − 1

)q2
eeψ0 ρ̈j =

4
N − 1

q2
eeψ0 , (21)

φ̈ = −aq2
eeψ0 , (22)

F10 = Ȧ0 = qee
ψ0 . (23)

One can integrate these equations and obtain the ‘electric solutions’:

ρ0 =
2(N − 2)

N + a2 − 2
ln cosh

√
c1

2
(z − z01) + d0z + d′0 , (24)

ρ1 =
2(2N − 3)
N + a2 − 2

ln cosh
√

c1

2
(z − z01) + d1z + d′1 , (25)

ρi =
2

N + a2 − 2
ln cosh

√
c1

2
(z − z01) + diz + d′

i , (26)

φ =
−a(N − 1)
N + a2 − 2

ln cosh
√

c1

2
(z − z01) + dφ + d′

φ , (27)

F10 = .
(c/4qe)(N − 1)

N + a2 − 2
1

cosh2 √
c1
2 (z − z01)

. (28)

(2) magnetic solutions
The magnetic solutions can also be obtained by ‘duality’ transformation.

(3) the case of a finite cosmological constant
We focus only on electric solutions for a = b = 1 (low energy string case). The equation of motion can
be written by

ψ̈0 = −4q2
eeψ0 , ψ̈1 = −2Λeψ1 , ψ̈j = 0, (29)

φ̈ = −q2
eeψ0 +

1
2
Λeψ1 , (30)

F10 = qee
ψ0 . (31)

The solutions are

ρ0 =
2(N − 2)
N − 1

ln cosh
√

c1

2
(z − z01) (32)

+
2ε

N − 1
Λ

| Λ |
ln

(
e
√

c1/2(z−z01) − εe−
√

c1/2(z−z01)
)

+ d0z + d′
0 , (33)

ρ1 =
2(2N − 3)

N − 1
ln cosh

√
c1

2
(z − z01) (34)
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+
2εN

N − 1
ln

(
e
√

c1/2(z−z01) − εe−
√

c1/2(z−z01)
)

+ d1z + d′
1 , (35)

ρi =
2

N − 1
ln cosh

√
c1

2
(z − z01) (36)

+
2ε

N − 1
Λ

| Λ |
ln

(
e
√

c1/2(z−z01) − εe−
√

c1/2(z−z01)
)

+ diz + d′i , (37)

φ =
−1
2

ln cosh
√

c1

2
(z − z01) (38)

−ε

2
Λ

| Λ |
ln

(
e
√

c1/2(z−z01) − εe−
√

c1/2(z−z01)
)

+ dφ + d′
φ , (39)

F10 =
c

4qe

1
cosh2 √

c1
2 (z − z01)

, (40)

where ε = +1 for Λ < 0, while ε = −1 for Λ > 0.

3 Summary

We investigate the domain-like solution of dilaton gravity with cosmological constant and with the
Maxwell field in arbitrary dimensions. We find the prescription to obtain a classs of the exact static
domain-like solutions and describe these solutions. By means of these solutions, we can study the physi-
cal properties and applications to cosmology. Also the manifold consisted of these solutions needs to be
investigated.
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Abstract
We investigate the final fate of spherical dust collapse by using the orthonormal frame
formalism with the Hubble normalized variables and the separable volume gauge,
which is usually used for analyzing cosmological dynamics. As a result, we find that
the final fate of spherical dust collapse is characterized by the quantity concerned with
the energy density in this formalism. We discuss the final fate of spherical perfect
fluid collapse with a barotropic equation of state and conjecture a criterion for the
final fate of spherical gravitational collapse.

1 Introduction

The final fate of gravitational collapse is one of important issues in general relativity. According to the
singularity theorem, a singularity is formed in the generic gravitational collapse of a massive star. How-
ever, it does not state the feature of the singularity. Also, there is the cosmic censorship conjecture, which
states that a naked singularity is not formed in physically reasonable gravitational collapse. However, the
proof of this conjecture has not existed. Moreover, there are many counterexamples to this conjecture. If
a naked singularity is formed in gravitational collapse, it is interesting because an extreme strong gravity
region can be observed. Therefore, it is important to understand whether or not the solutions of Einstein
equation with a naked singularity are physically reasonable and it will be helpful to investigate the final
fate of specific gravitational collapse.

So far, various solutions which describe gravitational collapse have been studied and some solutions
with a naked singularity have been found [1]. Generally, the nakedness of the singularity formed in grav-
itational collapse is understood by investigating whether or not future directed non-spacelike geodesics
coming out of the singularity exist. However, there is not a well-defined criterion for the nakedness of a
singularity based on the physical quantities characterizing a spacetime and a matter although some re-
searchers have investigated the relation between the final fate of gravitational collapse and the quantities
[2,3]. Such a criterion should help us understand the intrinsic difference between the black hole formation
and the naked singularity formation.

In this paper, We investigate the final fate of spherical dust collapse by using the orthonormal frame
formalism with the Hubble normalized variables and the separable volume gauge, which is usually used
for analyzing the asymptotic behavior of cosmological dynamics. As a result, we find that the final
fate of spherical dust collapse is characterized by the quantity concerned with the energy density in this
formalism. We discuss the final fate of perfect fluid collapse with the equation of state p̃ = (γ − 1)µ̃ in
this formalism and get the two sufficient conditions, the one for the naked singularity formation of the
perfect fluid collapse and the other for that the behavior of the spacetime of the perfect fluid collapse is
self-similar. Based on these results, we conjecture a criterion for the final fate of spherical gravitational
collapse.

2 Orthonormal frame formalism for spherical gravitational col-
lapse

We apply the orthonormal frame formalism with the Hubble normalized variables and the separable
volume gauge to spherical gravitational collapse of a perfect fluid with a barotropic equation of state.
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This formalism is usually used for analyzing the asymptotic behavior of cosmological dynamics [4]. Here a
spacetime is described in terms of a coordinate system (t, xi) and an orthonormal frame (e0̂, eα̂) where the
index i and the index α̂ describe the spatial components. It is assumed that e0̂ is hypersurface orthogonal
and the frame relates to the coordinate by the form e0̂ = N−1(∂t − N i∂i) and eα̂ = e i

α̂ ∂i, where N is
the lapse function and N i is the shift vector. The basic variables in this formalism are the orthonormal
frame vector components, the commutation functions associated with the frame and the matter variables
which are normalized by dividing by the Hubble scalar H = Θ/3, where Θ is the expansion rate of the
temporal frame e0. The stress-energy tensor of a perfect fluid and the equation of state are as follows:

Tâb̂ = µ̃ũâũb̂ + p̃(ũâũb̂ + ηâb̂), p̃ = (γ − 1)µ̃, (1)

where ũa, µ̃ and p̃ are the 4-velocity of the fluid, the energy density and the pressure. We choose the
separable volume gauge, which is the gauge so that the lapse function N is equal to H−1 and the shift
vector N i is equal to 0. For the case of spherical symmetry, the variables are E α

α̂ , Ar̂, rr̂, Σr̂r̂, Ω and vr̂.
E α

α̂ are the frame vector components normalized by H, which are E r
r̂ and E θ

θ̂
in the case of spherical

symmetry. Ar̂ is the quantity obtained from the commutation function and normalized by H. rr̂ is the
spatial Hubble gradient defined by rr̂ ≡ −E r

r̂ ∂r lnH. Σr̂r̂ is the shear rate of e0 normalized by H. Ω
and vr̂ are defined by

Ω ≡ [1 + (γ − 1)(vâvâ)]µ̃
3H2[1 − (vâvâ)]

, ũâ ≡ 1√
1 − (vâvâ)

(uâ + vâ), (2)

where uâ ≡ e â
0̂

. The evolution equations and the constraints in the case of prefect fluid spherical
gravitational collapse are as follows:
Evolution equations:

∂tE
r

r̂ = −(q − Σr̂r̂)E r
r̂ , (3)

∂tE
θ

θ̂
= −(q +

1
2
Σr̂r̂)E θ

θ̂
, (4)

∂tA
r̂ = −(q − Σr̂r̂)Ar̂ − 1

2
E r

r̂ ∂rΣr̂r̂, (5)

∂tr
r̂ = −(q − Σr̂r̂)rr̂ − E r

r̂ ∂rq, (6)

∂tΣr̂r̂ = −(q − 2)Σr̂r̂ +
2
3
E r

r̂ ∂rA
r̂ − 2

3
E r

r̂ ∂rr
r̂ − 4

3
rr̂Ar̂ − 2

3
(E θ

θ̂
)2 − 2γG −1

+ Ω(vr̂)2, (7)

∂tΩ = −(2q − 1)Ω + 3G −1
+

[
γ − 1 +

(
1 − 2

3
γ
)
(vr̂)2

]
Ω + E r

r̂ ∂r(γG −1
+ Ωvr̂)

−2γG −1
+ Ωvr̂Ar̂ + γG −1

+ Ω(vr̂)2Σr̂r̂,
(8)

∂tv
r̂ =

G+

γG−Ω

(
G+[∂t(γG −1

+ Ωvr̂) + 2(q + 1)γG −1
+ Ωvr̂] − γvr̂(∂tΩ + 2(q + 1)Ω)

)
. (9)

Constraints:
1 +

1
3
(2E r

r̂ ∂rA
r̂ − 2rr̂Ar̂ − 3(Ar̂)2 + (E θ

θ̂
)2) − 1

4
(Σr̂r̂)2 − Ω = 0, (10)

E r
r̂ ∂rΣr̂r̂ + 2rr̂ − Σr̂r̂rr̂ − 3Ar̂Σr̂r̂ + 3γG −1

+ Ωvr̂ = 0, (11)

E r
r̂ ∂rE

θ
θ̂

− (Ar̂ + rr̂)E θ
θ̂

= 0, (12)

where
q =

1
2
(Σr̂r̂)2 − 1

3
E r

r̂ ∂rr
r̂ +

2
3
rr̂Ar̂ +

1
2

[
1 + 3G −1

+ [γ − 1 +
(
1 − 2

3
γ
)
(vr̂)2]

]
Ω, (13)

G± = 1 ± (γ − 1)(vâvâ). (14)

Base on Ref. [5], suppose that q−Σr̂r̂ > 0 and q+ 1
2Σr̂r̂ > 0. Then we find that E r

r̂ and E θ
θ̂

exponentially
decrease from Eqs. (3) and (4) as t increases. The terms containing E r

r̂ or E θ
θ̂

become negligible. From
Eqs. (5) and (6), rr̂ and Ar̂ exponentially decrease as well. From Eqs. (8), (9) and (10), vr̂ becomes
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negligible as t increases. Then it follows that there are two possibilities: (i) Σr̂r̂ ̸= 0 and Ω = 0 or (ii)
Σr̂r̂ = 0 and Ω = 1. In the case (i), the spacetime looks like Schwarzschild inner spacetime in vacuum
and seems that the singularity is not naked. In the case (ii), the spacetime looks like flat Friedmann
spacetime and also seems that the singularity is not naked. Although the fact that the singularity is not
naked is not proved, this suggests the possibility of the criterion for the nakedness of singularity, that is,
the singularity seems to be judged by the behavior of q, Σr̂r̂ and Ω. In the next section, we investigate
the behavior of q, Σr̂r̂ and Ω of the LTB spacetime.

3 LTB solution marginally bound collapse

We consider inhomogeneous dust spherical gravitational collapse. It is described by the LTB solution.
Although the solution has two free functions F (ρ) and f(ρ), here we consider marginally bound collapse,
f = 0. For comoving coordinate, the metric and the stress-energy tensor are

ds2 = −dT 2 + (∂ρR)2dρ2 + R2dΩ2, (15)

R(T, ρ) = ρ

(
1 − 3

2

√
F (ρ)
ρ3

T

) 2
3

, (16)

Tab = µ̃ũaũb, p̃ = 0. (17)

where dΩ2 = dθ2 + sin2 θdϕ2. F (ρ) is concerned with initial density distribution µ̃0(ρ) ≡ µ̃(0, ρ) by
F (ρ) =

∫
µ̃0(ρ)ρ2dρ. The behavior of F (ρ) near ρ = 0 relates to the nakedness of the singularity at

ρ = 0. We assume that F (ρ) can be expanded in a power series near ρ = 0 as follows:

F (ρ) = F0ρ
3 + Fnρn+3 + O(ρn+4), (18)

where n > 0. We assume the initial density to decrease outwards from the center, hence the first non-
vanishing derivative of the density has a negative sign, i.e., Fn < 0. Then, if F1 < 0, the singularity
is naked. If F1 = 0, F2 < 0, the singularity is naked. If F1 = F2 = 0, F3 < 0, the singularity is naked
if F3 < −(26 + 15

√
3)F 5/2

0 /2 ≡ Fc and the singularity is not naked if F3 > Fc. If F1 = F2 = F3 =
0, Fn < 0 (n ≥ 4), the singularity is not naked. When we say that the singularity is naked, we mean that
it is locally naked at least. These results are obtained by investigating whether or not future directed
non-spacelike geodesics coming out of the singularity exist [6].

To evaluate q, Σr̂r̂ and Ω for the LTB solution in the coordinate with the separable volume gauge,
we consider the coordinate transformation between the comoving coordinate and this coordinate. The
coordinate transformation near ρ = 0 can be written as

T ≃ 2
3
√

F0

(1 − ηn(r)e−t), ρ ≃ ξn(r)e−αt. (19)

These are the leading term of the coordinate transformation near ρ = 0. ηn(r) and ξn(r) depend on n,
where n denotes the first nonvanishing Fn of F (ρ) expanded near ρ = 0, and we don’t explicitly write
them here. α depends on n and it is 3/(3 + 2n) if n < 3 and it is 1/3 if n ≥ 3.

For the coordinate with the separable volume gauge, the leading behavior of the metric near t → ∞
can be written as

ds2 ≃ −I2
n(r)dt2e−2t + J2

n(r)e−2tdr2 + R2
n(r)e−2tdΩ2. (20)

In(r), Jn(r) and Rn(r) depend on n and we don’t explicitly write them here. However, the time depen-
dence does not depend on n. After some calculations by using the metric, we find that q and Σr̂r̂ become
0 at t → ∞ for all n and Ω become as follows:

Ω →

 0 (n ≤ 2)
Ω∞(r, F3) (n = 3)
4
9 (n ≥ 4)

. (21)
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n Ω Self-similarity Nakedness
n ≤ 2 0 No Naked
n = 3 Ω∞(r, F3) Yes Ωmin < Ωc, Naked

Ωmin > Ωc, Not naked
n ≥ 4 4/9 Yes Not naked

Table 1: The behaior of LTB solution near t → ∞ in the separable volume gauge.

For n = 3, Ω∞(r, F3) has Ωmin, which is the minimum value of Ω∞, to each F3 and Ωmin decreases as
F3 decreases. Considering the result noted above, it follows that the singularity is naked if Ωmin < Ωc,
which the minimum value of Ω∞ to Fc, and the singularity is not naked if Ωmin > Ωc.

To investigate another behavior of the metric (20), we introduce the self-similarity of a spacetime.
Self-similarity is defined in terms of the homothetic vector Xa which satisfies L−→

X
gab = 2gab, where L−→

X
denotes the Lie derivative with respect to Xa [7]. We find that the spacetime described by the metric
(20) has the Xa so that Xt = −1, Xr = Xθ = Xϕ = 0. Also, the form of the metric (20) can be obtained
from q, Σr̂r̂ = 0 for the perfect fluid. Therefore, considering the matter, if q, Σr̂r̂ = 0 and Ω ̸= 0, a
spacetime is self-similar and if q, Σr̂r̂ = 0 and Ω = 0, a spacetime is not self-similar. That is, the LTB
spacetime with the separable volume gauge for n ≥ 3 is self-similar at t → ∞ and q, Σr̂r̂ = 0 and Ω ̸= 0
are the sufficient condition for that the behavior of a spacetime with a perfect fluid with the barotropic
equation of state is self-similar.

4 Summary and Discussion

We investigated the final fate of spherical dust collapse by using the orthonormal frame formalism with
the Hubble normalized variables and the separable volume gauge. The results are summarized in Table
1. We found that the final fate of spherical dust collapse is characterized by Ωmin, which is the minimum
value of Ω at t → ∞ in this formalism. That is, Ωmin is the criterion for the final fate of spherical
dust collapse. Also, we found that the behavior of the LTB solution for n ≥ 3 in the coordinate with
the separable volume gauge is self-similar at t → ∞ and that q, Σr̂r̂ = 0 and Ω ̸= 0 are the sufficient
condition for that the behavior of a spcetime with a perfect fluid with the barotropic equation of state is
self-similar.

We noted that the evolution equations and constraints of the orthonormal frame formalism for perfect
fluid spherical collapse with p̃ = (γ − 1)µ̃ are the same as the ones for dust spherical collapse only if
q, Σr̂r̂ = 0 and Ω = 0. It means that q, Σr̂r̂ = 0 and Ω = 0 are the sufficient condition for the naked
singularity formation of the perfect fluid collapse because the dust collapse in the case that q, Σr̂r̂ = 0
and Ω = 0 at t → ∞ forms the naked singularity. On the basis of these results, we conjecture that the
final fate of the perfect fluid collapse is characterized by Ω as well as the dust collapse.
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Abstract
We construct a new charged rotating Kaluza-Klein black hole solution in the five-
dimensional Einstein-Maxwell theory with a Chern-Simon term. The features of the
solutions are also investigated. The spacetime is asymptotically locally flat, i.e., it
asymptotes to a twisted S1 bundle over the four-dimensional Minkowski spacetime.
The solution describe a non-BPS black hole rotating in the direction of the extra
dimension. The solutions have the limits to the supersymmetric black hole solutions,
a new extreme non-BPS black hole solutions.

1 Introduction

In the context of string theory, the five-dimensional Einstein-Maxwell theory with a Chern-Simon term
gathers much attention since it is the bosonic sector of the minimal supergravity. Supersymmetric
(BPS) black hole solutions to the five-dimensional Einstein-Maxwell equations with a Chern-Simon term
have been found by various authors. Based on the classification of the five-dimensional supersymmetric
solutions by Gauntlett.et.al. [1], they have been constructed on hyper-Kähler base spaces, especially, the
Gibbons-Hawking base space. The first asymptotically flat supersymmetric black hole solution, BMPV
(Breckenridge-Myers-Peet-Vafa) solution, was constructed on the four-dimensional Euclid space [2]. A
supersymmetric black hole solution with a compactified extra dimension on the Euclidean self-dual Taub-
NUT base space was constructed by Gaiotto.et.al [3]. It was extended to multi-black hole solution with
the same asymptotic structure [4].

In addition to the BPS solutions, the non-BPS black hole solutions have also been studied by several
authors. Cvetic et.al. [5] found a non-extremal, charged and rotating black hole solution with asymptotic
flatness. We consider the case of vanishing cosmological constant. In the specified limits, the solution
reduces to the known solutions: the same angular momenta case of the Myers-Perry black hole solution [6],
and the supersymmetric BMPV black hole solution [2].

Exact solutions of non-BPS Kaluza-Klein black hole solutions are found in neutral case [7, 8] and
charged case [9]. These solutions have a non-trivial asymptotic structure, i.e., they asymptotically ap-
proach a twisted S1 bundle over the four-dimensional Minkowski spacetime. The horizons are deformed
due to this non-trivial asymptotic structure and have a shape of a squashed S3, where S3 is regarded as
a twisted bundle over a S2 base space. The ratio of the radius S2 to that of S1 is always larger than one.

Wang proposed that a kind of Kaluza-Klein black hole solutions can be generated by the ‘squash-
ing transformation’ from black holes with asymptotic flatness [10]. In fact, he regenerated the five-
dimensional Kaluza-Klein black hole solution found by Dobiasch and Maison [7, 8] from the five-dimensional
Myers-Perry black hole solution with two equal angular momenta.

Using the squashing transformation, we construct a new non-BPS rotating charged Kaluza-Klein black
hole solutions in the five-dimensional Einstein-Maxwell theory with a Chern-Simon term.

2 Solution

In the metric of squashing Kaluza-Klein black hole in ref. [9], a function of radial coordinate k(r), which
describes the squashing of the horizons, appeares. Wang pointed out that the function k(r) would give a
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4E-mail:tomizawa@sci.osaka-cu.ac.jp

1

357



transformation from asymptotically flat solutions to Kaluza-Klein type solutions. He call this squashing
transformation.

Applying the squashing transformation to the non-BPS charged rotating black hole solution found
by Cvetic et.al. [5], we construct a new charged, rotating Kaluza-Klein black hole solution to the five-
dimensional Einstein-Maxwell theory with a Chern-Simon term. The metric and the gauge potential of
the solution are given by

ds2 = −w(r)
h(r)

dt2 + k(r)2
dr2

w(r)
+

r2

4

[
k(r)(σ2

1 + σ2
2) + h(r)(f(r)dt + σ3)2

]
, (1)

and

A =
√

3q

2r2

(
dt− a

2
σ3

)
, (2)

respectively, where the metric functions w(r), h(r), f(r) and k(r) are defined as

w(r) =
(r2 + q)2 − 2(m + q)(r2 − a2)

r4
, (3)

h(r) = 1− a2q2

r6
+

2a2(m + q)
r4

, (4)

f(r) = − 2a

r2h(r)

(
2m + q

r2
− q2

r4

)
, (5)

k(r) =
(r2
∞ + q)2 − 2(m + q)(r2

∞ − a2)
(r2∞ − r2)2

, (6)

and the left-invariant 1-forms on S3 are given by

σ1 = cos ψdθ + sinψ sin θdφ, (7)
σ2 = − sinψdθ + cos ψ sin θdφ, (8)
σ3 = dψ + cos θdφ. (9)

The coordinates r, θ, φ and ψ run the ranges of 0 < r < r∞, 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π,
respectively. In the case of k(r) = 1, i.e., r∞ → ∞, the metric coincides with that of the Cvetic et.al.’s
solution without a cosmological constant. We assume that the parameters a,m, q, and r∞ appearing in
the solutions satisfy the inequalities

m > 0, (10)
q2 + 2(m + q)a2 > 0, (11)
(r2
∞ + q)2 − 2(m + q)(r2

∞ − a2) > 0, (12)
(m + q)(m− q − 2a2) > 0, (13)
m + q > 0, . (14)

The inequalities (10)-(13) are the conditions for the existence of two horizons, and the condition (14) is
the requirement for the absence of closed timelike curves outside the outer horizon. Figure1 shows the
region of the parameters.

3 Features of the solutions

3.1 Asymptotic form

In the coordinate system (t, r, θ, φ, ψ), the metric diverges at r = r∞ but we see that this is an apparent
singularity and corresponds to the spatial infinity. To confirm this, introduce a new coordinate defined
as

ρ = ρ0
r2

r2∞ − r2
(15)
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Figure 1: Region of the parameters in the (q, m)-plane and the aspect ratio of the outer horizon.

where the constant ρ0 is given by

ρ2
0 =

(r2
∞ + q)2 − 2(m + q)(r2

∞ − a2)
4r2∞

. (16)

This new radial coordinate ρ runs from 0 into ∞. For ρ →∞, which corresponds to the limit of r → r∞,
the metric behaves as

ds2 ' −dt̃2 + dρ2 + ρ2(dθ2 + sin2 θdφ2) +
r6
∞ − a2(q2 − 2(m + q)r2

∞)
4r4∞

(dψ̃ + cos θdφ)2 (17)

in the rest frame (t̃, ρ, θ, φ, ψ̃).
The spacetime is asymptotically locally flat, i.e., the asymptotic form of the metric is a twisted S1

bundle over four-dimensional Minkowski spacetime.

3.2 Geometry of horizon

The solution within the region of the parameters in Figure1 has two horizons, an event horizon at r = r+

and an inner horizon at r = r− ,which are determined by the equation w(r) = 0. The horizons are
deformed and have a shape of a squashed S3.

The shape of the horizon, especially, the aspect ratio of S2 base space to the S1 fiber, which characterize
the squashing of S3 is denoted by k(r+)/h(r+). In the case of k(r+)/h(r+) > 1, the event horizon is
called oblate, where the radius of S2 larger than that of S1. In the case of k(r+)/h(r+) < 1, the event
horizon is called prolate, where the radius of S2 smaller than that of S1. Figure1 shows the oblate region
and the prolate region in the (m, q)-plane. At the boundary of two regions, the ratio is k(r+)/h(r+) = 1,
where the horizon becomes a round S3. Thus unlike the static solution [9], the horizon admits a prolate
shape in addition to a round S3.

3.3 Ergo region

In the region of parameters (10)-(14) and the boundary of (13), an ergo surface is always located at
r = re(r+ < re < r∞) satisfying gt̃t̃(r) = 0.

4 Various limits

In the limit of r∞ → ∞ with the other parameters fixed, where the size of an extra dimension becomes
infinite, the function k(r) takes the limit of k(r) → 1. Then the metric coincides with that of the
asymptotically flat solutions obtained by Cvetic. et.al. [5].

In the limit of q → 0, the solution coincides with the one obtained by Gibbons et.al. [7, 8]. And the
case of a → 0 corresponds to the metric of the static non-BPS Kaluza-Klein black hole solution with a
squashed horizon obtained by two of authors [9].
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Taking the limit of m → −q, two horizons degenerate and the solution coincides with the metric of
the supersymmetric black hole solutions with a compactified extra dimension on the Euclidean self-dual
Taub-NUT space in Ref [3]. In the case of m → q + 2a2, two horizons degenerate, although this is not a
BPS solution.

　

Figure 2: Various limits

5 Summary

We have constructed a new rotating charged Kaluza-Klein black hole solution in the five-dimensional
Einstein-Maxwell theory with a Chern-Simon term. The spacetime is asymptotically locally flat, i.e., a
twisted S1 bundle over the four-dimensional Minkowski spacetime. This solution has four parameters,
the mass, the angular momenta in the direction of an extra dimension, the electric charge and the size of
the extra dimension. The solution describes the physical situation such that in general a non-BPS black
hole is boosted in the direction of the extra dimension. The solution has the limits to the supersymmetric
black hole solution and a new extreme non-BPS black hole solutions.
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Abstract
With the aim of numerical investigations of spacetime dynamics in higher curva-
ture models, we present the basic equations of the Einstein-Gauss-Bonnet gravity
theory. We show (N + 1)-dimensional version of the ADM decomposition including
Gauss-Bonnet terms, and also show conformally-transformed constraint equations for
obtaining an initial data.

1 Introduction

One of the most surprising achievements in studies of general relativity (GR) is the singularity theorems
established by Hawking and Penrose in 1960s. It states that the spacetime singularities inevitably occur
(or occurred) under natural conditions within the framework of GR. This fact implies that GR cannot
describe whole of the spacetime structure, and GR itself is incomplete as a physics theory since an
appearance of singularity makes the future unpredictable.

One of the remedy of this paradox is the cosmic censorship conjecture proposed by Penrose. The
conjecture states that any singularity is hidden inside an event horizon in the process of gravitational
collapse, and is causally disconnected from our side of spacetime. However, it is also true that this
censorship does not essentially solve the break-down of GR at the singularity, and also that the initial
singularity at the birth of the universe, which is the consequence of the standard Big-Bang scenario, can
not be resolved. Therefore, we expect that the true fundamental theory will resolve this problematic
singularity treatment.

Up to now, several quantum theories of gravity have been proposed. Among them superstring/M-
theory, formulated in higher dimensional spacetime, is the most promising candidate. We are still far
from understanding the non-perturbative aspects of the theory, but perturbative treatments of string
effects to classical gravity theory begin revealing new features of the spacetime.

One of the typical string effects can be seen in a series of studies of cosmological models, which is
called string cosmology [1] or pre-Big-Bang scenario [2]. Although these analysis show that the singularity
problem has not been resolved yet, there are some cosmological solutions which do not start from an initial
singularity.

Another attractive proposal is the brane-world model of the Universe [3]; a picture that we live
on a four-dimensional timelike hypersurface embedded in higher-dimensional bulk spacetime. Since the
fundamental scale of the brane-world model could be around TeV scale, the model is thought to be tested
using the large hadron collider (LHC) by monitoring the creations and evaporations of tiny black holes[4].

Along to such a theoretical developments, we are planning to promote a direct numerical approach
to investigate non-linear dynamics in higher-dimensional and/or higher curvature gravitational models
both for singularity structure and cosmological models. This article is the first step; we rewrite the
fundamental equations into a suitable form for future numerical treatments.

The standard numerical approach is to treat the spacetime as a Cauchy problem. We therefore apply
the ADM formalism of GR for the (N + 1)-dimensional Einstein-Gauss-Bonnet gravity theory. The
Gauss-Bonnet terms are the next leading order of the α′-expansion of type IIB superstring theory, where
α′ is the inverse string tension [5], so that the first model to be investigated. In §2.1, we show that the set
of equations are divided into two constraints and evolution equations along to the standard procedure.
In §2.2, we present the conformal approach to solve the constraints which shall be used for preparing an
initial data. All the details will be reported elsewhere[6].

1E-mail: torii@ge.oit.ac.jp
2E-mail: shinkai@is.oit.ac.jp
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2 Equations in Einstein-Gauss-Bonnet gravity

2.1 Equations to solve

We consider (N + 1)-dimensional spacetime (M, gµν) which is described by the Einstein-Gauss-Bonnet
action: ∗

S =
∫
M

dN+1X
√
−g

[
1

2κ2
(R− 2Λ + αGBLGB) + Lmatter

]
, (1)

with LGB = R2 − 4RµνRµν + RµνρσRµνρσ, (2)

where κ2 is the (N + 1)-dimensional gravitational constant, R, Rµν , Rµνρσ and Lmatter are the (N + 1)-
dimensional scalar curvature, Ricci tensor, Riemann curvature and the matter Lagrangian, respectively.

The action (1) gives the gravitational equation as

Gµν + αGBHµν = κ2 Tµν , (3)

where Gµν = Rµν − 1
2
gµνR+Λgµν , (4)

Hµν = 2
[
RRµν − 2RµαRα

ν − 2RαβRµανβ + R αβγ
µ Rναβγ

]
− 1

2
gµνLGB , (5)

and Tµν = −2
δLmatter

δgµν
+ gµνLmatter. (6)

We define the projection operator to N -dimensional (spacelike or timelike) hypersurface, Σ, ⊥µν =
gµν − εnµnν , where nµ is the unit-normal vector to Σ with nµnµ = ε, with which we define nµ is timelike
(if ε = −1) or spacelike (if ε = 1). Σ is spacelike (timelike) if nµ is timelike (spacelike). We define the
induced N -dimensional metric γij as γij = ⊥ij , and the extrinsic curvature Kij as Kij = −⊥α

i⊥
β
j∇αnβ .

The projections of the gravitational equation can be the following three:(
Gµν + αGBHµν

)
nµ nν = κ2 Tµν nµ nν =: κ2ρH , (7)(

Gµν + αGBHµν

)
nµ ⊥ν

ρ = κ2 Tµν nµ ⊥ν
ρ =: −κ2Jρ, (8)(

Gµν + αGBHµν

)
⊥µ

ρ ⊥ν
σ = κ2 Tµν ⊥µ

ρ ⊥ν
σ =: κ2Sρσ, (9)

where we defined Tµν = ρHnµnν + Jµnν + Jνnµ + Sµν , which gives T = −ρH + S`
`.

Following the standard procedure of the ADM formulation, we find the equations, eq. (7)-(9), corre-
spond to (a) the Hamiltonian constraint equation:

M + αGB

(
M2 − 4MabM

ab + MabcdM
abcd

)
= −2εκ2Tµνnµnν , (10)

(b) the momentum constraint equation:

Ni + 2αGB

(
MNi − 2M a

i Na + 2MabNiab − M cab
i Nabc

)
= −κ2Tµνnµγν

i , (11)

and (c) the evolution equations for γij :

Mij −
1
2
Mγij − ε

(
−KiaKa

j + γijKabK
ab − £nKij + γijγ

ab£nKab

)
+ 2αGB

[
Hij + ε

(
M£nKij − 2M a

i £nKaj − 2M a
j £nKai − W ab

ij £nKab

)]
= κ2Tµνγµ

iγ
ν
j ,(12)

respectively, where

Mijkl = Rijkl − ε(KikKjl − KilKjk), (13)
Nijk = DiKjk − DjKik, (14)

∗The Greek indices move 1, · · · , N + 1, while the Latin indices move 1, · · · , N .

2

362



Hij = MMij − 2(MiaMa
j + MabMiajb) + MiabcM

abc
j

−2ε

[
−KabK

abMij −
1
2
MKiaKa

j + KiaKa
bM

b
j + KjaKa

bM
b
i + KacK b

c Miajb

+NiNj − Na(Naij + Naji) −
1
2
NabiN

ab
j − NiabN

ab
j

]
−1

4
γij

[
M2 − 4MabM

ab + MabcdM
abcd

]
−εγij

[
KabK

abM − 2MabK
acK b

c − 2NaNa + NabcN
abc

]
, (15)

W kl
ij = Mγijγ

kl − 2Mijγ
kl − 2γijM

kl + 2Miajbγ
akγbl , (16)

and these contracted variables; Mij = γabMiajb, M = γabMab, and Ni = γabNaib. Note that the terms
of £nKµν appear only in the linear form. This is due to the quali-linear property of the Gauss-Bonnet
gravity.

2.2 Conformal Approach to solve the Constraints

In order to prepare an initial data for numerical evolution, we have to solve two constraints, (10) and
(11). The standard approach [7] is to apply conformal transformation between the initial trial metric γ̂ij

and the solution γij , as
γij = ψ2mγ̂ij , (17)

and solve for ψ. (We generalized the power to 2m here.) For N -dimensional spacetime, Ricci scalar is
transformed as

R̃ = ψ−2mR − 2(N − 1)(∆ψ)ψ−2m−1 − (N − 1)
[
2 − (N − 2)m

]
m(∇ψ)2ψ−2m−2,

from which we specify m = 2/(N − 2) for simplifying the equation.
Regarding to the extrinsic curvature, we decompose Kij into its trace part, K = γijKij , and traceless

part, Aij = Kij − 1
N γijK, and assume the conformal transformation as

Aij = ψ`Âij . (18)

The conformal transformation of the divergence DjA
ij becomes

DjA
ij = ψ−4m+`D̂jÂ

ij + ψ−4m+`−1
[
` + m(N − 2)

]
ÂijD̂jψ, (19)

which indicates to set ` = −m(N − 2) = −2 for simplifying the equation.
We introduce the longitudinal part of Âij , Âij

L = Âij − Âij
TT , where D̂jÂ

ij
TT = 0, and express Âij

L with
a vector potential Âij

L = D̂iW j + D̂jW i − 2
N γ̂ijD̂kW k.

We also assume the conformal transformation of matter terms as ρ = ψ−nρ̂ and J i = ψ−4m+`Ĵ i, and
assume K = K̂, then two constraints, (10) and (11), can be written as

4
N − 1
N − 2

∆̂ψ = R̂ψ − (ÂijÂ
ij)ψ(−3N+2)/(N−2) +

[
N − 1

N
K2 − 2Λ − 16πGρ̂ψ−n

]
ψ(N+2)/(N−2)

+αGB

(
M2 − 4MabM

ab + MabcdM
abcd

)
ψ(N+2)/(N−2) (20)

and

∆̂W i +
N − 2

N
D̂iD̂kW k + R̂i

kW k =
N − 1

N
ψ2N/(N−2)D̂iK̂ + 8πGĴ i

−2αGB

(
MN i − 2M iaNa + 2MabN i

ab − M iabcNbca

)
. (21)

Note that we do not transformed Gauss-Bonnet terms in these expression, since they produce higher-
power terms in ψ. Therefore we have to proceed iterative schemes for solving both (20) and (21) updating
the trial metric as γ̂ij |new = ψ

4N/(N−2)
old γ̂ij |old. Although there is no proof to guarantee the existence

of a solution in such a system, our numerical code obtains converged solutions. We will report details
elsewhere.
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2.3 Evolution equations

The Einstein evolution equation in general N -dimensional ADM version is presented in [8]. With the
Gauss-Bonnet terms, the evolution equation, (12), cannot be expressed explicitly for each £nKij . That
is, eq. (12) is rewritten as

(1 + 2αGBM)£nKij − (hijh
ab + 2αGBW ab

ij )£nKab − 8αGBM a
(i £nK|a|j)

= −ε

(
Mij −

1
2
Mhij

)
− KiaKa

j + hijKabK
ab + εκ2Tµνhµ

ih
ν
j − 2εαGBHij , (22)

and the second and third terms in RHS include the mixing terms between £nKij . Therefore, in an actual
simulation, we have to evolve γij and Kij in each step simultaneously using a matrix form of (22) like

£nγ11

£nγ12

£nγ13

...
£nK11

£nK12

£nK13

...


=


O O

O Mixing





£nγ11

£nγ12

£nγ13

...
£nK11

£nK12

£nK13

...


+



K11

K12

K13

...

Source


.

We are now developing our numerical code and hope to present some results elsewhere near future.

References

[1] H. Ishihara, Phys. Lett. B 179, 217 (1986),
A. A. Starobinsky, Phys. Lett. B 91, 99 (1980); K. Maeda, Phys. Lett. B 166, 59 (1986);
J. R. Ellis, N. Kaloper, K. A. Olive and J. Yokoyama, Phys. Rev. D 59, 103503 (1999).
H. Yajima, K. Maeda, and H. Okubo, Phys. Rev. D 62, 024020 (2000).

[2] M. Gasperini and G. Veneziano, Phys. Rep. 373, 1 (2003);

[3] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998);
I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998).
L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); 83, 4690 (1999).

[4] S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87 (2001) 161602;
A. Chamblin and G.C. Nayak, Phys. Rev. D 66 (2002) 091901;
S. B. Giddings and S. Thomas, Phys. Rev. D 65 (2002) 056010.

[5] D. J. Gross and E. Witten, Nucl. Phys. B277, 1 (1986);
D. J. Gross and J. H. Sloan, Nucl. Phys. B291, 41 (1987);

[6] T. Torii and H. Shinkai, in preparation.
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Weakly nonlinear evolution of the baryon acoustic oscillations
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Abstract
We examine the effect of the quasi-nonlinear gravitational clustering on the baryon
acoustic oscillation (BAO) feature in the matter power spectrum. In particular, we
investigate the damping nature of the BAO feature, which is extracted from the
matter power spectrum, based on the third order perturbation theory. We construct
a fitting formula of the BAO feature in an analytic way. We also investigate a future
feasibility of constraing the cosmological parameters through the weakly nonlinear
evolution of the BAO.

1 Introduction

Baryon acoustic oscillations (BAO) imprinted in the galaxy power spectrum has recently attracted re-
markable attention as a cosmological standard ruler to constrain the equation of state of dark energy.
The BAO signature has been detected in the 2dFGRS and the SDSS galaxy samples, and the feasibility
of constraining the dark energy parameter is demonstrated. Furthermore, future BAO survey projects
are discussed to explore the origin of the dark energy [1].

Although the BAO signature is called as the cosmological standard ruler, for a precise confrontation of
the theoretical predictions with observation, we need clarify uncertainities such as gravitational nonlinear
evolution of the matter fluctuations, redshift-space distortions of the observed cosmological objects and
the galaxy bias effect, because these effects might yield some systematics when comparing the observed
power spectrum with the theoretical predictions.

We examine one of these uncertainties about the nonlinear correction due to the gravitational clus-
tering. This effect cause the shift of peaks and troughs and suppression of the amplitude of the BAO
feature. In this work, we focus on the damping nature of the BAO due to the nonlinear gravitational
clustering as shown by figure 1.

2 Damping nature of the BAO

To investigate the effect of the nonlinear gravitational clustering, in present work, we employ the pertur-
bative approach of the matter fluctuations. Based on the third order perturbation theory [2], the second
order matter power spectrum can be given by

P (k, z) = D2
+(z)Plin(k) + D4

+(z)P2(k), (1)

where Plin(k) is the linear power spectrum given by

Plin(k)δ(3)(k + k′) = 〈δ1(k)δ1(k′)〉, (2)

D+(z) is the linear growth rate, and P2(k) is the second order contribution to the spectrum, which can
be conventionally expressed as follows;

P2(k) = P22(k) + 2P13(k). (3)

Taking the 4-point correlations of δ1(k) into consideration, we can obtain the explicit form of P22(k)
expressed as the integral of the square of the linear power spectrum,

P22(k) = 2
∫

d3qPlin(q)Plin (|k − q|)
[
F

(s)
2 (q, k − q)

]2

. (4)

1E-mail:hide@theo.phys.sci.hiroshima-u.ac.jp
2E-mail:kazuhiro@hiroshima-u.ac.jp
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On the other hand, P13(k) has the form slightly different with P22(k),

2P13(k) = 6Plin(k)
∫

d3qPlin(q)F (s)
3 (q,−q, k). (5)

Here we follow the definition of F
(s)
2 and F

(s)
3 given by [2].

We will examine the damping nature of the BAO signature due to the nonlinear gravitational clus-
tering. The oscillation signature in the matter power spectrum can be extracted as follows:

B(k, z) ≡ P (k, z)
P̃ (k, z)

− 1. (6)

where P (k, z) is the matter power spectrum including the BAO signature, but P̃ (k, z) is the matter power
spectrum without the BAO, which is calculated using the no-wiggle transfer function by [3]. Hereafter,
the quantity with the ’tilde’ implies to be computed using the no-wiggle transfer function. With the use
of the formula of the second order power spectra we have

B(k, z) =
Plin(k) + D2

+(z)P2(k)

P̃lin(k) + D2
+(z)P̃2(k)

− 1. (7)

First, we adopt the approximation,

P2(k) ' P̃22(k) + 2P13(k). (8)

Namely, P22(k) in (1) is replace with P̃22(k). The validity of this approximation is demonstrated in Figure
2. The validity of this approximation comes from the fact that the mode-couplings of different Fourier
modes decreases the coherent BAO signature.

On the other hand, P13(k) can not be simply replaced with P̃13(k). However, careful consideration
leads to an expression for P̃13(k). First, we define

Blin(k) ≡ Plin(k)
P̃lin(k)

− 1, (9)

which corresponds (7), but within the linear theory of density fluctuations. With this definition, we
obtain

2P13(k) ' 2 [1 + Blin(k)] P̃13(k). (10)

Substituting (10) into (8), P2(k) is written as

P2(k) = P̃2(k) + 2Blin(k)P̃13(k). (11)

Then, from (7), we obtain

B(k, z) =
1 + D2

+(z)
2P̃13(k)
P̃lin(k)

1 + D2
+(z)

P̃2(k)
P̃lin(k)

Blin(k), (12)

This formula indicates how the BAO signature is modified as the gravitational clustering evolves, which
is expressed by the BAO signature in the linear theory multiplied by the correction determined by the
no-wiggle quantities and the growth factor.

The second term of the denominator in (12) is smaller than unity as far as the perturbation theory is
valid. Accordingly, expanding it and taking the terms up to the second order of D+(z), we obtain

B(k, z) =

[
1 − D2

+(z)
P̃22(k)
P̃lin(k)

]
Blin(k). (13)
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Figure 1: BAO feature extracted from the
matter power spectrum including the second
order contributions for several redshifts. The
cosmological parameters adopted are same as
Figure 1.

Figure 2: Typical behavior of the second or-
der contributions to the linear spectrum. The
cosmological parameters adoped are h = 0.73,
Ωm = 0.24, Ωb = 0.042, ns = 0.96 and
σ8 = 0.76.

From a detailed analysis of P̃22(k)/P̃lin(k) as a function of k, we find that the following fitting formula
works well,

B(k, z) =

[
1 − σ2

8D2
+(z)

(
k

kn

)2 (
1 − γ

k

)]
Blin(k), (14)

where σ8 is the rms matter density fluctuation averaged over the sphere with the radius of 8h−1Mpc, kn

and γ are the constant parameters which depend on Ωm and Ωb as

kn = −0.536(Ωm + 0.326)(Ωb − 0.416) hMpc−1, (15)
γ = −2.75(Ωm − 0.114)(Ωb − 0.122) hMpc−1. (16)

Though these dependency might have to be investigated more carefully, but the validity is guaranteed in
the following narrow range: 0.22 < Ωm < 0.26, 0.040 < Ωb < 0.042. Figure 3 shows an example to show
the agreement of the fitting formula with the second order power spectrum. The relative error is about
less than 10 % for the range of the wave number k <∼ 0.19 hMpc−1 .

3 A feasibility of constraining the cosmological parameters

The nonlinear correction derived in the previous section describes how the BAO are damped depending
on the values of Ωm, Ωb and σ8D+(z). This suggests that these cosmological parameters may be able to
constrain through the nonlinear evolution of the BAO. For this investigation, we consider the constraints
on Ωm and σ8 for example. Here our fiducial model we adopted is Ωm = 0.24, σ8 = 0.76, Ωb = 0.042,
h = 0.73 and ns = 0.96.

The error of the galaxy power spectrum depends on its amplitude. The clustering bias and the
redshift-space distortions contribute the amplitude of the power spectrum and the error in measuring
B(k, z). For our modeling the galaxy power spectrum, we assume the scale-independent bias model [4],
and incorporate the redshift-space distortion within the linear theory, for simplicity. In addition, we
assume the variance of the error in measuring the BAO signature can be estimated by

4B2(k) =
4P 2(k, z)

[P̃ (s)(k, z)]2
, (17)

where 4P (k, z) is the variance of the power spectrum, which can be estimated by the formula adopted
by [5], and P̃ (s)(k, z) is the power spectrum in redshift space.
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Figure 3: Top panel: The BAO calculated
by the exact formula (7) and our fitting for-
mula are plotted. Bottom panel: The devia-
tion of the dashed line(fitting) from the solid
line(exact) is plotted.

Figure 4: Constraints on Ωm and σ8. The
solid line and the dotted line corresponds to
4A = 2000deg2 and 4A = 4π respectively.
Inner circle and outer circle indicate 1σ and
2σ confidence level respectively.

With the above expected error, we generate the power spectrum based on a Monte Calro simulation
and assess the χ2 defined by

χ2 =
∑

i

[
B(ki, z)th − B(ki, z)obs

]2
4B2(ki, z)

, (18)

where B(ki, z)th is the theoretical one at the wavenumber ki = 4k(i − 0.5), for i = 4, 5, · · · , 19. Here
we specify a bin of the Fourier space, 4k = 0.01hMpc−1, and consider the range of 0.03 < k < 0.19,
where the validiy of our formula in the previous section is guaranteed. B(ki, z)obs is the observational
one obtained through a Monte Carlo simulation.

Figure 4 shows the 1 sigma (inner solid curve) and the 2 sigma (outer solid curve) contours of 4χ2 in
the Ωm and σ8 plane, where we assume the galaxy redshift samples provided a forthcoming experiment,
WFMOS, which contains 2.1 × 106 galaxies, over 2000deg2, at 0.5 < z < 1.3. The dotted curves show
the 1 sigma (inner) and the 2 sigma (outer) contours when assuming the survey area ∆A = 4π.

4 Summary

In this work, we examined the damping nature of the BAO signature in the matter power spectrum due to
the nonlinear gravitational clustering. First, we found an analytic expression for the damping behavior of
the BAO signature. On the basis of the result, we constructed a fitting formula for the damping behavior
in the weakly nonlinear regime. Furthermore, based on the simple numerical simulation, we found how
Ωm and σ8 can be constrained through the weakly nonlinear evolution of the BAO.
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Abstract
We construct exact stationary solutions of black hole – bubble sequence in the five
dimensional Kaluza-Klein (KK) theory by using solitonic solution generating tech-
niques. The solution describes two stationary black holes with topology S3 on a
Kaluza-Klein bubble and has a momentum component. There are two different so-
lutions. One is boosted black holes on KK bubble. This solution describes rotating
black holes on KK bubble in the local point of view. It however has an ADM lin-
ear momentum. Therefore we call it boosted black holes on KK bubble. Only one
black hole has non-zero Komar angular momentum which is equal to the ADM linear
momentum. The rotation of black hole with no intrinsic spin is a consequence of
frame-dragging effect. The other is a solution of rotating black holes on KK bubble .
This solution has an ADM angular momentum as an asymptotic charge. The Komar
angular momentum of one black hole is positive and the other is negative. The sum
of Komar angular momenta is equal to the ADM angular momentum. The angular
velocities of the black holes have the same sign because of the frame-dragging effect
of dominant black hole.

1 Introduction

Kaluza-Klein (KK) theory is the five dimensional theory of gravity which unifies Einstein’s four-dimensional
theory of gravity and Maxwell’s electromagnetic theory. The spacetime is asymptotically the product
of the four-dimensional Minkowski spacetime M3,1 and a circle S1. The extra dimension with S1 is
compactified too small for us to observe it. This type of compactification of the extra dimensions are also
extended to the supergravity theories and the superstrings. The studies on black holes in the KK theory
have attracted much attention since they admit much richer structures than asymptotically flat higher
dimensional black holes. Recently, we obtained the new five-dimensional vacuum solutions of stationary
black holes on the KK bubble [1, 2]. This solution is the extension of the static solution found by Elvang
and Horowitz [3]. In the following, we briefly explain the solutions and describe several important features
of them.

2 Boosted black holes on KK bubble

2.1 solutions

At first we briefly present the boosted black holes solution. We start from the following form of a seed
static metric

ds2 = e−T (0)
[
−eS(0)

(dt)2 + e−S(0)
ρ2(dϕ)2 + e2γ(0)−S(0) (

dρ2 + dz2
)]

+ e2T (0)
(dψ)2, (1)

with seed functions

S(0) = Uλσ − Ũη1σ + 2Ũη2σ = −Ũλσ − Ũη1σ + 2Ũη2σ + ln ρ (2)

T (0) = Uλσ + Ũη1σ = −Ũλσ + Ũη1σ + ln ρ, (3)
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where we assume η1 < η2 < −1 < λ < 1 and σ > 0. The function Ud is defined as Ud := 1
2 ln [Rd − (z − d) ]

and the function Ũd is defined as Ũd := 1
2 ln [ Rd + (z − d) ] where Rd :=

√
ρ2 + (z − d)2. Here we take

the coordinate ϕ as a Kaluza-Klein compactified direction. The solitonic solution has two event horizons
at η1σ ≤ z ≤ η2σ and −σ ≤ z ≤ λσ and a Kaluza-Klein bubble at η2σ ≤ z ≤ −σ, where the Kaluza-Klein
circles shrink to zero. The metric of the solitonic solution can be written in the following form

ds2 = e−T
[
−eS(dt − ωdϕ)2 + e−Sρ2(dϕ)2 + e2γ−S

(
dρ2 + dz2

)]
+ e2T (dψ)2. (4)

The function T is derived from the seed functions

T = −Ũλσ + Ũη1σ + ln ρ. (5)

The other metric functions for the five-dimensional metric (4) are obtained as

eS = eS(0) A

B
, (6)

ω = 2σe−S(0) C

A
− C1, (7)

e2γ = C2(x2 − 1)−1Ae2γ′
, (8)

where C1 and C2 are constants and A, B and C are given by

A =
1

(2σ)2
{(

e2Ũ−σ + e2Uσ

)(
e2Ũσ + e2U−σ

)
(1 + ab)2 −

(
e2Ũ−σ − e2Ũσ

) (
e2Uσ − e2U−σ

)
(b − a)2

}
,

B =
1

(2σ)2

{[(
e2Ũ−σ + e2Uσ

)
+

(
e2Ũσ + e2U−σ

)
ab

]2

+
[(

e2Ũ−σ − e2Ũσ

)
a −

(
e2Uσ − e2U−σ

)
b
]2

}
,

C =
1

(2σ)3
{(

e2Ũ−σ + e2Uσ

)(
e2Ũσ + e2U−σ

)
(1 + ab)

((
e2Uσ − e2U−σ

)
b −

(
e2Ũ−σ − e2Ũσ

)
a
)

+
(
e2Ũ−σ − e2Ũσ

) (
e2Uσ − e2U−σ

)
(b − a)

((
e2Ũ−σ + e2Uσ

)
−

(
e2Ũσ + e2U−σ

)
ab

)}
.

The functions a and b, which are auxiliary potential to obtain the new Ernst potential by the transfor-
mation, are given by

a = α

√
(e2Ũ−σ + e2Uσ )(e2Uσ − e2U−σ )
(e2Ũσ + e2U−σ )(e2Ũ−σ − e2Ũσ )

eŨλσ

e2Uσ + e2Ũλσ

eŨη1σ

e2Uσ + e2Ũη1σ

(
e2Uσ + e2Ũη2σ

eŨη2σ

)2

, (9)

b = β

√
(e2Ũ−σ + e2Uσ )(e2Ũ−σ − e2Ũσ )
(e2Ũσ + e2U−σ )(e2Uσ − e2U−σ )

e2U−σ + e2Ũλσ

eŨλσ

e2U−σ + e2Ũη1σ

eŨη1σ

(
eŨη2σ

e2U−σ + e2Ũη2σ

)2

. (10)

In addition the function γ′ is obtained as

γ′ = γ′
σ,σ + γ′

−σ,−σ + γ′
λσ,λσ + γ′

η1σ,η1σ + γ′
η2σ,η2σ

−2γ′
σ,−σ − γ′

σ,λσ − γ′
σ,η1σ + 2γ′

σ,η2σ + γ′
−σ,λσ + γ′

−σ,η1σ − 2γ′
−σ,η2σ

−γ′
λσ,η1σ − γ′

λσ,η2σ − γ′
η1σ,η2σ

+Ũσ − Ũ−σ − 2Ũλσ + Ũη1σ + Ũη2σ + ln ρ, (11)

where
γ′

cd =
1
2
Ũc +

1
2
Ũd − 1

4
ln[RcRd + (z − c)(z − d) + ρ2]. (12)

The constants C1 and C2 are chosen as follows

C1 = 0, C2 =
1

(1 + αβ)2
, (13)
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to avoid the global boost of the spacetime and to set the period of ψ to 2π, respectively. Also the
integration constants α and β should be decided as

α2 =
(1 − λ)(1 − η1)

(1 − η2)2
, β = 0, (14)

to remove the singularity at z = σ on z-axis and closed timelike curves around the bubble, respectively.
In order to avoid conical singularity for z ∈ [η2σ,−σ] and ρ = 0, ϕ has the periodicity of

∆ϕ

2π
= 2σ

η2 + 1
η2 − 1

√
(λ − η1)(λ − η2)(η1 − 1)

η1 + 1
. (15)

2.2 properties

The asymptotic structure of the solution is the S1 bundle over the four-dimensional Minkowski spacetime.
Two black holes have the topological structure of S3 and the bubble is topologically S1×R. The solution
describes the physical situation such that two black holes have the boost velocity of the same direction,
even though the black holes are considered as the rotating S3 black holes for the local observer near the
horizon. The ADM mass and the linear momentum of the solution are obtained as

MADM =
(λ − 2η1 + η2 + 2)σ

4
∆ϕ, P = −ασ

2
∆ϕ. (16)

We obtain the Komar angular momenta of left and right black holes as

JKomar,1 = 0, JKomar,2 = −ασ

2
∆ϕ, (17)

respectively. The left black hole has no intrinsic rotation. The Komar angular momentum of right black
hole is exactly same as the linear momentum of the spacetime. We conclude that one of the two black
holes has intrinsic rotation and the other rotates by the effect of the gravitational frame-dragging. In
the static case, it coincides with the solution found by Elvang and Horowitz. In the small black holes
limit, one black hole approaches an extremal black hole and the other approaches the round S3 sphere.
No matter how large the size of the horizons increase, the black holes cannot merge each other if the
size of the KK circle is fixed. To construct the single boosted black string from the solution, we have to
redefine the size of the KK circle after the limit of η2 → −1. It cannot be expected that the boosted
black hole spontaneously breaks down to the boosted black holes on KK bubble from the comparison of
areas between the black holes on KK bubble and the black string for the same asymptotic charges.

3 Rotating black holes on KK bubble

3.1 solutions

The solution of rotating black holes on KK bubble is obtained by the similar procedure of boosted
black holes in the previous section. Here we only give the functions S(0), T (0), a, b, γ′ and the constants
C1, C2, α, β.

S(0) = Ũλσ − 2Ũη1σ + Ũη2σ, T (0) = Ũλσ − Ũη2σ. (18)

The functions a and b are given by

a = α · e2Uσ + e2Ũλσ

eŨλσ

· e2Uσ + e2Ũη2σ

eŨη2σ

·

(
eŨη1σ

e2Uσ + e2Ũη1σ

)2

, (19)

b = β · eŨλσ

e2U−σ + e2Ũλσ

· eŨη2σ

e2U−σ + e2Ũη2σ

·

(
e2U−σ + e2Ũη1σ

eŨη1σ

)2

. (20)
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In addition the function γ′ is obtained as

γ′ = γ′
σ,σ + γ′

−σ,−σ + γ′
λσ,λσ + γ′

η1σ,η1σ + γ′
η2σ,η2σ

−2γ′
σ,−σ + γ′

σ,λσ − 2γ′
σ,η1σ + γ′

σ,η2σ − γ′
−σ,λσ + 2γ′

−σ,η1σ − γ′
−σ,η2σ

−γ′
λσ,η1σ − γ′

λσ,η2σ − γ′
η1σ,η2σ. (21)

The constants C1 and C2 are chosen as follows

C1 = −2σ(α − β)
1 + αβ

, C2 =
1

(1 + αβ)2
, α + β = 0. (22)

To avoid a singular behavior of gϕϕ on the ϕ-axis, we also need to impose the following condition on β

β2 = − (λ + 1)(1 + η2)
(1 + η1)2

. (23)

The KK compactified direction is ψ with the periodicity ∆ψ,

∆ψ

2π
= 2σ

(η1 + 1)((η1 − 1)2 + (λ + 1)(η2 − 1))
(η1 − 1)((η1 + 1)2 + (λ + 1)(η2 + 1))

√
(λ − η1)(λ − η2)(η2 + 1)

η2 − 1
. (24)

The solution has two event horizons at η1σ ≤ z ≤ η2σ and λ ≤ z ≤ σ and a Kaluza-Klein bubble at
η2σ ≤ z ≤ λσ.

3.2 properties

The solution describes the physical situation such that two black holes have the angular velocity of the
same direction and the bubble plays a role in holding two black holes. In the static case, it coincides with
the solution found by Elvang and Horowitz. The ADM mass of the solution is computed as

MADM =
σ(4 − 2η1 + η2 + λ + β2(4 + 2η1 − η2 − λ))

4(1 − β2)
∆ψ. (25)

The nonzero component of the angular momentum becomes

J = −βσ2(2 − 2η1 + η2 + λ + β2(2 + 2η1 − η2 − λ))
(1 − β2)2

∆ψ. (26)

It should be noted that the ADM mass is non-negative when β2 < 1. The two black holes have inverse
intrinsic spin each other

JKomar,1 =
σ2β

(1 − β2)2
(η2 − η1)2((1 + λ)(1 + η2) − (1 − η2

1))2

(1 + η1)2(1 + η2)((1 + λ)(1 − η2) − (1 − η1)2)
∆ψ, (27)

JKomar,2 = − σ2β

(1 − β2)2
((1 − λ)(1 + η2) − (1 + η1)2)((1 − λ2)(1 − η2

2) − (1 − η2
1)2)

(1 + η1)2(1 + η2)((1 + λ)(1 − η2) − (1 − η1)2)
∆ψ, (28)

even though the angular velocities are same sign. This feature is attributed to the gravitational frame-
dragging of the faster black hole. We have also compared the entropy of two black holes on a bubble with
a rotating black string with the same mass and the same angular momentum. Like the static solution [3]
and the boosted black hole solutions on a bubble [1], we cannot expect that a black string spontaneously
generates a Kaluza-Klein bubble and it splits the horizon with the topology S1 ×S2 into two black holes
with the topology S3.
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Abstract
Gravitational perturbations in a Kerr black hole background can not be decomposed
into simple tensor harmonics in the time domain. Here, we make the mode decom-
position only in the azimuthal direction and discuss the resulting (2+1)-dimensional
Klein-Gordon differential equation for scalar perturbations with a two dimensional
Dirac’s δ-function as a source representing a point particle orbiting a much larger
black hole. To make this equation amenable for numerical integrations we explicitly
remove analytically the singular behavior of the source and compute a global effective
source for the corresponding waveform.

1 Introduction

One of the main source targets of LISA is the gravitational waves generated by the inspiral of compact
objects into massive black holes. For these Extreme Mass Ratio Inspirals (EMRI) we use the black
hole perturbation approach to compute waveforms, where the compact object is approximated by a
point particle orbiting a massive Kerr black hole. In order to obtain the precise theoretical gravitational
waveform, we need to solve the self-force problem and problems in the second order perturbations [1].

In this paper, we focus on one aspect of the self-force problem, specifically to derive the retarded field
of a point source. As a first step, we consider the Klein-Gordon equation in the Schwarzschild spacetime,
but do not decompose it into spherical harmonics, in order to model perturbations in the more generic
Kerr background. Recently, Barack and Golbourn [2] have discussed this equation in (2+1)-dimensions
as derived by the mode decomposition in the azimuthal direction. Another treatment is proposed here
to deal with this problem globally. We also note that there is a method to use a narrow Gaussian rather
than a Dirac δ-function [3]. It is, however, difficult to ascertain the error introduced by smearing the
particle and if this is accurate enough for self force computations.

2 Formulation

When we calculate the (2 + 1)-dimensional (D) equation derived from the 4D Klein-Gordon equation
by the azimuthal mode decomposition, the resulting equation is not exactly same as the (2 + 1)D wave
equation. By transforming the scalar field, we can obtain an equation which includes the (2 + 1)D
d’Alambertian and a remainder. Then, we remove the 2D δ-function in the source term.

In order to do so, we consider the Schwarzschild metric in the isotropic coordinates,

ds2 = −(2ρ−M)2/(2ρ + M)2dt2 + (1 + M/(2ρ))4
(
dρ2 + ρ2

(
dθ2 + sin2 θdφ2

))
. (1)

This radial coordinate is related to that of the Schwarzschild, r, as ρ =
(
r −M +

√
r2 − 2Mr

)
/2. In the

above coordinates, the Klein-Gordon equation with a point source becomes
[
− (2 ρ + M)2

(2 ρ−M)2
∂2

t +
16ρ4

(2 ρ + M)4
∂2

ρ +
128ρ5

(2 ρ−M) (2 ρ + M)5
∂ρ +

16ρ2

(2 ρ + M)4

(
∂2

θ + cot θ∂θ +
1

sin2 θ
∂2

φ

)]

×ψ(t, ρ, θ, φ) = −q

∫ ∞

−∞
dτ

64ρ4δ(t− tz(τ))δ(ρ− ρz(τ))δ(θ − θz(τ))δ(φ− φz(τ))
(2ρ−M)(2ρ + M)5 sin θ

. (2)
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Here, we use the azimuthal mode decomposition, ψ(t, r, θ, φ) =
∑∞

m=−∞ ψm(t, ρ, θ)eimφ, and transform
the field ψm as ψm = 2

√
ρ/[(2 ρ + M) (2 ρ−M) sin θ] χm. Then, χm satisfies the following equation.

[
− 1

16
(2ρ + M)6

(2ρ−M)2ρ4
∂2

t + ∂2
ρ +

1
ρ
∂ρ +

1
ρ2

(
∂2

θ −
1

sin2 θ

(
m2 − 1

4
(4ρ2 + M2)2 − 16ρM cos2 θ

(2ρ + M)2(2ρ−M)2

))]

×χm(t, ρ, θ) = −q

∫ ∞

−∞
dτ

2 δ(t− tz(τ))δ(ρ− ρz(τ))δ(θ − θz(τ))√
(2ρ−M)(2ρ + M)ρ sin θ

e−imφz(τ) . (3)

Next, we use a new time coordinate which is defined by T =
∫ t

dt 4 (2ρz(t) −M)ρz(t)2/(2ρz(t) + M)3,
where ρz is obtained by solving a geodesic equation. Using this, we derive an equation which can be
divided into the (2 + 1)D d’Alambertian of the flat case 2(2+1) and a remainder.

Lm χm(T, ρ, θ) =
(
2(2+1) + Lrem

m

)
χm(T, ρ, θ) = Sm(T, ρ, θ) ;

2(2+1) = −∂2
T + ∂2

ρ + (1/ρ)∂ρ + (1/ρ2)∂2
θ ,

Lrem
m =

(
1− (2ρz(T )−M)2ρz(T )4(2ρ + M)6

(2ρz(T ) + M)6(2ρ−M)2ρ4

)
∂2

T

−2(4ρz(T )−M)(2ρz(T )−M)(2ρ + M)6ρz(T )3M
(2ρz(T ) + M)7(2ρ−M)2ρ4

(
dρz(T )

dT

)
∂T

− 1
ρ2 sin2 θ

(
m2 − 1

4
(4ρ2 + M2)2 − 16ρM cos2 θ

(2ρ + M)2(2ρ−M)2

)
,

Sm(T, ρ, θ) = −q

∫ ∞

−∞
dτ

2 δ(t(T )− tz(τ))δ(ρ− ρz(τ))δ(θ − θz(τ))√
(2ρ−M)(2ρ + M)ρ sin θ

e−imφz(τ) . (4)

To remove the δ-function in the source term, we set

χm(T, r, θ) = χS
m(T, r, θ) + χrem

m (T, r, θ) , (5)

where we define the new functions, χS
m and χrem

m as calculated from

2(2+1)χS
m(T, r, θ) = Sm(T, r, θ) ; Lm χrem

m (T, r, θ) = −Lrem
m χS

m(T, r, θ) = S(eff)
m (T, ρ, θ) . (6)

This decomposition of χm does not have any physical-meaning, i.e., χS
m is not identified as the singular

part to be removed in the self-force calculation. Note that Lrem
m includes a second-order derivative. But,

since the factor of ∂2
T is zero at the particle location, the singular behavior of the effective source S

(eff)
m

weakens. The derivation of the singular field χS
m can be performed through the Green function,

G(T,x; T ′,x′) = θ((T − T ′)− |x− x′|)/(
2π

√
(T − T ′)2 − |x− x′|2) , (7)

where |x− x′| = (ρ2 + ρ′2 − 2 ρ ρ′ cos(θ − θ′))1/2 and χS
m is calculated by the following integral

χS
m(T, ρ, θ) =

∫
dT ′ρ′dρ′dθ′G(T,x; T ′,x′)Sm(T ′, ρ′, θ′) . (8)

3 Circular Orbit Case

We consider a particle in circular orbit, zα(τ) = {utτ, r0, π/2, uφτ}, where ut =
√

r0/(r0 − 3M) and
uφ =

√
M/[r2

0(r0 − 3M)]. Here, we focus on the m 6= 0 modes; the m = 0 mode can be dealt with by
the same treatment.

3.1 Singular field

First, the relationship between the new time coordinate T and the Schwarzschild time t is obtained
analytically as T = 4 (2ρ0 −M)ρ2

0/(2ρ0 + M)3 t where ρ0 = 1/2(r0 −M +
√

r2
0 − 2Mr0). Note that in
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general, for non circular orbits, we need a numerical integration to derive this relationship. From Eq. (8),
the singular field is derived as

χS
m(t, r, θ) =

i

4
2
√

ρ0

ut
√

(2ρ0 + M)(2ρ0 −M)
H

(1)
0

(
(2ρ0 + M)3

4 (2ρ0 −M)ρ2
0

mΩ|x− xz|
)

e−imΩt , (9)

where Ω = uφ/ut and the spatial difference is given by |x− xz| =
√

ρ2 + ρ2
0 − 2 ρ ρ0 sin θ and H

(1)
0 is the

Hankel function. The local behavior of the above solution near the particle location is obtained as

χS
m(t, r, θ) ∼ χSL

m (t, r, θ) = − 1
2π

2
√

ρ0

ut
√

(2ρ0 + M)(2ρ0 −M)
ln

(
(2ρ0 + M)3

4 (2ρ0 −M)ρ2
0

mΩ|x− xz|
)

e−imΩt . (10)

Therefore, S
(eff)
m (t, ρ, θ) shown by the dashed green curve in Fig. 1, is singular at the particle location. In

order to perform the numerical integration with higher accuracy, it is convenient to regularize the source
term to be at least C0 at the particle location.

3.2 Local behavior

When we write the singular field as χS
m = χSL

m + χ̂S
m, χ̂S

m is finite at the particle location. Then, the
effective source in Eq. (6) becomes

S(eff)
m (t, ρ, θ) = − 1

2π

2
√

ρ0

ut
√

(2ρ0 + M)(2ρ0 −M)
ln

(
(2ρ0 + M)3

4 (2ρ0 −M)ρ2
0

mΩ|x− xz|
)

e−imΩt

×
(
− 1

ρ2 sin2 θ

(
m2 − 1

4
(4ρ2 + M2)2 − 16ρM cos2 θ

(2ρ + M)2(2ρ−M)2

)

−(mΩ)2
(

(2ρ0 + M)6

(2ρ0 −M)2ρ4
0

− (2ρ + M)6

(2ρ−M)2ρ4

))
− Lrem

m χ̂S
m(t, r, θ) , (11)

Note that the third line of the R.H.S. is at least C0 at the location of the particle.
To remove the logarithmic divergence in the source, we introduce

χrem,S
m (t, ρ, θ) = − 1

16
|x− xz|2 ln

(
(2ρ0 + M)3

4 (2ρ0 −M)ρ2
0

mΩ|x− xz|
)

ρ0
19/2 (2 ρ−M)3 e−imΩ t

×64 m2ρ4 − 32 m2ρ2M2 + 4 m2M4 + 16 cos2 θρ2M2 − (4ρ2 + M2)2

πut (2 ρ0 + M)5/2 (2 ρ0 −M)11/2
ρ11 sin2 θ

. (12)

Using this regularization function, we obtain a source Sreg,I
m for the function χrem

m − χrem,S
m as

Sreg,I
m (t, ρ, θ) = S(eff)

m (t, ρ, θ)− Lmχrem,S
m (t, ρ, θ) . (13)

The local behavior of Sreg,I
m , which is shown by the solid green curve in Fig. 1 (b), is an ”x ln |x| for

x → 0” type, i.e., C0 around the particle location.

3.3 Boundary behaviors

We now focus on the behaviors of the source term at the two boundaries, i.e at the horizon of the large
hole and spatial infinity. The source for a final regularized function χreg

m must go like O(ρ−2) for ρ →∞
in the case of the m = 0 mode and O(ρ−3/2) for the m 6= 0 mode because of integrability conditions. More
precisely, the source for the regularized function of ψm derived by numerical calculations has a factor
∼ 1/ρ1/2. For ρ → M/2, the source should be zero, i.e., the behavior should be a power of (ρ −M/2)
greater than 1/2. To regularize the source at the boundaries, we note that the source contribution from
χrem,S

m is well behaved. This means that the ill behaviors of the source arise from χS
m. Therefore, it is

convenient to use asymptotic behaviors of χS
m (and some correction factor) for regularization.
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First, for the regularization near the horizon, we use the regularization function χh
m which is too long

to be shown here. Then, the source for the function χrem
m − χrem,S

m − χh
m becomes

Sreg,h
m (t, ρ, θ) = Sreg,I

m (t, ρ, θ)− Lmχh
m(t, ρ, θ) , (14)

This Sreg,h
m is shown by the solid black curve in Fig. 1 and behaves as O(ρ−1/2) for large ρ. To regularize

it, we use the regularization function,

χ∞m (t, ρ, θ) = −
√

2 i
ρ
3/2
0

(2 ρ0 + M)2 ut
√

π
√

mΩ ρ ρ7
e(−i m Ω t)

(
ρ− M

2

)3

(ρ2 + ρ2
0 − 2 ρ0 ρ sin θ)2

× exp

(
1
4
i
(2 ρ0 + M)3 mΩ

√
ρ2 + ρ2

0 − 2 ρ0 ρ sin θ

(2 ρ0 −M) ρ2
0

− π

4
i

)
. (15)

The final source for the regularized function χreg
m = χrem

m − χrem,S
m − χh

m − χ∞m becomes

Sreg,f
m (t, ρ, θ) = Sreg,h

m (t, ρ, θ)− Lmχ∞m (t, ρ, θ) , (16)

which is used in the numerical calculation. This Sreg,f
m is shown by the dashed black curve in Fig. 1, and

behaves like O(ρ−3/2)× (an oscillation factor with respect to ρ) for large ρ.

Figure 1: Plot for the m = 1 mode of Sm with respect to ρ. S
(eff)
1 , Sreg,I

1 , Sreg,h
1 and Sreg,f

1 are shown
by the dashed green, solid green, solid black and dashed black curve, respectively.

4 Discussion

In this paper, we obtained the regularized effective source which is C0 at the location of the particle, and
O(ρ−M/2) near the horizon. The behavior at infinity is O(ρ−3/2)× (an oscillation factor with respect
to ρ) which allows straightforward numerical integration.

When we consider the extension of this formulation to the Kerr background case, we can also extract
a similar differential operator to that of Eq. (4). In the case of gravitational perturbations, we have ten
field equations for the linear perturbation in the Lorenz gauge. (See [4].) The same treatment discussed
in this paper is applicable to those equations.
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Abstract
The equation of motion of an extended object in spacetime reduces to an ordinary
differential equation if there is cohomogeneity-one symmetry, which allows one to
obtain exact solutions. We present a general method for solving the motion of
cohomogeneity-one strings. With applications in higher-dimensional cosmology in
mind, we give an explicit solution in the five-dimensional anti-de Sitter space.

1 Introduction

Existence and dynamics of extended objects play important roles in various stages in cosmology. Examples
of extended objects include topological defects, such as strings and membranes, and the Universe as a
whole which is embedded in a higher-dimensional spacetime in the context of the brane-world universe
model [1].

The trajectory of an extended object forms a hypersurface in the spacetime which is described by a
partial differential equation (PDE) such as the Nambu-Goto equation. Because the dynamics is more
complicated than that of a particle, one usually cannot obtain general solutions. One way to find exact
solutions is to assume symmetry. The simplest solutions to such a PDE are homogeneous ones, in which
case the problem reduces to a set of algebraic equations. However, the solutions do not have much variety
and the dynamics is trivial.

One may expect that if we assume “less” homogeneity, the equation still remains tractable and the
solutions have enough variety to include nontrivial configurations and dynamics of physical interest.
The cohomogeneity-one objects give such a class, which helps us to understand the basic properties
of the extended objects and serves as a base camp to explore their general dynamics. For a string,
stationarity is a special case of the cohomogeneity one condition. Some stationary configurations of the
Nambu-Goto strings are obtained in the Schwarzchild spacetime [2]. Even in the Minkowski space, many
nontrivial cohomogeneity-one solutions of the string were recently found [3, 4]. A cohomogeneity-one
object is defined, roughly speaking, as the one whose world sheet is homogeneous except in one direction.
Then any covariant PDE governing such an object reduces to an ordinary differential equation (ODE),
which can easily be solved analytically, or at least, numerically. A solution represents the dynamics of
a spatially homogeneous object, or the nontrivial configuration of a stationary object, depending on the
homogeneous “direction” is spacelike or timelike. The case of null homogeneous “direction” should also
give new intriguing models.

In this paper, we treat dynamics of a string in spacetime. For Nambu-Goto strings, we give a
general procedure to solve the trajectory, which can be easily applied to other PDEs. We choose the
spacetime to be the five-dimensional anti-de Sitter space AdS5, which is to meet the recent interest in
higher-dimensional cosmology including the brane-world universe model, and in string theory. Among
the cohomogeneity-one strings which have been completely classified in [5], we chosse one type and
demonstrate the procedure giving an explicit solution.

1E-mail:koike@phys.keio.ac.jp
2kozaki@adm.niit.ac.jp
3ishihara@sci.osaka-cu.ac.jp
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2 General treatment of cohomogeneity-one strings

In this section, we develop a general procedure of classifying cohomogeneity-one objects and solving their
dynamics in an arbitrary spacetime (M, g). Let us start with the definition of the cohomogeneity-one
objects. We say that a m-dimensional hypersurface S in M is of cohomogeneity one if it is foliated by
(m − 1)-dimensional submanifolds Sσ labeled by a real number σ and there is a subgroup K of G which
preserves the foliation and acts transitively on Sσ. In particular, the hypersurfaces Sσ’s are embedded
homogeneously in M . A cohomogeneity-one object has a world sheet which is a cohomogeneity-one
hypersurface. In this paper, we focus on the case that the extended objects are strings, so that m = 2,
and K is a one-parameter group (φτ )τ∈R of isometries (Fig. 1).

Figure 1: To solve a trajectory of the cohomogeneity-one string is to find a curve C in M which projects
to a geodesic c on O.

Let us show a formalism to solve the dynamics and the configuration of the cohomogeneity-one strings.
We assume the motion is governed by the Nambu-Goto action. The orbit space for K is defined by
O := M/K, i.e., by identifying all the points on each Killing orbit in M . The submanifolds Sσ mentioned
above are the preimages π−1(x) of a point x ∈ O. One can endow O with a metric h so that the projection
π : (M, g) → (O, h) is an orthogonal projection, or more precisely, a Riemannian submersion. The metric
h is given by hab := gab − ξaξb/f, where f := ξaξa. This metric has the Euclidean signature if the Killing
vector ξ is timelike, i.e., if f < 0, and the Lorentzian signature if ξ is spacelike, i.e., if f > 0. Carrying
out the integration along ξ, one obtains

S =
∫

c

√
−fhabdxadxb, (1)

where c is a curve on O. Thus the problem of the string reduces to finding geodesics on the orbit space
O with the metric −fh. For convenience, we adopt a modified action

S =
∫

c
dσ

(
− 1

α
fhabẋ

aẋb + α

)
, (2)

where an overdot denotes the differentiation by σ. The action (2) derives the same geodesic equations as
(1) and retains the invariance under reparametrization of σ. The function α is the norm of the tangent
vector.

The two-dimensional world sheet of the string is the preimage π−1(c) of the geodesic c on (O,−fh).
Sometimes it is more convenient to find a curve C on M , a lift curve, such that its projection π(C) is a
geodesic on (O,−fh) (Fig. 1). The Hopf string in Sec. 3 is such an example. In the case, the trajectory
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of the string is given by

S = π−1(π(C)) = {φτ (C(σ)); (τ,σ ) ∈ R2}. (3)

Note that the last expression in (3) is purely written with objects in M . The trajectory S can also be
viewed as a foliation by mutually isometric curves φτ ◦ C labeled by τ .

3 The Hopf string

Hereafter in this paper, we assume that the spacetime (M, g) is the five-dimensional anti-de Sitter space

AdS5, or its universal cover ÃdS5. The former space has closed timelike curves which in the latter
space are “opened up” to infinite nonclosed curves. The latter is usually more suitable when we discuss
cosmology, but we will not distinguish them strictly in the following. The space AdS5 is most easily
expressed as a pseudo-sphere

ψψ = −1 (4)

in the pseudo-Euclidean space E4,2 whose metric is dS2 = l2dψdψ, where we have employed complex
coordinates ψ := (ψ0,ψ1,ψ2)T ∈ C3, and have defined ψ := ψ†ζ and ζ := diag[−1, 1, 1]. The all possible
types of cohomogeneity-one strings in AdS5 are classified in [5].

Let us choose one of the types in [5] and find the trajectory for the Nambu-Goto string. This example
also shows that working with the lift curves as explained in Sec. 2 can make the calculations and geometric
interpretation of the trajectory simple and transparent.

We shall say that a Hopf string is a cohomogeneity-one string which is homogeneous under the change
of the overall phase in the complex coordinates ψ:

ψ $→ eiτψ,τ ∈ R. (5)

This isometry is the simultaneous rotations in the st, xy, and zw planes. The Killing vector field ξ is
proportional to L + Jxy + Jzw and falls into Type (1, 1, 1, 1|0) with the condition a = b = c. The Killing
orbit is timelike and is closed in AdS5. The closedness is because AdS5 itself has closed timelike curves.
In the universal cover ÃdS5, the Killing orbits are not closed. The solution represents a stationary string.

Let us solve the configuration of the Hopf string, assuming that it obeys the Nambu-Goto equation.
Because ξ is timelike, the orbit space (O, h) is a Riemannian manifold. A special feature of ξ is that
its squared norm is a constant, which we set f = −1, so that the the metric −fh to determine the
configuration of the string equals the metric h on the orbit space O. Thus our task is nothing but solving
geodesics on (O, h).

The metric h on O is written as h = l2dψ(1 + ψψ)dψ, with the constraint (4), where −ψψ is the
normal projection along ψ. This is the Fubini-Study metric except that we started with an indefinite
scalar product ζ = diag[−1, 1, 1] in (4) and in E4,2, while the usual Fubini-Study metric is defined by
means of a positive definite scalar product. We shall also call h as the Fubini-Study metric and denote
the Riemannian manifold (O, h) by CP 2

−. The fibration CP 2
− & AdS5/U(1) is the generalization of the

Hopf fibration to the case of indefinite scalar product. Thus the problem of finding Nambu-Goto strings
has reduced to solving geodesics on CP 2

−. From the argument in Sec. 2, our action (2) for the Hopf string
should be

S =
∫

c
dσ

(
1
α
ψ̇(1 + ψψ)ψ̇ + α + µ(1 + ψψ)

)
, (6)

where µ is a Lagrange multiplier. This is the action for geodesics on O written in terms of the coordinates
ψ in AdS, or in E4,2. In fact, the action (6) has a U(1) gauge degree of freedom and is invariant under
the local phase change ψ(σ) $→ eiθ(σ)ψ(σ), if ψ(σ) satisfies the constraint ψψ = −1.

The Euler-Lagrange equations are the constraint (4) and

ψ̇(1 + ψψ)ψ̇ = α2, −
(

1
α

(1 + ψψ)ψ̇
)

•
+

1
α
ψ̇ψψ̇ + µψ = 0. (7)
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Multiplying ψ on the second equation from the left and using the constraint (4), one obtains an equation
which merely determines µ. On the other hand, the time derivative of (4) implies that ψψ̇ is pure
imaginary. This value can be changed by the gauge transformation ψ !→ eiθ(σ)ψ(σ). Thus we can always
choose the gauge such that ψψ̇ = 0. With the choice α ≡ 1, one can write the geodesic equation, after
some calculation, in a particularly simple form:

ψ̈ = ψ. (8)

One can immediately solve the equation to obtain

ψ(σ) = A cosh σ + B sinhσ, (9)

AA = −1, AB = 0, BB = 1, (10)

where A,B ∈ C3. The projection π ◦ C of the curves C : σ !→ ψ(σ) expressed by (9) are geodesics on O.
The geodesics on the four-dimensional manifold O should contain seven independent real constants: the
initial position and the direction of the initial velocity. One sees that π ◦C actually contains seven inde-
pendent real constants because we have twelve real constants, four constraints (10) and one redundancy,
i.e., the phase of ψ(0).

We note that the curve (9) is a horizontal geodesic on AdS5. where, a curve C on M is said horizontal
if it is orthogonal, with respect to g, to the fiber π−1(π◦C(σ)) at each point C(σ). What is special for the
Hopf string is that one can always choose a lift—the horizontal lift in this case— of any given geodesic
on the orbit space (O,−fh) such that it also is a geodesic on the spacetime AdS5. A horizontal geodesic
C is the intersection of AdS5 and a two-dimensional plane through the origin in E4,2 which corresponds
to the great circle in the case of positive definite metric. Thus the hyperbolic curve (9) is unique up to
isometry, for any choice of A and B. Furthermore, C is a Killing orbit on AdS5. From (3), (5) and (9),
the explicit form for the trajectory of the Hopf string is given by

ψ(τ,σ ) = eiτ (A cosh σ + B sinhσ), (11)

with the condition (10).

4 Conclusion

The cohomogeneity-one symmetry reduces the partial differential equation governing the dynamics of an
extended object in the spacetime M to an ordinary differential equation. Assuming that the string obeys
the Nambu-Goto equation in AdS5, we have solved the world sheet of one of the strings, which we call
the Hopf string, in the classification. The problem has reduced to find geodesics on the orbit space. By
using a technique similar to the one used in quntum information theory and working on the lift curves
in M , we have obtained a solution which describes the trajectories of the Hopf string.

References

[1] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, (1999) 3370.

[2] V. P. Frolov, V. Skarzhinsky, A. Zelnikov and O. Heinrich, Phys. Lett. B 224, 255 (1989). V. P. Frolov,
S. Hendy and J. P. De Villiers, Class. Quant. Grav. 14, 1099 (1997).

[3] K. Ogawa, H.Ishihara, H. Kozaki, H. Nakano, and I. Tanaka, “Gravitational radiation from station-
ary rotating cosmic strings”, Proceeding of 15th JGRG workshop, ed. by T.Shiromizu et al. (Tokyo,
2005) 159.

[4] H. Ishihara and H. Kozaki, Phys. Rev. D72, 061701(R) (2005).

[5] T. Koike, H. Kozaki and H. Ishihara, JGRG16.

4

380



Gravitino dark matter from decaying thermal relics
in RS type brane world 1

Nobuchika Okada? and Osamu Seto†

?Theory Division, KEK, 1-1 Oho, Tsukuba 305-0801, Japan,
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Abstract
We investigate the superWIMP scenario with gravitino as the lightest supersymmetric
particle (LSP) in the context of brane world cosmology. Brane world cosmological
effects dramatically enhance the relic density of the slepton or sneutrino NLSP, so that
the NLSP with mass of order 100 GeV can provide the correct abundance of gravitino
dark matter through its decay. We find that with an appropriate five dimensional
Planck mass, this scenario can be realized consistently with the constraints from Big
Bang Nucleosynthesis (BBN) for both NLSP candidates of slepton and sneutrino.

1 Introduction

The weakly interacting massive particle (WIMP) is the attractive dark matter candidate. The most
interesting feature of the WIMP dark matter is that it can be thermal relics with its abundance

ΩDMh2 ' 1 × 109 (mDM/Tf)GeV−1

√
g∗MPl〈σv〉 =typically O(10−2 − 1), (1)

where mDM is the mass of dark matter particle, Tf is the freeze out temperature, g∗ is the effective
total number of relativistic degrees of freedom, MPl = 1.2 × 1019 GeV is the Planck mass, and 〈σv〉 is
the thermal averaged product of the annihilation cross section and the relative velocity [1]. This relic
abundance is essentially determined by only its annihilation cross section, and does not depend on the
detail thermal history before T >∼ Tf . This predictability and definiteness is fascinating.

There is another interesting possibility for the candidate of dark matter with highly suppressed inter-
actions. Even though it cannot be in thermal equilibrium, this type of dark matter can have the appealing
feature in its abundance. This is the superWIMP scenario, where the superWIMP dark matter is pro-
duced through the late decay of a long-lived WIMP [2, 3] and its abundance is given the characteristic
form

ΩDMh2 =
mDM

mX
ΩXh2, (2)

where ΩXh2 is given by Eq. (1) if X were stable. The representative superWIMP candidate is gravitino [3].
The superWIMP scenario is an interesting possibility, however, it is not so easy to consistently realize

the scenario with Big Bang Nucleosynthesis (BBN). If the NLSP decays after BBN, its energetic daughters
of the SM particles would destroy light nuclei and spoil the success of the standard BBN predictions.
When the NLSP is neutralino or stau (or slepton in general), this scenario is very hard for gravitino
LSP [4, 5, 6]. On the other hand, the sneutrino NLSP has rather mild constraints from BBN compared
with the others [6]. Nevertheless the sneutrino NLSP has not been appealing within this framework,
because the thermal relic abundance Ων̃h2 is, as well known, too small to be suitable in Eq. (2) [7].

Of course, one may remember that the gravitino LSP can be produced through scattering and decay
processes of particles in thermal plasma (thermal production) and its abundance is given as ΩTPh2 ∼
0.27

(

TR/1010 GeV
) (

100 GeV/m3/2

)

where TR is the reheating temperature after inflation [8] and m3/2

is the gravitino mass. If this contributions dominant, some parameter region in a model is free from the
BBN constraints. However, this scenario may not be appealing, because the gravitino dark matter can
not inherit the WIMP thermal relic density Eq. (1) there.

1Presented by O. Seto.
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We consider the superWIMP scenario with the gravitino LSP in the brane world cosmology [9] based
on the Randall-Sundrum II model [10] and find that this scenario can be realized consistently with the
successful predictions of BBN [11].

2 Brane world cosmology

In the RS II model [10], our four dimensional universe is realized on the 3-brane with a positive tension
located at the ultraviolet (UV) boundary of a five dimensional Anti de-Sitter spacetime. In this setup,
the Friedmann equation for a spatially flat spacetime is given by

H2 =
8πG

3
ρ

(

1 +
ρ

ρ0

)

, (3)

where ρ0 = 96πGM6
5 with M5 being the five dimensional Planck mass. Here the four dimensional

cosmological constant has been tuned to be zero, and the negligible dark radiation has been omitted [12].
The second term proportional to ρ2 is a new ingredient in the brane world cosmology and leads to a
non-standard expansion law of the early Universe. In the following, we call a temperature Tt defined

as ρ(Tt) = π2

30 g∗T
4
t ≡ ρ0 “transition temperature”. This modification of the expansion law H2 ∝ ρ2

at a high temperature (T > Tt) leads to some drastic changes in the thermal relic abundance of dark
matter [13, 14]. Needless to say, until the onset of BBN, the standard expansion law, H2 ∝ ρ, has to be
recovered. This requirement leads to the model-independent constraint on the transition temperature as
Tt

>∼ 1 MeV or equivalently M5
>∼ 8.8 TeV [9].

To be precise, we here specify our setup. We discuss a supersymmetric dark matter scenario, and
our model should be a supersymmetric version of the Randall-Sundrum brane world model [15]. Since
the Einstein’s equation belongs to the bosonic part in supergravity, the cosmological solution of Eq. (3)
remains the same. Although gravitino is a bulk field, we can, as a good approximation, regard it as a
field residing on the UV brane as in the previous works [16] because the zero-mode gravitino is localized
around the UV brane as the same as the zero-mode graviton is. We assume the cancellation of the
four dimensional cosmological constant by some mechanism different from that discussed in the original
paper [10], such a situation can be realized in dilatonic brane world models [17]. As the result, we do not
seriously refer constraints from the gravitational law in sub millimeter range, Tt

>∼ 1.3 TeV or equivalently
M5

>∼ 1.1 × 108 GeV, these values are strongly depends on the four dimensional cosmological constant
cancellation mechanism. Therefore, we take only the BBN bound into account to keep our discussion
general. Moreover, we do not specify the supersymmetry breaking mechanism and its mediation to the
visible sector, so that we treat the NLSP mass of O(100 GeV) and the gravitino mass as a free parameter.

3 Gravitino abundance from enhanced relic density

As has been pointed out in Ref. [13], the relic density of dark matter can be enhanced in brane world
cosmology when the five dimensional Planck mass M5 is low enough. Applying this effect to abundance
of NLSPs, we calculate the relic density of the gravitino LSP produced by the decay of the NLSP at late
time. The enhancement can be seen by taking the ratio of the relic energy density of dark matter in the
brane world cosmology (Ω(b)) to the one in the standard cosmology (Ω(s))

Ω(b)

Ω(s)
' 0.54

(

xt

xd(s)

)

, (4)

for S-wave annihilation [13]. Here xt is defined as xt ≡ m/Tt and xd(s) denotes the freeze out temperature
in the standard cosmology. Note that the relic abundance in the brane world cosmology is characterized
by the transition temperature rather than the decoupling temperature. Thus, the enhacement is sizable
for a low transition temperature, Tt < Tf . In the following analysis, we assume such a low transition
temperature. Then, one should notice the gravitino production from thermal plasma is negligible, as has
been pointed out in Ref. [16].
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3.1 slepton (stau) NLSP

First, let us consider the case of the slepton NLSP. Using Eqs. (4) and the slepton thermal relic density
in the the standard cosmology [18], we obtain

ml̃Yl̃(b) ' 4 × 10−10[GeV] ×
( ml̃

100 GeV

)2
(

23

xd(s)

)

( xt

1700

)

, (5)

Ω3/2h
2 =

m3/2

ml̃

Ωl̃(b)h
2 ' 0.1 ×

(

m3/2

ml̃

)

( ml̃

100 GeV

)2
(

23

xd(s)

)

( xt

1700

)

. (6)

Detailed BBN constraint analysis for the stau NLSP case has been done and the results are summarized
in Fig. 2 and 3 for mτ̃R

= 100 GeV and 300 GeV, in Ref. [5] . For mτ̃R
= 100 GeV, the region, which

is consistent with BBN and provides a suitable amount of the gravitino relic density via the stau NLSP
decay, can be read off as

(mτ̃R
Yτ̃R

, m3/2) ' (10−6 GeV, 10 MeV). (7)

In order to realize this allowed region, Eq. (6) indicates Tt ' 24 keV, but this contradicts against Tt
>∼ 1

MeV. For mτ̃R
= 300 GeV, the allowed region appears in

mτ̃R
Yτ̃R

>∼ 2 × 10−7 GeV, m3/2
<∼ 0.6 GeV. (8)

This region can be realized for Tt
<∼ 3.2 MeV (or equivalently M5

<∼ 19 TeV).
It has been discussed that problems of CDM at a small scale, such as “missing satellite problem” [19]

and “cusp problem” [20], can be solved with appropriate large velocity dispersion of the superWIMP
[21]. On the other hand, too large velocity dispersion, which exceeds the damping scale >∼ 1 Mpc, is
constrained from Lyman alpha clouds. In the above allowed region of our case with Eq. (8), the typical
damping scale is found to be O(1 Mpc). Thus, our scenario is in fact marginally possible.

3.2 sneutrino NLSP

Together with Eqs. (2), (4) and the sneutrino thermal relic abundance in the the standard cosmology [7],
we find, in the brane world cosmology,

mν̃Yν̃(b) ' 4 × 10−10 [GeV] ×
( mν̃

100 GeV

)2
(

23

xd(s)

)

( xt

2100

)

, (9)

Ω3/2h
2 =

m3/2

mν̃
Ων̃h2 ' 0.1 ×

(

m3/2

mν̃

)

( mν̃

100 GeV

)2
(

23

xd(s)

)

( xt

2100

)

. (10)

The BBN constraints for the sneutrino LSP have been analyzed in detail and the results are summa-
rized in Fig. 5 for mν̃ = 300 GeV in Ref. [6] . The allowed region can be read off as

(i) mν̃Yν̃(b)
>∼ 2 × 10−6 GeV, m3/2

<∼ 0.06 GeV,

(ii) mν̃Yν̃(b) ' 2 × 10−7 GeV, m3/2 ' 0.3 GeV,

(iii) 4 × 10−10 GeV <∼ mν̃Yν̃(b)
<∼ 7 × 10−10 GeV, 300 GeV > m3/2

>∼ 150 GeV.

The region (i) is not consistent with Tt
>∼ 1 MeV. The point (ii) is marginally acceptable as in the case

of the stau NLSP. Finally, the region (iii) is typical for the sneutrino NLSP case, because such a region
is never viable for other NLSP cases.

4 Conclusion and discussions

We have shown that gravitino superWIMP dark matter produced by the decay of thermal relic stau or
sneutrino NLSP is viable in brane world cosmology. Even if the NLSP mass is around 100 GeV, the brane
world cosmological effects can dramatically enhance its thermal relic density enough to yield the correct
abundance for the gravitino dark matter through the NLSP decay with a suitable five dimensional Planck
mass. Especially, sneutrino would be an interesting choice of NLSP, because it is a rather harmless mother
particle than others like neutralino or slepton. The long-lived NLSP in this scenario is also interesting at
future collider experiments such as the Large Hadron Collider and the International Linear Collider [22].
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Abstract
We develop an efficient numerical code to compute gravitational waves radiated by

a particle orbiting around a Kerr black hole. We estimate the accuracy of our code

by checking the spherical symmetry of Schwarzshild black hole such that energy flux

radiated by a point particle is invariant for its inclination angles from the equatorial

plane of black hole. We find that the accuracy of our code is limited by truncation

of ℓ-mode, degree of the spin-weighted spheroidal harmonics. Then, we also evaluate

gravitational wave flux in the case of Kerr black hole and the adiabatic evolution

of particle’s orbit duo to the emission of gravitational waves. The accuracy of our

code is sufficient for constructing templates for LISA data analysis. Future work is

to evaluate gravitational waves including effects of adiabatic evolution of particle’s

orbit and to search for efficient templates for LISA data analysis.

1 Introduction

Gravitational wave from an extreme mass ratio inspiral (EMRI) is one of the most promising sources for
the Laser Interferometer Space Antenna (LISA). If we can detect and observe gravitational waves from
such binary system, we can obtain physical information such as distance to the source, masses of binary,
spin of the black hole, geometry of black hole spacetime and so on. In order to obtain these information,
we have to achieve the phase accuracy of theoretical gravitational wave forms within one radian over
the total cycle of wave, ∼ 105. Therefore, in order to obtain information of source, we have to achieve
accuracy of gravitational waves better than ∼ 10−5.

The dynamics of EMRI is accurately modeled as a point particle of small mass moving around a Kerr
black hole and we estimate gravitational waves from EMRI by black hole perturbation method. The basic
equation of black hole perturbation is the Teukolsky equation [1]. For rather simple orbits of a particle,
there are many works which estimate gravitational waves with sufficient accuracy to construct LISA
templates. Recently, Drasco and Hughes evaluated gravitational waves for general geodesic orbits [2].
But many problems are still unsolved for general geodesic orbits. For example, accuracy is at most 10−3

which is not sufficient for LISA templates, change rate of the Carter constant is computed by invalid
approximation and change rates of orbital parameters of a particle are not evaluated.

2 Our numerical methods and results

We evaluate gravitational waves from EMRI by solving the Teukolsky equation which is the basic equation
of the black hole perturbation theory. We solve the Teukolsky equation by the Green function method. In
this work, we compute the homogeneous solutions of the Teukolsky equation using formalism developed
by Mano, Suzuki and Takasugi(MST) [3]. In numerical application of MST method, we use the method
which is developed by Fujita and Tagoshi [4, 5]. The source term of the Teukolsky equation depends on
the orbits of a point particle. The geodesic equation is completely characterized by three constants of
motion such as the energy E , the z-component of the angular momentum Lz and the Carter constant
per unit mass C. Although the orbits of a particle is very complicated, we can introduce the orbital

1
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Figure 1: Plots the orbits for a generic geodesic orbit, which has eccentricity e = 0.7, semi-latus rectum
p = 10M and inclination angle θinc = 45◦. The black hole’s spin is set to a = 0.9M . The upper figure is
expressed by Cartesian coordinate system. While, the lower figures are expressed by co-rotational one,
which cancel out the precession of orbital plane.

parameters such as eccentricity e, a semi-latus rectum p and inclination angle θinc (Fig. 1). The details
of our method will be described in our paper [6].

In this section, we check accuracy of our code using the spherical symmetry of Schwarzshild black
hole in Tab. 1 and evaluate the rate of change of constants of motion of a particle in the case of the Kerr
black hole in Tab. 2. Once the rate of change of constants of motion of a particle are computed, we can
evaluate evolution of orbital parameters of a point particle (Fig. 2).

In Tab. 1, we check that the energy flux radiated to the infinity is independent of inclination angle
in the case of Schwarzshild black hole. Then, we find that relative error of our code may be almost the
same as the accuracy of truncation of ℓ-mode, degree of the spin-weighted spheroidal harmonics.

In Tab. 2, we compute the rate of change of three constants of motion in the case of Kerr black
hole. We use the same orbital parameters as those used by Drasco and Hughes in Ref. [2]. Our results
are consistent with their ones, except for the rates of change of the Carter consistent, 〈dC/dt〉. This is
because they computed 〈dC/dt〉 using incorrect approximation such that the inclination angle does not
change. Therefore, this is the first calculation that evaluates the rate of change of the Carter constant
without any approximation.

In Fig. 2, we show adiabatic evolution of orbital parameters of a point particle due to the emission of

2
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a/M p/M e θinc 〈dE/ dt〉∞ Relative error
0 10 0.1 0 6.31752474714×10−5 [10−11]
0 10 0.1 20 6.31752474711×10−5 4.1×10−12

0 10 0.1 45 6.31752474687×10−5 4.2×10−11

0 10 0.1 70 6.31752474699×10−5 2.3×10−11

0 10 0.5 0 9.27335012129×10−5 [10−10]
0 10 0.5 20 9.27335011989×10−5 1.5×10−10

0 10 0.5 45 9.27335011942×10−5 2.0×10−10

0 10 0.5 70 9.27335011362×10−5 8.3×10−10

0 10 0.7 0 9.46979143586×10−5 [10−9]
0 10 0.7 20 9.46979135472×10−5 8.6×10−9

0 10 0.7 45 9.46979131618×10−5 1.3×10−8

0 10 0.7 70 9.46979128748×10−5 1.6×10−8

Table 1: The energy flux of gravitational waves radiated by a particle around a Schwarzshild black hole.
In this table, the orbital radius is 10M . We compare the result for the equatorial plane case with the
one for non-equatorial plane. Relative error in square brackets is an order of magnitude estimate for the
fractional accuracy for the case of the equatorial plane, which is determined by truncating number of
ℓ-mode. Here we set to ℓmax = 20. These results show that the accuracy of our code can be almost the
same as the accuracy of truncation of ℓ-mode.

a/M p/M e θinc 〈dE/ dt〉∞ 〈dLz/ dt〉∞ 〈dC/ dt〉∞
0.9 6 0.1 20◦ −5.873638000 × 10−4[10−8] −8.537278815 × 10−3 −5.240198485 × 10−3

0.9 6 0.1 40◦ −6.183229400 × 10−4[10−8] −7.630994021 × 10−3 −2.022711360 × 10−2

0.9 6 0.1 60◦ −6.833475260 × 10−4[10−8] −6.078295576 × 10−3 −4.321938503 × 10−2

0.9 6 0.1 80◦ −8.057482365 × 10−4[10−8] −3.625850817 × 10−3 −7.184063984 × 10−2

0.9 6 0.5 20◦ −7.989254232 × 10−4[10−6] −8.347502466 × 10−3 −4.947042936 × 10−3

0.9 6 0.5 40◦ −8.743345386 × 10−4[10−6] −7.819404658 × 10−3 −1.989003098 × 10−2

0.9 6 0.5 60◦ −1.058833575 × 10−3[10−6] −6.950634938 × 10−3 −4.656556303 × 10−2

0.9 6 0.5 80◦ −1.676657675 × 10−3[10−6] −5.909338458 × 10−3 −1.017867814 × 10−1

0.9 6 0.7 20◦ −7.731178913 × 10−4[10−6] −6.693013058 × 10−3 −3.886819966 × 10−3

0.9 6 0.7 40◦ −8.751886316 × 10−4[10−6] −6.530519069 × 10−3 −1.624203273 × 10−2

0.9 6 0.7 60◦ −1.146896675 × 10−3[10−6] −6.380243741 × 10−3 −4.146278305 × 10−2

0.9 6 0.7 80◦ −2.718764108 × 10−3[10−5] −8.402286903 × 10−3 −1.341226528 × 10−1

Table 2: Time-averaged rates of change of three constants of motion, energy 〈dE/dt〉∞, angular mo-
mentum 〈dLz/dt〉∞ and the Carter constant 〈dC/dt〉∞ due to gravitational wave radiated to infinity per
unit mass in the case of some generic orbits. Each number in square brackets is an order of magnitude
estimate for the fractional accuracy of the preceding number, which is determined by truncating number
of ℓ-mode. Here we set to ℓmax = 17.

3

387



 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007

dι/dt

 0  1  2  3  4  5  6  7  8

p/M

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

e

-6e-05

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

 0

dι/dt

 7  8  9 10 11 12 13 14 15

p/M

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

e

Figure 2: Adiabatic evolution of orbital parameters of a point particle due to the emission of gravitational
waves. The black hole spin is a/M = 0.9 for left figure and a/M = −0.9 for right figure. The inclination
angle is θinc = 20◦ for both figures. We compute the evolution of orbital paramters outside the separatrix,
which separates stable and unstable orbits. Each orbit corresponds to a point in the graph. (M/µ)(ṗ,Mė)
is expressed by a vector and θ̇inc is expressed by color contor.

gravitational waves. We find that the semi-latus rectum always decreases. We also find that eccentricity
decreases when the orbit is sufficiently far away from the separatrix and increases when the orbit is near
the separatrix. We find that the inclination angle always increases when the black hole spin is positive
and decreases when the spin is negative. The divergent behaviors of evolution of orbital parameters near
the separatrix may represent the breakdown of adiabaticity.

3 Summary

In this paper, we develop an efficient numerical code to compute gravitational waves radiated by a
particle orbiting around a Kerr black hole. We estimate the accuracy of our code by checking the
spherical symmetry of the energy flux radiated from a Schwarzshild black hole spacetime. We find that
the accuracy of our code is limited by truncation of ℓ-mode. We also evaluate gravitational waves in
the case of a Kerr black hole and first compute the rate of change of the Carter constant with adiabatic
approximation. Then, we evaluate the adiabatic evolution of orbital parameters duo to the emission of
gravitational waves.

The accuracy of our code is sufficient for constructing templates for LISA data analysis. Future work
is to evaluate gravitational waves including effects of adiabatic evolution of particle’s orbit and to search
for efficient templates for LISA data analysis.
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