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Preface

The fifteenth workshop on General Relativity and Gravitation (the 15th
JGRG meeting) was held at Tokyo Institute of Technology, from 28 November
to 2 December, 2005.

There has been impressive progress in astrophysical/cosmological observa-
tions in recent years, including CMB, black holes and gamma-ray bursts. On
the theory side, motivated by unified theories of fundamental interactions, espe-
cially string theory, physics in higher dimensional spacetimes has been studied
intensively. There have been also important developments in various areas of
GR, including alternative theories of gravity, quantum gravity, spacetime sin-
gularities, etc..

This year, we invited fourteen speakers from various countries, who gave us
clear overviews of recent developments and future perspectives. We witnessed
active discussions among the participants during the meeting. We would like to
thank all the participants for their earnest participation.
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Clarifying Slow Roll Inflation and the Quantum Corrections to
the Observable Power Spectra

D. Boyanovsky®®!, H. J. de Vega®*?, N. G. Sanchez *:3

2 (Observatoire de Paris, LERMA, Laboraloire Associé au CNRS UMR 8112,
61, Avenue de I’Observatoire, 75014 Paris, France.
b LPTHE, Laboratoire Associé au CNRS UMR 7589, Université Pierre et Marie Curie (Paris VI)
et Denis Diderot (Paris VII), Tour 24, 5 éme. élage, 4, Place Jussieu, 75252 Paris, Cedez 05, France.
°Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Abstract
Slow-roll inflation can be studied as an effective field theory. The form of the inflaton

potential consistent with the datais V(¢) = N M* w (WQJTN) where ¢ is the infla-

ton field, M is the inflation energy scale, and N ~ 50 is the number of efolds since the
cosmologically relevant modes exited the Hubble radius until the end of inflation. The
dimensionless function w(x) and field x are generically O(1). The WMAP value for
the amplitude of scalar adiabatic fluctuations yields M ~ 0.77 x 10'®GeV. This form
of the potential encodes the slow-roll expansion as an expansion in 1/N. A Ginzburg-
Landau (polynomial) realization of w(x) reveals that the Hubble parameter, inflaton
mass and non-linear couplings are of the see-saw form in terms of the small ratio

4
M/Mp;. The quartic coupling is A ~ & (-5-}:,—‘) . The smallness of the non-linear

couplings is not a result of fine tuning but a natural consequence of the validity of
the effective field theory and slow roll approximation. Our observations suggest that
slow-roll inflation may well be described by an almost critical theory, near an infrared
stable gaussian fixed point. Quantum corrections to slow roll inflation are computed
and turn to be an expansion in powers (H/Mp:)?. The corrections to the inflaton
effective potential and its equation of motion are computed, as well as the quantum
corrections to the observable power spectra. The near scale invariance of the fluc-
tuations introduces a strong infrared behavior naturally regularized by the slow rol!
parameter A = v — ev = (n. — 1) + r/8. We find the effective inflaton potential
during slow roll inflation including the contributions from scalar curvature and tensor
perturbations as well as from light scalars and Dirac fermions coupled to the infla-
ton. The scalar and tensor superhorizon contributions feature infrared enhancements
regulated by slow roll parameters. Fermions and gravitons do not exhibit infrared
enhancement. The subhorizon part is completely specified by the trace anomaly of
the fields with different spins and is solely determined by the space-time geometry.
This inflationary effective potential is strikingly different from the usual Minkowski
space-time result. Quantum corrections to the power spectra are expressed in terms
of the CMB observables: n,, r and dn,/dInk. Trace anomalies (especially the gravi-
ton part) dominate these quantum corrections in a definite direction: they enhance
the scalar curvature fluctuations and reduce the tensor fluctuations.

1 Inflation as an Effective Field Theory

Inflation was originally proposed to solve several outstanding problems of the standard Big Bang model (1)
thus becoming an important paradigm in cosmology. At the same time, it provides a natural mechanism
for the generation of scalar density fAuctuations that seed large scale structure, thus explaining the
origin of the temperature anisotropies in the cosmic microwave background (CMB), as well as that of
tensor perturbations (primordial gravitational waves). A distinct aspect of inflationary perturbations

1E-mail:boyan@pitt.edu
2E_mail:devega@Ipthe.jussieu.fr
3E-mail:Norma.Sanchez@obspm.fr



is that these are generated by quantum fluctuations of the scalar field(s) that drive inflation. Their
physical wavelengths grow faster than the Hubble radius and when they cross the horizon they freeze out
and dccouple. Later on, these fluctuations arc amplified and grow, becoming classical and decoupling
from causal microphysical processes. Upon re-entering the horizon, during the matter cra, these scalar
{curvature) perturbations induce temperature anisotropies imprinted on the CMB at the last scattering
surface and sced the inhomogeneitics which generate structure upon gravitational collapse{2, 3]. Generic
inflationary models predict that these fluctuations are adiabatic with an almost scale invariant spectrum.
Moreover, they are Gaussian to a very good approximation. These generic predictions are in spectacular
agrecment with the CMB observations as well as with a varicty of large scale structure data [4]. The
WMAP data [4] clearly display an anti-correlation peak in the temperature-polarization (TE) angular
power spectra at { ~ 150, providing one of the most striking confirmations of superhorizon adiabatic
fluctuations as predicted by inflation{4].

The robust predictions of inflation (value of the entropy of the universe, solution of the flatness
problem, small adiabatic Gaussian density fluctuations explaining the CMB anisotropics, ...) which are
common to the available inflationary scenarios, show the predictive power of the inflationary paradigm.
While there is a great diversity of inflationary models, they predict fairly generic features: a gaussian,
nearly scale invariant spectrum of (mostly) adiabatic scalar and tensor primordial fluctuations. More
precisely, the WMAP[4] data can be fit outstandingly well by simple single field slow roll models. These
generic predictions of inflationary models make the inflationary paradigm robust. Whatever the micro-
scopic model for the early universe (GUT theory) would be, it should include inflation with the generic
features we know today.

Inflationary dynamics is typically studied by treating the inflaton as a homogeneous classical scalar
field whose cvolution is determined by its classical equation of motion, while the inflaton quantum fluc-
tuations (around the classical value and in the Gaussian approximation) provide the seeds for the scalar
density perturbations of the metric. The classical dynamics of the inflaton (a massive scalar field) coupled
to a cosmological background clearly shows that inflationary behaviour is an attractor [5). This is a
generic and robust feature of inflation.

In quantum field theory, this classical inflaton corresponds to the expectation value of a quantum field
operator in a translational invariant state. Important aspects of the inflationary dynamics, as resonant
particle production and the nonlinear back-reaction that it generates, require a full quantum treatment of
the inflaton for their consistent description. The quantum dynamics of the inflaton in a non-perturbative
framework and its consequences on the CMB anisotropy spectrum were treated in refs.[6, 7, 8, 9].

The quantum Auctuations are of two different kinds: (a) Large quantum fluctuations generated at the
begining of inflation through spinodal or parametric resonance depending on the inflationary scenario
chosen. They have comoving wavenumbers in the range of 10'3GeV < k < 10'%GeV and they become
superhorizon a few cfolds after the begining of inflation. Their physical wavenumbers become subsequently
very small compared with the inflaton mass. Therefore, the assembly of these modes can be treated as
part of the zero mode after 5 — 10 efolds [6, 7]. That is, the use of an homogeneous classical inflaton
is thus justified by the full quantum theory treatment of the inflaton. (b) Small fluctuations of high
comoving wavenumbers

eN7=60 1016 GeV < k < eNT60 1020 GeV

where Ny > 60 stands for the total number of efolds (see for example Ref. [10]). These are the
cosmologically relevant modes that exit the horizon about 50 efolds before the end of inflation and
reenter later on (during the matter dominated era) being the source of primordial power for the CMB
anisotropies as well as for the structure formation. While modes (b) obey linear evolution equations with
great accuracy, modes (a) strongly interact with themselves calling for nonperturbative quantum field
theory treatments as in refs.[6, 7]. Notice that particle production is governed by linear unstabilities
(parametric or spinodal) only at the begining of inflation. Particle production keeps strong during the
nonlinear regime till particles eventually dominate the energy density and inflation stops(6]. The modes
(b) correspond to physical scales that were microscopic (even transplanckian) at the begining of inflation,
then after they become astronomical and produce the CMB anisotropies as well as the large scale structure
of the universe.

The crucial fact is that the excitations can cross the horizon twice, coming back and bringing infor-
mation from the inflationary era. We depict in fig. 1 the physical wavelengths of modes (a) and (b) vs.



the logarithm of the scale factor showing that modes (b) crossed twice the horizon, modes (a) are out of
the horizon still today.

today
—~< d gy (mat)
dy(inflation)
=
L———modes (b)
/[
modes (a)
— N,~60 —

Ina

Figure 1: Physical lengths A = a(t) Acomoving vs. the scale factor a(t) in a log-log plot. The causal
horizon dy is shown for the inflationary (de Sitter), radiation dominated and matter dominated eras.
The physical wavelengths (A) for today’s Hubble radius and a typical galactic scale (Agqr) are shown. One
sees the modes (b) can cross the horizon twice bringing information from extremely short wavelength
modes during the inflationary era. Modes (a) which have large amplitudes during inflation and dominated
the energy of the universe, have not yet crossed back inside the horizon.

Recently, particle decay in a de Sitter background as well as during slow roll inflation has been
studied in ref.[11] together with its implication for the decay of the density Aluctuations. Quantum effects
during slow roll inflation including quantum corrections to the effective inflaton potential and its equation
of motion are derived in ref.[9, 12]. Recent studies of quantum corrections during inflation{9, 11, 12|
revealed the robustness of classical single field slow roll inflationary models as a result of the validity
of the effective field theory description. The reliability of an effective field theory of inflation hinges
on a wide separation between the cnergy scale of inflation, determined by H and that of the underlying
microscopic theory which is taken to be the Planck scale Mp;. Inflation as known today should be
considered as an effective theory, that is, it is not a fundamental theory but a theory of a condensate
(the inflaton field) which follows from a more fundamental one (the GUT model). The inflaton field is
just an effective description while the microscopic description should come from the GUT model in the
cosmological spacetime. Such derivation is not yet available.

Bosonic fields do not need to be fundamental fields, for example they may emerge as condensates of
fermion-antifermion pairs < ¥¥ > in a grand unified theory (GUT) in the cosmological background. In
order to describe the cosmological evolution is enough to consider the effective dynamics of such con-
densates. The relation between the low energy effective field theory of inflation and the microscopic
fundamental theory is akin to the relation between the effective Ginzburg-Landau theory of supercon-
ductivity and the microscopic BCS theory, or like the relation of the O(4) sigma model, an effective low
energy theory of pions, photons and chiral condensates with quantum chromodynamics (QCD)[13]. The
guiding principle to construct the effective theory is to include the appropriate symmetries(13]. Contrary
to the sigma model where the chiral symmetry strongly constraints the model[13], only general covariance
can be imposed on the inflaton model.

The inflationary scenarios are usually characterized as small and large fields scenarii. In small fields
scenarios the initial classical amplitude of the inflaton is assumed small compared with Mp; while in
large field scenarii the inflaton amplitude is initially of the order M p;. The first type of scenarii is usually
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realized with broken symmetric potentials (m? < 0) while for the second type scenarii (‘chaotic inflation’)
one can just use unbroken potentials with m? > 0.

Gravity can be treated semiclassically for inflation: the geometry is classical and the metric follows
from the Einstein-Friedman equations where the r.hs. is the expectation value of a quantum operator.
Quantum gravity corrections can be neglected during inflation because the cnergy scale of inflation
M ~ Mgyt ~ 1073 Mpiaper. That is, quantum gravity effects are at most (M/Mpaner)® ~ 107° and
can be neglected in this context. The studies in ref.[11, 12, 14] reveal that quantum corrections in the

2
effective field theory yields an expansion in (A—:”—) for general inflaton potentials. This indicates that
re

the use of the inflaton potential V' (4) from effective field theory is consistent for

2
(ﬁ—) «1 and hence V(9) « M}, ,
Mp

allowing amplitudes of the inflaton field ¢ well beyond A py[14].

1.1 Slow-roll Inflation as an expansion in 1/Nsq; and no fine tuning

In single ficld inflation the encrgy density is dominated by a homogencous scalar condensate, the inflaton,
whose dynamnics can be described by an effective Lagrangian

12 2
£=ém[%—522)-W@]’ (1)

together to the Einstein-Friedman equation

[ % .0 )
a(t) dt IME -

where the energy density for an homogeneous inflaton is given by

12

W) =21 v(e).

The inflaton potential V(¢) is a slowly varying function of ¢ in order to permit a slow-roll solution for
the inflaton field ¢(¢). All this in a spatially flat FRW metric

ds? = di? - &*(t) dF* = C*(n) [(dn)? - d5?] , (3)

where 7 is the conformal time and C(3) = a(t(n)).
The inflaton cvolution equation takes the form,

d+3HG+V'(¢)=0.
In the slow-roll approximation ¢ < 3 H ¢ and %ﬁ & V(¢), and the inflaton evolution equations become

BHOG+ V=0, [HOP = 730 (1)

where H(t) = F(lz—) ‘;—‘: stands for the Hubble parameter. Eq.(4) can be integrated by quadratures with

the result o)
1 Vo)
Ina(t) = —— / do .
V=37 Jow V@

This formula shows that the inflaton field ¢ scales as Mp; and as the square root of the number of efolds
[14]. This suggest to introduce the dimensionless ficld ) and the dimensionless potential w(x),

¢ V(¢)

XS T w(X) = 373 (5)




where M stands for the scale of inflation. The dimensionless field y is slowly varying during the stage of
slow roll inflation: a large change in the field amplitude ¢ results in a small change in x amplitude ,

-1 4
X= VN Mp’ ©)

a change in ¢ with Ad ~ Mp, results in a change Ay ~ 1/VN.
Introducing a stretched (slow) dimensionless time variable 7 and a rescaled dimensionless Hubble
parameter h as follows

Mpy M?
t = —_— = _—
\/NWT , H \/NMPlh, (N
the Einstcin-Friedman equation reads
wrr = & [ () o ®)
RN EYAVTY B
and the evolution equation for the inflaton field x is given by
1 d2x dx
Nd2+3hd +w'(x) = (9)

The slow-roll approximation follows by neglecting the - n terms in eqs.(8) and (9). Both w(x) and h(7)
are of order N? for large N. Both equations make mamfcst the slow roll expansion as a systematic
expansion in 1/N[14].

Following the spirit of the Ginsburg-Landau thcory of phase transitions, the simplest choice is a
quartic trinomial for the inflaton potential[15]:

1 G, G,
w(x) = woi2x +—3-x+4x (10)

where the coefficients wp, G3 and G4 are of order one and the signs + correspond to large and small field
inflation, respectively. Inserting eq.(10) in eq.(5) yields,

2
_ m 2 mg a é 4
V(d))—Vo:+:2¢+—3 ¢+ ¢ (11)

where m, g and X are given by the following see-saw-like relations,

2 2 4
- M ., g= Gs (M a8 ) (12)
Mp VN \Mp N Mp,

We can now input the results from WMAP[4] to constrain the scale M. The amplitude of adiabatic scalar
perturbations in slow-roll is expressed as

1 3 2 4 .3
a8 2 = BT vV_xN MY\ v , (13)
1272 M}, V7?2 1272 \ Mp w2(x)
Since, w(y) and w'(x) are of order one, we find
M 2 2 \/éﬂ’ (s) —
(ATPl) ~TN A4l = 1.02 x 1073 (14)

where we used N =~ 50 and the WMAP value for |Al®) | = (4.67 £0.27) x 1075 (4]. This fixes the scale
of inflation to be

M ~319x 1073 Mpy ~0.77 x 10" GeV .

This value pinpoints the scale of the potential during inflation to be at the GUT scale suggesting a deep
connection between inflation and the physics at the GUT scale in cosmological space-time.

—5—



That is, the WMAP data fix the scale of inflation M for single field potentials with the form given
by eq.(5). This value for M is below the WMAP upper bound on the inflation scale 3.3 10'GeV [4].
Furthermore, the Hubble scale during (slow roll) inflation and the inflaton mass near the minimum of

the potential are thereby determined from cqs.(7) and (12) to be m = A"—,’:—{ =245 x 1013GeV, H =

VN mh~10x10"GeV = 4.1 m since h = O(1). In addition, the order of magnitude of the couplings
naturally follows from eq.(12): g ~ 1075, A ~ 1072, since M/Mp; ~ 3 x 1073,

Since M/Mp; ~ 3 x 10~3, these relations are a natural consequence of the validity of the effective
ficld theory and of slow roll and relieve the fine tuning problem. We emphasize that the ‘sec-saw-like’
form of the couplings is a natural consequence of the form of the potential eq.(5). While the hierarchy
between the Hubble parameter, the inflaton mass and the Planck scale during slow roll inflation is well
known, our analysis reveals that small couplings arc naturally explained in terms of powers of the ratio
between the inflationary and Planck scales and integer powers of 1/VN.

This is one of the main results presented in this lecture: the effective field theory and slow roll
descriptions of inflation, both validated by WMAP, lead us to conclude that there is no fine tuning
problem(14]. The smallness of the inflaton mass and the coupling constants in this trinomial realization
of the inflationary potential is a direct consequence of the validity of both the effective field theory and
the slow roll approximations through a see-saw-like mechanism.

It must be stressed that these order of magnitude estimates follow from the statement that w(y) and
x are of order one. They are thus independent of the details of the model. Indeed, model-dependent
factors of order one appearing in the observables should allow to exclude or accept a given model by
using the observational data.

The WMAP results rule out the purely quartic potential (m = 0, g = 0). From the point of view of an
effective field theory this is not surprising: it is rather unnatural to set m = 0, since m = 0 is a particular
point at which the correlation length is infinite and the theory is critical. Indeed the systematic study in
ref.[15] shows that the best fit to the WMAP data requires m? # 0.

The general quartic Lagrangian eq.(20) describes a renormalizable theory. However, one can choose
in the present context arbitrary high order polynomials for V(¢). These nonrenormalizable models are
also effective theories where Mp; plays the réle of UV cutoff. However, already a quartic potential is rich
enough to describe the full physics and to reproduce accurately the WMAP data [15)].

For a general potential V'(¢),

Vig) =D A o" ie w(x)= Y Gux", (15)
n=0 n=0
we find from eq.(5):
2
Ap = G"—m'__‘. \ (16)
(N ME)?

where the dimensionless coefficients G, are of order one. We find the scaling behavior A, ~ 1/N3-1,
Eq. (12) displays particular cases of eq.(16) for n = 3 and 4.

The slow-roll parameters naturally result of the order 1/N, 1/N? etc. when expressed in terms of the
inflaton potential
V(g) =N M w(x). (17)

That is,

_ M3 {v’(cpo) 2 V(®o) _ 1 w"(x) (18)

2
_ 1 [rm)? _
2 V(%)] “7w (5] M e w
The spectral index n, its running and the ratio of tensor to scalar fluctuations are expressed as

1o 3 [P, 2 v
1= N[W(x)] YN Wl



dn, 2 (Y wy) 6 w8 W w(x)

dink N2 wi(y) N2 wi(y) N2 w3(x) '
_ 8 JTw'(x)
N [w(x)] 19

In eqs.(13), (18) and (19), the ficld x is computed at horizon exiting. We choose N{x] = N = 50. The
WMAP results favoured single inflaton models and among them new and hybrid inflation emerge to be
preferable than chaotic inflation{15].

The inflationary era ends when the particles produced during inflation dominate the encrgy density
overcoming the vacuum energy. At such stage the universe slows down its expansion to a radiation
dominated regime.

1.2 Connection with Supersymmetry

The form of the inflaton potential
V(¢) = N M* w(x) (20)

resembles (besides the factor V) the moduli potential arising from supersymmetry breaking

¢
vsusy(¢) = m:usy v(m) s (21)

where m,q,, stands for the supersymmetry breaking scale. In our context, eq.(21) indicates that m,y,y, =~
M ~ Mgyr. That is, the susy breaking scale m,,,, turns out to be at the GUT and inflation scales.
This may be a first observational indication of the presence of supersymmetry. It should be noticed that
this supersymmetry scale is unrclated to an eventual existence of supersymmetry at the TeV scale.

Notice that the invariance of the basic interactions (the lagrangian) and the invariance of the physical
states (or density matrices) describing the matter are different issues. For example, no thermal state
at non-zero temperature can be invariant under supersymmetry since Bose-Einstein and Fermi-Dirac
distributions are different. More generally, the inflationary stage is described by a scalar condensate
(the inflaton) while fermions cannot condense due to Pauli principle. This makes quite hard to uncover
supersymmetric properties of the lagrangian from the physics of the early universe.

1.3 Conjecture: inflation is near a trivial infrared fixed point
There are several remarkable features and consistency checks of the relations (12):

o Note the relation A ~ g2. This is the correct consistency relation in a renormalizable theory because
at one loop level there is a renormalization of the quartic coupling (or alternatively a contribution
to the four points correlation function) of orders A2, g and X g2 which are of the same order for
A ~ g*. Similarly, at one loop level there is a renormalization of the cubic coupling (alternatively,
a contribution to the three point function) of orders g and A g which again require ¢ ~ A for
consistency.

¢ In terms of the effective field theory ratio (H/Mp;)? and slow roll parameters, the dimensionless

couplings are
mg 1 H 1 H \?
—_— -~ — — . ~ — — . (22

H N Mp, A N2 (Mp; (22)

These relations agree with those found for the dimensionless couplings in ref.[11, 12] once the slow
roll parameters are identified with the expressions (18) in terms of 1/N. The results of refs. {11, 12]
revealed that the loop expansion is indeed an expansion in the effective field theory ratio (H/Mp;)?
and the slow roll parameters. The study in ref.[14] allows us to go further in this direction and state
that the loop expansion is a consistent double series in the effective field theory ratio (H/Mp;)?
and in 1/N. Loops are either powers of g2 or of A which implies that for each loop there is a factor
(H/Mp)?. The counting of powers of 1/N is more subtle: the nearly scale invariant spectrum of
fluctuations leads to infrared enhancements of quantum corrections in which the small factor 1/N
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enters as an infrared regulator. Therefore, large denominators that feature the infrared regulator
of order 1/N cancel out factors 1/N in the numerator. The final power of 1/N must be computed
in detail in each loop contribution.

e We find the rclation (12) truly remarkable. Since the scale of inflation A is fixed, presumably
by the underlying microscopic (GUT) theory, the scaling of A with the inverse of the number of
c-folds strongly suggests a renormalization group exzplanation of the effective field theory because
the number of c-folds is associated with the logarithm of the scale N = Ina. A renormalization
group improved scale dependent quartic coupling (16] behaves as A(K) o< 1/In K with K the scale
at which the theory is studied. Since in an expanding cosmology the physical scale grows with the
scale factor it is natural to expect that a renormalization group resummation yields the renormalized
coupling scaling as

A~1/lna~1/N.

There are several aspects of slow roll inflation, which when considered together, lead us to conjecture
that the effective field theory of inflation is an almost critical theory near but not at a trivial fixed point
of the renormalization group. These aspects are the following:

¢ The fluctuations of the inflaton are almost massless, this is the statement that the slow roll param-
eter
V@) _ 4 V()
Vie) — H?

The slow roll relation (18) states that the dimensionless ratio of the inflaton mass and the Hubble
scaleis ~ 1/N ~ 1/Ina.

nw = M3, <1.

o The higher order couplings are suppressed by further powers of 1/N ~ 1/Ina [sec eq.(16)]. In the
language of critical phenomena, the mass is a relevant operator in the infrared, the quartic coupling
A is marginal, and higher order couplings are irrelevant.

These ingredients taken together strongly suggest that for large N ~ In a, the effective field theory is
reaching a trivial gaussian infrared fized point[14]. The evidence for this is manifest in that:

i) the power spectrum of scalar fluctuations is nearly scale invariant (a consequence of ny « 1),

ii) the coupling constants vanish in the asymptotic limit N — co. If the number of e-folds were
infinite, the theory would be sitting at the trivial fixed point: a massless free field theory.

The physical situation in inflationary cosmology is not to be sitting ezactly at the fixed point, inflation
must end, and is to be followed by a radiation dominated standard big bang cosmology. Therefore, we
conclude that during the stage of slow roll inflation, the theory is hovering near a trivial gaussian infrared
fized point but the presence of a small relevant operator, namely the inflaton mass which eventually
becomes large at the end of slow roll, drives the theory away from criticality.

Our investigations(14] reveal that it is not the ultraviolet behavior of the renormalization group that
is responsible for the near criticality of the effective ficld theory, but rather the infrared, superhorizon
physics. That this is the case can be gleaned in eq. (12): the coefficient (M/Mp;)? in front of the
term 1/Ina cannot be obtained from the usual Minkowski-space renormalization group solution for the
running coupling. Furthermore, the true trivial fixed point is obtained in the infrared limit when the
scale factor 2 — oo, namely infinitely long physical wavelengths.

If this conjecture[14] proves correct, it will have a major fundamental appeal as a description of
inflation because field theories near a fixed point feature universal behavior independent of the underlying
microscopic degrees of freedom. In fact. if the effective field theory of inflation is indeed near (not
exactly) an infrared gaussian fixed point, its predictions would be nearly universal, and single field slow
roll inflation describes a large universality class that features the same robust predictions. Such is the
case in critical phenomena described by field theories where widely different systems feature the same
behavior near a critical point.



2 Quantum corrections to the equation of motion for the infla-
ton and its effective potential.
We consider single field inflationary models described by a general self-interacting scalar field theory in a

spatially flat Friedmann-Robertson-Walker cosmological space time with scale factor a(t). In comoving
coordinates the action is given by

S= / Pz dt a¥(t) [% #- 99 vl (23)

2a?

We consider a generic potential V(¢), the only requirement is that its derivatives be small in order to
justify the slow roll expansion(3, 17]. In order to study the corrections from the quantum fluctuations we
separate the classical homogencous expectation value of the scalar field from the quantum fluctuations
by writing
é(Z,t) = Do(t) + p(£,1) , (24)
with
®o(t) = (¢(Z,2)) ; (w(&,))=0, (25)

where the expectation value is in the non-equilibrium quantum state. Expanding the Lagrangian density
and integrating by parts, the action becomes

S= / Pz dt (1) L[@o(2), 0(E,8)] , (26)
with
. . N 2 "
£lo(). o2, = 5 ¥~ V(@) + 3 2 - T 1" (@) 7

—p [<'1'>o +3Hdo + v'(<1>0)] - % V" (@) p° - % VUY)(@y) o* + higher orders iny . (27)

We obtain the equation of motion for the homogeneous expectation value of the inflaton field by im-
plementing the tadpole method (see [11] and references therein). This method consists in requiring the
condition {((Z,t)) = 0 consistently in a perturbative expansion by treating the linear, cubic, quartic (and
higher order) terms in the Lagrangian density eq.(27) as perturbations(11].

Our approach relies on two distinct and fundamentally different expansions: i) the effective field
theory (EFT) expansion and ii) the slow-roll expansion.

Quantum corrections to the equations of motion for the inflaton and for the fluctuations are obtained
by treating the second line in eq.(27), namely, the linear and the non-linear terms in ¢, in perturbation
theory.

The generating functional of non-equilibrium real time correlation functions requires a path integral
along a complex contour in time: the forward branch corresponds to time evolution forward (+) and
backward (-) in time as befits the time evolution of a density matrix. Fields along these branches are
labeled ¢+ and ¢, respectively (see refs.[11] and references therein). The tadpole conditions

(&) =0, (28)

both lead to the (same) equation of motion for the expectation value ®¢(t) by considering the linear,
cubic and higher order terms in the Lagrangian density as interaction vertices. To one loop order we find

do(t) + 3 H do(t) + V' (Do) + g(®o) ([ (£, 0)]?) =0. (29)

The first three terms in eq.(29) are the familiar ones for the classical equation of motion of the inflaton.
The last term is the one-loop correction to the equations of motion of purely quantum mechanical
origin. Another derivation of this quantum correction can be found in{6, 18]. The fact that the tadpole
method, which in this case results in a one-loop correction, leads to a covariantly conserved and fully
renormalized energy momentum tensor has been established in the most general case in refs.[6, 19, 20].
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The coupling g, effective ‘mass term’ Af2 and the quartic coupling arc defined by

1

M? = M?(d) = V" (®0) =3 HE v + O(%) 1 9= g(ho) = 5 V" (R0) . A= A(bo) = £ VIV ().

(30)
The {(---)} is computed in the free field (Gaussian) theory of the fluctuations ¢ with an effective ‘mass
term’ M2, the quantum state will be specified below. Furthermore, it is straightforward to see that
{loH (& )% = {(p~ (&)%) = ([(Z,6)}?). In terms of the spatial Fourier transform of the fluctuation
field (7, t), the onc-loop contribution can be written as

DO} -

&k
(2m)3

where pz(t) is the spatial Fourier transform of the fluctuation field (£, t) and we have introduced the
power spectrum of the fluctuation

eett) = [~ Pkt (31)

(ol 1)) = /

k3 .
Polk,t) = 55 (0 (OF). (32)
During slow rol! inflation the scale factor is quasi de Sitter and to lowest order in slow roll it is given by :
C) = = —— =~ (1 + e&v) + O() (33)
"= Honl—ev  Hayp v Vi

The spatial Fourier transform of the rescaled free field Heisenberg operators x(Z,1) = C(y)p(£,t) obey
the equation

" c’'o
xg(n) + [k2 + M2 C*(y) - ﬁ xg(n) =0. (34)

Using the slow roll expressions ¢qs.{30) and (33), it becomes

2 _ 1
X () + [k2 = o ‘] xg(n) =0 (35)

where the index v and the quantity A are given by

"R R4

3 1 1 .
V=§+€V"IV+0(F) , A= -l/=nv—6V+0(‘ﬁ§)- (36)

The scale invariant case v = % corresponds to massless inflaton fluctuations in the de Sitter background.
A measures the departure from scale invariance. In terms of the spectral index of the scalar adiabatic
perturbations n, and the ratio r of tensor to scalar perturbations, A takes the form.

1 T
A=§(n,—l)+§. (37)

The free Heisenberg field operators x;(7) are written in terms of annihilation and creation operators that
act on Fock states as

Xi(n) = ag Su(k.n) +a' - S3(k,7) (38)

where the mode functions S, (k,1) are solutions of the eqs. (35). For Bunch-Davis boundary conditions
we have )

1 .
Su(k.m) = 5 V=an &3+ HO(—ky), (39)

this defines the Bunch-Davis vacuum ag]0 >pp=0.

There is no unique choice of an initial state, and a recent body of work has began to address this issue
(see ref.[20] for a discussion and further references). A full study of the quantum loop corrections with
different initial states must first elucidate the behavior of the propagators for the fluctuations in such
states. Here we focus on the standard choice in the literature[3] which allows us to include the quantum
corrections into the standard results in the literature. A study of quantum loop corrections with different
initial states is an important aspect by itself which we postpone to later work.



The index v in the mode functions eq.(39) depends on the expectation value of the scalar ficld, via the
slow roll variables, hence it slowly varies in time. Thercfore, it is consistent to treat this time dependence
of v as an adiabatic approzimation. This is well known and standard in the slow roll expansion[3]. Indeed,
there are corrections to the mode functions which arc higher order in slow roll. However, these mode
functions enter in the propagators in loop corrections, therefore they yield higher order contributions in
slow roll and we discard them consistently to lowest order in slow roll.

With this choice and to lowest order in slow roll, the power spectrum eq.(32) is given by

H2
Po(kit) = 2= (=kn)® |HD (= k)2 (40)

For large momenta |k7j| >> 1 the mode functions behave just like free field modes in Minkowski space-time,
namely ,
k>l 1 ey

Su(k.n) = 73k ¢ (41)
Therefore, the quantum correction to the equation of motion for the inflaton eqs.(29) and (31) determined
by the momentum integral of P,(k,t) features both quadratic and logarithmic divergences. Since the
field theory inflationary dynamics is an effective field theory valid below a comoving cutoff A of the order
of the Planck scale, the one loop correction (31) becomes

A dk H? A dz 4 2
—_ = = (1)
[ ErPeten =z [T L apef (12)

b4

where Ap(n) is the ratio of the cutoff in physical coordinates to the scale of inflation, namely

A
Ap(n) = HCw = -Ay. (43)
The integration variable z = —k 1) has a simple interpretation at leading order in slow roll
k kp()
1= - = ———— I eeaema— ‘' 44
"= HoCln) ~ Ho “

where ky(n) = k/C(n) is the wavevector in physical coordinates. If the spectrum of scalar fluctuations
were strictly scale invariant, (namely for massless inflaton fluctuations in de Sitter space-time), then the
index would be v = 3/2 and the integrand in (42) given by

2 9
2 HP @] =2+ 22 (45)

In this strictly scale invariant case, the integral of the power spectrum also features an infrared logarithmic
divergence. While the ultraviolet divergences are absorbed by the renormalization counterterms in the
effective field theory, this is not possible for the infrared divergence. Obviously, the origin of this infrared
behavior is the exact scale invariance of superhorizon fluctuations. However, during slow roll inflation
there are small corrections to scale invariance, in particular the index v is slightly different from 3/2
and this slight departure introduces a natural infrared regularization. In ref.[11] we have introduced an
cxpansion in the parameter A = 3/2 - v =9y — v + O(e} . 1, cvnv) which is small during slow roll and
we showed in [12] that the infrared divergences featured by the quantum correction manifest as simple
poles in A.

The quantum correction to the equation of motion for the inflaton by isolating the pole in A as well
as the leading logarithmic divergences were computed in ref.[12] with the result

Ho

2
%([w(f,t)lz) = (;;) [Ap2 +InAZ+ % +2y-4+0(A)], (46)

where v is the Euler-Mascheroni constant. While the quadratic and logarithmic ultraviolet divergences are
regularization scheme dependent, the pole in A arises from the infrared behavior and is independent of the
regularization scheme. In particular this pole coincides with that found in the expression for < ¢¥(Z,t) >
in ref.[21]. The ultraviolet divergences, in whichever renormalization scheme, require that the effective
field theory be defined to contain renormalization counterterms in the bare effective lagrangian, so that
these counterterms will systematically cancel the divergences encountered in the calculation of quantum
corrections in the (EFT) and slow roll approximations.



2.1 Renormalized effective field theory: renormalization counterterms

The renormalized effective field theory is obtained by writing the potential V/[¢] in the Lagrangian density
¢q.(23) in the following form
V(¢) = Vr(¢) + 6 Vr(¢,A) , (47)

where V(@) is the renormalized classical inflaton potential and 6 Ve(¢. A) includes the renormalization
counterterms which are found systematically in a slow roll expansion by canceling the ultraviolet diver-
gences. In this manner, the equations of motion and correlation functions in this effective field theory
are culoff independent. We find from eqs.(29) and (46)

2
do(t) + 3 H do(t) + V'(®o) + V" (o) (%) [A;-', +mAZ + %

From this equation it becomes clear that the one-loop ultraviolet divergences can be canceled by choosing
appropriate counterterms(12] leading to the final form of the renormalized inflaton equation of motion to
leading order in the slow roll expansion

+27—4+(’)(A)]=0. (48)

"

2

$o(t) + 3 Ho dolt) + Vp(Po) + (ﬂ) Vo (%) _ g (49)

ax A

Although the quantum correction is of order V,';"(%). (second order in slow roll), the strong infrared
divergence arising from the quasi scale invariance of inflationary fluctuations brings about a denominator
which is of first order in slow roll. Hence the lowest order quantum correction in the slow roll expansion,
is actually of the same order as V,;(d)o). To highlight this observation, it proves convenient to write
¢q.(49) in terms of the EFT and slow roll parameters,

2
Do(t) + 3 Ho do(t) + Vi(Po) [1 + (ﬁ%’;) 25:./)] =0. (50)
Since £y ~ €} and A ~ ¢y the leading quantum corrections are of zeroth order in slow roll. This is a
consequence of the infrared enhancement resulting from the nearly scale invariance of the power spectrum
of scalar fluctuations. The quantum correction is suppressed by an EFT factor H2/M3, < 1.
Restoring the dependence of A on &g through the definitions (18) and (36) we find the equation of
motion for the inflaton field to leading order in slow roll and in (H/Mp)?,

$o(t) + 3 H do(t) + Vi(Po) + ! V3(®o) Vi (o)

T ( M)® 2Va(@0)Vy (o) - V(@) &1

2.2 Quantum corrections to the Friedmann equation: the effective potential

The zero temperature effective potential in Minkowski space-time is often used to describe the scalar field
dynamics during inflation [3, 22]. However, as we sce below the resulting effective potential [see eq.(58)]
is remarkably different from the Minkowski one [see Appendix A]. The focus of this Section is to derive
the effective potential for slow-roll inflation.

Since the fluctuations of the inflaton field are quantized, the interpretation of the ‘scalar condensate’
&y is that of the expectation value of the full quantum field ¢ in a homogeneous coherent quantum
state. Consistently with this, the Friedmann equation must necessarily be understood in terms of the
expectation value of the field energy momentum tensor, namely

1 /1., 1 [9e\?
H = — (- ¢*+- | == .
3M3, <2 o+ (a(t)) +V[¢]> (52)
Separating the homogeneous condensate from the fluctuations as in eq. (24) and imposing the tadpole

equation (25), the Friedmann equation becomes

2 1

1 -2 1 1 . 1 V‘r’ 2 1 .
H = —— |= &y + Vp(dg) + 6Vr(D - - 224 - -V 24 ...
3 M3, [2 0+ Val®o) + 6Va( ")] ' 3M,%,<2¢ h3 (a(t)) TV @)+ > (53)



The dots inside the angular brackets correspond to terms with higher derivatives of the potential which
are smaller in the slow roll expansion. The quadratic term (%) to leading order in slow roll is given by
€q.(46). Calculating the expectation value in eq.(53) in free field theory corresponds to obtaining the
corrections to the energy momentum tensor by integrating the fluctuations up to one loop[12]. The first
two terms of the expectation value in eq.(53) do not feature infrared divergences for » = 3/2 because of
the two extra powers of the loop momentum in the integral. These contributions are given by

15 __”_ﬂ’./Apdz 2 iy

<2"° >' 167 z [ H, ()] 32 2 +O(H°A)’ (54)
1(Ve\'\ _ HE [™dz 5 Hy Ay  H'A

<2 (a(t)) >‘ 167 /0 z 7 | ("’)’ 3272 P Tom T OWHA).- (55)

The counterterms cancel the ultraviolet divergences arising from the third term in the angular brackets
in eq. (53)[12]. Finally, the fully renormalized Friedmann equation to one loop and to lowest order in
the slow roll expansion is [12]

H?= 3;! [ By + Vr(®o) + (Ho) -‘% + higher orders in slow roll] = H2 +8H?, (56)
Pl

where Hy is the Hubble parameter in absence of quantum fluctuations:

Va(®o)
2 R\™P0 v
Hy = 3M;2>t [1+ + O, ev 7IV)] .

Using the lowest order slow roll relation eq. (30), the last term in eq.(56) can be written as follows

o 2
(Y -
Ho 47TMP{ A

This equation defines the back-reaction correction to the scale factor arising from the quantum fluctuations
of the inflaton.

Hence, while the ratio nv /A is of order zero in slow roll, the one loop correction to the Friedmann
equation is of the order H3/M32, < 1 consistently with the EFT expansion. The Friedmann equation
suggests the identification of the effective potential

Versr(®o) = Vr(®p) + (Ho) YE@ + higher orders in slow roll = (58)
Ho \* w
= Vr(®do) [l + (4 - MP() —— + higher orders in slow roll| . (59)

We see that the equation of motion for the inflaton eq.(49) takes the natural form

do(t) + 3 Ho do(t) + " { (o)

where the derivative of V,y; with respect to @ is taken at fixed Hubble and slow roll parameters. That
is, Hp and A must be considered in the present context as gravitational degrees of freedom and not as
matter (inflaton) degrees of freedom.

Eqs.(57) and (58) make manifest the nature of the effective field theory expansion in terms of the
ratio (Ho/l\’!p[)z. The coefficients of the powers of this ratio are obtained in the slow roll expansion. To
leading order, these coefficients are of O{N?) because of the infrared enhancement manifest in the poles
in A, a consequence of the nearly scale invariant power spectrum of scalar perturbations.

A noteworthy result is the rather different form of the effective potential eq.(58) as compared to
the result in Minkowski space time at zero temperature. In the appendix we show explicitly that the
same definition of the effective potential as the expectation value of Tyo in Minkowski space-time at zero
temperature is strikingly different from eq.(58) valid for slow roll inflation.



3 Quantum Corrections to the Scalar and Tensor Power. Scalar,
Tensor, Fermion and Light Scalar Contributions.

During slow-roll inflation many quantum ficlds may be coupled to the inflaton (besides itself) and can
contribute to the quantum corrections to the equations of motion and to the inflaton effective potential.
The scalar curvature and tensor fluctuations arc certainly there. We also consider light fermions and
scalars coupled to the inflaton. We take the fermions to be Dirac fields with a generic Yukawa-type
coupling but it is straightforward to generalize to Weyl or Majorana fermions. The Lagrangian density
is taken to be

- 2 — 2
1 : -
L=y-g {5 - (&’) —V(¢)+% a2- (%) -1 m2 o® -G(y) 02+‘I![i'y“ D,,w—m,-yw)]w

2a 2

(60)
where G(®) and Y (&) are generic interaction terms between the inflaton and the scalar and fermionic
fields. For simplicity we consider one bosonic and one fermionic Dirac field. The 4* are the curved
space-time Dirac matrices and D, the fermionic covariant derivative[9, 23]. We will consider that the
light scalar field o has vanishing expectation value at all times, therefore inflationary dynamics is driven

by one single scalar field, the inflaton ¢.
We consider the contributions from the quadratic fluctuations to the energy momentum tensor. There
are four distinct contributions: i) scalar metric (density) perturbations, ii) tensor (gravitational waves)

perturbations, iii) fluctuations of the light bosonic scalar ficld o, iv) fluctuations of the light fermionic
field ¥.

Fluctuations in the metric are studied as usual [3, 24]. Writing the metric as
Guv = 92., + 639}"/ + thuu

where gfw is the spatially flat FRW background metric eq.(3), 6**g,, correspond to the scalar and tensor
perturbations respectively, and we neglect vector perturbations. In longitudinal gauge

8g0=C*m)2¢ , &gy;=C(n)2¢yd, . &'g;=~C%n) h; (61)

where h;; is transverse and traceless and we neglect vector modes since they are not gencrated in single
field inflation[3, 24].

Expanding up to quadratic order in the scalar fields, fermionic fields and metric perturbations the
part of the Lagrangian density that is quadratic in these ficlds is given by

Lo = Ly[60%, 6% 0] + Ly[h] + Lalo] + Lo[T, ),

where

f2
Calhl = 2 C2(r) 0 agh 70

2 2
—ct dE(ZY S (YN L g o2

‘Ca[a] - C (") {2 C 9 C 2 MJ[QO] o ’

ColT,¥] = E[i VA D - M,,,[:bo]] v,
here the prime stands for derivatives with respect to conformal time and the labels (gi) refer to gauge
invariant quantities(24]. The explicit expression for L[6p%", ¢9°, y9"] is given in eq. (10.68) in ref.[24].
The effective masses for the bosonic and fermionic fields are given by

M2[®o] = m2 + G(®o) , Myl®o) = my + Y (Do) . (62)

We focus on the study of the quantum corrections to the Friedmann equation, for the casc in which both
the scalar and fermionic fields are light in the sense that during slow roll inflation,

M,y (o) , My|Bo] < Hp (63)



at least during the cosmologically relevant stage corresponding to the 60 or so e-folds before the end of
inflation.

From the quadratic Lagrangian given above the quadratic quantum fluctuations to the energy mo-
mentum tensor can be extracted.

The effective potential is identified with (T{) in a spatially translational invariant state in which
the expectation value of the inflaton field is ®p. During slow roll inflation the expectation value &g
evolves very slowly in time, the slow roll approximation is indeed an adiabatic approximation, which
justifies treating o as a constant in order to obtain the effective potential. The time variation of $ only
contributes to higher order corrections in slow-roll. The energy momentum tensor is computed in the
FRW inflationary background determined by the classical inflationary potential V(®p), and the slow roll
parameters are also explicit functions of ®o. Therefore the energy momentum tensor depends implicitly

on ®g through the background and ezplicitly on the masses for the light bosonic and fermionic ficlds
given above.
We can write the effective potential as

Vess(®0) = V(o) + 6V (o) , (64)

where
6V (o) = (T3 [®ol)s + (T§ (o]} + (T8[Pol)o + (T [o])w (65)

(s,t,0.¥) correspond to the energy momentum tensors of the quadratic fluctuations of the scalar metric,
tensor (gravitational waves), light boson field o and light fermion field ¥ fluctuations respectively. Since
these are the expectation values of a quadratic energy momentum tensor, 6V (®,) corresponds to the one
loop correction to the effective potential.

3.1 Light scalar fields

During slow roll inflation the effective mass of the o field is given by eq. (62), just as for the inflaton
fluctuation in sec. 2. It is convenient to introduce a parameter 7, defined to be

_ M2 [®]

=3 7 - (66)

Ilence, the sigma field contributions to the inflaton equations of motion and inflaton effective potential
can be obtained from sec. 2 just replacing the slow roll parameter iy by 1,. In particular, infrared
divergences are now regulated by the parameter A, = 1, ~ ey .

To leading order in the slow roll expansion and in 7, < 1, the infrared contribution is given by[9],

_ 3Hé Yo
T (@2 e -y

A 2
% (d(£,1)) + subleading in slow roll.

The fully renormalized contribution from from the sigma field 1o 79 to leading order in slow roll takes

the form (9],
0 —3H3L"’_ 1/, <V0)2
Bl =amra, *2\" *ew) ) 0

In calculating here the second term we can set to zcro the slow roll parameters ey, 7y as well as the
mass of the light scalar, namely n, = 0. Hence, to leading order, the second term is identified with the
00 component of the renormalized energy momentum tensor for a free massless minimally coupled scalar
field in exact de Sitter space time. Therefore we can extract this term from refs.[21, 23],

2 2
_ Yuv 2 2 _ m, 4 § o §,_ & g 2 2--g 4
(Tpv)ren—(lln_)z{mdﬂo (l —QHg)[ u(2+u) viz-v +lnH§ +t3m, Ho -5 Ho o

(68)
where v = ‘/49 -

Fl . .
,’; and ¥(z) stands for the digamma function. This expression corrects a factor of
0

two in ref.[23]. In eq. (6.177) in [23] the D'Alambertian acting on G!(z,z') was neglected. However, in



computing this term, the D'Alambertian must be calculated before taking the coincidence limit. Using
the equation of motion yields the extra factor 2 and the expression eq.(68).

The pole at v = 3/2 manifest in eq.(68) coincides with the pole in ¢q.(67) using that m2 = 3 H? 5,
[eq.(66)]. This pole originates in the term m2 < o? >, which features an infrared divergence in the limit
ve = 3/2. All the terms with space-time derivatives are infrared finite in this limit. Therefore, we can
extract from eq.(68) the renormalized expectation value in the limit Hg > mg,

@), = o[ 3w _ 2, O(ev,na,nv)] (69)

The second term is completely determined by the trace anomaly of the minimally coupled scalar
fields[21, 23, 25].

3.2 Quantum Corrections to the Inflaton potential from the Scalar metric
perturbations

The gauge invariant energy momentum tensor for quadratic scalar metric fluctuations has been obtained
in ref.[26]. In longitudinal gauge and in cosmic time it is given by

n)

((Vp)?) V”(«bo) )
2C2(y) T ((59)%) +2 V'(20) (¢ d0) (70)

where the dots stand for derivatives with respect to cosmic time. In longitudinal gauge, the equations of
motion in cosmic time for the Fourier modes are(3, 24|

G'S,;+(Ho—2—)¢k [ (Ho—2H0 ) C,f( )] =0
2

g + 3 H b + [v"[%] + Cf(”)] bpp +2V'[®o) 9 — 4P by =0, (71)

.= M [12 Ho (6) -3 () + a0 «w»'*’)}

+3 (6 +

with the constraint equation
¢k + HO ¢k J\’I

We split the contributions to the energy momentum tensor as those from superhorizon modes, which
yield the infrared enhancement, and the subhorizon modes for which we can set all slow roll parameters
to zero. Just as discussed above for the case of the o field, since spatio-temporal derivatives bring higher
powers of the momenta, we can neglect all derivative terms for the contribution from the superhorizon
modes and set([26]

Siog o - (72)

(T8)in = 5 V" (&0l (80(F,0)) + 2 V'[bal ($(3.0)30(3,0) - (73)

The analysis of the solution of eq.(71) for superhorizon wavelengths in ref. [24] shows that in exact
de Sitter space time ¢; ~ constant, hence it follows that during quasi-de Sitter slow roll inflation for
superhorizon modes

b ~ (slow roll) x Hp ¢; (74)
Therefore, for superhorizon modes, the constraint equation (72) yields
V' (@) . .
= Suvn . ) c
Lot 2V (®0) g + higher orders in slow roll (75)

Inserting this relation in eq.(71) and consistently neglecting the term d),; according to eq.(74), we find the
following equation of motion for the gauge invariant scalar field fluctuation in longitudinal gauge

Sy + 3 Ho b + +3 HY 15| $pp =0, (76)

e



where we have used the definition of the slow roll parameters ¢y n given in eq.(18), and introduced
ns = nv — 2 ev. This is the equation of motion for a minimally coupled scalar field with mass squared
3 HZ 55 and we can use the results obtained in the case of the scalar field o.

Repeating the analysis presented in the case of the scalar field o above, we finally find[9)]

3HS v —dey

e T

+ subleading in slow roll (77)

It can be shown that the contribution from subhorizon modes to {Tg,) is given by [9]

{(Vé0)?)

2a?

1 .
(To)uv = 5((8)%) + (78)
where we have also neglected the term with V"' [®o] ~ 3 HZ nv since k2/a? 3> HZ for subhorizon modes.
Therefore, to leading order in slow roll we find the renormalized expectation value of Tgo, is given by

3HS v —dey 1/ 2 (Vp)
0 ~ 0 4 {4 FaTiRY
Toskren = (o “3ev ¥ 2 <a¢ * (C(v)) "

To obtain the renormalized expectation value in eq.(79) one can set all slow roll parameters to zero to
leading order and simply consider a massless scalar field minimally coupled in de Sitter space time and
borrow the result from eq.(69). We find[9]

(Tou)ren = Gnp [nv—36v 37 0(¢v.na,'7v)] (80)
The last term in eq. (80) is completely determined by the trace anomaly of a minimally coupled scalar
field in de Sitter space time[21, 23, 25]

3.3 Quantum Corrections to the Inflaton potential from the Tensor pertur-
bations

Tensor perturbations correspond to massless fields with two physical polarizations. The energy momen-
tum tensor for gravitons only depends on derivatives of the field hj therefore its expectation value in the
Bunch Davies (BD) vacuum does not feature infrared singularities in the limit ¢ — 0. The absence of
infrared singularities in the limit of exact de Sitter space time, entails that we can extract the leading
contribution to the effective potential from tensor perturbations by evaluating the expectation value of
Too in the BD vacuum in exact de Sitter space time, namely by setting all slow roll parameters to zero.
This will yield the leading order in the slow roll expansion.

Because de Sitter space time is maximally symmetric, the expectation value of the energy momentum
tensor is given by[23]

(Tuw)ep = 2% (T2 8D (81)

and TZ is a space-time constant, therefore the energy momentum tensor is manifestly covariantly con-
served. A large body of work has been devoted to study the trace anomaly in de Sitter space time im-
plementing a variety of powerful covariant regularization methods that preserve the symmetry[25, 23, 21}
yielding a renormalized value of (T,,) gp given by eq. (81). Therefore, the full energy momentum tensor
is completely determined by the trace anomaly. The contribution to the trace anomaly from gravitons
has been given in refs.[21, 23, 23], it is

717 717
m Hg and (T(?); = - 4

Tade= - 32072 Ho -

(82)



3.4 Summary of Quantum Corrections to the Observable Spectra

In summary, we find that the effective potential at one-loop is given by,

Hy v —-dev 31
4m)? |y -3¢y 1y —ev

§V(do) = + T+ T+ T+ To + Olev. v, n0, M?) |,

where (s,t.a, ) stand for the contributions of the scalar metric. tensor fluctuations, light boson field o
and light fermion field ¥, respectively. We have
29 717 11
To=T,=-—= , Th=-— , Ty=—
4 s 30 ] v 60
The terms that feature the ratios of combinations of slow roll parameters arise from the infrared or
superhorizon contribution from the scalar density perturbations and scalar fields o respectively. The
terms 7, .y are completely determined by the trace anomalies of scalar, graviton and fermion fields
respectively. Writing H§ = V(®o) H3/[3 M3,] we can finally write the effective potential to leading
order in slow roll

H? — o

(83)

@Ar2Mi\npw-3ev no—ev 20

There are several remarkable aspccts of this result:

i) the infrared enhancement as a result of the near scale invariance of scalar field fluctuations, both
from scalar density perturbations as well as from a light scalar field, yield corrections of zeroth order in
slow roll. This is a consequence of the fact that during slow roll the particular combination A, = 7, — ey
of slow roll parameters yield a natural infrared cutoff.

ii) the final one loop contribution to the effective potential displays the effective field theory dimen-
sionless parameter H3/M3,.

iii) the last term is completely determined by the trace anomaly, a purely geometric result of the short
distance properties of the theory.

The quantum corrections to the effective potential lead to quantum corrections to the amplitude of
scalar and tensor fluctuations with the result[9]

2 3 dn
2 -1 +2 ang,
IA;c‘.sc)!!‘z = |A£S)|2 {1 + 2 (———Ho ) [1 + 3 r (ns ) dlnk 2903} }

3\47 Mp; (ns —1)2 40
1/ Ho \? 1 r 2903
AT 2 _a™z ), _ 2 0 _ 1
! k,e!!l TAY RS 3\T7 Mo M 1+ 8 o1 + =0 ,
(T) n
I L /71 U SO WA . )2 L Er(na -+ ey 09 )
= IAS‘SE)],P 3 \4n A‘fp[ (ns — 1)2 20 .

The quantum corrections turn out to enhance the scalar curvature fluctuations and to reduce the tensor
fluctuations as well as their ratio r.
Acknowledgment: H J de V thanks the organizers of JGRG15 for their kind hospitality in Tokyo.

A Oneloop effective potential and equations of motion in Minkowski
space-time: a comparison
In this appendix we establish contact with familiar effective potential both at the level of the equation

of motion for the expectation value of the scalar field, as well as the expectation value of Tyg.
In Minkowski space time the spatial Fourier transform of the field operator is given by

1 - dw, $w)
wp(t) = \/m[a,;e ! "'+a'_’:e *‘], (86)




where the vacuum state is annihilated by a; and the frequency is given by

Wi = \/kz + V”(‘bo) . (87)

The one-loop contribution to the cquation of motion (29) is given by

e

2 A2 A
4 gbo) (lo@ oy = (20 /0 Ma=2 [Lz /0 K? wy dk] . (88)

8 x? Wi = dd, | ar

The expectation value of Tyg = H (Hamiltonian density) in Minkowski space time is given up to one loop
by the following expression

| 1 1 .2 1 ., 1 1 . »
(Tuo) = (58 +5 (987 +V(®) = 5 8o +V @)+ (5 8+ § (00 + 3V (B0} ) . (59)
The expectation value of the fluctuation contribution is given by

1,1 2 1w 2 R U AN V(o) A [VI(R))2,  4A?

<§ #g (Vo 3V (27 +"'>‘ m/o Muodk= 5+ 6tz V(%0

(90)

Renormalization proceeds as usual by writing the bare Lagrangian in terms of the renormalized potential

and counterterms. Choosing the counterterms to cancel the quartic, quadratic and logarithmic ultraviolet
divergences. we obtain the familiar renormalized one loop effective potential

Va (®o))® | Vi (®o)
64 n2 M2

where M is a renormalization scale. Furthermore from eq. (88) it is clear that the equation of motion
for the expectation value is given by

Vess(®o) = Vr(®o) + (91)

B0+ Vegy(®0) = 0. (92)
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Abstract

Some recent developments in the study of the formation and evaporation of primordial
black holes (PBHs) are reviewed. It is still not clear whether PBHs formed but, if
they did, they could provide a unique probe of inflation, dark matter and higher
dimensions. Inflation is probed because PBHs could be formed from the associated
density perturbations. Although PBHs do not form in the simplest “slow-roll” model,
they could do so in many other models. PBHs could contribute to the dark matter
if they are large enough not to have evaporated by now or if evaporating ones leave
stable Planck-mass relicts. However, it is argued that PBHs are unlikely to grow
into the supermassive black holes in galactic nuclei through accreting quintessence.
If there are large extra dimensions, quantum gravity effects could appear at the TeV
scale and small mass black holes may be formed in accelerators. Although such black
holes would not themselves be primordial, this would have important implications for
PBH formation. It would also mean that one could probe the changing dimensionality
of the early universe experimentally.

1 Introduction

Black holes with a wide range of masses could have formed in the early Universe as a result of the great
compression associated with the Big Bang [93, 193]. A comparison of the cosmological density at a time
t after the Big Bang with the density associated with a black hole of mass M shows that PBHs would
have of order the particle horizon mass at their formation epoch:

3t t
My(t) = = = 10'5 (W) g M)
PBHs could thus span an enormous mass range: those formed at the Planck time (107%3s) would have
the Planck mass (105g), whereas those formed at 1 s would be as large as 10° Mg, comparable to the
mass of the holes thought to reside in galactic nuclei. By contrast, black holes forming at the present
epoch could never be smaller than about 1Mg.

The realization that PBHs might be small prompted Hawking to study their quantumn properties.
This led to his famous discovery [94] that black holes radiate thermally with a temperature

het o M\
T=gwemr =10 (m) K, @
so they evaporate on a timescale
hct s f M\?
e e = —_— . 3
(M) YeIVE 10 (Me) y (3)

Only black holes smaller than 10'®g would have evaporated by the present epoch, so eqn (1) implies that
this effect could be important only for black holes which formed before 10~23s.

Hawking’'s result was a tremendous conceptual advance, since it linked three previously disparate
areas of physics - quantum theory, general relativity and thermodynamics. Even if PBHs never existed,
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it has been useful to think about them! However. at first sight it was bad news for PBH enthusiasts.
For since PBHs with a mass of 10'5g would be producing photons with energy of order 100 MeV at
the present epoch, the observational limit on the y-ray background intensity at 100 MeV immediately
implied that their density could not exceed 10~® times the critical density [162]. Not only did this render
PBHs unlikely dark matter candidates, it also implied that there was little chance of detecting black
hole explosions at the present epoch {165]. Nevertheless. it was soon realized that the 4-ray background
resulls did not preclude PBHs playing other important cosmological roles [32] and some of these will be
discussed here.

2 How PBHs Form and Why they Are Useful

The high density of the early Universe is a necessary but not sufficient condition for PBH formation. One
also needs density fluctuations, so that overdense regions can eventually stop expanding and recollapse.
Indeed one reason for studying PBII formation and evaporation is that it imposes important constraints
on primordial inhomogeneities. PBHs may also form at various phase transitions expected to occur in
the early Universe. In some of these one require pre-existing density fluctuations, but in others the PBHs
form spontaneously, even if the Universe starts off perfectly smooth. In the latter case, limits on the
number of PBHs constrain any parameters associated with the phase transition. The formation of PBIIs
from inhomogeneities is discussed in Section 3. but we now briefly review the other mechanisms.

Soft equation of state. Some phase transitions can lead to the equation of state becoming soft for a
while. For example, the pressure may be reduced if the Universe's mass is ever channelled into particles
which are massive enough to be non-relativistic. In such cases, the effect of pressure in stopping collapse
is unimportant and the probability of PBH formation just depends upon the fraction of regions which
are sufficiently spherical to undergo collapse [115]. For a given spectrum of primordial fluctuations, this
means that there may just be a narrow mass range - associated with the period of the soft equation of
state - in which the PBHs form.

Collapse of cosmic loops. In the cosmic string scenario, one expects some strings to self-intersect and
form cosmic loops. A typical loop will be larger than its Schwarzschild radius by the factor (Gu)~!,
where p is the string mass per unit length. If strings play a role in generating large-scale structure, Gu
must be of order 10~%. However, as discussed by many authors (29, 71, 96, 142, 164], there is then a
small probability that a cosmic loop will get into a configuration in which every dimension lies within its
Schwarzschild radius. This probability depends upon both g and the string correlation scale. Note that
the holes form with equal probability at every epoch, so they should have an extended mass spectrum.

Bubble collisions. Bubbles of broken symmetry might arise at any spontancously broken symmetry
epoch and various people have suggested that PBHs could form as a result of bubble collisions [56, 97,
122, 131, 153]. However, this happens only if the bubble formation rate per Hubble volume is finely tuned:
if it is much larger than the Hubble rate, the entire Universe undergoes the phase transition immediately
and there is not time to form black holes; if it is much less than the Hubble rate, the bubbles are very
rare and never collide. The holes should have a mass of order the horizon mass at the phase transition, so
PBHs forming at the GUT epoch would have a mass of 103g, those forming at the electroweak unification
epoch would have a mass of 1028g, and those forming at the QCD (quark-hadron) phase transition would
have mass of around 1My5. There could also be wormhole production at a 1st order phase transition
{121, 147]. Recently the production of PBHs from bubble collisons at the end of 1st order inflation has
been studied extensively by Khlopov and his colleagues (117, 127].

Collapse of domain walls The collapse of sufficiently large closed domain walls produced at a 2nd
order phase transition in the vacuum state of a scalar field, such as might be associated with inflation,
could lead to PBH formation (60, 168, 167]. These PBHs would have a small mass for a thermal phase
transition with the usual equilibrium conditions. However, they could be much larger if one invoked a
non-equlibriumn scenario [169]. Indeed Khlopov et al. argue that they could span a wide range of masses,
with a fractal structure of smaller PBHs clustered around larger ones [118].

Depending on their mass, the study of PBHs provides a unique probe of four areas of physics: quantum
gravity; the early universe; high energy physics; and gravitational collapse. Indeed one can gain insight
into these areas even if PBHs never formed.



PBHS as a probe of quantum gravity (M ~ 1073g). Many new factors could come into play when a
black hole’s mass gets down to the Planck regime, including the effects of extra dimensions and quantum-
gravitational spacetime fluctuations. For example. it has been suggested that black hole cvaporation
could cease at this point. in which case Planck relics could contribute to the dark matter. More radically,
it is possible that quantum gravity effects could appear at the TeV scale and this leads to the intriguing
possibility that small black holes could be generated in accelerators experiments or cosmic ray events.
Although such black holes are not technically “primordial”. this would have radical implications for PBHs
themselves. These issues are discussed in Section 5.

PBHs as a probe of the early Universe (M < 10'5g). Many processes in the early universe could
be modified by PBH evaporations [160]. For example, recent studies have considered how evaporations
could change the details of baryosynthesis [61] and nucleosynthesis [42. 123, 152], provide a source of
gravitinos (116] and neutrinos [27], swallow monopoles {107, 180] and remove domain walls by puncturing
them [181]. PBHs evaporating at later times could have important astrophysical effects. such as helping
to reionize the universe [98]. There has also been interest in whether PBHs could preserve gravitational
“memory” if the value of G was different in the early Universes {15. 16, 40, 89, 108]. Other constraints
are associated with thermodynamics [133] and the holographic principle {57].

PBHS as a probe of high energy physics (M ~ 10'3g). PBH evaporating today could contribute to
cosmic rays, whose cnergy distribution would then give significant information about the high energy
physics involved in the final explosive phase of black hole evaporation. In particular, PBHs could con-
tribute to the cosmological and Galactic y-ray backgrounds, the antiprotons and positrons in cosmic rays,
gamma-ray bursts, and the annihilation-line radiation coming from centre of the Galaxy. These issues
are discussed in Section 6

PBHs as a probe of gravilational collapse (M > 10'3g). This relates to recent developments in the
study of “critical phenomena” and the issue of whether PBHs are viable dark matter candidates. In
the latter case, their gravitational effects could lead to distinctive dynamical, lensing and gravitational-
wave signatures. They could also influence the development of large-scale structure and the formation of
supermassive black holes in galactic nuclei. These issues are discussed in Section 4.

3 PBHs as a Probe of Inhomogeneities and Inflation

One of the most important reasons for studying PBHs is that it enables one to place limits on the
spectrum of density fluctuations in the early Universe. This is because, if the PBHs form directly from
density perturbations, the fraction of regions undergoing collapse at any epoch is determined by the root-
mean-square amplitude ¢ of the fluctuations entering the horizon at that epoch and the equation of state
p =7p (0 <4 < 1). One usually expects a radiation equalion of state (y = 1/3) in the early universe
but it may have deviated from this in some periods. As we will see, this in turn places constraints on
inflationary scenarios, since all of these generate density fluctuations whose spectrum is determined by
the form of the inflaton potential.

3.1 Simplistic Analysis

Early calculations assumed that the overdense region which cvolves to a PBH is spherically symmetric
and part of a closed Friedmann model. In order to collapse against the pressure, such a region must be
larger than the Jeans length at maximum expansion and this is just /7 times the horizon size. On the
other hand, it cannot be larger than the horizon size, else it would formn a separate closed universe and
not be part of our Universe [34].

This has two important implications. First. PBHs forming at time ¢ after the Big Bang should have
of order the horizon mass, given by eqn (1). Second, for a region destined to collapse to a PBH, one
requires the fractional overdensity at the horizon epoch 6 to exceed 4. Providing the deunsity fluctuations
have a Gaussian distribution and are spherically symmetric, one can infer that the fraction of regions of
mass M which collapse is [30]

2
B(M) ~ (M) exp ["27(17)2] (1)



where ¢(M) is the value of ¢ when the horizon mass is Af. The PBHs can have an extended mass spectrum
only if the fluctuations are scale-invariant (i.c. with ¢ independent of Af). In this case, the PBH mass
distribution is given by [30)

dn/dM = (a = 2)(M/M.)™° M *Qeaupei (5)

where M, = 10'5g is the current lower cut-off in the mass spectrum due to evaporations, Qpgy is the
total density of the PBHs in units of the critical density (which depends on ) and the exponent « is
determined by the equation of state:
143y
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a = 5/2 if one has a radiation equation of state. This means that the density of PBHs larger than Af
falls off as A/~1/2, so most of the PBH density is contained in the smallest ones with mass A..

Many scenarios for the cosmological density fluctuations predict that ¢ is at least approximately scale-
invariant. but the sensitive dependence of 8 on ¢ means that even tiny deviations from scale-invariance
can be important. If ¢(M) decreases with increasing A, then the spectrum falls off exponentially and
most of the PBH density is contained in the smallest ones. If ¢(Af) increases with increasing M. the
spectrum rises exponentially and - if PBHs were to form at all - they could only do so at large scales.
However, the microwave background anisotropies would then be larger than observed, so this is unlikely.
It is also possible to enhance PBH formation at particular mass-scales by introducing bumps in ¢(M).

The current density parameter Qppy associated with PBHs which form at a redshift z or time ¢t is
related to 3 by [30]

o [t -1/2 " M O\"V?
Q =0Qr(1+2)=1 - =1 7
peu = BQr(1 +2) = 10 5<s) 0 5(10159) (7)

where Qg = 1074 is the density parameter of the microwave background and we have used eqn (1). The
(1 + z) factor arises because the radiation density scales as (1 + z)*. whereas the PBH density scales as
(14 z)%. Any limit on Qppy therefore places a constraint on G(M) and the constraints are summarized
in Fig. 1, which is taken from Carr et al. [41]. The constraint for non-evaporating mass ranges above
10'5g comes from requiring Qppy < 1 but stronger constraints are associated with PBHs smaller than
this since they would have evaporated by now. The strongest one is the v-ray limit associated with the
10'3g PBHs evaporating at the present epoch [162]. Other ones are associated with the generation of
entropy and modifications to the cosmological production of light elements {160]. The constraints below
108g are based on the (uncertain) assumption that evaporating PBHs leave stable Planck mass relics, an
issue which is discussed in detail in Section 4.2. Note that the cosmological nucleosynthesis constraints
have recently been updated by Carr et al. [42), although their results are not shown in Fig. 1.

The constraints on G(M) can be converted into constraints on e(Af) using eqn (4) and these are shown
in Fig. 2. Also shown here are the (non-PBH) constraints associated with the spectral distortions in the
cosmic microwave background induced by the dissipation of intermediate scale density perturbations and
the COBE quadrupole measurement. This shows that one needs the fluctuation amplitude to decrease
with increasing scale in order to produce PBHs and the lines corresponding to various slopes in the ¢(A/)
relationship are also shown in Fig. 2

3.2 Refinements of Simplistic Analysis

The simple criterion for PBH formation given above neceds to be tested with detailed numerical calcu-
lations. The first hydrodynamical studies of PBH formation were carried out by Nadezhin et al. [156}.
These roughly confirmed the criterion 6 > + for PBH formation, although the PBHs could be be somewhat
smaller than the horizon. In recent years several groups have carried out more detailed hydrodynamical
calculations and these have refined the é > v criterion, suggesting that one needs § > 0.7 rather than
4 > 0.3 [159, 177]. This in turn affects the estimate for (M) given by eqn (4).

A particularly interesting development has been the application of “critical phenomena” to PBH
formation. Studies of the collapse of various types of spherically symmetric matter ficlds have shown that
there is always a critical solution which separates those configurations which form a black hole from those
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which disperse to an asymptotically flat state. The configurations are described by some index p and, as
the critical index p. is approached, the black hole ass is found to scale as (p — p.)" for some exponent
n. This effect was first. discovered for scalar fields [48] but subsequently demeonstrated for radiation [65)
and then more general fluids with equation of state p = vp [124, 149].

In all these studies the spacetime was assumed to be asymptotically flat. However, Niemeyer &
Jedamzik [158] have applied the same idea to study black hole formation in asymptotically Friedmann
models and have found similar results. For a variety of initial density perturbation profiles, they find
that the relationship between the PBH mass and the the horizon-scale density perturbation has the form

M = KMy(6 - 8.)" (8)

where Mj; is the horizon mass and the constants are in the range 0.34 < 5 < 0.37, 2.4 < K < 11.9 and
0.67 < 6. < 0.71 for the various configurations. More recently, Musco et al. [155] have found that the
critical overdensity lies in the lower range 0.43 < 4. < 0.47 if one only allows growing modes at decoupling
(which is more plausible if the fluctuations derive from inflation). They also find that the exponent 7 is
modified if there is a cosmological constant. Since M — 0 as § — 4. the existence of critical phenomena
suggests that PBHs may be much smaller than the particle horizon at formation and this also modifies
the mass spectrum {77, 80, 120. 189]. Although Hawke & Stewart [101] claim that the formation of shocks
prevents black holes forming on scales below 10~* of the horizon mass. this has been disputed [155}.

It should be stressed that the description of fluctuations beyond the horizon is somewhat problematic
and it is clearer to use a gauge-invariant description which involves the total energy or metric perturbation
[177]. Also the derivation of the mass spectrun given by eqn (5) is based on Press-Schechter theory and
it is more satisfactory to use peaks theory. Both these points have been considered by Green et al. (83].
They find that that the critical value for the density contrast is around 0.3, which is close to the value
originally advocated 30 years ago!

Another refinement of the simplistic analysis which underlics equ (1) concerns the assumption that
the fluctuations have a Gaussian distribution. Bullock & Primack (28} and Ivanov [105] have pointed out
that this may not apply if the fluctuations derive from an inflationary period (discussed in Section 3.3).
So long as the fluctuations are small (§¢/¢ < 1), as certainly applies on a galactic scale, this assumption
is valid. However, for PBH formation one requires §¢/¢ ~ 1, and, in this case, the coupling of different
Fourier modes destroys the Gaussianity. Their analysis suggests that (M) can be very different from
the value indicated by eqn (4) but it still depends very sensitively on e. A more detailed analysis of this
problem has been carried out by Avelino (8] and Hidalgo & Seery [101].

3.3 PBHs and Inflation

Inflation has two important consequences for PBHs. On the one hand, any PBIIs formed before the end
of inflation will be diluted to a negligible density. Inflation thus imposes a lower limit on the PBH mass
spectrum:

M > Muyin = A'IP(TRH/TPI)_z (9)
where TRy is the reheat temperature and Tp = 10'? GeV is the Planck temperature. The CMB
quadrupole measurement implies Try = 10'%GeV, 50 Mpin certainly exceeds 1 g. On the other hand,
inflation will itself generate fluctuations and these may suffice to produce PBHs after reheating. If the
inflaton potential is V(¢), then the horizon-scale fluctuations for a mass-scale M are

v3/2
(M) = (W)u (10)

where a prime denotes d/d¢ and the right-hand side is evaluated for the value of ¢ when the mass-scale
M falls within the horizon. In the standard chaotic inflationary scenario. one makes the “slow-roll” and
“friction-dominated” assumptions:

E=(MpV'IV) <1, n=MAV")V 1. (11)

Usually the exponent n characterizing the power spectrum of the fluctuations, |6x|? = k™. is very close
to but slightly below 1:

n=1+4-2n=1. (12)



Since ¢ scales as AM/{!~"/4  this means that the fluctuations are slightly increasing with scale. The
normalization required to cxplain galaxy formation (¢ = 107°) would then preclude the fornation of
PBHs on a smaller scale. If PBH formation is to occur, one needs the fluctuations Lo decrease with
increasing mass (n > 1) and, from eqn (12), this is only possible if the scalar field is accelerating
sufficiently fast that [37]

VIV > (1/2)(V' V)2, (13)

This condition is certainly satisfied in some scenarios [74) and, if it is, eqn (4) implies that the PBH
density will be dominated by the ones forming immediately afier reheating. This is because the volume
dilution of the PBHs forming shortly before the end of inflation will dominate the enhancement associated
with eqn (4). However. it should be stressed that the validity of eqn (10) at the very end of inflation is
questionable since the usual assumptions may fail then (125, 137].

Since each value of n corresponds to a straight line in Fig. 3, any particular value for the reheat
time ¢, corresponds to an upper limit on n. This limit is indicated in Fig. 3. which is taken from [41],
apart from a correction pointed out by Green & Liddle [79]. Similar constraints have been obtained
by several other people [24, 119]. The figure also shows how the constraint on n is strengthened if the
reheating at the end of inflation is sufficiently slow for there to be a dust-like phase [41, 81]. However, it
should be stressed that not all inflationary scenarios predict that the spectral index should be constant.
Indeed, Hodges & Blumenthal {102] have pointed out that one can get any spectrum for the fluctuations
by suitably choosing the form of V(¢). For example, eqn (10) suggests that one can get a spike in the
spectrum by flattening the potential over some mass range (since the fAuctuation diverges when V'’ goes to
0). This idea was exploited by Ivanov et al. [106], who fine-tuned the position of the spike so that it cor-
responds to the mass-scale associated with microlensing events observed in the Large Magellanic Cloud {4].
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Even if PBHs never actually formed as a result of inflation, studying them places important constraints
on the many types of inflationary scenarios. Besides the chaotic scenario discussed above. there are also
the variants of inflation described as designer {102, 106. 190}, supernatural {166]. supersymmetric {76],
hybrid {70, 112], multiple [188}, oscillating [183], ghost {154], running mass [132] and saddle [64]. There
are also scenarios in which the inflaton serves as dark matter [134]. PBH formation has been studied in
all of these models. Note that in the standard scenario inflation ends by the decay of the inflaton into



radiation. However, in the preheating scenario inflation ends more rapidly because of resonant coupling
between the inflaton and another scalar field. This generates extra fluctuations, which are not of the form
indicated by eqn (10) and these might also produce PBHs (18, 63, 68, 82]. However, a recent analysis
by Suyama et al. [182], incorporating a full non-linear lattice simulation for various models. suggests
that PBH formation is insignificant. There have also been a variety of other proposals for generating
perturbations at the end of inflation [21, 126, 136, 171] and the probability of PBH formation would then
again be unrelated to eqn (10).

4 PBHs as a Probe of Dark Matter

Roughly 30% of the total density of the Universe is now Lhought to be in the form of “cold dark matter”.
Recently there has been a lot of interest in whether PBHs could provide this. since those larger than
10'3g would not have evaporated yet and would certainly be massive enough to be dynamically “cold”.
It is also possible that the Planck relics of evaporated PBHs could provide the dark matter.

4.1 Constraints on PBHs in the Galactic Halo

There are some mass ranges in which PBHs are already excluded from providing dark matter in galactic
halos. For example, femtolensing of gamma-ray bursts by PBHs precludes those in the mass range
10}7 - 10%%g from having a critical density and microlensing of stars in the Large Magellanic Cloud, while
allowing a tenth-critical-density at around a solar mass, excludes 1026 — 103¢g PBHs [4). However, there
are no constraints in the intermediate (sublunar) mass range 10%° - 1026g {24]. Note that LISA might
detect the gravitational impulse induced by any nearby passing PBH [1, 176]. However. this method
would not be feasible below 10'g (because the effect would be hidden by the Moon) or above 10%g
(because the encounters would be too rare).

One possibility is that PBHs with a mass of around 1M could have formed at the quark-hadron
phase transition at 10~%s because of a temporary softening of the equation of state then. 1f the QCD
phase transition is assumed to be 1st order, then hydrodynamical calculations show that the value of ¢
required for PBH formation is reduced below the value which pertains in the radiation era [110]. This
means that PBH formation will be strongly enhanced at the QCD epoch, with the mass distribution
peaking at around the horizon mass then [109, 163, 187]. Such PBHs might be able to explain the
MACHO microlensing results [4] and also the claimed microlensing of quasars [92]. Another possibility
is that PBHs with a mass of around 1077 Mg could form in TeV quantum gravity scenarios [103).

One of the interesting implications of these scenarios is the possible existence of a halo population
of binary black holes [157]. With a full halo of such objects, there could be a huge number of binaries
inside 50 kpc and some of these could be coalescing due to gravitational radiation losses at the present
epoch [25]. If the associated gravitational waves were detected, it would provide a unique probe of the
halo distribution [104]. Gravity waves from binary PBHs would be detectable down to 10-*Mg using
VIRGO, 10”7 M using EURO and 10~ Mg using LISA {103].

4.2 Planck-Mass Relics

Some people have speculated that black hole evaporatlion could cease once the hole gets close to the
Planck mass (26, 54. 146]. For example, in the standard Kaluza-Klein picture, extra dimensions are
assumed to be compactified on the scale of the Planck length. This means that the influence of these
extra dimensions becomes important at the encrgy scale of 10'°GeV. Such effects could conceivably result
in evaporation ceasing at the Planck mass. Various non-quantum-gravitational effects (such as higher
order corrections to the gravitational Lagrangian or string effects) could also lead to stable relics [41] but
the relic mass is usually close to the Planck scale.

Another possibility, as argued by Chen & Adler [46]. is that stable relics could arise if one invokes a
“generalized uncertainty principle”. This replaces the usual uncertainty principle with one of the form

h 2 Op

Az > o+ IR (14)



where the second term is supposed to account for self-gravity effects. This means that the black hole

temperature becomes
Mc? A}
Tgy=—1{1- _—=rl
BH = 0% (l V-2 ) (15)

This reduces to the standard Hawking form for M > Mp but it remains finite instead of diverging at
the Planck mass itsell. Cavaglia and colleagues have extended this argument to higher-dimensional black
holes [43] and also included the effects of thermal Auctuations (44].

Whatever the cause of their stability, Planck mass relics would provide a possible cold dark matter
candidate [138]. Indeed this lcads to the “relics” constraints indicated in Fig.1, Fig.2 and Fig.3. In
particular, such relics could derive from inflationary PBHs [17, 24]. If the relics have a mass xMp, then
the requirement that they have less than the critical density implies [41]

B(M) < 107 ¥k~ (M/Mp)3/? (16)

for the mass range
(TRH/TP)_ZA'Ipl <M< lO“RUSIWP. (17)

The upper mass limit arises because PBHs larger than this dominate the total density before they
evaporate. Producing a critical density of relics obviously requires fine-tuning of the index n. Also one
needs n =1.3, which is barely compatible with the WMAP results (6, 14]. Nevertheless, this is possible
in principle. In particular, it has been argued that hybrid inflation could produce relics from 10°g PBHs
formed at 10~3%s [45, 184].

4.3 Large-Scale Structure and Supermassive Black Holes

PBHs might also play a role in the formation of large-scale structure (61, 111, 118, 169]. For example, it
has been realized for some time that Poisson fluctuations in the number density of PBHs can generate
appreciable density perturbations on large scales if the PBHs are big enough (33, 35, 47, 69, 151]. This
idea has recently been invoked to explain voids and Lyman-alpha clouds [2]. In such scenarios, it is
important to know how much a PBH can grow through accretion and it has been argued that this could
be significant even in the period after matter-radiation equality [144].

Several people have suggested that the 10° — 108 Mg supermassive black holes thought to reside in
galactic nuclei [128] could be of primordial origin. For example, a 1st order phase transition could produce
clusters of PBHs, around which a single supermassive black hole might then condense [60]. Alternatively,
it has been proposed that inflation could produce closed domain walls, which then collapse to form 108
PBHs (118, 167]. Another scheme invokes more modest mass PBHs of 10° Mg. resulting from a feature in
the inflaton potential, which then grow to 103 Mg by accretion [62]. In particular. Bean and Magueijo [19]
and Custodio and Horvath [58] have suggested that PBHs may accrete from the quintessence field which
is invoked to explain the current acceleration of the Universe. On the basis of a semi-Newtonian analysis,
they claim that a PBH with size comparable to the cosmological particle horizon scale could grow at the
same rate as the particle horizon.

In view of the importance of this claim, we now consider the argument of Bean and Magueijo in more
detail. They consider a scalar field in a potential of the form

V($) = Voe~ V3™, (18)

By generalizing the analysis of Jacobson [108], which attaches a Schwarzschild solution to a cosmological
background in which the field has the asymptotic value ¢., they claim that the energy flux through the

event horizon is 4552. leading to a black hole accretion rate
dM .
Tt' = 167I'A[2¢¢2. (19)

They correctly infer that only the kinetic energy of the scalar field is accreted, the scalar potential merely
influencing the evolution of the asymptotic background field:

$e = ;—jﬁlog (é) , (20)



where {g is a constant of integration. The accretion rate therefore becomes

dM  KM?
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with K = 8/)2, which can be integrated to give
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For My <« K~ 'tg, corresponding to an initial black hole mass much less than that of the particle horizon,
this implies negligible accretion. However, for My = K45, BEq. (22) predicts a self-similar solution,
M & t, in which the black hole always has the same size relative to the particle horizon. This is the
result which Bean and Maguiejo exploit. For My 3> K ~'ty, the mass diverges very rapidly.

Eqn (22) suggests that PBHs may accrete surrounding mass very effectively if their initial size is fine-
tuned. However, this analysis is questionable since it is semi-Newtonian and neglects the cosmological
expansion. Indeed, it is exactly equivalent to an argument presented by Zeldovich and Novikov [193] nearly
30 years ago, which suggested that PBHs could grow self-similarly even in a universe with a radiation
equation of state (p = ¢/3). However, a study of spherically symmetric self-similar PBH solutions in
radiation universe [34] demonstrated analytically that there is no self-similar solution which contains a
black hole attached to an exact Friedmann background via a sonic point (i.e. in which the black hole
forms by purely causal processes). The Newtonian analysis is therefore definitely misleading in this case.
There are self-similar solutions which are asymptotically Friedmann at large distances from the black hole.
However, these correspond to special acausal initial conditions, in which matter is effectively thrown into
the black hole at every distance. Similar results were subsequently proved for all perfect fluid systems
with equation of state of the form p = ke with 0 < k < 1 [22, 31, 36]. Indeed it was shown that the only
physical self-similar solution which can be attached to an external Friedmann solution via a sonic point
is Friedmann itself; the other solutions either enter a negative mass regime or encounter another sonic
point where the pressure gradient diverges.

The stifl fluid case (k = 1) is more complicated and requires special consideration. It was originally
claimed by Lin et al. [135] that there could exist a self-similar solution in this case but a subsequent
analysis [23] showed that their argument was flawed. Lin et al. failed to appreciate that the surface
which they interpreted as the event horizon is timelike rather than null, with the density going to zero
there. The only way of having a black hole would be if the fluid turned into null dust at this timelike
surface but this seems unphysical. It therefore appears that there is no self-similar solution containing a
black hole in an exact Friedmann background for any value of k in the range [0,1}.

In view of the prevalence of scalar fields in the early Universe, it is clearly important to know whether
the non-existence of a self-similar solution extends Lo the scalar field case. One might expect this from
the stiff fluid analysis, since a scalar field is equivalent to a stiff fluid provided the gradient is everywhere
timelike [145]. This is supported by recent numerical studies of the growth of PBHs in a scalar field
system, which - for a variety of initial conditions - give no evidence for self-similar growth (86, 87].
However, it is very difficult to determine through numerical simulations whether self-similar growth is
impossible for any specific initial data. Also Bean and Magueijo caution that the Carr-Hawking proof
only applies for a perfect fluid and may not be relevant if the scalar field case has a potential. One
therefore needs an analytic proof that there is no self-similar PBH solution if the cosmological expansion
is taken into account. Such a proof has now been provided by Harada et al. [90], even for the case with
a potential. We conclude that PBH accretion of quintessence is not as important as Bean and Magueijo
claim.

5 PBHs as a Probe of Higher Dimensions

In “brane” versions of Kaluza-Klein theory, some of the extra dimensions can be much larger than the
usual Planck length and this means that quantum gravity effects may become important at a much
sinaller energy scale than usual. If the internal space has n dimensions and a compact volumne V,,, then



Newton’s constant Gy is related to the higher dimensional gravitational constant G and the value of the
modified Planck mass A{p is related to the usual 4-dimensional Planck mass M by the order-of-magnitude
equations:

Gn ~Gp/V,,. MB*2 ~ M}V, (23)

The same relationship applies if one has an infinite extra dimension but with a “warped” geometry,
provided one interprets V,, as the “warped volume”. In the standard model, V,, ~ 1 /MZ and so Mp ~ M.
However, with large extra dimensions, one has V,, > 1 /M and so Mp < M,.

5.1 Black Hole Production at Accelerators

One exciting implication of these scenarios is that quantum gravitational effects may arise at the experi-
mentally observable TeV scale. If so, this would have profound implications for black hole formation and
evaporation since black holes could be generated in accelerator experiments, such as the Large Hadron
Collider (LHC) [11, 59, 73, 113, 170, 192]. This is illustrated in Fig. 4, which is taken from ref. (40] and
shows how the relationship between the mass and radius of a black hole is modified if the dimensionality
changes 2.
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Figure 4: Higher dimensional black holes

Two partons with centre-of-mass energy /s will form a black hole if they come within a distance
corresponding to the Schwarzschild radius rg for a black hole whose mass Mpgy is equivalent to that
energy {73]. Thus the cross-section for black hole production is

opy = nrée(\/.; - A[g‘;,n) ’ (24)

where MEI[ is the mass below which the semi-classical approximation fails. Here the Schwarzschild
radius itself depends upon the nuinber of internal dimensions:

1 [ Mgy 1/(14n)
T Mp \ Mp '

Ts (25)

so that opy o s%/("*1). This means that the cross-section for black hole production in scattering
experiments goes well above the cross-section for the standard model above a certain energy scale and in
a way which depends on the number of extra dimensions.

21 am very indebted to the conference organizer, Tetsuya Shiromizu, for translating this article into Japanese. This is
because I am married to a Japanese lady and, when 1 prescuted a copy of the translated paper to her parents, they were
very impressed that [ could write Japanese so well. Thanks to Tetsuya, they now regard me as a worthy son-in-law!



The evaporation of the black holes produced in this way will produce a characteristic signature (59, 73,
170] becausc the temperature and lifetime of the black holes depend on the number of internal dimensions:

- n+1 _ 1 I‘IBH (n+3)/(n+1)
T s BT M \ My ’

(26)

Thus the temnperature is decreased relative to the standard 4-dimensional case and the lifetime is increased.
The important. qualitative effect is that a large fraction of the beam energy is converted into transverse
energy. leading to large-multiplicity events with many more hard jets and leptons than would otherwise
be expected. In principle, the formation and evaporation of black holes might be observed by the LHC
when it turns on in 2007 and this might also allow one to experimentally probe the number of extra
dimensions. On the other hand, this would also mean that scattering processes above the Planck scale
could not be probed directly because they would be hidden behind a black hole event horizon [72].
Similar effects could be evident in the interaction between high energy cosmic rays and atmospheric
nucleons. Nearly horizontal cosnic ray neutrinos would lead to the production of black holes, whose decays
could generate deeply penetrating showers with an electromagnetic component substantially larger than
that expected with conventional neutrino interactions. Several authors have studied this in the context
of the Pierre Auger experiment, with event rates in excess of one per year being predicted {7, 66, 170].
Indeed there is a small window of opportunity in which Auger might detect such events before the LHC.
On the other hand. it must cautioned that these estimates may be overly optimistic. Others have claimed

that black hole production in accelerators may be unobservable even if TeV quantum gravity is correct
3]

5.2 PBHs and Brane Cosmology

Although the black holes produced in accelerators should not themselves be described as “primordial”,
since they do not form in the early Universe, it is clear that these experiments will also have profound
implications for PBHs themselves. This is because, at sufficiently early times. the effects of the extra
dimensions will be cosmologically important. Indeed Fig. 4 illustrates that one could effectively retrace
the changing dimensionality of the early universe by changing the energy of the accelerator.

Brane cosmology modifies the standard PBH formation and evaporation scenario in a number of ways.
In particular, in Randall-Sundrum type I1 scenarios (which have one extra dimension) a p? term appears
in the Friedmann equation and this dominates the usual p term for

T > 10"8(1/1p)~/4GeV (27)

where ! is the scale of the extra dimension. This exceeds 1 TeV for ! < 0.2 mm. Black holes which are
smaller than ! are effectively 5-dimensional. This means that they are cooler and evaporate more slowly
than in the standard scenario:

Ty x M~Y? 7o M2 (28)

This corresponds to eqn (26) with n = 1. The critical mass for PBHs evaporating at the present epoch
is now in the range 3 x 10% to 4 x 10'%g. This modifies the standard PBH evaporation constraints
[49. 84] and, if some cosmic rays come from PBIHs. it means that these could probe the extra dimensions
(174, 175). Another complication is that accretion could dominate evaporation during the era when the
p? term dominates the p term in the Friedmann equation [150].

6 Cosmic Rays from PBHs

A black hole of mass M will emit particles like a black-body of temperature [95]

M\ M\
T=x=10%{ = (x| —— V. ¢
10 ( p ) K (10139) Ge (29)

This assumes that the hole has no charge or angular momentum. This is a reasonable assumption since
charge and angular momentum will also be lost through quantum emission but on a shorter timescale



than the mass [161]. This means that it loses mass at a rate
M=-5x10%(M/g)"*f(M)gs! (30)

where the factor f(M) depends on the number of particle species which are light enough to be emitted
by a hole of mass M, so the lifetime is

T(AM) =6 x 10727 f(A1) "} (Ml/g)® s. (31)

The factor f is normalized to be 1 for holes larger than 10" g and such holes are only able to emit
“massless” particles like photons, neutrinos and gravitons. Holes in the mass range 10" g < M < 107 ¢
are also able to emit electrons, while those in the range 10 g < M < 10'> g emit muons which
subsequently decay into electrons and neutrinos. The latter range includes, in particular, the critical
mass for which 7 equals the age of the Universe.

Once M falls below 10'*g, a black hole can also begin to emit hadrons. However, hadrons are composite
particles made up of quarks held together by gluons. For temperatures exceeding the QCD confinement
scale of Aqcp = 250 — 300 GeV. one would therefore expect these fundamental particles to be emitted
rather than composite particles. Ouly pions would be light enough to be emitted below Aqcp. Since
there are 12 quark degrees of freedom per flavour and 16 gluon degrees of freedom, one would also expect
the emission rate (i.e. the value of f) to increase dramatically once the QCD temperature is reached.
One can regard the black hole as emitting quark and gluon jets of the kind produced in collider events
[139]. The jets will decay into hadrons over a distance which is always much larger than the size of the
hole, so gravitational effects can be neglected. The hadrons may then decay into astrophysically stable
particles through weak and electomagnetic decays.

To find the final spectra of stable particles emitted from a black hole, one must convolve the Hawking
emission spectrum with the jet fragmentation function. In order to determine the present day background
spectrum of particles generated by PBII evaporations, one must first integrate over the lifetime of each
hole of mass M and then over the PBH mass spectrum (141]. In doing so, one must allow for the fact
that smaller holes will evaporate at an earlier cosmological epoch, so the particles they generate will be
redshifted in energy by the present epoch.

6.1 Gamma-Rays and Antiprotons from Evaporating PBHs

All the spectra have rather similar shapes: an E~3 fall-off for E > 100 MeV due to the final phases of
evaporation at the present cpoch and an E~! tail for E < 100 MeV due to the fragmentation of jets
produced at the present and earlier epochs. Note that the £~ tail generally masks any effect associated
with the mass spectrum of smaller PBHs which evaporated at earlier epochs [32]. The situation is more
complicated if the PBHs evaporating at the present epoch are clustered inside our own Galactic halo (as
is most likely). In this case, any charged particles emitted after the epoch of galaxy formation (i.e. from
PBHs only somewhat smaller than AM,) will have their flux enhanced relative to the photon spectra by a
factor £ which depends upon the halo concentration factor and the time for which particles are trapped
inside the halo by the Galactic magnetic field. This time is rather uncertain and also energy-dependent. At
100 MeV one has £ ~ 102 for electrons or positrons and £ ~ 10? for protous and antiprotons. MacGibbon
& Carr [140] first used the observed cosmic ray spectra Lo constrain Qpgy but their estimates have been
subsequently refined.

EGRET observations [179] of the y-ray background between 30 MeV and 120 GeV leads to an upper
limit Qppy < (5.1 £ 1.3) x 10"°h~%, where h is the Hubble parameter in units of 100 [38]. This is
a refinement of the original Page-Hawking limit. but the form of the spectrum suggests that PBHs do
not provide the dominant contribution. If PBHs are clustered inside our own Galactic halo. then there
should also be a Galactic 4-ray background and, since this would be anisotropic, it should be separable
from the extragalactic background. The ratio of the anisotropic to isotropic intensity depends on the
Galactic longtitude and latitude, the Galactic core radius and the halo flatiening. Wright claims that
such a halo background has been detected [186]. His detailed fit to the EGRET data, subtracting various
other known components, requires the PBH clustering factor to be (2 —12) x 105h~!, comparable to that
expected.



Since the ratio of antiprotons to protons in cosmic rays is less than 10~* over the energy range
100 MeV — 10 GeV, whereas PBHs should produce them in equal numbers, PBHs could only contribute
appreciably to the antiprotons [185]. It is usually assumed that the observed antiproton cosmic rays are
secondary particles. produced by spallation of the interstellar medium by primary cosmic rays. However,
the spectrum of secondary antiprotons should show a steep cut-off at kinetic energies below 2 GeV,
whereas the spectrumn of PBH antiprotons should increase with decreasing cnergy down to 0.2 GeV. Also
the antiproton fraction should tend to 0.5 at low energies, so these [ealures provide a distinctive signature
[120]. MacGibbon & Carr originally calculated the PBH density required to explain the interstellar
antiproton flux at 1 GeV and found a value somewhat larger than the y-ray limit [140]. More recent
data on the antiproton flux below 0.5 GeV come from the BESS balloon experiment {191] and Maki et
al. [148] and Barrau et al. [12] have tried to fit this in the PBH scenario. Evaporating PBHs might also
be detected by their antideuteron flux [13].

6.2 PBH Explosions

One of the most striking observational consequences of PBH evaporations would be their final explosive
phase. However, in the standard particle physics picture, where the number of elementary particle species
never exceeds around 100, the likclihood of detecting such explosions is very low. Indecd, in this case,
observations only place an upper limit on the explosion rate of 5 x 108pc=3y~! [5, 173}. This compares
to Wright’s y-ray halo limit of 0.3 pc™3y~! [186] and the Maki et al. antiproton limit of 0.02 pc~3y~!
[148].

However, the physics at the QCD phase transition is still uncertain and the prospects of detecting
explosions would be improved in less conventional particle physics models. For example. in a Hagedorn-
type picture, where the number of particle species exponentiates at the the quark-hadron temperature,
the upper limit is reduced to 0.05 pc~3y~! [67]. Cline and colleagues have argued that one might expect
the formation of a QCD fireball at this temperature [50, 51] and this might even explain some of the short
period q-ray bursts observed by BATSE. They claim to have found 42 candidates of this kind and the
fact that their distribution matches the spiral arms suggests that they are Galactic [52]. Although this
proposal is speculative and has been disputed [78], it has the attraction of making testable predictions
(eg. the hardness ratio of the burst should increase as the duration decreases). A rather different way of
producing a y-ray burst is to assume that the outgoing charged particles form a plasma due to turbulent
magnetic field effects at sufficiently high temperatures [20].

Some people have emphasized the possibility of detecting very high energy cosmic rays from PBHs
using air shower techniques {55, 85, 130]. However, this is refuted by the claim of Heckler [99] that
QED interactions could produce an optically thick photosphere once the black hole temperature exceeds
Terie = 45 GeV. In this case, the mean photon energy is reduced to m.(Tgy /Terit)!/?, which is well
below Tgy, so the number of high energy photons is much reduced. He has proposed that a similar
effect may operate at even lower temperatures due to QCD effects [100]. Several groups have examined
the implications of this proposal for PBH emission [53. 114]. However, these arguments should not be
regarded as definitive since MacGibbon et al. claim that QED and QCD interactions are never important
(143].

7 Conclusions

‘We have seen that PBHs could be used to study the early Universe, gravitational collapse, high energy
physics and quantuin gravity. In the “early Universe” context, useful constraints can be placed on
inflationary scenarios. In the “gravitational collapse” context, the existence of PBHs could provide a
test of critical phenomena and contribute to the dark matter. In the *high energy physics” context,
information may come from cosmic ray and even gamma-ray bursts if suitable physics is invoked at the
QCD phase transition. In the “quantum gravity” context, the formation and evaporation of small black
holes could be observable in cosmic ray events and accelerator experiments if the quantum gravity scale
is around a TeV.
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