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PREFACE

The thirteenth workshop on General Relativity and Gravitation in Japan was held at Osaka City
University Media Center, Osaka City University located in the Sugimoto Campus from 1 to 4
December 2003. The main purpose of this workshop was to review the latest progress in the field of
general relativity, gravitation, general relativistic astrophysics, and the detection of gravitational
waves as well as to promote interaction between researchers working in these field.

The workshop was organized as an international conference and composed of 11 invited talks, and
78 contributed talks (oral presentation: 44 and poster presentation: 34). Among them, 9 were
presented by the researcheres from overseas. The workshop was attended by about 150 researcheres.
We appreciate very much all the participants for their contribution to the workshop.

We would like to thank Ms. K. Yokota, the secretary at the Department of Physics, Kyoto University,
for her devoted transaction of various official works. We are also grateful to the members (E. Sakane, L.
Tanaka, H. Kozaki, K. Ogawa, C. Yoo, K. Matsuno and S. Saito) of the research group for theoretical
astrophysics and theory of gravity in the Department of Mathematics and Physics, Osaka City
University for their cooperation in management of the workshop. Finally we appreciate very much the
Osaka City University Media Center for providing a conference room without any charge. The
workshop was financially supported by Monbukagakusho Grands for scientific researches, Nos.

12440063 (PI: K. Tomita) and 14047212 (PI: T. Nakamura).
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LIGO held its first science run (S1) from 23 August to 09 September 2002. During the 17-day

period, the three km-scale LIGO interferometers (4 km and 2 km in WA and 4 km in LA) and the
600m GEQ interferometer (outside Hannover, Germany) operated as a network of detectors for part
of the time. The strain sensitivity of the LIGO interferometers during this cbservational period was
h(f) ~ 3 -20x 10 Hz% near f ~ 300Hz. Their useful instrumental bandwidth spanned the
decade 100 Hz < f < 1000 Hz. During S1, LIGO interferometers had better broadband sensitivities
than any prior gravitational wave detector. In addition, the number of interferometers operating
simultaneously was unprecedented.
The LIGO Scientific Collaboration have completed analyses of the S1 data for a number of classes
of sources of gravitational waves (GW). These included: (i) inspiral and merger of compact binary
systems; (ii) continuous wave sources, the GW counterparts to radio pulsars; (iii)} burst or transient
sources, such as GW emissions from SNe; (iv) a stochastic gravitational wave background. The
emphasis in this first science run was to develop the analysis techniques and software pipelines that
will be used to analyze data during periods of extended observation in future science runs. At
the same time, the S1 data quality were such that it was be possible to provide improved direct
observational limits on gravitational radiation for a number of sources with these fundamentally
new instruments.

PACS numbers:



I. INTRODUCTION

During the last few years a number of new gravitational wave detectors. using long-baseline laser interferometry.
are being commissioned and have been entering into operation. These include the Laser Interferometer Gravitational
Wave Observatory - LIGO [1] - detectors located in Hanford. WA and Livingston. LA, built by a Caltech-\MIT
collaboration: the GEO-600 detector near Hannover. Germany, built by an UK-German collaboration [1]: the VIRGO
detector near Pisa. Italy. built by an [talian-French collaboration [2]: and the Japanese TAMA-300 detector in Tokvo
[3]. While none of these instruments is yet performing at its design sensitivity. many have begun making dedicated
data collecting runs and performing gravitational wave search analyses on the data.

In particular, from 23 August 2002 to 9 September 2002. the LIGO Hanford and LIGO Livingston Observatories
J41 5] ook coincident science data (referred to hereafter as S1}). The LHO site contains two. identically oriented
interferometers: one having 4 km long measurement arms (referred to as H1), and one having 2 km long arms (H2):
the LLO site contains a single. 4 km long interferometer (L1). These interferometers each have one arm aligned
parallel to the great circle connecting the sites. thus providing optimal alignment to the same G\ polarization. GEQ
also took data in coincidence with the LIGO detectors during that time. although with significantly poorer sensitivity.

The LIGO Scientific Collaboration[6] have completed analyses of the S1 data set for evidence of signatures coming
from four classes of gravitational wave (GW) sources. These include: (i) inspiral and coalescence of compact binary
systems: (ii) continuous wave sources, GW counterparts to radio pulsars: (iii) burst or transient sources. such as G\’
emissions from SNe; (iv) a stochastic gravitational wave background. The emphasis in this first science run was to
develop the analysis techniques and software pipelines that will be used to analyze data continuously during periods of
extended observation in future science runs. While no detections were made, the S1 data quality are such that it was
possible to provide improved direct observational limits on GW from a number of sources with these fundamentally
new instruments.

Fig. | presents a composite graph showing the amplitude spectral densities for the three LIGO interferometers
taken during the S1 run. The LA 4 km machine was the most sensitive, achieving strain sensitivities of h(300 tz) ~
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TABLE [: Operational duty cycles of different coincidence modes during S1.

Locked Time (lIr) Duty Cycle (%)
Single
H1 (4 km) 235 57.6
H2 (2 km) 298 73.1
L1(4 km) 170 41.7
Double Coincidence
H1+L1 116 28.4
H2+L1 131 32.1
H1+H2 188 46.1
Triple Coincidence
H1+H2 +L1 95.7 234
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FIG. 1: Spectra of instrumental sensitivities for the three LIGO interferometers during the $1 science run. The solid curve
corresponds to the design goal for the 4 km long interferometers in WA and LA. The dashed curve gives the goal! for the shorter,
2 km long instrument in WA.

3 x 1072 Hz™ 4. Table I presents the operational duty cycles for the different coincidence modes during S1. During
S1, LIGO interferometers had better broadband sensitivities than any prior gravitational wave detector. In addition,
the number of machines operating simultaneously was unprecedented.

1I. DISCUSSION

Searches for the four classes of G\V sources described above have been conducted with the S1 data. In all cases, the
primary emphasis of the analyses was to define, develop, and implement data analysis pipelines to provide production
capability for processing data end-to-end. These efforts included support for Monte Carlo simulations to validate and
calibrate the search efficiencies. Fig. 2 presents a block diagram schematic of the analysis flow for the burst event
search. It is representative of a prototypical analysis pipeline for an cvent-based search.
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FIG. 2: The burst analysis pipeline as a prototypical analysis technique. Notation: DSO - a search algorithm library: LDAS -
LIGO Data Analysis System environment: DB - relational database used to archive event metadata: DMT - data monitoring
tool suite used to look at non-strain channel data in near real time; IFO - interferometer; LHO - LIGO Hanford Observatory
: LLO - LIGO Livingston Observatory.

Data streams from each interferometer were processed through a pipeline that generated candidate events. These
events were subsequently analyzed for coincidence among as many interferometers as were operating at the epoch
when the candidate event was produced. The gravitational wave (strain) channel was processed by event trigger
generator filter(s) that perform optimal filtering of the strain chaunel using either template waveforms based on
astrophysical source maodels or parametrizable waveforms (e.g.. wavelets) that were correlated continuously against
the interferometer output. When the event trigger exceeds a threshold determined by Monte Carlo calibration of the
pipeline. a putative event is identified for further postprocessing downstream.

A variety of auxiliary channels were used to monitor instrumental and environmental characteristics at the same time
the strain channel is analyzed. Transient or off-nominal behavior of these other channels is used to reto candidate
events during epochs of detection when the instrument was not operating in its quiescent state. Candidates that
survive these vetoes were then processed for coincidence among the several interferometers. Further, consistency
checks were enforced to verify, for example. that the coincident events were consistent among all interferometers: for
example, comparable signal amplitude. duration. and frequency content were required of a coincidence for it to be
considered a possible astrophysical event.

Interpretation of the results requires that models of source distributions, source strengths and waveform character-
istics be injected into the data stream using Monte Carlo techniques. In this way the detection efficiency could he
determined for different classes of signals.

A. Searches for compact binary inspirals

Waveforms associated with the inspiral of A/, + Ay < 6A/; compact binary systems are the most well-studied
sources that can be detected in the LIGO band. What is much less well known is the rate with which such events
occur in Nature. Information on binary systems is inferred from observations of radio pulsars. The most probable
rate of NS+NS coalescences were recently revised upward by almost a factor 10x [8)(9] compared to rate estimates
of even a few years ago (7). The improved prospect for detection by the initial generation of km-scale interferometer
results from the recent discovery of the most relativistic pulsar binary system to date. PSR J0737-3039. The present
understanding of the population of these systems suggest that NS+NS merger rates within the local cosmic spacetime
volume enclosing the Virgo cluster mnay approach ~ 1 per | -2 years at the upper end of the 93% confidence bound|8).

Unfortunately, there are no known NS/BH binaries in which the NS is also a pulsar. Therefore, it is necessary
to rely on much less certain estimates based on simulations of the evolution of a population of progenitor hinary
systems to determine the number of systems that lead to compact NS/BH binaries. It is important to note that the
uncertainties in the predicted rates of mergers span three orders of magnitude. A one year observation with current
LIGO interferometers is likely to not observe these types of events.

The detection technique employs optimal Wiener filtering with matched templates in the frequency domain (10).
Specific details of the implementation of the analysis technique to the LIGO S1 data are provided elsewhere[11]
and will only be summarized here. The interferometer strain data are correlatedt with theoretically derived signal



waveforms (femplates). weighted by the reciprocal of the instrument noise spectral density to produces a time series
of signal-to-noise ratio. Let the detector’s calibrated strain data be s(t) = n(t) + h(t), where n(t) is the instrumental
strain noise and h(¢) is a gravitational wave signal (if present). The strain produced in the instrument is written as

1)
Dl::c [sina-hi(t -l) +cosa h",(l -t - (N

hit) =

where a depends on the orbital phase and orientation of the binary system, ¢, is the time (at the detector) when
the binary reaches its inner-most stable circular orbit. and h! (¢ - ¢.) are the two polarizations of the gravitational
waveform produced by an inspiralling binary normalized to_the amplitude produced by an optimally oriented source
at a distance of 1 Mpe. The two waveforms are related by hé(f ) = —ih!(f). The binary inspiral waveform can thus
be parameterized (for a single detector) in terms of the component masses I = (m;, my). the effective distance, and
the signal phase. D g4 includes the combined effect antenna pattern and source position. The matched flter output
for given masses [ then is the complex time series,

®x §1 e ENTY 2
s(t: 1) =2(t) + iy(t) = 4L %ehmdf ;o2 = 4/‘; "l?‘;‘(—(—‘?)l—df. {2)
p(t) = @. (3)

Sn(f) is the one-sided strain noise power spectral density. In this expression, z(t) is the matched filter response to
the a = 0 waveform. A/, while y(t) is the matched filter response to the a = 7/2 waveform, h!. o2 is the variance of
the matched filter output due to detector noise. The signal-to-noise ratio (SNR) of the matched filter output is given
by p. For stationary and Gaussian noise. g is the optimal detection statistic for a single detector.

A powerful y? discriminant against events generated by non Gaussian detector noise can be formulated by consider-
ing the frequency-time distribution of SNR as the signal evolves over time. The total SNR is divided into p contiguous
frequency bins each of which is chosen to contain equal contribution to p. Thus the bins will differ in width.

P
30 = 5 Y1) - =0)/pl (4)
=1

If & putative signal h(t) has masses which do not exactly match any template in the bank, then x? has a non-central
chi-squared distribution with 2p — 2 degrees of freedom and a non-central parameter A = 2p2%¢2, where p is the SNR
for the signal and ¢ is the fractional loss of SNR due to parameter mismatch. The analysis imposed a maximum
allowable, p-dependent threshold on x? for putative inspiral events. This is referred to as the x2-veto:

x? < 5(p +0.03p%). (5)

p = 8 bins were used throughout the Sl analysis. Since the detector noise was not Gaussian, the threshold was
selected based on performance in a playground data set used to tune the analysis

Fig. 3 shows the dependence of coalescence signals en frequency. The ordinate gives the so-called “characteristic”
strain of an inspiral signal. This quantity is the square root of the signal power spectral density multiplied by the
number of cycles in the waveform at that frequency: it is a measure of the total power radiated at any given frequency
during a coalescence event. This shows that the S1 search had adequate sensitivity to detect coalescence events for
NS+NS systems to D ~ 100kpc. In fact, the most sensitive L1 interferometer could detect with SNR = 8 an optimally
oriented 1.4Mg + 1.4 merger to D = 176 kpe; H1 had a corresponding range of D = 46 kpc. The mass range
1Mg < my € my € 4Mg and (my + mg) < 4Mg required a total of 2110 non-spinning second order post-Newtonian
templates to ensure a minimum match of 97% everywhere within this parameter space. The analysis was performed
with an SNR threshold p > 6.5 and x2 < 40 (cf. to Eq. 3).

Putative merger events had to originate from data segments having suitable RMS noise performance as determined
by analyzing the playground data set. In addition, coincidences between detectors had to eccur within an 11 ms time
window and correspond to the same set of template parameters to within 1%. No coincident events were detecied that
met these criteria.

Consequently, an upper limit could be set by considering the highest SNR event detected in the L1 detector
(p = 15.9). A detailed population model was developed that included the Milky Way and the neighboring satellite
Small and Large Magellenic Clouds (SMC and LMC, respectively). The number of potential sources within the
Milky Way was used as a population unit - the Milky Way Equivalent Galaxy or MWEG. The total available source
population was then 1.13 MWEG. A detection efficiency of (p) = 0.53 for p = 15.9 was determined by Monte Carlo,
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FIG. 3: Plot comparing sensitivity curves of the three LIGO interferometers during S1 and the ultimate design sensitivity for
the 4 km instruments. The trajectories correspond to the power spectra for signals arising from the indicatex] sources. S
provided galactic coverage for detection of inspiral coalescences.

which implied that 1.13 x 0.53 = 0.60 MWEG of the potential sources within the immediate galactic neighborhood
would have been observable. Revising this estimate downward to account for systematic calibration uncertainties by
0.1 MWEG, an estimated 0.50 MWEG was within detection range during S1. Using an observation period of T = 236
h, this results in a 90% upper confidence bound on the merger rate of Rygy < 1.7 x 102y ~!NWEG ™).

B. Searches for periodic sources of GW

Periodic sources are narrowband coherent signals that extend over the entire period of observation. For sufficiently
long observations, the deterministic and well-characterized frequency modulations (FM) imposed by the barycentric
motion of the Earth around the sun can be exploited to verify the extraterrestrial nature of such a source. On the
scale of the S1 run, only a portion of the yearly FM cycle is detectable and the FM signatures correspond to monotonic
drifts in signal frequency upon which is superimposed the daily modulations caused by Earth rotation. In addition,
there may also be superimposed more complex frequency modulations due to intrinsic source characteristics. If these
are not known a priori, they correspond to a parameter space over which searches must be executed.

The first analysis of LIGO and GEO data concentrated on the search for GW emission from a specific source with
a known radio pulsar counterpart, PSR1939+2134 (fow = 1283.86 Hz). Fig. 4 presents a "landscape” of sensitivities
achieved during S1 and possible sources of GW associated with known radio pulsar counterparts. In the near future.
broadband interferometers will allow simultaneous observation and parallel analysis of many sources - something not
previously possible with resonant cryogenic bars.

The search for GWs from PSR1939+2134 was conducted with two independent methods: a time domain Bayesian
analysis and a frequency-domain frequentist analysis. The details of both searches are provided elsewhere[12]. Resuits
are summarized below for the time domain only. No evidence of periodic GWs from this source was observed. The
two techniques resulted in concordant upper limits.

The data from the four interferometers were analyzed separately because timing jitter during the run prevented
coherent multidetector analysis in this first analysis. The time domain technique relies on the precisely known
{/.f} characteristics of the source from radio pulsar data. The data were heterodyned in two steps using the
doppler and spindown model for this source, thereby reducing the raw data stream by a factor ~ x10~* to 1 sample
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FIG. 4: Composite graph showing the S strain sensitivities of the four interferometers used during S1 to search for pericdic
waves. The labeled smooth curves correspond to design sensitivities. Data and curves are scaled to show the critical amplitude.
ho(f) = 11.44/Sn(f)/Tobs, that is detectable with 99% confidence and 10 % false dismissal rate during the observation pericd
of St, Tos, = 17d. The interferometers cperated with different duty cycles, leading to the actual observation times noted in the
legend. The flled circles correspond to known millisecond radio pulsars. The abscissa is twice the redio pulser frequency. The
ordinate corresponds to the signal that would be generated if observed spin-down were attributable entirely to GW emission.
This provides an astrophysical upper limit derived from energy conservation arguments. The arrow at the lower right indicates
the location of PSR1939+2134. If a rapidly rotating neutron star exhibits an equatorial ellipticity the associated dynamic
quadrupole will generate GW with characteristic strength hy = %2"—";4& where r is the distance to the NS, [ is its
principal moment of inertia about the rotation axis. ¢ = (I — I,y)//:. is the ellipticity. and the gravitational wave signal
frequency, feiw . is twice the rotation frequency, fi. G is Newton's constant, and c is the speed of light. This is the emission
mechanism that was assumed to produce the GW signal from targeted sources. Observational limits on ho yield limits on e

per minute. A x? analysis between the data (time dependence of signal frequency and amplitude) and a physical
model combining source characteristics and expected antenna pattern-induced signal modulation yielded a probability
distribution function (PDF) for a signal in the presence of Gaussian noise. The left panel of Fig. 5 shows the PDFs
for each detector. Nuisance parameters associated with the source are: ¢, inclination of the spin axis with respect
to observation direction, o, rotational phase offset of the ellipticity, and . the GW polarization of the source. It is
possible to marginalize the four-dimensional PDF over the angle parameters, resulting in a PDF depending solely on
wave amplitude. hy. The resulting marginalized PDFs are shown in the right panel of Fig. 5. Referring to Fig. 5, the
best constraint on hy from this source is obtained from L1: hy € 1.4 = 0.1 x 10~22. This yields a constraint on the

45 2
source equatorial ellipticity, € < 2.9 x 10 ~¥( 1 2em),

C. Searches for burst sources of GW

Burst sources have no deterministic phase or frequency evolution and thus template-based modeling of source
properties is not applicable. Instead. techniques predicated on novelly detection have been applied. By novelty
detection is meant a search algorithm which employs statistical methods to characterize the data stream over periods
of time that are much longer than the expected duration of a burst event. then to use these prior characteristics of
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FIG. 5: Left panel: normalized residuals between the time-domain heterodyned data and the physical model of signal frequency
and amplitude variations caused from the known source characteristics. The residuals are Gaussian to a high degree and exhibit
a x* per degree of freedom (DOF) very close to unity, as expected for well behaved Gaussian noise. These are the PDFs of the
data including the four parameters: {ho,¢, &, 1} (cf. text for details). Right panel: marginalized PDFs for ho. The bounds
on the shaded regions give the 95% CL for an upper limit on ho for each of the four detectors. L1 provided the smallest upper
limit by virtue of its greater sensitivity (cf. discussion on inspirals).

the data to set thresholds looking for excess signal power on time scales of fractions of a second.

For the S1 run, two techniques were implemented. One approach searched in the time domain to detect the
amplitude fluctuations of the signal on short time scales. The other approach utilized the time-frequency map of
the strain channel to look for clustering of contiguous pixels that exceeded a predetermined threshold. The former
approach implemented an algorithm, termed slope filter, which could detect large changes of slope over short periods
of time. The algorithm is a subset of a more general algorithm developed by the Orsay group [13].

The latter time-frequency approach had two similar implementations. The first of these, termed excess power
(14][15), tessellated the t-f plane into " postage-stamp” patches of constant A fAt and looked for excess power fAluctua-
tions over time . A second algorithm, termed tfclusters [16], used a clustering algorithm that was able to identify and
detect groups of contiguous pixels having arbitrary shapes. Both approaches were shown capable of detecting excess
power embedded in a noisy signal. These techniques are also suitable for detecting black hole ringdowns. A detailed
discussion of both time-domain and [-t methods is provided elsewhere[17]. The excess power technique was not fully
implemented for the S1 search Here a summary of the tfefuster approach is provided.

Referring to Fig. 2, only those stretches of data for which the RMS in four bands (320 - 400 Hz, 400 - 600 Hz,
600 - 1600 Hz, and 1600 — 3000 Hz) were below a predefined threshold were considered. Whenever the RMS over a
six-minute interval for any detector in any of these bands exceeded a threshold of 3 times the 68th percentile level for
the entire run (10 times for the 320-400 Hz band), the data from that six-minute period were excluded from further
analysis.

Calibration of the algorithm efficiency for detection and false alarm was determined using extensive Monte Carlo
simulations of injected bursts. The simulated bursts were of two types: (i) sine-Gaussians, two-parameter narrowband
transients characterized by a central frequency, fy, and duration of the Gaussian amplitude envelope, T; and (ii)
broadband limited duration Gaussian bursts characterized by 7. Fig. 6 shows the dependence of the 50% detection
threshold on central frequency for a specific set of sine-Gaussians.

The tfcluster algorithm had a time resolution of ~ 500 ms. This is ~ 50x the maximum physical time delay for bursts
between the two LIGO sites (baseline distance of 3002 km). With such a large coincidence window, the background
rate even for a threefold coincidence among the LIGO interferometers was non-zero. The background was estimated
by repeating the coincidence analysis for a large number of different time shifts in the interval At = {=100s, 1003} of
the L1 data stream relative to the H1 and H2 data streams. Fig. 7 shows these results. The estimated background
was found to be B = 10.1 & 0.6 events for threefold coincidence during the Sl run. The six measured events at
zero time offset could be explained by the measured background. Therefore no transient events were detected during
the §1 run using the tfcluster search algorithm. Using the unified approach of Feldman and Cousins(18], the 90%
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FIG. 6: The behavior of the tfcluster algorithm 50% detection efficiency for sine-Gaussians with @ = 277 fo =~ 8.9 of various
central frequencies, fo. The amplitude for 50% detection efficiency tracks the interferometer sensitivity curves a factor 2 10x
above the respective noise floors.

confidence bound on true coincident events which includes zero is 0 € Rgpy < 2.3. Using this result and folding
in the amplitude-dependent detection sensitivity for threefold coincidences leads to an exclusion region at the 90%
confidence level in the rate-vs-amplitude plane, shown in Fig. 8. For example, the tightest constraint resulting
from the search for sine-Gaussians with fo = 361 Hz is near the knee in the curve, for which it was found that
Rooss[hres ~ 4 x 10~1")] < 3perday

A subgroup of the burst search team is also developing search methodologies for so called ezternally triggered
searches, whereby astrophysical triggers (e.g., GRB events) can be used to localize in time searches for coincidences
among multiple interferometers. By such techniques, it is possible to provide upper limits, in lieu of detection, of the
amount of GW energy associated with externally triggered events seen by other detectors [19].

D. Searches for a stochastic gravitational wave background

Gravitational waves of cosmological origin produce a stochastic background analogous to the relic microwave back-
ground radiation, but ariging at a much earlier epoch. The search for such a signal is performed by cross-correlating
the strain signals from pairs of interferometers and intreducing an optimal Wiener filter to maximize detection signal-
to-noise (20}{21){22}[23).

The background is stochastic and thus its properties are only statistically characterized. Its spectral properties are
described by the dimensionless quantity

S dogw
1] = _ 6
SW(f) Periticat  df ( )
where pgw is the energy density in gravitational waves, and
3cH?
Peritical = 'ﬁ ) (7)

is the energy density required (today) to close the universe. Hy is the Hubble expansion rate in the present epoch
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[24]):
Ho = higo- 100— ™ _ ~3.24 x 10-™ hyg—— (8)
0= sec-Mpc 100 Gec
= 7173 km/s/Mpc = 0.71 hygo 9)

Qgw(f) h}go is independent of the actual Hubble expansion rate, and has been used extensively in the literature when

Ho was not known very accurately. Qgu(f) is related to the one-sided power spectral density of gravitational wave
strain Sgw(f) via[32]

3H?

Sewlf) = 1072

7). (10)

Thus, t;or a stochastic gravitational wave background with Q,,,(f) = const, the power in gravitational waves falls off
as 1/f*

The spectrum €24, (f) completely specifies the statistical properties of a stochastic background of gravitational
radiation provided we make several additional assumptions. Namely, we assume that the stochastic background is: (i)
isotropic, (ii) unpolarized, (iii) stationary, and (iv) Gaussian. Anisotropic or non-Gaussian backgrounds (e.g., due to
an incoherent superposition of gravitational waves from a large number of unresolved white dwarf binary star systems
in our own galaxy, or a “pop-corn” stochastic signal produced by gravitational waves from supernova explosions
[25](26] will require different data analysis techniques than those used for the SI analysis [27][28].

Cross-correlating interferometer signals with an optimal Wiener filter allows one to detect the presence of a correlated
signal at levels several orders of magnitude weaker than the noise spectral density. Fig. 9 presents theoretical
predictions for the magnitudes of stochastic signals arising from a Q¢ = const background that was at the limits of
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FIG. 8: Exclusion graph in the rate-vs-amplitude plane for events as determined during S1. Rates and amplitudes above and
to the right of the curves are excluded at the 90% confidence limit. The limits depended upon both signal type (upper panel:
Gaussians, lower panel: sine-Gaussians) and their frequency content.

detectability during S1. Details of the S1 search for a stochastic background are provided elsewhere[29]. Here these
will be only briefly summarized.
Under the assumptions discussed above, the optimally filtered estimate of the stochastic background is:

A1 )3al) )
PSm (10315’

where §;(f)} are the strain signals from the interferometers and 5.:(f) are their noise spectral densities. The function
+(}f1) is & geometrical form factor describing frequency-dependent response of an antenna pair due to their space-
time separation[22]. The response is for an isotropic, unpolarized irradation by a stochastic GW background. Refer
to Fig. 10 which shows 4(|f|) for a number of interferometer pairs and also for the LA 4 km interferometer +
ALLEGRO cryogenic bar. This figure shows that the long transcontinental baseline between the LIGO sites imposes
a constraint on the maximum frequency over which such searches can be performed. In general, best sensitivity is
obtained when the following conditions are met: (i) relative orientation is such that both interferometers of a pair
respond to the same gravitational wave polarization; (i) both instruments must have well-matched instrumental
frequency responses; (iii) the spacetime overlap of the GW on to isolated detectors imposes a further constraint,
Acw 2 2Dpsctine — fow < 40Hz. The interplay of the function «(|f{} in the numerator and the noise spectra in the
denominator of Eq. 11, Sni(|f 1)5.2(1f1), leads to the distribution of total SNR that is shown in Fig. 11.

Using the L1-H2 pair of interferometers, the S1 run produced a limit for Qgw that is better than previous direct
determinations of this quantity in the frequency band 40Hz < f £ 300 Hz: Qguwh?pe < 23 £4.6 (90% CL). The
uncertainty derives from systematic errors associated with the calibration of the strain information. Fig. 12 shows
some intermediate results that go into the final estimate of Qgw. The L1-H1 result is statistically consistent, although
~ 2x larger. The H1-H2 correlations exhibit negative instrumental cross-correlations due primarily to acoustic
couplings between the two interferometers sharing a common room where the detection benches are located. These
instrumental artifacts precluded using this pair during S1.

x
Qecslt‘i’mu!e ~ / df
0
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FIG. 9: Superposition of the S1 sensitivities of the three LIGO interferometers with predicted sensitivities of different inter-
ferometer pairs to an Qow(f) = const stochastic background. By cross-correlating pairs of detectors the sensitivity can be
improved two to three orders of magnitude beyond that of the individual interferometers.
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FIG. 12: Results from S1 analysis for the H2-L1 detector pair. Left panel: scatter plot of the individual estimates of Qcw
taken over 14 days of coincident operation during S1. Center panel: normalized residuals for each point in the right panel
from the average best estimate of Qcw. Upper graph is a "normal plot” wherein a Gaussian PDF maps into a straight line.
This indicates the residuals are well-described by zero-mean unit deviates. Right panel: Black graph is the run-averaged
cross-correlation spectrum (i.e., the kernel of the integral in Eq. 11). Each dot in the left panel contributes a spectrum to the
average. Silver/gray graph shows the cumulative integral. The end point at the highest frequency corresponds to the result of
the S1 measurement.

III. SUMMARY AND PROSPECTS

LIGO has begun scientific operation and the results for the first science run, S1, have been submitted for publication
by the collaboration. The primary focus of the S1 run was to develop the analysis pipelines that will be used to process
the strain data for a variety of GW sources. At the same time, the results provided direct observational limits on
the flux of gravitational radiation from CW and stochastic source classes that improve on presently published limits.
TAMA results from a 1000 h search [30][31] for binary mergers improve upon results obtained by LIGO for Si.

At the time of this writing, two longer science runs, S2 and S3, each of approximately 8 weeks duration, have been
completed and the data are being analyzed. The instruments performed 2> 10x better than S1. Over the past 20
months there has been significant improvement in the sensitivity of the machines (refer to Fig. 13). The LIGO H1
instrument completed the S3 run with sensitivity within a factor ~ 2 x =3x of design sensitvity.
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FIG. 13: Cascade plot of strain sensitivity improvements for the HA and LA 4 km interferometers showing progress in perfor-
mance over the past ~20 months. The data sets represent sensitivities achieved during the S1, S2, and S3 science runs.

During S2 and S3 all three instruments were better matched in sensitivity, increasing prospects of multiple coinci-
dence operation without the serious degradation of detection range seen during S1. The limiting sensitivities for all
classes of searches have been dramatically improved, especially in the low-frequency regime, f < 300Hz. The collab-
oration is in the process of analyzing these data at the present time. The ~ 5x combined longer observation time of
S2 & 83 will improve rate-limited observations as « 1/T, and background-limited observations as « 1/v/Toss. The
detectors exhibited better stationarity, allowing for greater operational duty cycles and less severe data cuts than had
to be applied during S1. The experience gained during S1 analysis will be applied to the S2 & S3 analyses, leading
to better techniques and earlier results.

After 83, a planned retrofit of several subsystems will be carried out in order to prepare for a much longer (~ 6
month) S4 run starting the last quarter of 2004. First, the seismic isolation systems at Livingston, LA are being
upgraded to provide additional active seismic isolation that will reduce the residual motion at the top of the isolation
systems by ~ 30x, thereby allowing much higher duty cycles and allowing the interferometers to approach their
design sensitivities within the year. In addition, a thermal lensing compensation subsystem based on a CO3 laser will
be introduced in order to correct the optical figure of the recycling cavity mirror. This will improve the shot noise
limited sensitivity at high laser power. Finally, the digital control system for length and alignment will be enhanced
by modifying the optical plant model in the server control loop. The modification will take into account the quantum
radiation pressure-induced cavity alignment instabilities which, if not controlled, limit the sensitivity and duty cycle
of the interferometers.
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Abstract

Supersymmetric compactifications of string theory or M-thoery consist
of higher-dimensional product spacetimes with a compact manifold. All
supersymmetric solutions are believed to be stable against linear per-
turbations due to the supersymmetry. In this article we investigate
non-linear perturbations of such a higher-dimensional product space-
time. First of all, we show that cosmic censorship is violated generically
in D = 5, N = 8 supergravity, which is believed to be a consistent trun-
cation of ten dimensional IIB supergravity on S°. We next show that
cosmic censorship is violated in a wide class of gravity model coupled
to a scalar field with a negative false vacuum even though a positive
energy theorem is satisfied. We finally show that a large class of higher
dimensional spacetimes with a compact Ricci-flat manifold has the prop-
erty that there are configurations with negative energy density (from a
four dimensional perspective). These results suggest that a large class
of supersymmetric compactifications of string theory or M-theory is un-
stable.

1 Introduction

Cosmological models of higher-dimensional spacetime are now widely accepted among
relativists or even astrophysicists. One of the reason is that they naturally arise as a su-
pergravity model in the low energy limit of superstring theory or M-theory. Furthermore,
a new compactification model (1] proposed a way how to resolve a hierarchy problem by
reducing the fundamental Planck energy scale to TeV scale. So, it might be possible to
produce a black hole by a future collider [2].

Motivated by these facts, it is worth while examining the stability issues of higher
dimensional spacetimes in detail. Based on the singularity theorem, Penrose (3] argued
that higher dimensional spacetime is unstable against a particular perturbation or possibly
more general perturbations as follows: Let us consider a perturbation of a product vacuum
spacetime of the form M, x K, where M is four dimensional Minkowski spacetime and
K is a compact, Ricci flat manifold. Because of large degrees of freedom to choose initial
data, we can perturb it in such a way that the macroscopic R? space remains flat. So,
the perturbed spacetime looks like a product spacetime of a closed compact universe
and the flat R® space. By applying the singularity theorem to the closed universe, we
can show that a singularity inevitably appears in the product spacetime. We cannot,
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however, immediately conclude that the product vacuum spacetime is unstable since the
perturbation is unphysical in the sense that the amplitude cannot decay at infinity. So,
we need to require that the perturbed region has a compact support B (outside of B, the
amplitude is exactly zero). In this case the initial data would include a trapped surface
on the boundary 9B to connect smoothly the inside to the outside (for example, see [4])
and thus it is no more surprising that a singularity appears after evolution. As a result,
we cannot say anything definite about stability issues of higher dimensional spacetime by
applying the singularity theorem.

In this article, we explore non-linear instability issues of supersymmetric compactifi-
cations. Especially we give a counter example for cosmic censorship in five-dimensional
N = 8 gauged supergravity model. N = 8 supergravity models are believed to arise as
the low energy limit of string theory or M theory with boundary conditions AdS; x S7
[5] or AdS5 x S°. For these boundary conditions, we have the powerful AdS/CFT corre-
spondence which relates string theory to a dual field theory [6].

In section II, we first construct initial data with negative gravitational mass unbounded
from below, even though it satisfies a positive energy theorem [7]. At first glance, there
seems to be a contradiction. We can resolve, however, this problem by introducing a
modified energy which is indeed always positive. The modified energy is given in section
III. Section IV is devoted to showing that the time evolution of the initial data leads to
the formation of a naked singularity.

The five-dimensional A/ = 8 supergravity is believed to be a consistent truncation of
ten dimensional IIB supergravity on S5. This means that it is possible to lift our five
dimensional solution to ten dimensions. At the linearized level, the fields which saturate
the BF bound (8] correspond to ¢ = 2 modes on S°. Even though it is not known how
to lift a general solution of the A/ = 8 supergravity to ten dimensions, this is known for
solutions that only involve the metric and scalars that saturate the BF bound [9]. So we
can immediately conclude that the ten dimensional analog of the solution also evolves to
naked singularities.

In general it is very hard to test cosmic censorship in each supergravity model. How-
ever, we can say more about a gravity model minimally coupled to a scalar field with a
general potential satisfying a positive energy theorem. In section V we consider asymptot-
ically Anti de Sitter spacetime where the scalar field approaches a negative false vacuum.
It is shown that cosmic censorship is also violated for some potentials.

The standard supersymmetric compactifications of string theory consist of solutions of
the form My x K where K is a compact, Ricci flat manifold admitting a covariantly con-
stant spinor. Familiar examples of K include T, K3, Calabi-Yau spaces, and manifolds
with G, holonomy. So, the next question is: are there any non-linear instabilities in such
a supersymmetric asymptotically flat spacetime? In section VI we show that a large class,
including all simply connected Calabi-Yau and G, manifolds, has the surprising property
that there are configurations with negative energy density. In other words, from a four
dimensional perspective, there can be finite regions of space with negative energy. In fact,
the energy density is unbounded from below! In contrast, these properties do not hold -
at least not in the same way - for 7" or K3 compactifications. This may indicate that a
class of asymptotically flat supersymmetric compactifications is also unstable, although
we cannot say anything about cosmic censorship.



2 N =8 gauged supergravity model

N = 8 gauged supergravity in five dimensions [10, 11] is thought to be a consistent trunca-
tion of ten dimensional type IIB supergravity on S°. The spectrum of this compactification
involves 42 scalars parameterizing the coset Eg)/USp(8). The fields which saturate the
BF bound correspond to a subset that parameterizes the coset SL(6, R)/SO(6). From the
higher dimensional viewpoint, these arise from the ¢ = 2 modes on S® [12]. The relevant
part of the action for our discussion involves five scalars o; and takes the form {13]

S= f \/_[ Z (Va)? = V{a) (2.1)

where we have set 87G = 1.2 The potential for the scalars o; is given in terms of a
superpotential W(a;) via

9 5 2 2
g ow 9" 2
v=%L - Twr 2.2
W is most simply expressed as
1 & oo
W=-— ' 2.3
/5 ;e (2.3)

where the 3; sum to zero, and are related to the five o;’s with standard kinetic terms as
follows [13],

6 /2 1/2 172 0 1/2V/3

8, 1/2 -1/2 -1/2 o 1/2v3 | (™

G| _-172 =172 172 0 1/2v3 || 04
B | T -12 12 172 0 1/2v3 || (24)
Bs o 0 0 12 -1/V3||™

Be 0 0 0 -1/ -1/V3) %

The potential reaches a negative local maximum when all the scalar fields a; vanish.
This is the maximally supersymmetric AdS state, corresponding to the unperturbed S°
in the type IIB theory. At linear order around the AdS solution, the five scalars each
obey the free wave equation with a mass saturating the BF bound. Nonperturbatively,
the fields couple to each other and it is generally not consistent to set only some of them
to zero. The exception is a5, which does not act as a source for any of the other fields.

We now find a class of negative energy solutions that only involve as, so a; = 0,
¢ = 1,..4 in our solutions. Writing as = ¢ and setting g> = 4 so that the AdS radius is
equal to one, the action (2.1) further reduces to

s=[v= [%R _ %(w»2 + (2635 4 4e-W3)] (2.5)

2Qur formula’s differ slightly from [13], since they use 4G = 1.




We construct the solutions by first solving the constraint equations on a spacelike sur-
face £. We consider initial data with all time derivatives set to zero. For time symmetric
initial data the constraint equations reduce to

MR =gY9.:0,+2V(9) (2.6)
For spherically symmetric configurations the spatial metric can be written as
ds? = m(r) 2 - 2, .2;02
§° = I—W-i-’l‘ dre+r ng (27)

The normalization is chosen so that the total mass is simply the asymptotic value of m(r)

M= rli.lgg m(r) (2.8)
The constraint (2.6) yields the following equation for m(r)
1
g+ 3mr(8,)? =20 [(V(8) + ) + 51+ )6, (29)

The general solution for arbitrary ¢(r) is
_ o2 [ - [T #Hen?/3dF 1 2 2] =3
m(r) =2 e (V(g) +6)+ 5(1 +7°)(¢p,)°| FodF. (2.10)

We now specify initial data for ¢(r) on L. We consider a simple class of configurations
with a constant density inside a sphere of radius Ry:

)= CSR)L M=% (>R .11)
The fall-off of ¢ is motivated as follows. If ¢ — 0 slowly, we decrease the contribution
to the energy from the positive gradient terms and increase the contribution from the
negative potential term. Since we want to try to construct a solution with negative
energy, we clearly want ¢ to vanish as slowly as possible. It is easy to verify that 1/r% is
the slowest fall-off that yields finite total energy. In addition, this behavior is the same as
the fall-off of the mode solutions of the free wave equation when BF bound is saturated.
One can now easily show that for these initial data, the negative contribution to the mass
from the potential more than compensates for the positive contribution from the gradient
terms. If we take 0 < A < R3 so that the field is everywhere small then (5.12) gives

M =~ —n2A? (2.12)

Since we can make Ry and therefore A arbitrarily large, it is clear that the total energy
can be arbitrarily negative. For A > R2, ¢ is not small inside the sphere, but by using
the fact that V(¢) < —6 — 2¢° — ﬁgé‘"’ for all ¢ > 0, one can obtain a general upper limit

to the total mass, M < —w2A?/V/3.

We have found that there exist non-singular configurations in ' = 8 supergravity
with negative total mass. In section 4 we study the evolution of our initial data, but first
we explain why this result is not in conflict with the positive energy theorem [7].



3 Positive energy theorem

How are our negative energy solutions compatible with the fact that there is a positive
energy theorem for supergravity? How are they compatible with the AdS/CFT corre-
spondence since the gauge theory Hamiltonian is bounded from below? To answer these
questions, we first review the argument for positive energy of test fields originally given
in [8, 14], and then discuss the full nonlinear proof of the positive energy theorem.

3.1 Positive energy for test fields

Consider a test field of mass m? = —4 which saturates the BF bound in AdSs. We start
with the action

S = % ] [—(V¢2+4¢2]r3dtdrd§23
= 3 / [ 579 (D¢)2+4¢2] r3dtdrdQ; (3.1)

where D is the spatial derivative on a constant ¢ surface. Since the background is static,
one can compute the Hamiltonian in the usual way and obtain

/ [ e+ (D9 - 4¢2} r3drdQ (3.2)

This energy density is not positive definite due to the negative m2. However, if we write
¢ = ¢/(1 + r?), substitute into (3.2) and integrate by parts we obtain

3

(1+72)

The volume term is now manifestly positive. The surface term vanishes provided ¥ goes
to zero asymptotically, which means that ¢ falls off faster than 1/r2. But we are interested
in solutions that fall off precisely as 1/r%. In this case, the surface term is nonzero and
manifestly negative. So there need not be a positive energy theorem and indeed, as we
have seen, negative energy solutions can occur. Notice that this is possible only for fields
which saturate the BF bound. If m2 > —4, then the total energy of any configuration that
falls-off as 1/r? diverges. Finite energy configurations must fall-off faster, so the surface
term vanishes and the energy is always positive. It is the delicate cancellation between
the m2¢? term and the gradient term in (3.2) which allows fields with m? = —4 to have
1/r? fall-off and finite energy.

One might have thought that the reaction to this would be to claim that one has
positive energy only for m? > m%.. Instead Breitenlohner and Freedman [8] proposed

to include the limiting case m? = m% . and modify the definition of the energy®. In the

B [ [6F+a+0w? + 4] Tpdrd = § v, (33)

31n [14], Mezincescu and Townsend note that a perturbative analysis is not sufficient to prove stability
if the bound is saturated. Later, Townsend [7] performed a nonperturbative analysis in spacetimes of
arbitrary dimension, following the approach of Boucher [15], in which he claims to establish a positive
energy theorem (and stability) even when the bound is saturated. However, as we will discuss in section
3.2, the proof given in (7] does not apply to the usual AdS energy if m? = m%.



original papers from the early 1980’s, this was described in terms of an “improved stress
tensor” which corresponds to adding a SR¢? term to the Lagrangian. In AdS, R is a
constant, so this indeed looks like a mass term for a test field. But as soon as one goes
beyond the linearized approximation, adding a term like this changes the theory. In the
context we have been considering, /' = 8 gauged supergravity in five dimensions, there
is no BR¢? term in the action, so this is not an option.

However, one still has the possibility of adding a surface term to the action (3.1) to
get

S = % / [¢V2¢ + 4¢%)r3dtdrdSs
1
= 5+ ¢ 89,.0ds* (3.4)

Now if one derives the Hamiltonian, one finds an extra surface term in the expression for
the energy which exactly cancels the surface term in (3.3). This is possible since if n is
the unit radial normal to the sphere at infinity, ¢n - V¢ = —2¢%. So starting with this
modified action, the energy is indeed positive.

3.2 Nonlinear positive energy theorem

We now turn to the full positive energy theorem for AdS. This is a generalization of the
spinorial proof for asymptotically flat spacetimes given by Witten {16]. We will follow the
approach in 7). The boundary conditions needed to apply this proof do not seem to have
been clearly spelled out. In AdS, there are no covariantly constant spinors, but there are
“supercovariantly” constant spinors € satisfying

1
Vpéo + 5’7,,60 =0 (35)
where «# are the five dimensional gamma matrices. For the theory we are considering
(2.5), the scalar potential is derivable from a superpotential W (@) via V = W2 —(4/3)W?
(2.2). One now defines a modified derivative V,, =V, — #W(d))’y,, and the Nester two-

form (17]
E™ = ey*°¥,¢ + hc. (3.6)

where v#*¢ = 4l#4*4°] and ¢ is an arbitrary spinor that asymptotically approaches éo.

Let T be a nonsingular spacelike surface with boundary at infinity, and let € be a so-
lution to v'Vie = 0 (where 7 runs only over directions tangent to L) which asymptotically
approaches €g. Then the integral of V,E*” over T is nonnegative, and vanishes if and
only if the spacetime is AdS everywhere. (If there is matter in addition to the scalar field,
its stress tensor must satisfy the dominant energy condition.) Hence

$ Euds® 20 (3.7)

(Note that the volume element picks out the components orthogonal to the three-sphere
at infinity.) If W is constant, this reduces to the usual definition of mass in asymptotically



AdS spacetimes. However, in our case W is not constant, and for small ¢, %5 ~-1/2-
#%/6. So there is an additional surface term

fc;o ¢2(€07“v60)d5'#” ' (38)

Since the area of the S® at infinity grows like 73, ¢ ~ 1/r?, and ¢, is supercovariantly
constant at infinity, one might have thought that this surface term would always vanish.
But it doesn’t. Supercovariantly constant spinors grow like 7'/2 in AdS (see e.g. [18]).
In retrospect this is not surprising since the square of a supercovariantly constant spinor
is a Killing vector, and a timelike Killing vector in AdS has norm proportional to r. So
in order for this surface term to vanish and recover the usual positive energy theorem,
one needs ¢ to vanish faster than 1/r? at infinity. We have seen that this boundary
condition is too strong for fields which saturate the BF bound. In general dimension d,
the required boundary condition on ¢ in order to apply the positive energy theorem is that
¢ must vanish faster than r~-1/2 A natural way out of this conundrum is to modify
the definition of energy to include the extra surface term (3.8). We have seen that the
combination of this with the usual energy cannot be negative and vanishes only for AdS.
Supersymmetry implies that the square of the supercharge should be positive. Al-
though we have not checked it, we believe that the supercharge also has an extra contri-
bution in this case, so that the positive quantity is indeed the entire surface term (3.7).
It would be interesting to verify this by extending the work of [19] to A" = 8 supergravity.
Since the Hamiltonian of the dual field theory must be positive (or at least bounded from
below if one includes Casimir energy) it should be identified with this modified energy.

4 Evolution and Naked Singularities

In this section, we consider the evolution of the negative energy initial data constructed
in section 2, and show that they evolve to naked singularities. But first, we point out
another interesting difference between the usual energy and the modified energy, which
arises in evolution.

4.1 Is the energy time dependent?

For fields behaving as ¢ = A/r? + O(1/r%) at large r, the usual energy is time dependent
if A is a function of ¢. There is a nonzero flux of energy at infinity. The modified energy,
on the other hand, is always time independent. To see this, it suffices to consider the
linearized theory, since ¢ is very small asymptotically. In terms of the conserved stress
tensor 1
S0ul(Ve) +2V(9)) (41)
the usual energy (3.2) is just the integral of 7, over a spacelike surface, where &* is
the timelike Killing field. The local flux of energy at infinity is thus T,,£#n” where n" is
an asymptotic unit radial vector. Integrating this flux between ¢, and ¢, yields

E(t;) - Et)) = lim /t * 1t ¢(rd,)p = — / [A2(ts) — A2(t))dD  (4.2)

Tpu = Vp¢vu¢ -



It is now clear that if we add to the definition of the energy a surface term [ A%2dQj3, the
modified energy will be time-independent. This is precisely the same surface term which
makes the energy positive.

Of course, if one wants the usual energy to be time independent, one can require
that A be independent of time. This can be achieved by imposing boundary conditions
at a large but finite R and requiring ¢ = A/R? (with fixed A) at this radius. (This is
automatically implemented in most numerical evolution schemes.) The radius R is like a
cut-off, and in principle should be taken to infinity to obtain the true solution.

The fact that the total energy may be time dependent holds only for fields which
saturate the BF bound. If m? > m%, then finite energy requires fields to fall off faster
than 1/r2 and then the flux always vanishes at infinity.

4.2 Cosmic censorship violation

Recall that our initial data consisted of a constant field ¢ = A/R? inside a sphere of
radius Ry. The proper size of this sphere initially is

~/ T 2]l/2~H“1nRo (4.3)

where H? = —V(A/R3)/6. So for large Ry there is a large region r < Ry of constant
energy density and we can model the evolution inside its domain of dependence by a
k = —1 Robertson-Walker universe,

ds® = —dt? + a%(t)do?® (4.4)

where do? is the metric on the four dimensional unit hyperboloid. The field equations are

a 1 2
2= Ve - 34 (45)
. da -
¢ + ;(}5 + V,¢ = 0 (46)
and the constraint equation is
2 .
a2 — 96— [%qu + V(¢)] =1 (4.7)

It is well known that a homogeneous scalar field, rolling down a negative potential,
produces a singularity in finite time [21, 22]. The argument is the following. We start
with ¢ = A/R2 < 1 and ¢ = 0, so initially we have

#(t) = % cosh2t,  a(t) = H !cos Ht. (4.8)

By (4.5), d/a is always less than its initial value —H? (which is close to one). So the scale
factor must vanish in a time less than 7 /2H. Since ¢ # 0, the vanishing of the scale factor
causes the energy in the scalar field to diverge, resulting in a curvature singularity. More



precisely, after a certain time Ty the potential term in (4.6) is unimportant and the field
behaves as ¢ = c/a?, where c is a constant. Matching at T, gives ¢ ~ A/ R}. From (4.7) it
follows that the change in ¢ induces a change in the form of the scale factor when a2¢? is of
order one, which occurs when a® = c. Assuming the potential term is negligible compared
to the kinetic term (which can be confirmed after the solution is found) (4.7) reduces
to @® — ¢2/(12a%) = 0, which implies a(t) o (T, — ¢t)*/* and hence ¢(t) « —In(T; — ¢).
Actually, (4.7) also determines the coefficient so that ¢ = —39 In(T, —¢t). Since the scalar
field diverges, one has a curvature singularity.

Before one can claim that our initial data evolve to a singularity, one must check
that the homogeneous approximation is valid all the way to the singularity. This is not
completely obvious since the boundary of the domain of dependence is a null surface,
and in pure AdS, a radial light ray can travel an infinite distance in finite time. So we
need to calculate the proper distance on the initial surface traveled by the inward going
radial light ray from the border of the homogeneous region at » = Ry to the singularity.
From the Robertson-Walker form of the metric, this is [ = a(0) f;° dt/a(t). In pure AdS
the distance ! diverges. But, as we have seen, in our case a(t) changes its form near the
singularity resulting in finite . If ¢(Rp) =~ ¢ < 1 then the cutoff on ¢t where a(t) changes
its form occurs close to the maximum value 7/2H, yielding ! o —Inc'/3 > 1 (for instance
for ¢ = .01 one has [ =~ 2.3). Since the proper distance is proportional to Inr this implies
that the homogeneous approximation is good all the way to the singularity for radii less
than e~'Ry. This is much smaller than Ry but it can easily be made arbitrarily large by
increasing Ry keeping ¢(Rp) fixed. If ¢(Rp) is of order one, then the size of the singular
region is ~ K, for large Ry.

---------- Null rays s

spacetime singularity

.. Initial data

;H\ A

Homogeneous region

Figure 1: If an event horizon encloses the singularity, it must have an initial size greater
than R,.

If the total mass could not increase, one could easily show that a black hole could
not enclose this singularity as follows. If this singularity lies inside a black hole, then
we can trace the null geodesic generators of the event horizon back to the initial surface,
where they will form a sphere of radius at least R, = e"# Ry (one factor of ! is for the
reduced size of the domain of dependence at the singularity and the second is because the
event horizon is an outgoing null surface (see Fig.1)). The area theorem for black holes
only requires the null convergence condition and hence still holds even in theories with



V(¢) < 0. Since the area of the event horizon cannot decrease during evolution and we are
assuming the mass cannot increase, the initial mass M must be large enough to support a
static black hole of size R,. Clearly it is impossible to produce a Schwarzschild AdS black
hole, since this requires a positive mass Mgy o< R}, and our mass is negative. One could
imagine the formation of a black hole with scalar hair, with ¢(r) ~ r~2 at large r so that
the hair renders the total mass finite and negative. However we have numerically verified
that with our potential all black hole solutions with scalar hair have ¢(r) ~ Inr/r? at
large 7. Thus our finite mass initial data can not evolve to a black hole with scalar hair.

We have seen that the total mass is not conserved, so it might increase during evolution.
If it increases enough, a black hole could form. To ensure that a naked singularity is
produced, we can impose a large radius cut-off as mentioned above. This is discussed in
more detail in [20]. Since the cut-off can be at an arbitrarily large radius, we will continue
the following discussion ignoring the cut-off.

Inside the domain of dependence of the homogeneous region the singularity will be
spacelike, like a big crunch. The singularity is likely to extend somewhat outside this
domain of dependence (so our estimate for R, is really a lower limit), but not reach
infinity. So the singularity will either end or become timelike. In both cases, one has
naked singularities. In fact, there is really no way to distinguish these two cases since the
evolution ends at the first moment that a naked singularity appears. To see a timelike
singularity, one would have to know the appropriate boundary conditions to impose at
the singularity, which is not possible classically. If the singularity did reach infinity, it
would cut off all space, producing a disaster much worse than naked singularities. But
this is unlikely since there would then be a radius R, on the initial surface such that the
outgoing null surfaces for 7 > R, expand indefinitely and reach infinity, while those with
r < R_ hit the singularity and (probably) contract to a point. This indicates that the
surface with r = R, would reach a finite radius asymptotically, just like the stationary
horizons which are ruled out.* A similar argument allows us to say something about the
geometry near the naked singularity. Consider the area of the spherical cross-sections on
an outgoing null surface which hits the naked singularity. If the areas shrink to zero as
one reaches the singularity, then a nearby null surface starting at slightly larger radius
will have the areas decrease near the naked singularity and then increase as the surface
reaches infinity. This contradicts the Raychaudhuri equation and the null convergence
condition. We conclude that the area of spheres near the naked singularity remain of
nonzero size. The naked singularity is metrically a sphere and not a point. We have
seen that inside the domain of dependence of the homogeneous region, the singularity is
a strong curvature singularity and all spatial distances shrink to zero. This shows that as
the singularity extends outside this region, it becomes weaker, and when it ends, the two
sphere remains a finite size. The curvature, however, still diverges.

The above arguments assumed spherical symmetry, but that was not essential. In the
central region, the collapsing Robertson-Walker metric develops trapped surfaces. We
can clearly perturb our initial data and construct nearby initial data (which need not

4There is also the possibility that the singularity could become null. If the null singularity reached
infinity, it would again cut off all space, and be worse than a naked singularity. If it remained inside a
finite region, it would be like a static black hole with singular horizon. Numerical evidence suggests that
even these solutions do not exist.



be time-symmetric) which will still produce trapped surfaces. The singularity theorem
guarantees that a singularity must form. On the other hand, the energy will still remain
negative, so the singularity cannot be enclosed inside a black hole. Thus cosmic censorship
is generically violated in the theory (2.5). In fact, cosmic censorship is generically violated
in D =5, N = 8 supergravity, since one can also perturb the other fields in the theory
and still produce naked singularities.

The fact that the naked singularity is not a point holds even for general, nonspherical
solutions. To see this, consider the boundary of the past of infinity in the maximal
evolution of our initial data. (We are assuming boundary conditions at infinity, so the
fact that infinity is timelike is not a problem for evolution.) This is a null surface which
ends on the naked singularity. Standard arguments show that this surface is generated
by null geodesics which cannot be converging. So the area of any crosssection increases
into the future.®

5 Generalized potential case

As an attempt to generalize the previous result, we shall consider four dimensional gravity
coupled to a single scalar field with a potential V (¢). We take V to have a global minimum
at ¢ = 0 and a local minimum at ¢ = ¢, > 0 (see Fig. 2). We assume V(0) = -3V},
and V(¢)) = —3V; are both negative and we consider solutions that asymptotically
approach the local (AdS) minimum at ¢,. We require that V satisfies the positive energy
theorem (PET) for solutions with this boundary condition. While some formulations
of this theorem assume a local energy condition stating that V is never less than its
asymptotic value, it has been shown that this is not necessary [7, 15]. Generally speaking,
the PET holds if the barrier separating the extrema is high enough, but it does not hold if
the barrier is too low . By adjusting the height of the barrier to be close to the transition
point, one decreases the mass of nontrivial configurations that probe the region of V
around the true minimum. We will show that although the positive energy theorem holds
in such theories, cosmic censorship does not. We demonstrate this by first constructing
initial data with a large approximately homogeneous region in the interior where V <
-3V, but with ¢ — ¢, asymptotically. The central region evolves to a singularity, since
a homogeneous scalar field rolling down a potential to a negative minimum will generically
become singular. We then show that if the barrier is close to the transition point, the
total mass is too small to produce a black hole large enough to enclose the entire singular
region, so the singularity must be naked.

This violation of cosmic censorship in AdS is quite general since for a large class of
potentials, one only has to adjust one parameter. Even though the naked singularity in
black hole critical phenomena [23] also arises from adjusting one parameter, the impli-
cation here is completely different. This is because we are adjusting a parameter in the

3One can view this null surface as a type of event horizon since the points inside cannot communicate

with infinity. However this event horizon becomes singular and does not correspond to a standard black
hole.

8There exist potentials that admit the PET even if V(¢1) is a local maximum. For example, if
V(¢) 2 2W" - 3W? for any function W(¢), the PET holds [15]. However, if ¢ is small enough, or
Vo — W, is big enough, the PET will be violated unless a sufficiently high barrier separates both extrema.
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Figure 2: A potential V(¢) that satisfies the positive energy theorem for solutions that
asymptotically approach the local (AdS) minimum at ¢;, but which violates cosmic cen-
sorship.

potential, not the initial data. For a given theory, there is an open set of initial data
which produce naked singularities. Furthermore, in our case one does not even have to
fix the parameter exactly, it only has to be close to some critical value.

It may also be possible to violate cosmic censorship for asymptotically flat initial data,
using potentials of the above form with the local minimum at V' = 0. However it is much
easier in the asymptotically AdS case. This is because a large black hole of radius R, in
AdS requires a mass My = (R3+ R,)/2 (where we have set the AdS radius to one). This
is much larger than the mass of a Schwarzschild black hole of size R,. For this reason, the
asymptotically flat case is much more delicate. We will see that this can be explored with
1 + 1 dimensional numerical relativity and hence provides a feasible new test of cosmic

censorship.

To begin, we find the precise condition for potentials of the above type to admit a
PET. To minimize the mass, we consider initial data with all time derivatives set to zero.
For time symmetric initial data the constraint equations reduce to

AR = g¢.:6,; +2V(9) (5.9)

where we set 87G = 1. Since spatial gradients raise the energy, we first restrict attention
to spherically symmetric configurations with metric

-1
ds® = (1 - ﬁ(%)) dr? + r2dQ3. (5.10)

The constraint then yields the following equation for the “mass” m as a function of the
radius,

m,+ %mr(qb,r)2 = 4nr? [V(q&) + %(¢,r)2]' (5.11)

The general solution for arbitrary ¢(r) is
m(r) = ar | T em 7 Hor2df [V(¢) + %(qs,,)’] #dr, (5.12)
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The total ADM mass is defined to be
M = lim [m(r) + dnVird) (5.13)

We require that ¢ — ¢, faster than 1/r%/?2 since this is required for finite mass. In fact, it
suffices to consider configurations where ¢(r) reaches ¢, at a (possibly large) finite radius
r = Ry, and in this case M = m(R,) + 47V, R3. This is because one can always perturb
¢ to have finite R,, keeping the change in the mass arbitrarily small.

To identify the criterion on V for the PET to hold, we first minimize

R Ry . N
my = 41r/0 e ) "“’-')2/2“'V(¢)r2dr (5.14)

over a suitable class of ¢. Introducing a new radial variable y = r/R, and writing
( ) = ¢(R,y) it is easy to see that m, /R? is independent of R;. Let S be the set of all
é(y) with $(0) = ¢o > 0, V(o) < =3V and #(1) = ¢,. The boundary condition at the
origin is chosen so that if V' admits any negative energy configurations, then it admits
some in §. We define

1 1 ,..x
pv = min = min / e~ I, 49587/ *Vyldy (5.15)
¢€S 47rRl ¢es Jo

where d;’ = J&ly. The minimum clearly exists since the integral is bounded below by —Vj.
Clearly py is a continuous function of V, and R, is now a free parameter that acts like an
overall scale. If pv < —V; then the PET does not hold, since the contribution to the mass
from the (¢, ) term is proportional to R, while the contribution from V is proportional
to R}. So for large R, the mass will be negative. However, if py > —V,, then the PET
will hold since this minimal configuration has positive mass. (When the PET holds, the
true minimal configuration has zero mass and corresponds to ¢(r) = ¢, for all r. Our
minimal configuration has positive mass, since it is required to have V(¢(0)) < —3V;.)

To compute py for a given theory we take the variation 8¢ of the integral (5.15), to
find the lowest mass configuration subject to the boundary conditions discussed above.
This yields the following integro-differential equation for the ‘optimal’ paths ¢(y),

_ o
fo " dyy?v (Ge o 998 (5.16)

- [ dggés2 (- T
e fg 5 5o/ (yz‘/"S + y3¢lv(¢))
g + ¢
where all derivatives on the right hand side are evaluated at . Notice that the left hand
side is precisely m, (§)/47 R}, so equation (5.16) expresses the density py of the optimal
paths in terms of field derivatives at y = 1.

To give a concrete example, we numerically solve eq. (5.16) and compute p,, for the
following one-parameter family of potentials (shown in Fig. 2 for a = 45.9),

V(¢) = =3 + 509 — 81¢° + a¢®. (5.17)



We have chosen the parameter a to control the height of the barrier between both extrema.
For o = 45.928 we have p,, = —V,. For this potential, V5 = 1, V| = .305, and ¢, = .725.
The solution for the optimal path in the theory at the transition point is shown in Fig.
3. The solution starts at the global minimum at the origin y = 0, climbs very slowly out
the true vacuum and reaches the false vacuum at y = 1.

o O O o O O o
. . . . . . .
O K N W o O O U

0 0.2 0.4 0.6 0.8 1

Figure 3: The lowest mass configuration qg(y), subject to the boundary conditions dis-
cussed in the text, for the potential shown in figure 2.

At the transition point, gy + V; = 0, the potential contribution to the mass vanishes.
In terms of the area coordinate r = yR;, the total ADM mass of the minimal configuration
@(r) is then given by

R . .
M =2r fo Lo ST e A g V220, o Ry (5.18)

So, let us assume that cosmic censorship holds. Then, there would a black hole with
size R, ~ e~ R, since the large approximately homogeneous region (y < 0.58) collapses
to a singularity, where [ is a large positve constant independent of R, (see [24] in details).
However, the mass of the black hole would be proportional to R ~ eR} >> R, in the
limit R, — oo, which leads to a contradiction.

6 Asymptotically flat supersymmetric compactifica-
tion

Until now we have shown that cosmic censorship is violated in asymptotically anti de
Sitter spacetime, including N = 8 gauged supergravity. So, a simple question naturally
arises: can we also show that cosmic censorship is violated in asymptotically flat higher-
dimensional spacetime? Unfortunately, we will not come to a definite conclusion, as
we mentioned earlier. We can say, however, that a class of asymptotically flat higher
dimensional spacetime admits an arbitrary large negative curvature along the macroscopic
direction!

The key mathematical fact is as follows: As shown in [25], all simply connected com-
pact manifolds of dimension five, six, or seven admit Riemannian metrics with positive



scalar curvature. Other manifolds, such as T" and K3 do not. Positive scalar curvature
on K leads to negative energy density as follows. Vacuum solutions can be characterized
by their initial data on R® x K. Since we want to minimize the energy, we set the time
derivatives of the metric to zero. For time symmetric initial data, the Einstein constraint
equations reduce to the vanishing of the scalar curvature, R = 0. For a product metric
on R3 x K, R = R3 + Ry where Rj is the scalar curvature on R3 and R is the scalar
curvature on K. If Rg > 0, we must take R3 < 0. But negative scalar curvature on R3
is just like negative energy density. (Recall that the usual constraint of 3 + 1 dimensional
general relativity says"R3 = 2p in the time symmetric case.) Therefore, from an effec-
tive four dimensional standpoint, positive scalar curvature on K acts like negative energy
density. In other words, ten dimensional vacuum gravity has configurations with effective
negative energy density! Of course, we must require that the metric on K approaches the
standard Ricci flat metric at infinity, so we cannot keep the metric a product everywhere.
However, one can satisfy this boundary condition and keep the region of negative energy
density by taking the metric to be product inside a large ball of radius Ry. In a finite
transition region, Ry < r < R,, one can change the metric on K to the standard Ricci
flat metric.

Not only is there negative energy density in four dimensions, but this energy can be
arbitrarily negative. This follows immediately from the fact that there is no upper bound
on the scalar curvature Rg. Given a metric on K with Rg > 0, one can clearly rescale
it by a constant factor and make the scalar curvature arbitrarily large. This shows that
the negative energy density is unbounded from below.

To describe this more in details, let us consider the metric

2 -1
ds? = (1 - @) dr? + r2dQ2 + gma(r, y)dy™dy™ (6.19)

where the indices m, n label the extra compact dimensions. The metric gnn(7,y) denotes
a one parameter family of metrics on K. The Ricci scalar of (6.19) is

_ 2m(r) 1 mn 1" 2 ' 1 "2
R = (1 r ) ) rg rgmn+g +;g +Z(g)
4 4 m
+Ryg +0.m (ﬁ + -;) - 7‘_29’ (6.20)

where ¢’ = g™"0,gmn, §" = 0:9', and R is the scalar curvature of gma (7, y) at fixed r.
Inside some region r < Ry, we choose gma(r,¥y) to be independent of r, and equal
to some metric with Rg = 2V}, a positive constant. In this case, the contraint R = 0
reduces to 9,m = —V;r?/2 which is easily solved for m(r) yielding a region of constant
negative energy density. We now pick a radius R, > Ry and choose any path in the space
of metrics which connects our positive scalar curvature metric g.(Ro,¥) to a metric on
the moduli space, gmn(R1,¥). In general, we cannot solve R = 0 for m(r) because there
is nontrivial y dependence. However, we can find an m(r) so that R > 0. We can either
view this as non vacuum initial data for string theory, by adding say a dilaton with ¢ =0

7We set 87G = 1.



and ¢? = R. Or we can obtain vacuum initial data by a subsequent conformal rescaling
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of the nine dimensional metric (6.19). Let ds = e'¥/"ds?, then the change in the scalar
curvature is given by

R=yp~ " R~ ?w-‘v% : (6.21)

So if 9 is a solution to the conformally invariant Laplace equation in nine dimensions
2 7
=~V + Ry =0 (6.22)

then the rescaled scalar curvature vanishes. In order for the rescaled metric to be nonsin-
gular and asymptotically flat, we need a solution ¥ which is nonvanishing and goes to one
at infinity. One can show that such solutions always exist when R > 0. This conformal
rescaling can only decrease the total energy since the ADM mass changes by

AMoc-}(vwoc—/wa. (6.23)

From the four dimensional viewpoint, the metric on K is like a collection of scalar
fields with potential —Ry. Qualitatively, this potential has a local minimum at zero
when gmna is on the moduli space. There is then a finite positive barrier separating this
minimum from a region where the potential is negative. Since the potential is just the
scalar curvature, the height of the barrier is roughly 1/L% where L is a characteristic
size of K. Thus large Calabi-Yau spaces have small potential barriers. The width of the
potential is harder to estimate since it depends on mathematical details about the space
of metrics on K which are not yet known. For example, a key open question is: How
close does the moduli space of Ricci flat metrics come to the region of positive scalar
curvature metrics? The positive energy theorems we discuss later can be used to give
some information about this distance.

Once one reaches a metric of constant scalar curvature Rx = 2V > 0, one can always
rescale the metric by a conformal factor which is constant on K, to increase the curvature
and make the effective three dimensional energy density more negative. We can easily
compute the effective potential for this mode. Let us start with a product metric on
R® x K, ds? = ds? + ds%. Let ¢ be a function depending only on R®. The scalar
curvature of the metric

ds? = e""ds? + e*®dsk (6.24)
is 9
R = e[R; + 2vpe e - M0 2 gy (6.25)

where n is the dimension of K. The second term on the right is just the scalar curvature
of the rescaled metric on K. The vacuum constraint is ® = 0, and in 3 + 1 dimensions,
the energy density is p = R3/2. So we obtain

b n(n;— 2)(V¢)2 — Ve~ (@t (6.26)



Rescaling ¢ to have a standard kinetic term we get

(Vo)? — Voe™®° (6.27)

o=

p=

where 2 2)
n+
al = — =,
n
So the potential is not only negative, but falls off exponentially fast. Notice that for more
than one extra dimension, 2 < a® < 6.

(6.28)

7 Discussion

We explored a non-linear instability in supersymmetric compactifications. We first showed
that cosmic censorship is violated in D = 5, N = 8 supergravity, which is the low energy
limit of string theory with AdSs x S° boundary conditions. With AdS; x S” boundary
conditions, one obtains D = 4, N’ = 8 supergravity. Although we have focused on five
dimensions, this theory also has fields which saturate the BF bound. So, it will also have
negative energy solutions and violate cosmic censorship. We next showed that cosmic
censorship is violated in certain theories with a positive energy theorem in asymptotic
AdS space. The mechanism for producing a naked singularity is not sensitive to the
configuration of the potential. This implies that a large class of potentials may produce
a naked singularity in asymptotic AdS.

It is an open question whether the cosmic censorship hypothesis holds in string theory
with asymptotically flat boundary conditions. We finally showed, however, that a large
class of Calabi-Yau compactifications of the form M; x K contains four-dimensional po-
tentials which become negative. In this case the positive energy theorem guarantees the
positivity of the ADM energy for all solutions that tend asymptotically to the supersym-
metric vacuumn. However one might imagine there exist certain configurations that have
a large central region with negative energy density which develops a singularity, but with
a positive total mass that is too small to enclose the singular region by an event horizon.
It would be worth investigating this more in details.

In N = 8 gauged supergravity model, it is believed that AdS/CFT correspondence
exists. This implies that string theory must resolve the naked singularities, indicating
that classical string theory should resolve these singularities. This can be viewed as saying
that the o’ corrections prevent the curvature from diverging, but another interpretation
is simply that the spacetime metric is not well defined near the singularity.

Since the singularities are spacelike in the central region, the resolution of the sin-
gularity in the gauge theory should determine whether the the universe can “bounce”.
There are two possibilities. After the formation of the singularity in AdS, the field theory
state could correspond to a bulk metric which is semiclassically well defined only out-
side a finite region, or it could correspond to a metric which is well defined everywhere.
In the first case, the classical naked singularity would continue for a while. (It might
continue for all time, or eventually the metric could become well defined again and the
naked singularity would disappear.) In the second case, the naked singularity would only
last an instant. This would be analogous to passing through cosmological singularities in
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quantum gravity. There has been considerable debate recently about this possibility. We
now have a new concrete approach for settling this issue.
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The Curvaton Mechanism and Its Implications to Particle
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Abstract
I will describe basic features of the curvaton scenario where the primordial fluctuation
of a late-decaying scalar field, called “curvaton,” becomes the dominant source of
the cosmic density fluctuations. [ will also discuss its implications to the particle
cosmology.

1 Introduction

In the study of the evolution of the universe, it is important to understand the origin of the cosmic
density fluctuations. The most conventional scenario is inflation (1] where quantum fluctuation of the
inflaton field during the inflation becomes the origin of the cosmic density fluctuations. From the particle-
physics point of view, it is desirable to construct a model of inflation which is testable by collider (or
other laboratory) experiments; if it is possible, we can test the mechanism of the cosmological density
fluctuations with collider experiments. It is, however, difficult to construct such a testable model of
inflation since the requirements on the inflaton potential is very stringent.#!

Recently, a new mechanism of generating the cosmic density fluctuations has been attracting many
attentions, where a late-decaying scalar condensation provides the dominant source of the cosmic density
fluctuations. In this scenario, dominant part of the cosmic density fluctuations originate from the primor-
dial fluctuation of a new scalar field, called “curvaton,” which is different from the inflaton field {3, 4, 5].
Even though, in a large class of the curvaton scenario, inflation is assumed as a solution to the horizon
and flatness problems as well as to generate the primordial fluctuation of the curvaton field, constraints
on the inflaton potential can be relaxed in the curvaton scenario. In addition, since the requirements
on the curvaton is not so stringent, it is possible to use (some of the) well-motivated particles as the
curvaton; for example, scalar fields in the minimal supersymmetric standard model (MSSM) may play
the role of the curvaton. In such a case, it may be possible to study the properties of the fields responsible
for the structure formation by collider experiments. (For detailed studies of the curvaton scenario, see
(6].)

Here, I will review the curvaton scenario and discuss some of its implications to particle cosmology.
Organization of the rest of this article is as follows. In Section 2, I introduce the scenario I consider and
discuss the mechanism of generating the cosmological density fluctuations via the curvaton mechanism.
Then, in Section 3, behaviors of the Cosmic Microwave Background (CMB) anisotropy in the curvaton
scenario are studied. Implications to some classes of cosmological scenarios are discussed in Section 4.
Section 5 is devoted for the conclusions and discussion.

2 Mechanism

2.1 Thermal history

I first discuss the scenario we consider. In the curvaton scenario, there are two scalar fields which play
important roles; one is the inflation x and the other is the curvaton field ¢.#? The most important

t E-mail:moroi@tuhep.phys.tohoku.ac.jp
#1\Within the minimal supersymmetric standard model, however, it may be possible to use some of the scalar quarks and
Higgs bosons as the inflaton. For detail, see [2].
#2[ assume the inflation to solve the horizon and fAatness problems. The curvaton mechanism may be implemented in the
pre-big-bang (7] and the ekpyrotic (8] scenarios. In this article, however, I will not discuss those cases.
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aspects of the curvaton scenario do not depend on the details of the inflation. Thus, I do not assume
any specific form of the inflaton potential. On the contrary, resultant density fluctuations depend on the
potential of the curvaton field. Here, for simplicity, I adopt the simplest form of the curvaton potential,
i.e., the parabolic one:

V(9) = zmie’ 21)

where m,, is smaller than the expansion rate of the universe during the inflation Hi,s. In addition, the
curvaton field is assumed to have non-vanishing initial amplitude @jp;c.

In the scenario, the universe starts with the inflationary epoch and, after the inflation, the universe
is reheated by the decay of the inflaton. Then, the universe is dominated by the radiation (which I call
¥x)- I call the radiation-dominated epoch filled with radiation generated from the decay products of the
inflaton as the first radiation dominated epoch, or RD1 epoch, since, in the curvaton scenario, there are
two radiation-dominated epochs. Denoting the decay rate of the inflaton as 'y, reheating temperature
after the inflation is given by#?

Tay ~ /MLTy, (22)

where M, is the reduced Planck scale. In the early stage of the RD1 epoch, slow-roll condition is satisfied
for the curva.ton field. As the universe expands, however, the curvaton field starts to oscillate. (See Fig.
1.) When Iy < H < mg (with [y being the decay rate of ¢), energy density of ¢ behaves as that of
non-relativistic matter. Then, the energy density of the curvaton p, is proportional to a=3 while the
energy density of v, is proportional to a~4, where a is the scale factor. Thus, as the universe expands,
curvaton dominates the universe (if the lifetime of the curvaton is long enough). I call this epoch as
curvaton-dominated epoch, or ¢D epoch. The curvaton field decays when the expansion rate becomes
comparable to the decay rate of the curvaton. The reheating temperature due to the curvaton decay is
given by

Tra ~ /M.Ty. (2.3)
Schematic picture of the evolutions of the energy densities of various components in the universe is given
in Fig. 2.
2.2 Evolutions of the fluctuations

In the curvaton scenario, ¢ also acquires the primordial fluctuation during the inflation. Denoting the
curvaton field (with comoving momentum coordinate ¥) as**

é(t,Z) = ¢(t) + 6¢(t, T), (2.4)
let us consider the two-point correlation function of the fluctuation:
daQ
(0168(t, 266 N0 = [ BT gg(2, ByPet-9, (25)

Then, the Fourier amplitude generated during the inflation is given by

P
k my/3H Hy,
) ‘ , (26)

2aHins 2r ]k=ﬂHnnr
where the subscript “k = aH;,” implies that the quantity is evaluated at the time of the horizon-exit

during the inflation. As I discuss below, the primordial fluctuation of ¢ given in Eq. (2.6) becomes the
origin of the cosmic density fluctuations in the curvaton scenario.

M&B=(

#3[n the following discussions, I neglect O{1) coefficients which are not important.
#4Here, I use the same notation for the zero-mode and for the total amplitude since there should be no confusion.
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Figure 1: Behavior of the curvaton field in the early universe.
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Figure 2: Evolutions of the energy densities of various components in the universe. Here, I adopt the
instantaneous decay approximation for the inflaton decay, and hence the epoch where the universe is
dominated by the inflaton oscillation just after the inflation is not shown in this figure.

Now, we are at the position to discuss the evolutions of the cosmological density fluctuations generated
from 6¢snie. For this purpose, I use the Newtonian gauge where the line element is described with the

metric perturbations ¥ and & as#®
ds? = —(1 + 20)de® + a*(1 + 28)dZ? = a? [—(1 + 2¥)dr? + (1 + 28)d#?] (2.7)
where 7 is the conformal time. In addition, the variable §x is defined as
6x = bpx/px, (2.8)

where the subscript X denotes the individual components (like radiation, cold dark matter (CDM),

baryon, and so on) and dpx is the fluctuation of the energy density of X.
Substituting Eq. (2.7) into the Einstein equation, we obtain the generalized Poisson equation for &:

1 : 3H
k2‘1> = ——— (aio) Pror [(s;og + T(l + wgot)%o;] . (2.9)

Here, “tot” denotes the total matter and the variable Vx denotes the velocity perturbation of the com-
ponent X. Furthermore, wiot = prot/Prot the equation-of-state parameter for the total matter, and

_lda
H= o (2.10)

#3Here, [ use the notation and convention of [9] unless otherwise mentioned.
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In addition, I consider the situation where the temperature of the universe is so high that the momentum-
exchange of relativistic particles are efficient enough. In this case, perturbation of the radiation becomes
locally isotropic and the anisotropic stress perturbation vanishes, resulting in ¥ + & = 0.

When the perturbation of the radiation becomes locally isotropic, the equations for the density and
velocity perturbations of the radiation are given by

8 = -%kv,-w, (2.11)
Vo= %ké.,+k\l!, 2.12)

where the “prime” denotes the derivative with respect to the conformal time 7. In addition, if a very
weakly interacting non-relativistic component exists, its perturbations obey the following equations:

8, = —kVy - 30, (2.13)
Vi o= —HVn + kT, (2.14)

where the subscript “m” is for non-relativistic matters. Notice that, when a scalar field is oscillating,
the equation-of-state parameter of the scalar condensation vanishes and hence the density and velocity
perturbations of the scalar field also obey Eqs. (2.13) and (2.14).

In the curvaton scenario, it is assumed that the primordial fluctuation §¢;,;; becomes the dominant
source of the cosmic density fluctuations. Thus, hereafter, I will discuss the density fluctuations generated
from d¢inie. When Ty < H £ my, then, the situation is like the case with isocurvature fluctuation in
non-relativistic matter component (10]. In the curvaton case, as in the conventional isocurvature case, it
is convenient to define the (primordial) entropy fluctuation between ¢ (and its decay products) and the
photon from the inflaton ,:

3
S¢\ = [6¢ - Zé,l] . (215)
RD1

In the curvaton scenario, cosmological density fluctuations are parameterized by using S, .

In order to discuss the evolutions of the fluctuations, it is important to know the equation-of-state
parameters of individual components in the universe. If all the components behave as the relativistic
or the non-relativistic matter, evolutions of the perturbations are described by Egs. (2.11) — (2.14). In
this case, it is convenient to distinguish the photon (or any other components) from the decay product
of ¢ from that from the inflaton field, which I call v, and 7y, respectively.#® In order to consider 4,,
in the RD2 epoch, we can neglect v, since the CMB radiation at this epoch is dominantly from the ¢
field. Then, we find that, in the RD2 epoch, ¥ and J,, become constant while V,, = O(kt) up to higher
order corrections. Indeed, combining Eq. (2.9) with Egs. (2.11) and (2.12), and using éior = J,, and

Viet = V4, we obtain V»,(fo) = -%k""l’ggi and
2]
) @10
(60)

where ¥, is the metric perturbation induced by the primordial fluctuation of the amplitude of ¢. (In
the following, the superscript “(d¢)" is for perturbations generated from the primordial fluctuation of ¢.)

As I mentioned, W) is constant up to a correction of O(k?r2).

Behavior of 61° is also easily understood. In discussing the effects of the primordial Auctuation of
¢, we neglect the initial fluctuation of the inflaton field and hence Js,df) — 0 in the deep RD1 epoch. In

addition, from Egs. (2.11) and (2.12), V{%® becomes higher order in &t than 84%°) and W14®). Thus, we
obtain

800) = qptée), (2.17)

#81n fact, these photons are mixed each other and they cannot be defined separately. In other words, their velocity
perturbations should be the same since they form a single fluid. Even so, the following arguments are unchanged as far as
we consider the leading terms in the density perturbations since the velocity perturbation is at most O(k7). In the following
discussion, 74 and v, should be understood as representatives of the components which are and are not generated from the
decay product of ¢, respectively.



The above relation holds in the RD1, ¢D, and RD2 epochs up to corrections of O(k?72).

\I!gg% can be related to Sfx). Using the fact that the entropy fluctuation is a conserved quantity for

superhorizon mode, the following relation holds:

o) _ éo) 3
Sex) = [465?’ 6$f°’] = [63 - 4-53‘?”} : (2.18)
RD2 ¢D,RD1
With this relation, in particular, we obtain
86 2.6
{2 = 55;;”. (2.19)

Density fluctuations of various components are also parameterized by Sw") Detailed properties of
the density fluctuations, however, depends on how the various components in the universe are produced.
If a component X is generated from the decay product of ¢, then there is no entropy between the photon
(i.e., 7¢) and X. On the contrary, if some other scalar field ¥ generates X, the entropy between the

photon and X is the same as Sgs.»)_ Thus, if all the components in the universe are generated from ¢,
the density fluctuations become purely adiabatic and

) = 3 = 0, 288 )

where the subscripts v, b, and ¢ are for the photon, baryon, and CDM, respectively. In this case, the
isocurvature perturbation in the ¢ field is converted to the purely adiabatic density perturbation after
the decay of ¢. On the contrary, if the baryon asymmetry is generated by the scalar field 4, the entropy
between the radiation and the baryon becomes Sg?) and hence [5, 11]

9 = 3 [ = -2 1]

3 9
_ 3 [s(s0) (60)
RD2 [6‘7 ] RD2 3 ¥Rz (2.21)

rD2 4 t3

and in the case where ¥ is responsible for the CDM while the baryon number is somehow generated from
the decay product of ¢,

RD2

4
(d0) = = [s(6®) = —oylée) () [ (69) (60)
[6’ ]RD2 3 [6" ]am 2¥pa» [6" ]Rm é ] ‘I’RD:»- (2.22)
In addition, if the baryon and the CDM are both generated from sources other than ¢, we obtain
(69) — _oglde) (60) — |56 — _:i (6¢) g (60)
[67 ]RD2 = ~2¥rox [6° ]RD'.’ [6‘ ]R02 4 [6" ]m)z + 3R (2.23)

It is important to notice that, for the cases given in Eqs. (2.21) — (2.23), the isocurvature perturbation
is correlated with the adiabatic perturbation.

So far, we have seen that the primordial fluctuation of the curvaton field may generate the metric and
density fluctuations. Before closing this section, we should compare the size of the curvaton contribution
with the inflaton contribution. Even with the curvaton, there is also a contribution from the inflaton
fluctuation since I assume inflation as a solution to the horizon and flatness problems. If we consider the
situation where there is no entropy fluctuation, inflaton contribution to the metric perturbation (in the
RD2 epoch) is given by [15]

(mf) = £ 3Hm|' Hmf 2.94
e (k) = 3 [ i:af 2n ]k:aH, 224
while the curvaton contribution is
@89 (k) = H‘“‘] . (2.25)
d’lmt k=aH

(Here and hereafter, the superscript “(inf)" is for quantities generated from the inflaton fluctuation.) As
one can see, the curvaton contribution to ¥ is inversely proportional to @in;. and hence, if @in;e is small
enough, curvaton contribution dominates over the inflaton contribution.



Thus, in the curvaton scenario, there are two conflicting requirements on the initial amplitude of the
curvaton field. One is the upper bound on @ii:; upper bound on @ini, for ¥9¢} 2 ¥(inh) depends on
the model of the inflation. For the case of the chaotic inflation, for example, the curvaton contribution
becomes larger than the inflaton contribution if ¢iniw < M.. The other is the lower bound on the ¢in;,
since the ¢D epoch cannot be realized if ¢, is too small. Lower bound depends on the reheating
temperatures Tr; and Tr; given in Eqs. (2.2) and (2.3), respectively. In Fig. 3, I plot the lower bound
on ¢iniy to realize the ¢D epoch.

3 CMB Angular Power Spectrum
3.1 Spectral index

Now, we are at the position to discuss the CMB angular power spectrum in the curvaton scenario. One
of the most important consequences of the curvaton scenario is that, if all the components in the universe
are generated only from the decay products of ¢, no entropy fluctuation is generated and the primordial
density fluctuations (after the RD2 epoch) becomes purely adiabatic. Let us first consider such a case.

One important check point is that the scale dependence of the primordial density fluctuations. In the
case where the cosmic density fluctuations are generated from the primordial fluctuation of the inflaton,
scale-dependence originates from the change of the slope of the inflaton potential as well as the expansion
rate during the inflation. As can be seen from Eq. (2.25), on the contrary, scale-dependence of the
curvaton contribution is only from the change of the expansion rate (as far as my &« Higr). Thus, even
though both the curvaton and inflation contributions are from primordial fluctuations of some scalar
fields, their scale-dependences are different. Defining the spectral index ng as

d inf,60)y2 i
T P ¥hos T = nfr9 -1, (3.1)

the spectral indices for the inflaton and curvaton contributions are calculated as
nfinf) 1 - 6¢ + 21, (3.2)
n{se) = 12, 3.3)

where ¢ and 7 are slow-roll parameters which are given by

1, (Vi v
=iz (__,) . n= M2V
2 Viar 7 inf

Due to the change of the scale-dependence, we can see that the observational constraints on inflation
models are relaxed in the curvaton scenario. For example, for the case of the chaotic inflation with the
inﬂaton potential Vi,r oc xPirf, spectral indices for the inflaton and curvaton contributions are estimated as
"0 ~ 0.96 and n{*® ~ 0.98 for pinr = 2, ni™ ~ 0.95 and n{**’ ~ 0.97 for pins = 4, and n{™ ~ 0.94 and
nﬁ“’ =~ 0.95 for p;nr = 6. Thus, using currently available constraint on the spectral index ng = 0.9940.04
[12] from the WMAP, simple chaotic inflation model with pi, = 6 is excluded by the observations while,
with the curvaton mechanism, p;,r = 6 becomes consistent with the observational constraints. For other
class of inflation models, change of the constraint may be more drastic.

3.2 Entropy fluctuations

Next, let us discuss the effects of the possible entropy fluctuation in the curvaton scenario. As mentioned
in the previous section, in the curvaton scenario, correlated mixture of the adiabatic and isocurvature
fluctuations may be generated. In order to discuss effects of the entropy fluctuation to the CMB angular
power spectrum, it is convenient to parameterize the density fluctuation of the non-relativistic matter as

[669] = [@0/2ma + @c/0889)]

3 ; 8
rRD2 4 [6‘(760)] RD2 T Fm ¥R2, (34)
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Figure 3: Lower bound on ¢, to realize the ¢D epoch on Try vs. m, plane. Tg; is taken to be
Try = 108GeV, Tr) = 10'°GeV and Tg;, = 10'4GeV from the top.
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Figure 4: The angular power spectrum with correlated mixture of the adiabatic and isocurvature per-
turbations in the baryonic sector (solid line), in the CDM sector (long-dashed line), and in the bary-
onic and CDM sectors (dot-dashed line). (See Eqs. (2.21), (2.22), and (2.23), respectively.) [ also
show the CMB angular power spectrum for the purely adiabatic (i.e., x, = 0) and purely isocurvature
(#m = 00) cases with short-dashed and dotted lines, respectively. The overall normalizations are taken
as [I(1 + 1)C;/27)i=10 = 1.

where 0, Q. and Q,, are the (present) density parameters of the baryon, the CDM, and the non-
relativistic component (and hence Q,,, = € + €2;). Although the density fluctuations for the baryon
and the CDM are independent, shape of the CMB angular power spectrum is determined once k., is
fixed. For the purely adiabatic case, £m = 0. With the relations (2.21), (2.22), and (2.23), £, becomes
2(Q%/%m), 2(Qc/Um), and §, respectively.

In Fig. 4, I show how the CMB angular power spectrum depends on the x,, parameter. As one can see,
C\ strongly depends on &, and, if |km| 2 0(0.1), deviation of the CMB angular power spectrum from the
adiabatic result (i.e., C; with k,, = 0) becomes sizable. Importantly, the WMAP results strongly suggest
that the primordial density fluctuations be (almost) purely adiabatic; with the WMAP data, £, < 0.1 is
obtained [13]. Thus, the WMAP results impose stringent constraint on the curvaton scenario. A possible
small contamination of the entropy fluctuation in some case will be discussed in the next section.

4 Implications to Particle Cosmology

4.1 Case of D-term inflation

So far, we have discussed some generic features of the curvaton scenario. As can be imagined, the curvaton
scenario has important connection with particle cosmology. Thus, in this section, I would like to show
some examples of the applications and implications of the curvaton scenario to several specific cases.

The first topics is the case with D-term inflation in supersymmetric models [14]. One of the strong
motivation to consider the D-term inflation is to eliminate the dangerous Hubble-induced mass term; in
supergravity, it is often the case that all the scalar fields acquire effective mass during inflation as large
as ~ :Hj,r and, if such a large mass is generated for the inflaton, the conventional slow-roll inflation
cannot proceed. The dangerous Hubble-induced mass term is generated from expectation value of the
F-term potential. In the scenario of the D-term inflation, however, the inflation is driven by the D-term
potential and hence we may evade the problem of the Hubble-induced mass.



The primary purpose here is to discuss the application of the curvaton scenario to the D-term inflation,
but not to study the detail of the scenario of the D-term inflation. Thus, let us take a simple model of
D-term inflation; here, we consider the model with (new) U(1) gauged symmetry and introduce three
chiral superfields, $(0), @(—1) and @Q(+1) where we denote the U(1) charges of the superfields in the
parenthesis. With the superpotential

W = ASQQ, (4.1)

and adopting non-vanishing Fayet-Illiopoulos D-term parameter £, the scalar potential is given by

4 3" A 1 A 2
V=X (ISQF +1SQF +1QQI°) + 592 (-IQP + QP - ¢€)", (4.2)
where g is the gauge coupling constant.#7 In our study, we take £ to be positive (although the final result
is independent of the sign of £). Minimizing the potential, the true vacuum is given by

(Sy=0, @ =0, (Q=vE (4.3)

Although the true vacuum is given by (4.3), there is a (quasi) flat direction, that is, S = co with @
and @ being vanished. Indeed, in this limit, the scalar potential becomes V = %ngz and hence, at the
tree level, the scalar potential becomes constant. This flat direction is used as the inflaton. Thus, in this
scenario, inflation proceeds in the symmetric phase of U(1) while the vacuum is in the broken phase, and
hence the cosmic string is formed. The mass per unit length of the string is given by

u = 2x€. (4.4)

Once the cosmic-string network is formed, it affects the cosmic density fluctuations. In particular, an
important constraint is obtained by studying its effects on the CMB anisotropy. The perturbations
induced by cosmic strings are non-Gaussian and decoherent isocurvature, which leads to characteristic
spectrum of the CMB anisotropy, which is distinguished from that induced by inflation.

To study this issue, let us consider the evolution of the inflation field a little bit more carefully. Once
the radiative corrections are taken into account, the flat direction is slightly lifted. When the scalar field
S takes large amplitude, @ and Q become massive and decouple from the effective theory at the energy
scale AS. This fact means that the gauge coupling constant in this case should be evaluated at the scale
AS and hence, for S > g€/, V(S) = §g°(AS)€%. Using one-loop renormalization group equation, and
defining

S= %ae“’, (4.5)

the potential for the real scalar field o is given by
2 402
. g° 2, 97 g
=< 2> |n— 4.6
V(o) 25 +87r'-’ lno_o, (4.6)

where gy is some constant.

Since the scalar field o has a very flat potential when ¢ is large, the ¢ field can be used as an inflaton;
inflation occurs if ¢ has large enough amplitude. Assuming the slow-roll condition, evolution of the o
field during the inflation is described as

2
2 g

ol = Ugnd + mNeﬂ/ff, (4.7)

where N, is the e-folds of the inflation and M, =~ 2.4 x 10'® GeV is the reduced Planck scale. The cosmic

density fluctuations responsible for the CMB anisotropy measured by the WMAP (and other) experiment

are generated when N, ~ 30 — 50. (Hereafter, we take N, = 50 in evaluating C;.) In addition, genq is

#7Here and hereafter, we use the same notation for the scalar fields and for the chiral superfields since there should be no
confusion.
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the inflaton amplitude at the end of the inflation. In order to realize the D-term inflation, o should be
large enough so that (i) the slow-roll condition is satisfied and (ii) the effective mass squared of the Q
field becomes positive. Inflation ends one of these conditions are violated and hence geyq is estimated as

Oend = max(0y.r., Oinst ), (4.8)

where

Osr. = %A’[n Tinst = —\/_ (4.9)

Notice that o,.,. and 0gins are derived from the slow-roll condition and the instability of the potential of
Q, respectively.

Once the evolution of the inflaton field is understood, we can calculate the metric perturbation ¥
generated from the primordial fluctuation of the inflaton field. The metric perturbation from the inflaton
fluctuation is given in Eq. (2.24), and hence#®

(mf)( k) = [2\/§7f 4 a] (4.10)
F3 . ¢
3V3 gM! k=aH
Importantly, \I!( nf) changes its behavior at A ~ Ay with
2
Amij%ﬁ- (4.11)

When A > A, the second term in the right-hand side of Eq. (4.7) dominates over the first term and

hence o for corresponding N, is given by gM./N./v/2r. On the contrary, if A & Aceit, the first term
wins and ¢ ~ oins. As a result, we obtain

(inf) A Acrit

¥ro -afw‘/ { Mrai)™h ¢ A€ deris (4.12)

When A 3> Aci, \II,; is proportional to £ and is independent of A. On the contrary, if A € Aerie, ‘Ilg'g)

is proportional to £3/2/A. This fact implies that, for a fixed value of £, the metric perturbation generated
from the inflaton fluctuation is enhanced for sufficiently small value of .

Because of the cosmic string formation, the CMB angular power spectrum in the D-term inflation
scenario contains two contributions: one is the adiabatic one from the primordial fluctuation of the
inflaton and the other is from the cosmic string. (So far, we have not introduced the curvaton yet.)
Assuming no correlation between these two contributions, we obtain

G =0 4 gl (4.13)

where C™" and C**" are contributions from primordial inflaton fluctuation and cosmic string, respec-

tively. The adiabatic part C('"” can be calculated with the conventional method. Since C""n is from the
two point correlation functlon the CMB angular power spectrum is second order in ‘I’("‘” In particular,

¢ is proportional to €2 and £3/A2 for A 3 Aceric and A < Acrit, respectively. In addition, the cosmic
string contribution C{*" is proportional to 2 o €2 [16).

The important point is that the {-dependence of the cosmic string contribution C(S") is different from
that of C,('"” although the detailed shape of the cosmic string contribution depends on the analysis. (For
example, Refs. [17] suggest that the combination (I + 1)C; ™ is almost independent of {, while another

class of studies result in “tilted” behavior [18] where the function Vi + l)C,(s") approximately has a

#8The spectral index ng is very close to 1 in the D-term inflation and hence we neglect the scale dependence of the
primordial metric perturbation.



linear dependence on In! up to { ~ 400 — 600 then it steeply decreases. In any case, C*") does not have
oscillatory behavior as C,(i"f) and the constraints on the D-term inflation in the following discussion do
not change qualitatively.

Since C(s") and C““n have different {-dependence, the total angular power spectrum becomes incon-
sistent with the observation if the size of C‘(’") is comparable to that of C('"r). Indeed, if A > Acrie,
the ratio " /C,('"” becomes independent with £. In [19], it has been seen that the shape of the total
angular power spectrum becomes inconsistent with the observation in such a case. In addition, in order
to suppress the ratio C,(”")/C,(i“", A should be smaller than O(10~4 — 10-8%).

A consistent scenario of the D-term inflation with A ~ 1 can be constructed by adopting the curvaton
mechanism. In the case of D-term inflation with the curvaton, the curvaton contribution to the metric
perturbation is calculated as

o) _ A8 _ 2 g€
RD 9 Pinit 9v6m M. Binit

Since there is no correlation between the primordial fluctuations in the inflaton and curvaton fields, the
total CMB angular power spectrum is now given in the form

(4.14)

C = ¢ 4 gl 4. clé®), (4.13)

where C(“) is the curvaton contribution. As we emphasized, the density fluctuations associated with
Odinie are purely adiabatic. In addition, ¥{%®! is almost scale-invariant since the expansion rate during the
D-term inflation is almost constant. As a result, the total CMB angular power spectrum may become
well consistent with the WMAP observation if the curvaton contribution dominates over the inflaton
contribution. We can see that such a hierarchy is relatively easily realized; using the fact that C,“"” and
C*" are proportional to [¥("0]? p when A ~ 1 while C*® is proportional to [¥{**))]2, the curvaton
contnbutlon dominates when @i, < gM. since \IJ(“"’ ~ O(£ IM3).

To be more quantitative, we calculate the x? variable to derive constraints on the parameters in the
scenario. Now the total angular power spectrum has the form

= (€ wpo=1Fap + [C*)ou=1 (GR)?, (4.16)
where

RD = [‘I,(mf)]2 + [\I,(5¢)}2 (4.17)

and C*" is the CMB angular power spectrum generated from purely adiabatic density fluctuations.
The x? variable is minimized when the cosmic-string contribution is negligibly small and ¥rp = 3.0 x
10-%. The latter condition can be satisfied by tuning the curvaton contribution (as far as the inflaton
contribution to ¥gp is not too large.) In order to realize hierarchy between the adiabatic and cosmic-
string contributions, it is necessary to make u small by suppressing £&. Requiring that Ax? < 4, we obtain
the upper bound on u for the case of A ~ 1 as

Gu S 0(107%), (4.18)
and hence, using Eq. (4.4), the upper bound on £ is given by

VEIM, $0(107%). (4.19)

In addition, using the best-fit value of ¥gp given above, we can estimate the required value of the
initial amplitude of the curvaton field. Importantly, in order to realize the adiabatic-like CMB angular
power spectrum, ¥99) » w00 since CI*" and C™" are of the same order if A ~ 1. Thus, requiring

o2 ~ 3.0 x 103, we obtain

<15

2
Pinit/M. =9.5x10% x g ( ) . (4.20)



Finally, I would like to make a brief comment on the cases of hybrid inflation. In many classes of
hybrid inflation models, gauged U(1) symmetry exists which is spontaneously broken after the inflation.
With such a U(1) symmetry, cosmic string is also formed, which also affects the CMB anisotropy. The
dynamics of the hybrid inflation and the mass of the string per unit length are almost the same as the
D-term inflation [20]. Therefore, the result obtained in the present work can apply to the hybrid inflation.
Of course, for general hybrid inflation models where the cosmic string affects the CMB anisotropy too
much to be consistent with the observations, the curvaton mechanism can solve the difficulty as in the
D-term inflation case.

4.2 Case of the right-handed sneutrino as the curvaton

The next possibility I would like to discuss is the case where the curvaton field is also responsible for the
scenario of baryogenesis. Among various scenarios, there are some cases where the baryon asymmetry of
the universe is generated from scalar-field condensations. In those scenarios, scalar fields often dominate
the universe at some epoch and hence, if they have primordial fluctuations, they may play the role of
the curvaton. Probably, two of the most famous examples of the possible scalar fields responsible for the
baryon asymmetry are right-handed sneutrino {21, 22] and the Affleck-Dine field (23].

Here, we consider the case where the right-handed sneutrino, which becomes the origin of the baryon
asymmetry of the universe [21], plays the role of the curvaton [24). First, I briefly summarize the model
and the thermal history. Here, the relevant part of the superpotential is given by

W = ilN,,'aN,'LaHu + %A:[N'UN.'N]‘, (4.21)

where hy is the Yukawa matrix for the neutrino while My is the Majorana mass matrix for the right-
handed (s)neutrinos. Here, i and j are generation indices of the right-handed neutrino N while a is that
of the left-handed lepton doublet L. In addition, H, is the up-type Higgs field. I work in the basis where
the matrix MN is diagonalized. For simplicity, let us consider the case where the lightest right-handed
sneutrino N = N, has non-vanishing initial amplitude. (Hereafter, mass of N is denoted as Mn.)

With a non-vanishing primordial amplitude, N starts to oscillate when H ~ My and decays when H ~
[Cn, where I’y is the decay rate of N. Since the Majorana mass term breaks the lepton-number symmetry,
lepton-number asymmetry may be generated at the time of the sneutrino decay if non-vanishing CP
violation exists. Such a lepton-number asymmetry becomes the source of the baryon-number asymmetry
of the universe with the sphaleron process.

The mechanism of generating the baryon-number asymmetry is basically the supersymmetric version
of the Fukugita-Yanagida mechanism [25]. Expression for the resultant amount of the baryon asymmetry
is, however, rather complicated since, in this case, the primordial abundance of the right-handed sneutrino
has non-thermally determined. Assuming 'y < 'y, we obtain [22]

L7 -10 T My
g = 024X 1070 5 der (10°Gev) (oeav) (422)

where Ty is the temperature at the epoch of the decay of N, m,, the mass of the heaviest (left-handed)
neutrino mass. (So, if N decays after dominating the universe, Ty becomes the reheat temperature due
to the decay of N.) In addition, in the basis where the Majorana mass matrix for the right-handed
neutrinos M is real and diagonalized, the effective CP violating phase is given by

(Hu)2 Im[hh'M lh.hrll |

]
= My, [hh']“

(4.23)

Notice that, with maximum CP violation, d.g ~ 1. In addition, f, is the energy fraction of the radiation

generated from the decay product of N. With the relation I'y < Ty, N decays after the inflaton decay.
In this case, it is convenient to define the following quantity:

N, ~{ (Ca/Ma)YAM, @ My <Ty

(Cn/T)YVM, : My >T, (4.24)



If Nipie ~ N’.,q, Py, ~ py is realized when H ~ I'y. Thus, when Ninie < 1\7eq, N decays in the M-
dominated universe and hence

(Nilxit/Neq)2

1+ (Ninit/Neq)') m o

f‘?g ~

On the contrary, if 1\75.,“ 2 Neq, the right-handed sneutrino decays after it dominates the universe and
we obtain

(1'\-,init./[;/m|)8/3

V. < N
1+ U'\.finiz/Neq)8/3 Nea S Nini (4.26)

fv,;, ~

Thus, as is easily seen, energy fraction of 5 becomes close to 1 when Ninit > Neq while, in the opposite
limit, most of the radiation are generated from the decay product of the inflaton.

Now, we are at the position to discuss the cosmological density fluctuations in this scenario. In
particular, we consider the case where the condensation of the right-handed sneutrino plays the role of
the curvaton. (Thus, in this case, the epoch after the decay of N is identified as the RD2 epoch.) The
scenario is basically the same as the curvaton scenario which I have explained before.

In the previous discussion, we have considered the cases where the all the components in the universe
are generated from the decay product of the curvaton, which corresponds to the case of f,, =~ 1. Asis
explained above, however, (small) contamination of the radiation from the decay product of the inflaton
may always exist. If the baryon asymmetry is generated from thermally produced particles after the RD2
epoch is realized, then entropy fluctuations vanish and the primordial density fluctuations become purely
adiabatic.

In the scenario we consider, however, the situation is quite different since the baryon asymmetry
is generated from the decay product of N. In particular, if the energy fraction of the radiation from
the decay product of the inflaton becomes sizable, non-vanishing baryonic entropy fluctuation may be
generated.

Evolution of the density fluctuations in this case is also understood by solving the Einstein and
Boltzmann equations for the fluctuations given in the previous section. We calculate the entropy in the
radiation-dominated universe after the decay of both x and N. In the radiation-dominated universe [9]

Bioe = O(T),  box = ~2¥n02, View = 5 ¥m0akr. (4.27)
Then, with the relation
Dot = fy, Bay + frz Bog, (4.28)
with A, = é,, + 4(a’'/a)Viee/k, we obtain
AlM) = -;—:i_-/_\.gm )= ;:N 150 (4.29)

Using the fact that the entropy between any component produced from N and that from the inflaton

field is conserved, we can relate mﬁf{;’,’ with S'(‘w) with the relation S (JN) 3 (A(m) A(JN)) we obtain

6Nlnlt

N 5N
‘I’&D; = f"IN S( ) f"N
Nnmz

(4.30)

Thus, if N decays much after it dominates the universe, fyx = 1 and hence the metric perturbation
becomes comparable to the primordial entropy perturbation. On the other hand, if f,, <« 1, the metric
perturbation becomes negligibly small. Since the baryon asymmetry is generated from N, the density
fluctuation in the baryonic component is given by

vy _ 3 9
AE’GN) 4AS’§V~) -3 ;:x wﬁﬁ.’)"} (4.31)
N



Thus, the entropy between the baryon and the radiation is given by

v V) 3 (6N 9 fy, o (67) (1 = frq) (679
SUNY = A L SABNY 20 g N) T T s ] 8N (4.32)
3] ] 4 tot 2 fﬁ,»;- RD2 2f7.v RD2
and defining
. S(JN)
KN = %ﬁ (4.33)
Yap2
we obtain
b _ - fry) (4.34)

" 2fr

If the right-handed sneutrino once dominates the universe, fy4 — 1 and hence the perturbation becomes
adiabatic. (Thus, the situation is like the case discussed in the previous section.)

It is interesting if a sizable amount of the energy density of the radiation is from the inflaton. In this
case, fy, becomes smaller than 1 and correlated mixture of the adiabatic and isocurvature fluctuations
is generated. As mentioned in the previous section, WMAP data suggests that the baryonic and CDM
entropy fluctuations should be very small; |xs| < 0.5 [13). If f,, ~ 0.1, however, |x;| can be smaller
than the present upper bound but the deviation of the CMB angular power spectrum from the adiabatic
result may still be within the reach of the future precise observations. Thus, it is desirable to find the
signal from the (correlated) entropy fluctuation in the future precise observations of the CMB anisotropy
for the test of the curvaton scenario.

Finally, let me comment on the case where the curvaton also generates the baryon asymmetry of the
universe via Affleck-Dine mechanism. If the primordial fluctuation of the Affleck-Dine field becomes the
dominant source of the cosmological density fluctuations, large baryonic entropy fluctuation is generated
even if the universe is once completely dominated by the Affleck-Dine field. This is due to the fact
that the Affleck-Dine field is a complex scalar field and also that the resultant baryon asymmetry of
the universe is sensitive to the initial value of the Affleck-Dine field. If the Affleck-Dine field acquires
primordial fluctuation, its initial phase as well as the initial amplitude is expected to have fluctuations.

5 Conclusions and Discussion

Here, I have discussed the basic features of the curvaton scenario and its implications to particle physics.
In particular, I have discussed that the cosmic density fluctuations can be dominantly originate from
the primordial fluctuation of the “curvaton” field, which is a late-decaying scalar condensation other
than the inflaton. In the curvaton scenario, scale-dependence of the cosmic density fluctuation becomes
different from the case of the simple inflation, and in many cases, the spectral index n, becomes close
to 1 compared to the simple inflation case. Thus, given the fact that the CMB anisotropy observed by
the WMAP suggests (almost) scale-invariant primordial density fluctuations, observational constraints
on the inflaton potential can be relaxed by adopting the curvaton scenario.

One of the important feature of the curvaton scenario is the possible contamination of the (correlated)
entropy fluctuation in the non-relativistic matter. The CMB angular power spectrum is sensitive to the
entropy fluctuation. Thus, if such correlated entropy fluctuation is sizable, it affects the shape of the CMB
angular power spectrum and hence it will be interesting and important to try to find its consequence in
particular in the CMB anisotropy at future precision observations of the universe.
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Creation of a brane world
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Abstract
We study a creation of a brane world using an instanton solution. We analyze two
models: one is a brane model with a bulk scalar field and the other is that with a bulk
Gauss-Bonnet term. We construct instanton solutions with branes for those models,
and calculate the values of the actions to discuss an initial state of a brane universe.

1 Introduction

New paradigm of cosmology based on a superstring/M-theory, which is the so-called “brane world”,
has been proposed for last several years. One of the most interesting approach was given by Randall
and Sundrum [1]. They considered a pure 5-dimensional (5D) Einstein gravity in a bulk only with a
cosmological constant. Whereas, in a string/M-theory context, one would also expect some scalar fields,
associated with the many moduli fields. Those fields will, in principle, also propagate in the bulk. For
example, Lukas, Ovrut and Waldram [2] derived an effective 5D action by a dimensional reduction from
11-dimensional M theory. It contains a scalar fields in the 5D bulk, which correspond to moduli associated
with compactification of six dimensions on a Calabi-Yau space. The other possible modification is to add
higher curvature correction terms to the Einstein gravity. These are, in fact, derived from low energy
limit of a string theory. The first correction term would be a ghost-free Gauss-Bonnet combination
: Lgp = a (R* - 4RAgR*B + RapcpRABCP). It was shown that a massless graviton mode at low
energy is localized in the brane model with Gauss-Bonnet term as well as in the RS II model. Rather,
a correction for the Newton'’s law becomes milder by including the Gauss-Bonnet term [6]. Using these
models, we study creation of a brane universe[4]. We consider creation of a brane world using an instanton
solution which is given by solving the 3D Euclidean Einstein equations. In order to construct a compact
Euclidean manifold, we have to glue two copies of a finite patch of a bulk spacetime with a brane boundary
by use of the Israel’s junction condition. Garriga and Sasaki (3] first constructed a brane instanton in the
Randall-Sundrum model. Here we discuss two models of brane instantons which contains either a bulk
scalar field or a Gauss-Bonnet term in a bulk.

2 Creation of a brane world with a bulk scalar field

As for a brane world with a bulk scalar field ¢, the Euclidean action of this model is given by

i r=r;

S = _2_'1% {/d%\/ﬁ [R - 50,09 - V(¢)] -3 dava (K - "w(*”)]} W

where «2 denotes the five dimentional gravitational constant and K (ti) denotes the extrinsic curvatur. We
consider a model with a bulk potential V'(¢) = (8° — 2/3)v® exp(—28¢), where 8 and v are parameters.
This model includes the Hofava-Witten theory (8 = 1) [2] and the Randall-Sundrum model (3 = 0).
The tension of a brane is assumed to be A(¢) = £2v/2vexp(-3¢). Note that for this choice of potential
and tension, the 3-curvature of a brane vanishes. Hence, a boundary brane in this instanton solution
must be Aat. We assume the Euclidean metric ds® = dr® + b(r)?v;jdz'dz/, where 7;; is the metric of
4-dimensional torus in order that Euclidean solution (instanton) is compact.
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The equations of motion are
92 1 2 1 2 2 2 2,=-203¢
b= = 12b 2¢ B 3)ve , (2)

o o o
¢" +45¢' =28 (ﬂg - ;) vie~?°, (3)
with the junction condition on a brane located at r = »; being

V2

5 b(ri)ve™®

, ¢'(ri) = FV2ve™®

r=r,

V() =+

4)
r=r;
Here we use the notation r;(i = 0,1, 2) where i means the number of a brane. For 2-brane model, i = 1
and ¢ = 2 stand for a negative tension brane and a positive one, respectively. For a single brane model,
we apply the upper case at r = rg. Then we construct an instanton solution with two boundary branes
at r = r, and r = ry. The instanton solutions are

d325- = dr? + bgr?:"y.-,-dxidxj, (5)
and
_1 2
#(r) = zin (ﬁvﬂ r) , (6)

where b is a constant. The location of the branes (r = r| and r = r;) are arbitrary Calculating the action
for this solution, we find it vanishes : Sg = 0. Because the action has no minimum value with respect to
the distance between two branes, we are not able to predict the initial state of the brane universe.

For a single brane model, the instanton solution (5) has a singularity at the origin (r = 0). However
the action for this instanton is finite for 8 < \/575, and then the action also vanishes. This is just like a
Hawking-Turok singular instanton(5).

3 Creation of a brane world with a Gauss-Bonnet term

Next we analyze a brane model with a Gauss-Bonnet term and a negative cosmological constant A in the
bulk. The action is given by

SE = St&ulk + Sz_rane, (7)

where
Shulk — _%2. / dz%\/G [R - 2A + a(R? - 4R4pR*® + RapcpRAECP)], (8)
5 JM

A is a negative cosmological constant, R, Rag and R4pcp are the five dimetional scalar curvatuer, Ricci
tensor and Riemann tensor ,respectively, and « is coupling constant. The induced four dimentional metric
h,, on a 3-brane is defined by hap = gap — nang, where n4 is the spacelike unit-vector field which
normal to the brane hypersurface. The action is given by the following form :

1
sg‘a"e = —=3 / ddzﬁ[[lsurloce - A]] 3y (9)
K5 5 Jom,
where
Leurface = K +2a(J = 2G*° K ,,) (10)



is surface term. ); is a tension on the i-th brane, K,,, is the extrinsic curvature of OM;, K = K}, and
G, is the Einstein tensor of the induced metric h,,. J is the combination of the extrinsic curvature
given by

J= % (2K Ko KP° + Koo KK — 2K, K K* - K*) (11)
The total action gives the field equations as
Gap +aHap = —Agas - Agapd(8M.), (12)
where
Gap=Rap - %QABRv (13)
Hap =2 [RRap — 2RacR% - 2R°PRacep + R PERacpe] - %QABEGB- (14)

We assume that the metric is O(35)-invariant, which gives the Euclidean metric as
ds% = dr® + b(r)?y,,dr*dz”, (15)

where -, is the metric of 4-sphere.
The equations of motion are now

" k- b:z 2
3(%-— 72 >+12 (kbb )b"- -\ = Aid(r - ry), (16)
2 1Y
6 b;’ + 120% = A, a7

where the prime denotes the derivative with respect to r.
By integrating the first equation for a small interval (r; — €, r; + €) including a brane, one obtain the
junction condition at r =r; as

3Hb? — 4ab + 120kt _ A,
5 =¥

where the upper (lower) sign is applied at r; (at r = r) for two brane model. Also for single brane model
we apply the upper case at r = ry.

We construct an instanton solution by cutting the above solution at » = r; and gluing two copies on
the surface of the excising point in order that the Euclidean manifold (instanton) is a compact. On that
surface we impose Israel’s junction condition (18) with k = 1. For a single brane instanton we impose “no
boundary boundary condition” at the origin [7]. For a 2-brane model we impose the junction condition
atr=r; (i=1,2).

We find a brane instanton only for —3/4a < A <0, which is

(18)

b(r) = \/—1—)(: sinh /- X.r, (19)

where
Xi= =3+ v9+12aA v9+12a/\' (20)
12a
The tension of the i-th brane is determined by the junction condition on the brane.
cosh(r; /1)

AP = (-1} B e o] (21)

snh(ri)) TG FH (sinh3(r,-/z)

.—54._



where ¢y = 1/\/-X4, and 8 = V9 +12aA. The range of 3 is restricted as from the condition for
0<8<3.

Here we note a ‘critical tension’. In the limit of » = oo, the curvature of the brane vanishes because
the radius of the brane (b(r)) (§* manifold) become infinitely large. In this limit the tension of a brane
() is

AT = (1) 26+ 6) = 73+ 4aXa) (22)
We rewrite it with o« and A as
4 3
a/\g,.i =1-4doAF (1 + §a1\) , (238)

which is consistent with generalized Randall-Sundrum tuning condition for a flat brane in the model
with Gauss-Bonnet term, derived by Maeda and Torii [8]. The tension of a positive brane is divided
into two parts A = A, + N, A’ is always positive because A decrease monotonically with respect to r
for 0 € § < 3. Hence this brane has always a positive effective cosmological constant, that is, de Sitter
brane.

Next we calculate the action. The total Eudlidean action for this solution is given by

Sg = —Z—‘g {[(6 F B)sinh (%3) cosh (fll) +(6F38) (TTQ)] —[r2 = 1’1]} , (24)

where V" is a volume of manifold with the metric v,,, i.e., V' = 87%/3 for S*.
Again, we do not find the action minimum. Then, the initial size of a brane universe is not fixed.

4 Conclusion

We have presented instanton solutions for models with a scalar field and a Gauss-Bonnet term respectively.
For the former case, we construct 2-brane and single (singular) brane instantons with flat 3-curvature.
However we cannot predict the initial state of the brane universe because there is no action minimum.
For the model with Gauss-Bonnet term, we also construct 2-brane and single (non-singular) de Sitter
brane instantons. Again the initial size of brane universe is not fixed. In order to predict the initial state
of created brane universe, we need to include other mechanisms such as the Casimir effect. This issue is
left for further study.
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Abstract
We investigate the evolution of power spectrum of large-scale fluctuations during
preheating phase by using 'separate universe approach’ proposed by Tanaka and Bas-
sett{l]. We show that on the super-Hubble scale, scalar field's fluctuations with all
wave number k are amplified by the effect of parametric resonance and their power
spectrum become flat like white noise. We think the interpretation of these spectrum
and we also comment on large scale magnetic field.

1 Introduction

During reheating inflaton decays into another particles and standard big bang phase is set. So reheating is
a crucial part of inflationary cosmology. Reheating can occur through the process of parametric resonance
which cause an exponential growth of another fields induced by coherent oscillation of inflaton field. Such
a phase is called 'preheating’ era.

It has been argued that preheating can amplify super-Hubble scale fluctuations and so it may alter
standard predictions of inflationary cosmology. To investigate these effects, the dynamics of inflaton
fields and other created particles must be known. But the dynamics of preheating has not been clearly
understood yet because there are two difficulties to analysis. The one is we must take into account metric
backreaction because we are interesting in structures on today’s cosmological scale (several kilo or mega
parsecs) which is much larger than horizon scale at preheating (several meters). So we need general rela-
tivistic treatment. The other is nonlinearity of this problem. Preheating usually ends due to backreaction
of amplified fields against oscillating inflaton field. This can’t be understood with linear perturbation
approach that often used in inflationary cosmology. One of means to overcome these difficulties is solving
linearized equation involve Hartree terms[2]. But this is hard to deal with computing power spectrum
because this include only scattering events that does not change the momentum of field so this ignores
’rescattering’ which deforms spectrum.

So it seems that full general relativistic and nonlinear treatment is needed to get power spectrum
and such a full treatment require numerical computation(3]. But to compute spectrum on the scale from
horizon size at preheating to cosmological scale has to use vast computer resources so it is difficult to
know spectrum at the end of preheating on cosmological scale.

Tanaka and Bassett recently propose a new treatment to calculate the dynamics of preheating based on
so-called ’separate universe approach’ which seems reasonable to manage cosmological scale fluctuations.
In this formalism, we think regions separate over distance lager than horizon scale at that time as
independent and as having no interaction each other. Each regions are represented by each homogeneous
universe and they evolve independently and as a result, super large scale inhomogeneity are generated. In
this paper, we use the model same as Tanaka. In this model, inflaton’s energy is transferred to conformaly
coupled massless scalar by parametric resonance. And they also have a chaos{4].

We calculate large-scale fluctuation’s spectrum in this model. This has a very characteristic flat
spectrum like white noise because of chaotic motion. And we think interpretation of this spectrum. We
also calculate the dynamics of large-scale magnetic filed.
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2 Model and basic equations

We consider universe with two scalar fields , the one is the inflaton (¢) and the other is the massless
scalar fields (x). And their potential is given by

A4 loqz
-2 —a2o3y2. 1
v 19"+ 39 ¢x (1)

In this paper, we think the case g2 = 2A where x field has an instability on long wave length mode up to
k = 0. Therefore, x field grows exponentially as long as inflaton oscillates coherently.
And we introduce quasi-isotropic metric

ds® = —N(t,z)’ds® + a(t, )%dz>. (2

When we neglect the spatial differential terms for the reason that we explained above, Einstein
equations are

H_ 106n. Xy

v =3+ 7). )

Lexy XY 4 o262y =

5 (%) +3H(§) +a'ex =0, “)

Ligy 2 34 0% %0 =

(%) +3H(F) +36° + i =0, (5)
where H = % and "= %' These are the same equations as homogeneous ones but here we think

inhomogeneous system so each values depend on position z.
And we have Hamiltoinian and momentum constraint.

= 3(7) +3(3) + 30+ e @
% = i(wa v a) g

In this formalism, we solve Einstein equations without spatial differential terms. Nevertheless, both of
two constraints are satisfied in any time if only they are satisfied at initial.

3 Time evolution of the spectrum

In order to discuss the modification of spectrum during preheating , we need to set initial data which
represents ones at the end of inflation. In the case A = 2¢?, x field behave like as massless scalar during
most of inflation, so the effective mass (~ g2¢?) are almost negligible. Thus we can set the initial value
of x in k-space on large scale same as massless scalar

ei0
Xk X kT/z' ’ (8)

where 6 is taken randomly from the interval [0,1], and n is an index of power spectrum which is usally
taken to 3 on large scale.
Initial data of other values which satisfies two constraints can be chosen as

H,¢ =const,x = 0,6 = /6H? — 2V (8, x)- (9)

We use these initial data, and solve equation (3)~(5) numericaly. We choose symcronous slice con-
dition N = 1. In order to compare this result with perturbation approach, we define ” homogeneous
background” of quantity X as Xo = (X) and "inhomogeneity” as §X(z) = X (z) — (X) where {-) denotes
volume average. We empathize that §X must not be small compared with X, because we don’t use
perturbation approach.
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Figure 1: Time development of spatial distribu- Figure 2: The amplitude of fields as a function of
tion of x. Initial structure is modified by chaotic time. We also plot homogeneous part of inflaton
motion of fields and structure become @.

Figure 1 shows time development of spatial distribution of x and Figure 2 shows time development of
amplitude of fluctuations of each fields. Each of them are represented in unit ¢(¢ =0) = 1,A = 1. We
can find that fluctuation of x grows exponentially due to parametric resonance. When x becomes same
order to ¢ backreaction effect changes instability condition of x and so x ceases to grow. These behaviors
are in good agreement with analysis based on linear and Hartree approximation.

Now we pay an attention to the spatial distribution of x. Figure 3 shows snap shot of special
distribution of x at each moment. In this case we choose spectrum index n = 1. Initial distribution
is kept untill backreaction become important. But when it becomes important, chaotic motion of each
fields make spatial distribution more complex and finally that becomes random distribution. Thus initial
spectrum is modified and become flat spectrum like white noise. This is common in all n and characteristic
in separate universe approach. Whether spectrum become flat or not depends on both duration time of
preheating and the ratio of initial amplitude of ¢ to one of x. Unless parametric resonance is disturbed
by some process (Born decay of inflaton to other particles, for example) before x become comparable to
inflaton, large scale spectrum become flat in this model.

210000 2

0.05
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x
-0.05 1.25 3.5 1.75 2 2.2% 2.512.75

Figure 4: The power spectrum
Figure 3: Spatial distribution of x at initial and late time. Left figure |, [xk|? aganist In k. Spectrums

is ploted at ¢ = 0, and right one is ploted at ¢ = 10000. are ploted at t=0,4000,10000,
respectively.

-2.%-
-%.10"
-7.%-107

4 Discussion

To know whether flat spectrum obtained above is really random white noise, we manipulate Gaussian
filter to these spectrums and compare these with distribution of random number. Because if spatial
distribution of x is really random, initial data set during inflation are washed out and such a initial data
fail to explain the origin of large scale structure.

Figure 5 shows filtered above result and filtered random number. Each of them is ensemble averaged
over ten samples in order to obtain more accurate spectrum. We can't distinguish these. So we think
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Figure 5: Filtered power spectrum of xx. Solid line denotes above result at ¢ = 10000 and dashed line
denotes white noise obteined from random numbers. Left figure is caluculated at filter width 0.01, middle
one is at 0.1 and right one is at 0.5, respectively.

chaos of this system has erased the information about the initial spectrum. If initial spectrum made
during inflation are lost during preheating, then models with preheating are constraint because they are
in conflict with large scale structure.

Now we mention to the case g2 # 2. If g2/ is not between the integer values g2/ = n(n+1)/2 with
n integer, then x field has no instability at £ = 0[2]. In that case, large scale mode grows only by mode
coupling with small scale mode. Such a growth can't be not considered in separate universe approach
because we think only k = 0 mode in each universe in that approach. Therefore, in order to discuss such
a effect, we need a full treatment which is difficult to deal with.

If g2/X is between g2/A = n(n + 1)/2, k = 0 mode has an instability. But in the case g% > 2,
damping of x field due to mass during inflation is not negligible and spectrum is suppressed on large
scale(5]. In this case, the growth of cosmological-scale modes will stop due to small-scale modes that are
less suppressed during inflation and cosmological-scale modes are not amplified very much. But even in
this case the chaotic motion of two field occur because backreaction becomes important. So spectrum
will also be flat if preheating continues enough, and it will be a problem again.

We note about the amplification of the primordial magnetic field during preheating. In this model,
metric is no longer conformaly flat, so large scale magnetic field can be producted. These effects can be
computed by Maxwell equaiton in curved spacetime

Ai+HA; =0, (10)

here we neglect spatial differential term again, and we also neglect conductibity. Magnetic field can
be amplified by metric fluctuations but their spectrum also become flat. So amplification large scale
magnetic field means overproduction of small scale magnetic field. This may be avoid by conductivity
and this is one of future works.

5 Summary

We calculate super-horizon scale spectrum in conformaly coupled two scalar fields. The spectrum become
flat like white noise because of chaotic motion. This behavior is not depend on initial spectrum index n. If
chaos occur during preheating, initial condition set during inflation is washed out and such a distribution
may be in conflict with large scale structure.
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Abstract

The generation of large-scale magnetic fields is studied in dilaton electromagnetism
in inflationary cosmology, taking into account the dilaton’s evolution throughout in-
flation and reheating until it is stabilized with possible entropy production. It is
shown that the amplitude of the generated magnetic field could be sufficiently large
even in the case that a huge amount of entropy is produced with the dilution factor
~ 10%* as the dilaton decays if the conformal invariance of the Maxwell theory is
broken through the coupling between the dilaton and electromagnetic fields in such
a way that the resultant quantum fluctuations in the magnetic field have a nearly
scale-invariant spectrum.

1 Introduction

It is well established that magnetic fields with the field strength ~ 107G, ordered on 1 — 10kpc scale,
exist in our galaxy and other galaxies. Furthermore, in recent years magnetic fields in clusters of galaxies
have been observed by means of the Faraday rotation measurements (RMs) of polarized electromagnetic
radiation passing through an ionized medium. In general, the strength and the scale are estimated on
10-7 — 10~¢G and 10kpc—1Mpc, respectively. It is very interesting and mysterious that magnetic fields
in clusters of galaxies are as strong as galactic ones and that the coherence scale may be as large as
~Mpc. The most natural origin of such a large-scale magnetic field would be electromagnetic quantum
fluctuation generated in the inflationary stage [1]. This is because inflation naturally produces effects
on very large scales, larger than Hubble horizon, starting from microphysical processes operating on a
causally connected volume. However, there is a serious obstacle on the way of this nice scenario as argued
below.

The Friedmann-Robertson-Walker (FRW) metric usually considered is conformally flat. Moreover,
the electrodynamics is conformally invariant. Hence large-scale electromagnetic fluctuations could not be
generated quantum mechanically in cosmological background. In other words, if the origin of large-scale
magnetic fields in clusters of galaxies is electromagnetic quantum fluctuations generated and amplified
in the inflationary stage, the conformal invariance must have been broken at that time. Several breaking
mechanisms therefore have been proposed.

In the present paper [2], in addition to the inflaton field ¢ we assume the existence of the dilaton field
& and introduce the coupling of it to electromagnetic fields. Such coupling is reasonable in the light of
indications in higher-dimensional theories, e.g., string theories. The coupling was first suggested by Ratra
[3). In his model, however, the inflaton and the dilaton were identified and the case the dilaton freezes at
the end of inflation was considered. We therefore consider a more realistic case that the dilaton continues
its evolution with the exponential potential after inflation until it is stabilized after oscillating around its
potential minimum and then decays into radiation with or without entropy production. We use units in
which kg = ¢ = h = 1 and denote the gravitational constant 87G by x? so that 2 = 81r/Mp|2 where
Mpy = G~Y2 = 1.2 x 10'®GeV is the Planck mass. Moreover, in terms of electromagnetism we adopt
Heaviside-Lorentz units. The suffixes ‘R’ and ‘0’ represent the quantities at the end of inflation (namely,
the instantanecous reheating stage) tg and the present time t, respectively.



2 Model

Our model Lagrangian £ = Linaron + Laitaton + LEnr cONsists of the following three parts.

1
Linfiaton = = 59‘“’3,,456,,45 - U[¢]v (1)
Cdilalon = —%g"”a”@3u¢ - ‘-[le "[Q] = ‘-' exp(-’.\"q’)- (2)
1
Lem = -/ ®FLFY,  f(@) = exp(Acd), (3)

where U[¢] and V’[®] are the inflaton and dilaton potentials, T is a constant, and f is the coupling
between the dilaton and electromagnetic fields with A and A(> 0) being dimensionless constants. The
form of the dilaton potential in Eq. (2) and that of the coupling between the dilaton and electromagnetic
fields in Eq. (3) can be motivated by higher-dimensional theories reduced to four dimensions. Moreover,
Fu = 8,4, — 8,4, is the electromagnetic field-strength tensor, where 4, is the U(1) gauge field.

We assume the spatially flat FRW space-time with the metric

ds® = g, dx"ds® = —dt* + a*(t)dz?, (4)

where a(t) is the scale factor.

Since we are interested in the specific case where the background space-time is inflating, we assume
that the spatial derivatives of ¢ and & are negligible compared to the other terms. Hence the equations
of motion for the background homogeneous scalar fields read

s vamae U 0 b e, VB _
¢+3H¢p + o =0, ®+3H®+ 7% =0, (5)
together with the background Friedmann equation

a\> &2

2 = - = —
H = (2) =500 +p0), ®)

l -2 1 - ) .

po =3¢ +UlBl  pe =350 + V(2] (7)

where a dot denotes a time derivative. Here p, and pe are the energy density of the inflaton and that of
the dilaton.

We consider the case that during slow-roll inflation the cosmic energy density is dominated by U (¢]
and the energy density of the dilaton is negligible, that is, p, > pe. During inflation H therefore reads

2
> [
H =~ ?Ultﬁ] = Hine?, (8)
where Hi,¢ is the Hubble constant in the inflationary stage.

We consider the evolution of the gauge field in this background. Its equation of motion in the Coulomb
gauge, 4o(t,z) = 0 and 9.4/ (t,z) = 0, becomes

ditz) + (Hinr + §) Ai(t,z) - (%8,-6,.4,-0‘3) =0. (9)

It follows from the form of f in (3) and the approximate solution of the equation of motion for @ in (5)
that f can be practically expressed by the following approximate form.

f(@) = f(2(t)] = f[2(a(t)] = fa', (10)
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Abstract

In cosmology, distances based on standard candles (e.g. supernovae) and standard
rulers (e.g. baryon oscillations) agree as long as three conditions are met: (1) photon
number is conserved, (2) gravity is described by a metric theory with (3) photons
travelling on unique null geodesics. This is the content of the reciprocity relation
which can be violated by exotic physics. Here we analyse the implications of the latest
cosmological data sets for reciprocity. While broadly in agreement and confirming
acceleration we find a 2-0 violation of reciprocity caused by excess brightening of SN-
laat z > 0.5. Nevertheless, our results rule out significant SN-Ia evolution, extinction
and axion-photon mixing.

1 Introduction

In 1933 Etherington {1, 2, 3] proved a beautiful and general duality that implies that distances in cos-
mology based on a metric theory of gravity are unique: whether one uses the apparent luminosity of
standard candles (yielding the luminosity distance, di(z)) or the apparent size of standard rulers (the
angular-diameter distance d4(z)), does not matter since they are linked by the reciprocity relation:

d.(z)

O A )

where z is redshift. Reciprocity holds for general metric theories of gravity in any background (not
just FLRW) in which photons travel on unique null geodesics and is essentially equivalent to Liouville's
theorem in kinetic theory. While it is impervious to gravitational lensing (for infinitesimal geodesic
bundles) it depends crucially on photon conservation. Our aim is to discuss how reciprocity may become
a powerful test of a wide range of both exotic and fairly mundane physics and to present a general analysis
of what constraints on violations of reciprocity arise from current data as well as critically analysing the
conclusions drawn from recent type-Ia supernovae data [4].

To test reciprocity we use the latest combined type Ia supernovae (SNIa) data [4] together with earlier
data (7, 6, 5] as a measure of the luminosity distance, dz(z) [8]. This data includes a significant number
of z > | observations. On the other hand, our estimates of the angular-diameter distance, d4(z), come
from several different sources including FRIIb radio galaxies [9, 10], compact radio sources (11, 12, 13]
and X-ray clusters [14].

All these data sets give broadly the same picture of an accelerating, high-Q25 cosmology. Nevertheless,
there are a few observations in disagreement with the accelerating ‘concordance’ model (e.g. [17]), there
are suggestions that SNIa may suffer from significant extinction [18], evolution [19] or axion-photon
mixing [21). There are also radical alternatives to general relativity, such as MOND [20]. Reciprocity
gives us a way to test all of these possibilities.

2 Distance-duality violations
Since our aim is to promote reciprocity as a powerful test of fundamental physics it seems appropriate to
begin by describing some phenomena that could be detected through violations of reciprocity. Perhaps

the most likely source of reciprocity is non-conservation of photon number. This could have a mundane
origin (scattering from dust or free electrons) or an exotic origin (e.g. photon decay or photon mixing
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Figure 1: Graphic evidence for violation of reciprocity. The binned data for d.(z) (blue circles,
SN-la) and d4(z) (red triangles, radio sources) are shown in equivalent magnitudes relative to the flat
concordance model (25 = 0.7,Q,, = 0.3) with lo error bars. They should coincide if the reciprocity
relation holds but they differ significantly at z > 0.7. The dashed curves are the best-fit FLRW models
to the d4(z) data (top) and dr(z) (bottom) separately with no loss of photons (y = 0). The solid curves
have the same underlying FLRW model (25 = 0.81, Q,, = 0.22) but the lower curve includes the best-fit
brightening (v = —0.036, see eq. 2) with a = —2,8 = 1. Since the violation of the reciprocity relation
increases exponentially when v # 0 more high redshift data and/or smaller error bars will significantly
improve constraints.

with other light states such as the dark energy, dilaton or axion {21, 22]). However, all of these effects
tend to reduce the number of photons in a light bundle and therefore reduce the apparent luminosity of a
source. If unaccounted for, this dimming makes the source appear more distant, i.e. increases d. Since
d, is typically unaffected (or negligibly altered) by such effects, this rather generally implies that the
ratio in equation (1) becomes greater than unity. The case of axion-photon mixing has been studied in
22].

[ ]We consider a 3-parameter (a, 3,7) extension of equation (1), viz [23]:

de(z) _ g-1 ! dz’
T AR Sl A -7 g T (2)
where E(z) = H(z)/Ho; v, a control the scattering/decay cross-section of the photon. Hy is the current
value of the Hubble constant. o = —2 corresponds to a scattering cross-section X pegm (1 + 2)3,

as in the case of Compton scattering from free-electrons. The case of photon decay corresponds to
a = 1. Loss of photons should therefore generically imply 4 > 0. In fact v # 0 leads to a violation of
reciprocity that grows roughly exponentially with redshift, see Fig (1).The reciprocity relation corresponds
to (8,v) = (1,0) (in which case « is arbitrary).

3 Constraints from Current Data

Here we use the standard FLRW equations to calculate the theoretical distance da(z) as a function of
the cosmic parameters (Qr, Q4 ) {(over which we then marginalise, as they are determined by the angular
diameter distance data) and use (2) to infer dr(z) given (a,3,v). We use a standard Markov-Chain
Monte Carlo method to sample the likelihood. More details of our data sets and method are given in
(23]. In Figure (1) we show the binned d.(z) and d4(z) data as a function of redshift converted to
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Figure 2: Supernovae are brighter relative to d4 data. vy-Q, likelihood plot in thecasea = =2,8 =
1 which corresponds to a photon scattering probability o (1+2)3. The best fit corresponds to y = —0.036,
i.e. brightening of SNIa relative to the d4 data, as required from figure 1. The diagonal solid (blue)
contours are the very weak 1 and 20 constraints found using only the SN-Ia data. This illustrates the
power of blending d; and d, data as a consistency check of existing data and as a test of new physics.

magnitude (relative to the flat concordance model) assuming the reciprocity relation holds, in which
case both data sets should lie on the same curve. The shaded regions shows the effect of the best-fit
v = —0.036 (a = -2, = 1) on the underlying d 4(z) showing how it is possible to simultaneously fit the
dy and da data with a single model. Also shown are the very different best-fits to the d;, and d4 data
taken separately. While the d4 data favour a flat universe, the SN-Ia data favour a very closed model
(ruled out from the CMB) due to the unexpected brightening at z > 0.5.

Figure (2) shows the joint v — 24 likelihood that follows when one imposes 8 = 1 and @ = -2 by
assuming scattering from objects whose number density scales as (1 + 2)2 (such as Compton scattering
by free-electrons) we find that the best fit for the absorption coefficient is ¥ = ~0.036 with x2;, = 219
and —0.07 < v < 0 at 95% confidence. Surprisingly, the best-fit corresponds not to absorption but
brightening, as is clear from figure (1) since the d4(z) data lies above the dp points.

The magnitude of the effect corresponds to an increase of about 5% in the number of photons per
Hubble time, a very large violation of photon conservation. We can put this into perspective by comparing
it with the expected loss of photons due to Compton scattering by the free electrons in the ionised inter-
galactic medium. At z < 3 helium is expected to be doubly ionised (fy = 0.5), leading to a free-electron
density ne = Quperie(l = Y fy)/my where Y = 0.24 is the primordial helium abundance. We therefore
find a scattering amplitude of Ycompton = o0Tne/(2Hs) ~ 1073, a factor of about 50 less than the best-fit
(and of opposite sign).

4 Conclusions

In this paper we have emphasised reciprocity as a test of fundamental and exotic physics related to the
metric nature of gravity and photon conservation on cosmic scales. Although stringent constraints will
arise in the next few years the test is already proving powerful. In particular we are able to essentially rule-
out non-accelerating models of the universe which explain the supernova dimming by grey-dust scattering,
extinction or evolution. Interestingly, current data suggests a small (2-o) discrepancy, corresponding to
brightening of supernovae over their d4 counterparts [22, 23]. The definitive test of reciprocity will come
from combining large galaxy surveys (such as KAOS) measuring d 4 via baryon oscillations and the SNAP
satellite measuring dg,.
BB is supported by the Royal Society & JSPS. MK is supported by PPARC.
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Abstract
Basic geometric tools describing the structure of a null-like surface S are reviewed.
Problems arising from degeneracy of the induced three-dimensional metric are dis-
cussed in detail, with attention focused on the ambiguity of the derivative operator
and the impossibility of its unique definition. The notion of external curvature for a
null-like hypersurface is introduced. Gauss-Codazzi constraint equations in terms of
this object are given.

1 Introduction

A null hypersurface in a Lorentzian space-time M is a three-dimensional submanifold S C M such that
the restriction g5 of the space-time metrics g, to S is degenerate. There are several problems arising
in connection with this degeneracy.

Geometry of a hypersurface S C M in a Riemannian manifold (M, g) may be described by two objects:
the restriction g, of the metric tensor to S (called its “first fundamental form”) and the external curvature
(called its “second fundamental form”). For many purposes it is useful to represent the latter by the so
called Arnowitt-Deser-Misner momentum-density @°,. In a pseudo-Riemannian (Lorentzian) manifold
M, the analogous quantity may be easily defined for any submanifold S whose first fundamental form is
non-degenerate - see [1] and [2].

Yet this is not true if S is a wave front, i.e. null manifold. In this case the induced metric is degenerate,
and the standard construction of external curvature does not make any sense. For a non-degenerate (time-
like or space-like) hypersurface, the extrinsic curvature may be described in many equivalent ways: by
tensors or tensor densities, both of them in the contravariant, covariant or mixed version. In a null-like
case, the degenerate metric on S does not allow us to convert tensors into tensor densities and vice versa.
Also, we are not allowed to rise covariant indices, whereas lowering the contravariant indices is not an
invertible operator and leads to information losses.

However it turns out that the mixed tensor densities have the appropriate null-like limit and that
the divergence of such tensor densities (fulfilling some additional algebraic properties) is a well defined
geometrical object. Luckily enough, basic quantities used for description of the geometric properties
of null-like hypersurfaces, and further for dynamics of light-like shell - external curvature and energy-
momentum tensor density — are of such type, and the basic equations which are to be fulfilled by these
quantities, contain only divergence operator.

The structure of the paper is the following. In Sec. 2 we introduce some geometric tools describing
intrinsic geometry of the null hypersurface. Then in Sec. 3 we review problems with definition of derivative
operator with respect to the three-dimensional null geometry and propose the definition of the divergence
operator, which occurs to be well behaving geometric object. [n the next section we introduce the analog
of the external curvature which is used for description of the extrinsic geometry of the wave front and is
to fulfil the null version of Gauss-Codazzi constraint equations.
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In this paper we use adapted coordinates: Cauchy surfaces V; corresponding to constant value of the
“time-like” coordinate z° = ¢t are space-like and the z° coordinate is constant on S. Space coordinates
will be labelled by k,! = 1,2, 3; coordinates on S will be labelled by a,b = 0, 1,2; finally, coordinates on
Sy := V; NS will be labelled by A, B = 1,2. Space-time coordinates will be labelled by Greek characters
a,B,p,v.

2 Geometry of null hypersurfaces

The non-degeneracy of the space-time metric implies that the metric gqs induced on S from the spacetime
metric g,, has signature (0, +, +). This means that there is a non-vanishing null-like vector field X° on
S, such that its four-dimensional embedding X# to M (in adapted coordinates X3 = 0) is orthogonal
to S. Hence, the covector X, = X*g,, = X°g,, vanishes on vectors tangent to S and, therefore, the
following identity holds:

X% =0. 1)

It is easy to prove (cf. [3]) that integral curves of X2, after a suitable reparameterization, are geodesic
curves of the space-time metric g,,. Moreover, any null hypersurface § may always be embedded in a
1-parameter congruence of null hypersurfaces.

We assume that topologically we have S = R! x §2. Since our considerations are purely local, we fix
the orientation of the R! component and assume that null like vectors X describing degeneracy of the
metric g, of S will be always compatible with this orientation. Moreover, we shall always use coordinates
such that the coordinate z¥ increases in the direction of X, i.e. inequality X(z°) = X° > 0 holds. In
these coordinates degeneracy fields are of the form X = f(9y — n*8,), where f > 0, nq4 = goa and we

.. . . . . zAB ,
rise indices with the help of the two-dimensional matrix g~ , inverse to gas.
If by A we denote the two-dimensional volume form on each surface z° = const.:

A= \/detgAB , (2)

then for any degeneracy field X of g4, the following object

T X

is a scalar density on S. Its definition does not depend upon the coordinate system (2°) used in the
above definition. To prove this statement it is sufficient to show that the value of vx gets multiplied by
the determinant of the Jacobi matrix when we pass from one coordinate system to another. This means
that vy := vxdz® A dz! A dz? is a coordinate-independent differential three-form on S. However, vy
depends upon the choice of the field X.

It follows immediately from the above definition that the following object:

A=vx X,

is a well defined (i.e. coordinate-independent) vector-density on S. Obviously, it does not depend upon
any choice of the field X:
A = A(B — nd,) . (3)

Hence, it is an intrinsic property of the internal geometry gqs of S. The same is true for the divergence
0,A%, which is, therefore, an invariant, X-independent, scalar density on §. Mathematically (in terms of
differential forms), the quantity A represents the two-form:

L:= A®(8, | d2° Adz' Adz?) |

whereas the divergence represents its exterior derivative (a three-from): dL := (9,A%)dz® A dz' A dz2.
In particular, a null surface with vanishing dL is called a non-ezpanding horizon (see [4]).



3 Problems with a derivative operator

The degenerate metric g,5 on S does not allow to define via the compatibility condition Vg = 0, any
natural connection, which could apply to generic tensor fields on S. Nevertheless, there is one exception:
the degenerate metric defines uniguely a certain covariant, first order differential operator. This operator
may be applied only to mixed (contravariant-covariant) tensor-density fields H¢, satisfying the following
algebraic identities:

anb =0, Hu =He, (4)

where Hyp := gocHS,. Its definition cannot be extended to other tensorial fields on S. Fortunately the
extrinsic curvature of a null-like surface and the energy-momentum tensor of a null-like shell are described
by tensor-densities of this type.

The operator, which we denote by V,, could be defined by means of the four dimensional metric
connection in the ambient space-time Af in the following way. Given H®, take any its extension H*" to
a four-dimensional, symmetric tensor density, “orthogonal” to S, i.e. satisfying H+” = 0 (“L" denotes
the component transversal to S). Define V,H?, as the restriction to S of the four-dimensional covariant
divergence V,H*,. The ambiguities which arise when extending three dimensional object H? living on §
to the four dimensional one, cancel finally and the result is unambiguously defined as a covector-density
on S. It turns out, however, that this result does not depend upon the space-time geometry and may be
defined intrinsically on S.

In case of a non-degenerate metric, the covariant divergence of a symmetric tensor H density may be
calculated by the following formula:

V.H%, = 0,H% - H [, = 3,H", - %Hacgac.b , (5)

with gacp := Opgac. In case of our degenerate metric, we want to mimic the last formula, but here rising
of indices of HY% makes no sense. Nevertheless, formula (5) may be given a unique sense also in the
degenerate case, if applied to a tensor density H¢, satisfying identities (4). Namely, we take as H®¢ any
symmetric tensor density, which reproduces H% when lowering an index:

H% = H*ges . (6)

It is easily seen, that such a tensor-density always exists due to identities (4), but reconstruction of
H®¢ from H%, is not unique, because H* + CX®X* also satisfies (6) if H® does. Conversely, two such
symmetric tensors H¢ satisfying (6) may differ only by CX°X¢. This non-uniqueness does not influence
the value of (5), because of the following identity implied by (1):

0= (ancgat-‘)vb = X°X°gnc,b + 2X°9acX°.b = X°X°gnc.b . (7)

Hence, the following definition makes sense:
= 1
V.H% = 6, H — §H"°gac,b . (8)

The right-hand-side does not depend upon any choice of coordinates (i.e. transforms like a genuine
covector-density under change of coordinates). The proof is straightforward and does not differ from the
standard case of formula (5), when metric gq» is non-degenerate.

The above definition of the operator ¥V uses only the intrinsic metric of S. We want to prove now
that it coincides with the definition given in terms of the four dimensional space-time metric-connection.
For that purpose observe, that the only non-uniqueness in the reconstruction of the four-dimensional
tensor density of H* is of the type CX*X". Indeed, any such reconstruction may be obtained from
a reconstruction of H% by putting H3 = 0 in a coordinate system adapted to S (i.e. such that
the coordinate z3 remains constant on S). Now, calculate the four-dimensional covariant divergence
H, := V,H" . Due to the geodesic character of integral curves of the field X, the only non-uniqueness
which remains after this operation is of the type CX,. Hence, the restriction Hy of H, to S is already
unique. Due to (5), it equals:

1 1 =
v.HY, =8,H", - §H"Agw\.b = 0uH% = 5H%gacs = VaHY . 9)



4 Extrinsic geometry of a null hypersurface

To describe extrinsic geometry of S begin with covariant derivatives along S of the “orthogonal vector
X". Consider the tensor V,X*. Unlike in the non-degenerate case, there is no unique “normalization” of
X and, therefore, such an object does depend upon a choice of the field X. The length of X is constant
(because vanishes). Hence, the tensor is again orthogonal to S, i.e. the components corresponding to
p = 3 vanish identically in adapted coordinates. This means that V,X* is a purely three dimensional
tensor living on S.
For general purposes it is useful to use the “ADM-like” version of this object, defined in the following
way:
Q%(X) 1= —~s {vx (Vo X® = 8%V . XC) + §°0.A°} , (10)

where s := sgng® = +1. Due to above convention, the “extrinsic curvature” Q°,(X) feels only external
orientation of S and does not feel any internal orientation of the field X.

The last term in (10) is X-independent. It has been introduced in order to correct algebraic properties
of the quantity vy (VpX® — 6%V .X¢): we prove in the paper [5] that Q°, satisfies identities (4) and,
therefore, its covariant divergence with respect to the degenerate metric gop on S is uniquely defined.
This divergence enters into the Gauss-Codazzi equations which relate the divergence of Q with the
transversal component G4 of the Einstein tensor-density G*, = /| det g| (R#, - 6,4 R). The transversal
component of such a tensor-density is a well defined three-dimensional object living on S. In coordinate
system adapted to S, i.e. such that the coordinate z* is constant on S, we have G4 = G%. Due to the fact
that G is a tensor-density, components G3, do not change with changes of the coordinate z°, provided it
remains constant on S. These components describe, therefore, an intrinsic covector-density living on S.

Proposition. The following null-like-surface version of the Gauss-Codazzi equation is true:
= O:A°
VaQ%(X) + svx 0y (-;—Y—) =-Gi . (11)

The proof of the above proposition is given in the paper [5]. We only remind the reader that the ratio
between two scalar densities: 8.A° and vy, is a scalar function. Its gradient is a co-vector field. Finally,
multiplied by the density vy, it produces an intrinsic co-vector density on S. This proves that also the
left-hand-side is a well defined geometric object living on S.

The quantity Q°, defined above enables us to consider spacetimes with singular (distribution-like)
curvature confined to a null-like hypersurface. Such spacetimes are a natural arena for the theory of a null-
like matter shell. Such shells, carrying a self-gravitating light-like matter, are of the special interest as toys
models in different quantum gravity theories. In the paper [5) we gave a complete classical, Lagrangian
and Hamiltonian, description of a physical system composed of a gravitational field interacting with a
light-like matter shell. It is worth to mention that null hypersurfaces also arise in the other physical
situation ~ they describe the so called nonexpanding horizons in the theory of black holes.
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Abstract
We discussed the property two type of classical solution of massive gravity with non-
Fierz Pauli mass term which was investigated in [4] although definite results have not
reached. Attention is paying to the generating condition of closed trapped surface
and energy condition.

1 Introduction

Spacetime singularity is one of the most famous problem in general relativity and many people have been
investigating this topic by quatum gravity, string theory, or realistic model of gravitational collapse and
so on. Among them, most simple type of singularity, Schwartzschild black hole seems to be difficult to
understand. On the other hand, the choice of the different type of theory, modified gravity, would be
another possibility. General relativity is massless spin 2 (helicity 2) field theory perturbatively although
quantum field theory has not established completely. On the other hand, There has been many discussion
about "massive gravity”, which have many forms of theory.In recent interest, they are discussed in the
context of extra, multi dimensional, brane world [1],[2], or string thoery (3], or field theory formulation
of gravity (4], [6]. Although whole picture is not so clear , their perturbative (linearized) theory is 2-rank
tensor field theory which has finite mass. This field theoretical degree consist of spin 2 (5 degree) and
spin 0 (1 degree) component and spin 0 component has been considered as negative norm (or energy)
state. Many authors has killed this spin 0 component by giving infinite mass (Fierz-Pauli mass) from the
biginning in their action ,and solve the wave equation with 5 degree which has led to famous discontinuity
in the massless, general relativity limit(VDVZ discontinuity) (7). The possibile recovery of continuity has
been expected in non-linear effect [9] or discussed in extra dimensional set-up (1]. Another approach
would be covariantly (BRST) quantization with 5 or 6 degree and appropriate selection of physical state
[10] but non-linear order is obscure. In elementary particle physics, most established understanding for
massive gauge theory (vector field, Yang-Mills) is Higgs mechanism. As for gravity, recent study was
carried out along this line (2], [11].

In this poster, I concentrate on the analysis of classical solution which was analyzed already in [4).
Especially I choose the formulation of "finite-range gravity” based on the field theoretical formulation
of gravity which is equivalent to general relativity in the limit of massless graviton. Since I hope to
discuss and understand the spacetime property of this theory as generally as possible, I would study
some conditions of generating spacetime singularity in general relativity and report some results.

2 Finite-range gravity and energy condition

We take the theory of finitee-range(massive) gravity 4] here based on the field theoretical forumulation
[3). This theory is constructed on flat spacetime (metric is ¥*”) and has covariant energy-momentum
tensor of gravitational field on this background. The flatness of the background spacetime is assumption
and constraint.Another assumption is the universal coupling of all other fields ro gravity field h*¥. The
variation of this action leads to the field equation

Ry - %g,..,R — M, =8rGT,, (1)
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by changing variables "Riemann metric g¥*” through /=gg#" = /—(¥* + h*¥), where

My = (8285~ 36°0) (kihas + Hrrash)
MYpa Ve (6,‘}55’ - %y""g,w) [kn (\/—‘/igg” - ) + kov*? (‘/Ez—zg”"%.p - 4)] @)

is the general mass term of gravity. This is the quasigeometric form and written in bi-metric. The case

of ky = —ky is "Pauli-Fierz mass”.Conservation law for energy momntum tensor and Bianchi identity
holds, so
M, =0 (3)

here, | is covariantderivative with respect to gy,..
In this theory, dynamics of geodesics deviation is the same derivation from geodesic equation of general
relativity, and Raychaudhuri’s equation is the same form
do 1
I —502 — 00" + wy W — Ry k*kY (4)
where,d is expansion, shear o,,,, twist w,,.But in this case, R, k*k", 4th term of right hand side of this
equation which is important for determining the sign of expansion rate df/dX is modified by "graviton
mm”
Ry kbkY = KTk kY — 2(kihyy + kovu R)E*KY 20 (5)

So We have to evaluate the effect of mass term by this equation around the geodesics of clessical solution.
I had some set-up for this calculation, in Spherically symmetric static backgraoun and the cosmological
background. These work is still undergoing and I briefly explain this strategy as following sections.

3 Spherically symmetric static solution

This spacetime is described as

1
%7 Fdr2 + R%dQ? = - f(R)d® + ﬁm’ + R%d0? (6)
where r = r(R) = X, and X’ = dX /dR.The authors of [4] solved field equations of this spacetime numer-
ically, and found asymptotic forms of function by extrapolation.Their result shows that this spacetime
has no "event horizon”,f — 0 as R — 0, F decreces as R — 2M and starts to increase near the 2M,
Schwarzschild radius in GM. In addition there is a curvature singularity at the center. Near the center
R = 0 they evaluate numerically

ds? = - f(r)dt® +

—on(Byrev L o By, O (R,
FR =Criggp)™ "+ 1 TR =G ™™ + e o) ()

here,Cr, Cy are arbitrary constant and v = 4.62977 x 10%. tangent vector k* of the radial null geodesics

of this spacetime is
1 X72F 2 ’F
VR el L - = oMV =4+=./=
k (fy:t f 10y0)y 0 g [.l'll :tR f (8)

up to constant.+ is outward,— is inward solution. If this 8 is negative for both signs, there exists closed
trapped surface. By the results of autors [4], there seems no zero point of f except at R = 0, So this
expression can be used all region of R (which is diferrnt from Schwawarzschild case in GR), but just for
that reason, there seems to be no trapped surface in this spacetime. From the form of asymptotic solution,
we have checked that asymptotic behaviour of this spacetime near R = 0 is a naked type singularity which
is similar to negative mass Schwawrtzschild. But this case is attractive force aganist test particle not
repelling effect by negative mass solution.

Although we have not checked yet definitely, this solution would have no trapped surface. The authors
of [4] commented that this "singularity” only the reflection of point mass assumption, and realistic



extended object would resolve it. But we must investigate internal stellar solution practically. That is
future work.
Besides, It may be useful to calculate the quantity of "energy condition”

7= 50+ 5ag” \/W + 20k (1 - x7F1)

+§CX’2Ff+ §(Y)2X,2Ffv XQFI] (9)

Ry k*k = —2—

here,( is the ratio,8? = (a?, and a, 3 are each mass of spin 2, spin 0 component.

4 Homogeneous isotropic universe

For the time being, only K = 0(sapce flat) case being considered(4]. Another topology (K = *1) is under
work now. This spacetime is

ds? = —b2(t)dt® + a’(t)dr?® + r*(d8? + sin®0) (10)

As is the case of ordinary cosmology, we assumed matter source as T9 = —¢(t), T} = T? = T3 = p(t).
From the conservation law T}|, = 0, we get ¢’ + 3(a’/a)(p + €) = 0 here ' = d/dt. Equation of motion
was also studied by [4] and found initial no singular (bounce) solution. As spherically symmtric solution,
we have solved the null tangent vector k* in this case. Here we extend to the case of spacelike open and
closed universe case as

ds? = —b%(t)dt? + a%(t)dr?® + f(r)?(d6? +sin? 6) (11)

where f(r) =sinr,r,sinhr for K =1,0,-1.
The results are

b ab’ b
N —_— - -
k aexp( 2b2r)( 1,£-.,0,0) (12)
is the null geodesic tangent vector,for + outgoing,— ingoing.Expansion rate is
2 abt’ a2 —aad' | b2 df
0= o (#25)(~ebF —r 2 75) 19

and we have checked the energy condition R, k*k" in the case of K = 0,{ = 0 numerically. Results
is that R, k*k¥ > 0 always holds around "bouncing era”. So we anticipate the trapped surface is not
generated in this solution although we wil check this near future.

5 Current status and future problems

Although introducing graviton mass have not realized in enough widely accepted manner, this kind of
theoretical challenge have been done in some direction such as Higgs-like condensation, or brane-setup.
Although most strategy is subject to extracting spin 0 component mass (Fierz-Pauli type), there would be
still needs of studying more wide class of non-Fierz-Pauli type mass because unitarity is closely connected
gauge symmetry and this type mass has more smooth limit to general relativity.

In this poster, we only study some situation of two type of classical solutions with non-Fierz Pauli
mass term and saw the symptom of no closed trapped surface but more close study is needed. Moreover
we need to know the equilibrium equation of internal stellar solution in the black hole type solution. We
hope to report near future these situation with field theoretical property to which was not referred in
detail.

Acknowledgements: I hope to thank sincerely all people who discuss with me about this
poster or shows hospitality and the organizers of JGRG13.
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Abstract

Gravitational radiation from compact stars orbiting and falling into a supermassive
black hole is one of the most important sources for the space laser interferometer de-
tectors such as the Laser Interferometer Space Antenna (LISA). Gravitational waves
from such systems are calculated by the Teukolsky equation. We develop highly ac-
curate numerical codes to calculate such gravitational waves. The method is based
on the formalism by Mano, Suzuki and Takasugi in which the homogeneous solutions
of the Teukolsky equation is described in terms of series of hypergeometric functions
and Coulomb wave functions. Although the application of this formalism are limited
to the analytical calculation of gravitational waves previously, we find that it is also
useful for the numerical calculation. As a test, we calculate the energy flux of the
gravitational waves from a particle in circular orbit on the equatorial plane around a
Kerr black hole.

1 Introduction

Recently, there has been great progresses in the project of the gravitational wave detectors. Ground-based
detectors, TAMA300, began to operate in 1999 and has operated several times since them. LIGO and
GEOG600 began to operate 2002. VIRGO are expected to begin the operation soon.

On the other hand, the project of the space-based detectors, LISA, have also been in progress. In
LISA project, it is planned to launch the satellite in the early 2010’s. One of the main targets of the
LISA is the gravitational waves from compact stars orbiting around a supermassive black hole. Compact
stars around a supermassive black hole are evolving due to the emission of gravitational radiation while
they orbit around the hole. They lose the energy and the angular momentum by gravitational radiation
reaction, and their orbital radius gradually shrink. Such situation is often called "extreme mass ratio
inspiral”.

Observations of the gravitational waves from such systems will bring us interesting information such
as mass, spin and higher multipole moments of supermassive black holes, by which we may be able to
test the general relatively. They will also bring us astrophysically interesting information which can not
be obtained by observation of the electromagnetic radiation.

In order to obtain such physical information, we must predict the wave forms with sufficiently good
accuracy. The gravitational waves from the extreme mass ratio inspirals can be calculated by the black
hole perturbation method. At the first order of the perturbation, the compact object with the mass
can be assumed to move along the geodesic of the background spacetime, which is governed by the
supermassive black hole with the mass. With this assumption, we solve the Teukolsky equation which
describes the evolution of the perturbation . Conventional approach to solve the Teukolsky equation is
Green's function method. Solutions of the Teukolsky equation is obtained by the integration of Green’s
function multiplied by the source term. Since the source term is given by specifying the orbit of the point
particle. If the orbit of the point particle are complicated, as in the case of the sources for LISA, the
integration of the Green's function with source terms takes much computation time and become difficult
to establish good accuracy. Thus, it is important to develop highly accurate computational method to
compute the Green's function and the source terms.

! E-mail:draone@vega.ess.sci.osaka-u.ac.jp
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In this paper, we focus only on the Green's function.

The Green’s function is expressed by the homogeneous solutions of the Teukolsky equation. We adopt
a formalism, developed by Mano, Suzuki and Takasugi [5, 6]. to obtain the homogeneous solutions of
the Teukolsky equation. In Mano, Suzuki and Takasugi formalism (MST formalism), the homogeneous
solutions are expressed in series of special functions. The asymptotic amplitudes of the homogeneous
solutions, which are needed for constructing the Green's function, are also given algebraically. We develop
numerical code to compute the homogeneous solutions of the Teukolsky equation using MST formalism.
As a test calculation, we calculate the gravitational wave Aux induced by a particle in a circular orbit on
the equatorial plane around a Kerr black hole.

Throughout this paper we use units with G =c¢=1.

2 Teukolsky formalism
The radial Teukolsky equation is given by [1]

2 i l demu
dr \ A dr

) V(") Rem = Temo. 1)

The potential V(r) is given by

K% +di(r - M)K
A

Vir)=- + 8iwr + A. 2)
where M is the black hole mass, aM is the angular momentum of the black hole, A = r? — 2Mr + a2,
K = (r®*+a%)w—ma and X is the eigenvalue of the angular Teukolsky equation. In this paper, we consider
a homogeneous solution, Rif, , of the homogeneous Teukolsky equation which has purely ingoing wave

property at the horizon, but has both ingoing wave property and outgoing property at infinity.

trans A2 ,—ikre
Rin — 3 ( Blmu Ale X . forr — T+, (3)
tmw B e + rIBIfC e~ for r — 400,

where k = w — ma/2Mr, and r* is the tortoise coordinate.

3 Mano-Suzuki-Takasugi formalism

In MST method, the solution of the homogeneous Teukolsky equation is expressed by two kinds of series
of special functions [5, 6]. One is expressed by series of the hypergeometric functions, and another is
expressed by series of Coulomb wave functions. The former is convergent at horizon and the latter at
infinity. The solution in series of Coulomb wave functions is originally formulated by Leaver [4). The
MST formalism is an elegant reformulation of the one by Leaver.

In MST method, the solution Ri"  is expressed by series of hypergeometric functions

R® = e“"z("x)-s-i(c.’.ﬂ/z(l - x)i(!_r)npin(x)’
o0

Pin(z) = Z anFln+v+l-ir,—n-v—-ir;l —s—ic—ir;z). (4)

n=—%0

where,x = w(ry —r)/ex, ¢ = 2Mw,xn = /1 -¢q2,q = &.7 = =™ and F(a,8;7; ) is hypergeometric
function. We note that v is a parameter, does not exist in the Teukolsky equation. This parameter is
introduced to converge series and actually represent a solution of the Teukolsky equation.

The solution in series of Coulomb wave functions is also expressed in the similar form of Eq.(4).
Inserting the series Eq.(4) and series of Coulomb wave functions into the homogeneous Teukolsky equation
respectively, we find that the expansion coefficients a, satisfy the three-term recurrence relations [5).

0y 8nit + Bnan + Yhan—1 = 0. (5)
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where

v iex(n+v+l+s+ie)n+rv+l+s—ie)(n+v+1+ir)

= (n+v+1)(2n+2v+3) !

e(e — mq)(s® + €)
(m+v)n+v+1)

Bn “A-s(s+1)+(n+v)(n+v+1)+e +e(e—mg)+

_dek(n+v—stie)(n+v—s—ie)(n+v-ir)
(n+v)(2n+2v-1) )

In MST formalism, solving the Teukolsky equation is reduced to determine a parameter v. Dividing
Eq(5) by a, and setting n = 0, we obtain the following equation that determine a parameter v,

fv) =65 + ag Ry + 15 L1 =0, (6)

where R, and L_, are expressed by the continued fractions,

Yo =

Qn Tn -
Ra(v) = = = 7)
Qn-1 ﬂ: + °=Rn+l ﬁv _ a:7:+l ' (
n v v
v Ant1Tn+2
n+l ~ v
n+2 = "7
an a” -a¥
La(v) = = - o = n . (8)
" Qn41 ﬁ: + 94 Ln-1 g — a:—l7:
"o OneaWaoy
n-1 v
Y =

We note that when v is a root of (6), v+ k (k = £1, 42, - - -) are also roots of (6) since v only appears
as v+n in the continued fractions of (6). In Fig.1, we show plots of f(v) for  =2,m =2,¢ =0.1,w = 0.1.

40 " 1a2,m=2,Ge0.1,w=0.1 - -
0L f(nw)=0 -f----- ]

fnu

2 25

Figure 1: Plots of f(v) for {=2,m=2,9=0.1,w=0.1

In order to search for a root of this implicit equation f(v) = 0, we adopt so called Brent’s algorithm
which are explained in (7] in detail. In any algorithm to search for a root of implicit equations, we need
an initial guess of a root of this equation. In the case when Mw is not large, we can use an analytic
expression of v for the initial value given in series of Mw [5].

4 Energy flux

We calculate the energy flux of the gravitational waves induced by a test particle orbiting in circular
and equatorial plane around a Kerr black hole in order to check the performance of our numerical code.
In Table 1, we show the gravitational energy flux, where multipoles up to £ = 6, for the various spin
parameter a and orbital radius r. We compare our results with the past works. We find that our numerical
results agree with that of [2, 3] for 4-5 digits.
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