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PREFACE

The eleventh workshop on General Relativity and Gravitation was held at the Interna-
tional Conference Center of Waseda University from January 9th to 12th, 2002. The main
purpose of this workshop was to review the latest developments in General Relativity and
gravitation. The topics covered also include particle physics, astrophysics and cosmology.
A further purpose was to promote lively and stimulating interaction between researchers
working in these fields.

The workshop was organized as an international conference. There were 79 talks
totally, among which are 13 talks from overseas. All of the 9 invited talks and the 3
semi-invited talks were given in English, and so were most of the contributed talks as
well. The workshop was quite successful with more than 150 participants. We wish to
thank all the participants for their contribution to the workshop.

We would like to thank Mrs.Yokota, the secretary at the Department of Physics, Kyoto
University, for her devoted transaction of various official works. We are also grateful to the
graduate students of the astrophysics group in Waseda University for their cooperation
in management of the workshop. The workshop would not have been successful without
their help. This workshop was financially supported by Monbukagakusho Grant-in-Aid
for Scientific Research, No.12440063 and Grant-in-Aid for Creative Scientific Research,
No.09NP0801.
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Black-Hole Accretion Flow: Recent Topics

S. Mineshige!

Yukawa Institute, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

R. Takahashi?

Department of Astronomy, Kyolo University, Sakyo-ku, Kyoto 606-8502, Japan

Abstract
Recent progress in the theoretical understanding of black-hole accretion flow is
overviewed with special emphasis on the roles of magnetic fields. Topics include
X-ray spectral variation of Cyg X-1, spatial inhomogeneity and temporal variations
found in simulated MHD flow, resolving black hole environments with future space
radio interferomecter mission, and supercritical accretion flow.

1 Introduction: Variability of Black Holes

Accretion flow onto black holes (BIs) seems to be one of the most important physics to understand the
various activities and formation processes of astrophysical objects. Many theoretical and observational
developments have been made in the last decade, although there still remain fundamental questions, such
as the structure of adiabatic accretion flow, role of magnetic ficlds, jet formation mechanisms, and the
properties of super-critical accretion. Especially, recent theorctical cfforts are rather focused on the role
of convection, outflow, and magnetic fields in forming disk structure, spectra, and variability. We, here,
pick up several topics and discuss future direction of the research of black-hole astronomy.

To get a good insight into these problems, a proto-type BH candidate, Cygnus X-1, is still useful
to investigate, since for this object many observational studies have been performed mostly in X-ray
bands. It is in this object that aperiodic X-ray fiuctuations were found {23]. It is now widely known
that complex variability patterns are one of the most prominent observational features of black-hole
objects, e.g., Galactic BH candidates and active galactic nuclei. The power-spectral densities (PSDs) show
something like 1/f fluctuations, which are rather intriguing. Such variability properties should contain
the important physics involved with accretion flow into BHs. Hence, many cfforts have been devoted
so far to quantify these variability patterns appearing in the PSDs and to explain these fundamental
observational facts. Yet, its origin is not completely clear.

Here, we utilize a potentially powerful method to analyze time-variable data; the technique of the
superposed shot. If we have a close look at the X-ray intensity variations of Cyg X-1, we notice rather
spiky features (referred to as shots) to be present on the timescale of several sec. By summing up only
large events, by aligning their peaks, we can obtain a sort of the average variation patterns and spectral
variations. Such a technique has been developed by Negoro and his collaborators [22]. The results of his
recent analysis [21] are summarized in figure 1.

The upper panel shows an average time profile of the shots of Cyg X-1 in the 1.2-58.4 keV band
obtained by superposing 872 large shots (with peak intensity of exceeding twice its average). Surprisingly,
the shot profile is rather smooth and, more importantly, is rather symmetric in time with respect to the
peak epoch. The profile is well represented by double exponential models: i.c., exponential functions with
two time constants; one about 0.1 s and the other several sec. The deviations from the best-fit double
exponential model are illustrated in the middle panel of figure 1. Even more interesting is the hardness
ratio (7.3-14.6 keV/1.2-7.3 keV) variation of the excess shot (shot component subtracted by the mean
flux), which is depicted in the bottom panel of figure 1. It clearly exhibits a soft spectrum before the
peak intensity, and a rapid hardening in <« 0.1 s around the peak, followed by complex changes.

! E-mail:minesige@yukawa.kyoto-u.ac.jp
2E-mail: rohta@Gkusastro.kyoto-u.ac.jp
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Figure 1: The variability properties of the superposed shot obtained based on the Ginga data of Cyg
X-1 [21]. (a) Average time profile of the shots. (b) The ratio of the observed counts to that expected by
the best-fit two-exponential model. (c) The hardness ratio variations. The dashed line is the averaged
hardness ratio.

An important discovery is that our current analysis strongly points the presence of two (or more)
physical timescales involved with X-ray variability: 7 ~ 0.1 — 1 s, on which shot profile rises and decays,
and 7 < 10 ms, on which a spectral hardening occurs around the shot peak. We should caution that
the hard X-ray peak does not significantly lag behind the soft X-ray peak even within a shorter time
resolution of ~ 2 ms of the RXTE [4]. From the theoretical points of view, it is very difficult to explain
both different timescales simultaneously by means of a single physical mechanism, since usually one
physical mechanism has one typical timescale.

Figure 2 schematically illustrates the distinction between the variation patterns which usual models
predict and those obtained by our data analyses. We thus reject the hot spot model and Compton cloud
model in their original forms. In the Compton-cloud model, for example, hard photons come out later,
since they should be Compton up-scattered by hot electrons before leaving the cloud, thus the peak of
harder photons being systematically delayed behind that of softer ones, in contradiction with what we
observe. In other words, these models predict comparable hardening timescale to the shot (intensity
variation) timescales (few sec). Rather, we suggest that the relatively long shot timescales could be
somehow related to accretion timescales, while the short one could be due to magnetic reconnection.
Note that time symmetric light curves are reproduced in terms of time-dependent ADAF model [18] (sce
also [11] for more detailed discussion.) Such features are consistent with the view of MHD accretion flow
discussed in the next section.

2 Diversity of Flows in Adiabatic Regimes
2.1 ADAF, ADIOS, and CDAF

Next, we turn the subject to the theoretical investigations regarding the three-dimensional (3D) structure
of hot accretion flow. Here, ‘hot’ accretion flows refer to the ones which seem to appear in the adiabatic
(cooling-inefficient) regimes of flow. Note that such hot flow contrasts with the so-called standard disk,
in which radiative cooling is substantial. Recently, multi-dimensional simulations have been intensively
performed and a new paradigm of CDAF (convection-dominated accretion flow) has emerged in the
adiabatic accretion regimes, in addition to the ‘classical’ ADAF {9] models (see |20} for a review). The
original optically thin ADAF model has been constructed in a vertically one-zone approximation and
the resultant differential equations with respect to r (radial distance to the center) are solved either by

—-2—
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Figure 2: Schematic light curves (upper) and hardness ratios (lower) of the two models for hard time
lag: (a) delayed hard X-ray peak, (b) abrupt hardening at the peak. The solid and dashed lines in the
upper represent soft and hard fluxes. It is easy to produce case (a) profile with physical models, but the
observations point the case (b) [21].

the self-similar technique or numerically. Recently made 2D/3D, adiabatic hydrodynamical simulations,
however, revealed distinet forms of accretion flows. Igumenshchev & Abramowicz [10], for example,
claimed that nearly one-dimensional ADAF appears only when the viscosity parameter a is moderate,
0.01 < a £ 0.1. When o is smaller, large-scale circulation or convection occurs and it largely modifies
the flow structure. For example, the density profile is significantly flatter than in ADAF (sce table 1).
Such flow is called as convection-dominated accretion flow (CDAF). If a is large (a ~ 1), on the other
hand, strong outflows result. Again, the density profile is distinct, slightly flatter than in ADAF (table 1).
Blandford & Begelman [3] elucidate such flows known and named ADIOS (advection dominated inflows
and outflows).

The critical test of these flows are to examine their spectral properties. Figure 3 displays the typical
ADAF (left) and CDAF (right) spectra calculated in a similar way to that of Ball et al. {2]. Distinct
spectra of these flow models are due to their different density profiles (see table 1): they are p x (r/n;)~?
with p = 1.5 (ADAF) and p = 0.5 (CDAF), respectively, In this plot, we took the same proportionality
constant, py, determined by the adopted mass-accretion rate (sce below), M, in the case of ADAF also in
CDAVF, so, figure 3 can be used only for demonstration purpose. The other adopted parameters are: the
inner-edge radius is 1.0 rg (with rs being the Schwarzschild radius), the outer-edge radius is 10*® rg, the
mass-flow rate is logm = log(Mc?/Lg) = -3.29 (with Lg being the Eddington luminosity), the mass of
black hole is Mpy = 10%Mg, the ion temperature profile is 10'3(r/r5)~1? K, the clectron temperature
profile is 10'%(r/rg)~%% K, and magnetic field strengths are taken to be the equipartition values; i.e.,
B? o« (r/rs)~(1+?)_ Note that the results are rather insensitive to the black-hole masses.

In the casc of ADAF, emission from the innermost ring dominates over the contribution from the outer
parts at all wavelengths because of its steeper density profiles. Note that the density profile of p o« r=3/2
leads to the bremsstrahlung cmissivity of dE o« p?T'/2r2dr « r=1-5dr. In the case of CDAF, in contrast,

Table 1: ADAF, CDAF, and MHD flow

accretion mode | po(r) | T(r) | w(r) | B3r) |
ADAF xr ¥ | xr?! | «cr-t

outflow xrd | xrt | xr?

CDAF xr~d | xr? | ocr-t

MHD flow o ¢ | r10 ) o 1S | o eS8
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Figure 3: Typical ADAF (upper left) and CDAF (upper right) spectra, together with that of MHD flow
(lower). TFor model parameters, see text. The thick solid line represents the total spectra, while thin
solid, dashed, and dotted lines represent the contributions from the outermost, middle, and innermost
rings, respectively. The MHD flow spectrum is more like that of CDAF.

X-ray emission comes mainly from the outer parts due to its somewhat flatter density profile (p r-i/2

yields dE o r%%dr). This is well demonstrated in figure 3. We also understand that bremsstrahlung is
a dominant process in CDAF even in X-rays, while Compton up-scattering of synchrotron emission is
more important in ADAF. These distinctive features should be paid attention when we compare with the
observation.

2.2 MHD accretion Aow

Hydrodynamical simulations are, however, of limited use here, since the magnitude of the viscosity (or
magnetic field strengths) is treated as a free parameter there, although it cannot be so but should be
determined in accordance with magnetic field amplifications within the disk. In other words, magnetohy-
drodynamical (MHD) simulations are indispensable. What is then about the case of MHD flow? Machida
et al. [16] have analyzed the flow patterns within the simulated 3D MHD flow [15], finding large-scale
convective motions dominating in accretion flows. Further, they also already noted similar density and
temperature profiles of MHD flow to those of CDAF (see table 2). Therefore, the spectra should be more
like that of CDAF (see figure 3) and not like that of ADAF.

Then, a serious problem arises; namely, such MHD flow medels cannot account for the observations
of Cyg X-1 during its hard state in the two senses: (1) CDAF predicts rather flat (£, o« ") spectrum
due to Bremsstrahlung, unless we assume significant electron heating as well as ion heating (2] but the
observations clearly show a power-law decline (e.g. fi, o ¥~%7) in X-ray ranges. (2) Rapid variability
seems to arise via time-dependent processes probably associated with magnetic flares in the innermost
region (sec §1), but X-ray emission from the inner part of CDAF is negligible (figure 3). Radiation from
the outer parts cannot show rapid variations as are observed (§1).

In view of these arguments, ADAT looks better as & model for the hard state of Cyg X-1, since then
we expect rapidly fluctuating X-ray emission by Compton up-scattering of seed synchrotron photons
produced in intermittent magnetic flares occurring in the innermost part. Then, what is a loophole?

The key to resolving this issue might be sought in the detailed reconnection physics. Here we address
a question as to whether the dissipated magnetic encrgy by reconnection goes directly to plasma or
radiation. So far, all the MHD simulations postulate no radiative cooling (since we are now concerned
with the adiabatic accretion regimes), but if dissipated energy could be radiated away by enhanced
cmissivity as a consequence of magnetic reconnection, entropy production in electrons would be largely
reduced, leading to a suppression of convective motions. Then, MHD flow structure would be more like
that of ADAF, and not CDAF, thus explaining both of the spectral shape and the presence of X-ray
variability in the Cyg X-1 data. This is still a hypothesis, thus requiring further study.



Figure 4: The contours of j/p (current density/matter density) values on the equatorial plane of the
simulated MHD flow [12]. Note that this quantity is a good indicator for occurrence of magnetic recon-
nection.

2.3 Role of magnetic fields

Let us, here, summarize the various roles of magnetic fields in accretion flows.

e source of viscosity,

e disk corona (and ADAF) heating,

o cause of flares, producing variability,

e source of radiation via synchrotron,

¢ jet & outflow formation.

These processes have been successively simulated through global MHD simulations of the inner accretion
disk by several groups of rescarchers [15,6,7). They have found that magnetic fields can be amplified
sufficiently enough to explain the observations; the cstimated viscosity parameters are in a range of
0.01 < a < 1.0. Large corona can be constructed by MHD processes. Also, it is possible to produce
aperiodic variability, which seems to be closely related spatial inhomogeneous (probably fractal) structure
(see figure 4).

It is of great importance to stress that large magnetic-field strength is expected in ADAF /corona than
in standard-type disks for the following reason: In the standard disk, gravitational encrgy is efficiently
converted to radiation cnergy. On the other hand, magnetic field energy is suppressed below gas cnergy
(but not by many orders below), since otherwise magnetic fields will leave the system in forms of bubbles.
We thus obtain an cquality,

Emug < Egus < Egmv ~ Em.d- (l)

This situation is just like the solar photosphere. From the observational point of view, therefore, magnetic
fields are not very important.

In ADAF /corona, in contrast, gravitational energy turns into fluid energy with little being radiated
away. Again, magnetic energy is comparable to (but a bit less than) the gas energy. Thus, we have an
cquality,

Eumg < Egns ~ Egmv » Erna- (2)

The situation is more like X-ray images of the solar coronae, in which magnetic fields are known to
form filamentary (or loop) structure emerging from below the photosphere. This is the main reason why
magnetic ficlds are likely Lo produce observable effects in the hard state of BHs.

Finally, we point out an exciting possibility of mapping a relativist disk by using a future space
VLBI mission. The target is M87, which seems to harbor a supermassive black hole with a mass of
~ 2.5 x 10°Mg. Surprisingly, a next-generation space VLBI mission is expected to achieve a superb
angular resolution, down to 10 micro-arcsec, which corresponds to only 3 rs in the case of M87 located
at the distance of ~ 16 Mpc. We calculate the expected disk image by the ray-shooting method. fully

—5—



Figure 5: Expected appearance of a relativistic disk in the radio map. To incorporate the finite beam-size
effect, the image has been smoothed by the Gaussian filter with the smoothing length of 1 r5. (From
Takahashi & Mineshige, in preparation.)

considering relativistic effects (including Doppler boosting and gravitational lensing effects by the central
black hole, see [5]). We then smooth the image in accordance with a finite beam size, and display the
result in figure 5. This is the case of a non-rotating black hole and the inclination angle is set to be 80°.
Obviously, we will be able to prove the presence of a ‘black hole’ at the center. This sort of map may be
obtained in the near future, definitely within 20 years!!

3 Super-Critical Accretion Flow

Finally, we touch on the recent interesting issue of ultra-luminous compact X-ray sources (ULXs) suc-
cessively found in the arms of nearby spiral galaxies. Some of these seem to exhibit large luminosities.
comparable to the Eddington luminosity. Then the theory predicts that photon trapping is substantial.
Such a flow is well madeled by the slim disk {1].

Let us summarize the striking results obtained by the fully relativistic calculations of the slim disk |17]
(sec also table 2). First, for the cases with Schwarzschild BHs the inner-edge radius of the disk decreases
from 3 rg to ~ rg as luminosity goes up to L ~ Lg. Second, for both cases of disks around Schwarzschild
and Kerr BHs, radial temperature profiles become flatter as L increases, from T « r~3/4 in the standard
regime to T « r~'/2 in the slim-disk regime. At L ~ L, the disks around Schwarzschild and Kerr BHs
look quite similar.

Accordingly, accretion disk spectra differ from those expected by the simple standard-disk theory. To
make direct comparison with the observations, we performed spectral fitting to the theoretical spectra
based on the disk-blackbody model [19]. The free parameters are riy, the (apparent) inner-edge radius
of the disk, and 7j,, the maximum temperaturc. There are many effects affecting the fitting results.

Table 2: Standard disk and slim disk (m, = Mgy /10 Mg)

disk model standard disk | slim disk |

disk inner edge (riy) =3rg <2rs

_1 -1
maximum temperature (T3,) [ ~1m; * keV | ~2m * keV
temperature profile xr-i xr-t
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Figure 6: X-ray H-R diagram of X-ray sources [26]. Solid lines represent the constant M (black-hole
mass) and constant M loci according to our model, while dotted lines are the same but based on the
standard accretion disk (SSD) theory. Some observational data of ULXs and Galactic BH candidates are
also plotted.

Gravitational lensing and self-shielding of the radiation from the innermost parts by the outer parts
tend to increase the size of the emission region, since for the latter the innermost part with smaller
size is obscured and thus instead the surrounding part with a bit larger size is now most visible in X-
rays. Conversely, projection, Doppler boosting, and Compton scattering tend to decrease r;,. In large
inclination systems, therefore, self-shielding and Doppler boosting operate in the opposite ways. The
situations are rather complex. Caution is needed when interpreting the fitting results of the observational
spectra.

Let us check what observations tell. Figure 6 shows the interesting results taken from (26}. This is
the 7},-1 diagram and the solid lines represent the calculated loci of constant BH mass or constant mass
accretion rate. Also, the observational data points of BH candidates, including ultra-luminous compact
X-ray sources (ULXs), are plotted. We wish to pay particular attention to the temporal behavior of IC
342, which evolves along the line of the theoretically predicted track; namely, it clearly shows decrease
in r;, with increase of L. For comparison, we also plot the constant-r;, lines with straight dotted lines.
The fact of decreasing ri, at large L indicates that IC 342 should have near-critical accretion flow. This
also provides a good example that even if the estimated inner-edge radius is below 3 rs the BH may not
be an extreme Kerr hole.

The theoretical study of such near- or super-Eddington sources have just started. Interaction between
radiation and matter has been a big concern and still remains an open question. We need fully 2D/3D
radiation hydrodynamics to establish 2DD/3D relativistic slim disk models. Internal Compton scattering
in multi-dimension and evaluations of photon trapping effects are also important to consider.

Another interesting issue is the fate of radiation pressure-dominated disk. According to the standard-
disk model, the hottest part which is dominated by radiation pressure is violently thermally unstable.
How such a disk evolves is still an open question. Possibilities are (1) relaxation oscillations leading to
quasi-periodic bursting behavior [8,24]; (2) soft-to-hard transition which may occur when the viscosity
parameter (a) is large [25}; and (3) strongly clumped disk [13]. Observations of some sources, such as
GRS1915+105, show bursting behavior, thus supporting the possibility (1), while it is also possible that



only an upper part of the disk undergoes transitions to produce coronae transiently [14]. We expect more
observational evidence to accumulate in the next decade.
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A Numerical Study of the Axisymmetric Pulsar Magnetosphere

Jun Ogura!

Department of Physics, Hiroshima University,
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Abstract
A large number of papers has been written down about the theoretical work of pulsar
magnetosphere. The issues still reminds open, although roughly 30 years have passed.
Recently Contopoulos et.al. numerically constructed global smooth maguetosphere.
we study the natures of the magnetosphere and the current distribution.

1 Introduction

A pulsar was identified as a rotating neutron star in the carlicst days of pulsar research(1]. The rotating
energies continuously transferced to the ncbulac around the pulsar. This general picture is established,
but the details of the mechanisin arc not clear. Extraction of rotating cnergy, and the transformation
toward the surrounding matter arc of great significance. These mechanisms may be relevant not only to
pulsars, but also to AGN and gamma ray burster.

The model of magnetosphere is important for the understanding of the physical pictures. The simplest
modecl is an aligned rotator one. Goldreich and Julian{2] examined the aligned model in vacuum. They
consider the magnetic ficlds due to a dipole moment of the star. However, when we consider the plasma
flow, the magnetic ficld should be modificd significantly. In addition to the poloidal ficld which is
expressed by a flax function, there is a toroidal magnetic ficld By = A(¥)/R. The cquation governing
the magnetosphere is reduced to s coupled equation between A and ¥, The function ¥ may be determined
by assumning A. Some authors cxamined special case, A = const {3} and A o W [4]. The basic equation
becomes lincar partial differential one for these cascs. However, the solutions have singularitics clsewhere
in the magnetosphere. Contopoulos, Kazanas & Fendt[5] recently showed continuous and smooth solution
from the stellar surface to the wind region across the light cylinder. In this paper, we extend their work.

2 Model and Basic Equations

2.1 Pulsar equation

We show a basic equation governing the plasma motion in rotating magnetosphere under the ideal MIID
condition £ - 3 = 0. This condition is a good approximation except a small region such as gaps. Since
the inertial, gravitational and pressurc forces arc negligible, the force balance is given by

peB+ixB = 0 (1)
C
where the charge density g is given by
pe =V - E/an. (2)

is the electric charge density in the magnetosphere.
For axially symmetric magnctic field, it is convenient to use the flux function ¥. The poloidal magnetic
ficld By is given by

! E-mail:ogurafitheo. phys.sci. hirashima-u.ac.jp
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where we used a cylindrical coordinate system (R, ¢, Z). The azimuthal magnetic field B, is defined
by

3)

_ AY)
B¢ - R ' (4)
where A(¥P) is related with poloidal current density through the Maxwell equation.
Finally, the electric field is given by
B= @1}, x & ()
where 2 is the angular velocity of rotation of a star, onto which the magnetosphere is anchored.
Using cgs.(2)-(5) into cq.(1), we have the pulsar cquation [6, 7]
v 1 v av
W[l 2 T Y 9,0 ’ .
(1-2% (62:2 z0z | 022 ) 225z = ~RucAA(D), ©

where we have introduced the convenient notation ¢ = R/Rpc and 2 = Z/Ry ¢, with /Ric = ¢/f},
light cylinder.

2.2 Iteration scheme

Nothing has been specified the function A so far. Corresponding to this function, the magnetic ficlds
arc calculated. It is not clear whether there is a singularity or kink clsewhere. Assuming A, the clliptic
cquation (6) can be solved both for the interior z < 1 and the exterior > 1. The both function at the
light cylinder ¥(z = 17,2) and ¥(z = 17, z) arc mismatched in general. If one is lucky cnough, one has
the connect distribution A and magnetic ficld.

Contopoulos ct.al. [5] have set out to obtain the solution of the force-free rotating dipole magneto-
sphere in all space, without kinks or discontinnitics on or around the light cylinder. using the following
relaxation-type technique.

1. Chose somc initial trial clectric current distribution A(¥).
2. Solve the cq.(6) both inside and outside.
3. Redefine the distribution of A(¥) by itcration as follows, at the light cylinder.
4. Repcat steps 1 3 until the field line connects smoothly.
The new distribution of A(¥) is given by
Al el ¥) = iy A (Win) + 12 ARy (Yaue) + 3 (Win = Your), (7)

at the light cylinder, where
1
¥ = Elq’m + q’aut]v (8)

with weight factors g3 + p2 = 1 and pu3 < 1.
In order to be able to solve the problem all the way to infinity, we rescaled our x and z variables as
Xin =T, Zin = 2/(1 + 2), Xows = (xz — 1)/z, and Zoyy = 2/(1 + 2).



The boundary conditions are

¥(Xin =0) = 0, (9)
1

Ixn¥(Xin=1) = %A—, (10)
azm\p(z.'" = 0) = 0, (11)
¥(Zin =1) 0, (12)

2

- m z
¥(around the origin) = (RLC) T A (13)

in inside the light cylinder, and
14

O W Ko =0) = 2L, (14)
Y(Xow =1) = 0, (15)
V(Zowt =0) = Yopen, (16)
VZow =1) = 0, (17)

in outside of onc, where m is the dipole magnetic moment and Wopen 35 given by the value of ¥( X, =
1, Zin = 0). Our result is shown in Fig.1 which is confirmed with Contopoulos ct.al[3].

A L) T L)
o
i~ |
~
© 1 1
] [+X.3 1 1 2 2.5 4

Figure 1: The structure of aligned rotating magnetosphere, which is almost consistent with Contopoulos
ct.al [3]. The horizontal line is the direction of x, and the vertical line is the direction of z. We can see the
magnctic ficld line is connected smoothly through the light-cylinder(z = 1). The doted lines represent
flux surfaces in intervals of 0.1¥,,, with ¥ = 0 along the axis. The dashed ficld line is the last open ficld
line corresponding to Wopen = 1.38Wp. The solid line shows the null surface where g, = 0.

3 Plasma Flow

Since the magnetosphere was calculated, we can see the distribution of plasma. The plasma moves only
along the magnetic ficld. The velocity of the plasma is given by

T = xB+ ROQG, (18)



where the second term is purely corotating velocity component. In the steady state configuration, the
current density is given by the Maxwell equation as

QE = VxB-4ani=0. (19)

If J = p.7, the function « is determined as

A'(Y)
4np, '

(20)

is given by (18),(19), and MHD condition £ = -5 x B .

Fig.2 shows the current distribution in the magnctosphere where the clectric current is defined as
J = p.7. The main clectric current stream outward from the dipolc polar cap, and is distributed along
the inner open ficld lines. A small amount of return current flows along the boundary between the last

open ficld (dotted) line and the dashed-dotted line. The plasma flow in the closed line has no poloidal
component of velocity.
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Figure 2: The current distribution on the x-z plane. The size of arrow means the amount of the current.

The dotted line represents the last open field. The dash-dotted scparates the outflow region to return
current region.

4 Current distribution
The current distribution A’ along the specified field line is shown in Fig.3. The result obviously shows
outflow current is dominated. We have calculated several times from different initial current distribution,

but have the same final one. The final functions converged at moment, we do not know that the solution is

unique. There is no proof at all. Thercfore it is very important to check whether alternative distribution
cxists or not.
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Abstract
We reconstruct a 3+1 formalism of general relativistic electromagnetism, and derive
the equations of mation of charged particles in pulsar magnetosphere, taking account
of the inclination between the rotation axis and the magnetic axis. We analyze particle
acceleration in the polar cap, finding that gravity changes its dynamics significantly.

1 Introduction

The origin of radio emission from pulsars remains a great mystery. One of the likely scenarios is that par-
ticles are accelerated along open magnetic field lines, 7-rays emit, and electron-positron pair production
occur subsequently. The process of particle acceleration has been intensively studied in flat spacetime
[1). The field-aligned electric field is driven by deviation of the space charge from Goldrich-Julian charge
density, which is determined by the magnetic field geometry. Therefore, general relativistic effects on the
field geometry are crucial for the formation of the field-aligned electric field and particle acceleration.

Muslimov & Tsygan initiated the general relativistic analysis of electromagnetic fields around a pulsar
(3]; they solve Maxwell equations on the assumption that the particles move with the light speed. Shibata
showed, however, their assumption is not always true [2]. Later Mestel included the equations of motion
of particles in general relativistic electromagnetic equations [4]. Here we derive the basic equations more
rigorously and generally: we correct Mestel’s equation and extend it to include the inclination angle
between the magnetic axis and the rotation angle.

2 3+1 Electromagnetic Equations

The basic equations are general relativistic Maxwell equations coupled to the equation of motion of a
charged particle:

D
P, = 4nT¥, Flum =0, mo = eFmvy,, )

In order to apply these equations to a specific case, it is convenient to rewrite them in a 341 form. Such
a method was discussed by Landau & Lifshitz [5] and Thorne & Macdonald [6]. For the purpose of our
study, we combine and modify the two methods: we adopt the ADM formalism to decompose a spacetime
and electromagnetic fields into a 3+1 form as in [6], and write down 3+1 electromagnetic equations in a
straightforward manner as in [3).

We adopt the metric used in the ADM formalism,

ds? = —a’dt? + g;;(dz’ + B'dt)(dz’ + Fdt), (2)
and introduce the fiducial observers with the 4-velocity,

u, = (-2,0,0,0), (4=0,1,2,3), 3)
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which defines a series of spacelike hypersurfaces £(t) orthogonal to u#. We define the projection tensor,
which projects any 4D vector or tensor onto £(t), as

A = gh 4 u'u, (4)

With «* and h,, we decompose the electromagnetic field 7*” and the charge-current vector J* into
the electric field E, the magnetic field B, the charge density p and the current density J [6]:

FH¥ = yPEY — 4" E* + ¢***u, By, T = pu* + J¥, (5)

where ¢#3¢ is the Levi-Civita tensor with ¢?!%3 = 1/,/=g. Substituting (3) into the basic equations (1)
and the continuity equation J%, = 0, we obtain the 341 expression of the basic equations:

divB = 0, (6)
\/Laa,(\/aa") +lrot(eE + Bx B)f =0, (i=1,2,3), (7)
dvE = dnp, 8)
-\/iqa.(\/ap:") t [rot(aB + 8 x E)J = dmaJ', )
%3,(\/6{)) + divad) = 0, (10)
%{7(—0 +B-V)}-1? {—a—gg + %V'V’ b V—:’i’é} = %%E-V, (11)
%(W,—) -9 {—‘%" : ‘g‘;g"—"viv* + V'Ta‘ﬂ} ”3‘7 [E+ VxB-(E- V)g - (12)

Here inner product, cross product, divergence and rotation are defined as

Q-P=QP', |QxP| =¢#*Q,P, divP= %a,»(\/ap"), rot Pl = ¢i*g,p,,  (13)

where s‘ﬂ‘ is the spatial Levi-Civita tensor with ¢!** = 1/,/7. The Lorentz factor v and the 3-velocity
vector V* are defined as n o
R Ut LA &
= -—vry, =ar?, Vis —’7—‘1 = & (14)
0

3 Electromagnetic Equations in Pulsar Magnetosphere

We assume that the spacetime outside a neutron star is stationary, axisymmetric and vacuum. Up to
first order in the slow-rotation approximation, the spacetime is described by the metric,

. . r =5 . 2J . \ —lray a3 a2 . B
at=FEFE) =1- f, 8% =w(f)= = = diag(F~'(#), 72, #?sin#), (15)
where ry and J are the gravitational radius and the angular momentum of the star, respectively, and we

have adopted the spherical coordinates (i, #, 8, @) so that 0 = 0 accords with the rotation axis.

In order to work with the “magnetic coordinates” (¢, r, 8, ), where the magnetic dipole axis accords
with @ = 0 [3], we introduce the “corotating coordinates” as ¢ — ¢ — Qf, where  is the angular velocity
of the star [5]. Supposing the magnetic axis is 6 = x, ¢ = 0, the coordinate transformation from the
corotating coordinate to the magnetic coordinate is given by

&= fsinfcos@, §=fsinfsing, =+
T - Zcosxy+Zisinyx, y=49, 2= -&siny+ Zcosy, (16)
T =rsinfcosy, y=rsinfdsing, z2=r



The shift vector in (15) is, accordingly, transformed into
A =0, f° = -sinxsing(—w), B° = (cosx — cotfcoswsinx)( — w), (17)

while the lapse function and the spatial metric remain unchanged: a?(r) = F(r), g = F~!(r).

We analyze the basic equations (6)-(12) with the metric (17). First, we suppose that the magnetic
field distortion due to the external currents is negligibly small. Then the magnetic field is governed by
(6) and (9) with J = 0: divB = 0 and rot(aB) = 0. We adopt the dipole-like solution [7, 3}:

By = T n D () e, = 3(2) [P+ 21+ 2)]. a9

= VF M) \T
By VF ro\3
= p2g0 =20 V" [_ -1 b
Bg = r°B 2 7ir) [ 2f(r) + 3F (r)] ( r) , (19)
where r = r, denotes the star surface.
Equation (7) is satisfied if there exists a potential ¢ such as
aE+fx B=-Vo. (20)
Substituting (20) into the other of Maxwell equations (8), we obtain
div (%) =d4n(—p+ pcs), 4mpcs = ~div (aé x B) . (21)

Let us consider the flow of charged particles. In the case under consideration, magnetic field dominates
over electric field, where particles are at the lowest landau level and the inertial drift motion across the
magnetic field is negligible. Therefore, we may regard that particles go along with magnetic field lines:

V =xB, J =pV =psB, (22)
where & is a scalar function. Then continuity equation (10) implies [3, 4]

\/fpV
B

= constant on magnetic field lines. (23)

One of the equations of motion (11), supposing B, = E, = 0, reduces to

d e 1dd

d‘r(ﬁ” - mFdr’ (29)
The other equation (12) need not be solved because the spatial trajectory is determined by (22).

Finally, we consider boundary conditions. We assume that the star crust is a perfect conductor,

and hence particles on the surface do not suffer Lorentz force. This ideal MHD condition is given by
V& = 0, from (12) and (20) with ignoring the small term (E - V')3/a. We also assume that there exists
a closed magnetic lines, where the ideal MHD condition holds. Therefore, our boundary conditions are
& = Vd =0at r = r,, and on the boundary surface defined by the “last open field lines”, ¢ = 0.(r).

4 Particle Acceleration in the Polar Cap

We are interested in the “polar cap” region, 6 < 6.(r), where particle acceleration may occur. For
simplicity, we restrict ourselves to the region near the magnetic pole just above the surface, where the
following approximations hold: (i) 6.(r) = constant, (ii} & <« 1 (we take its first order), and (iit) d/dr

along the particle trajectory = 8/9r. The assumption (i) and the boundary condition ®(6.) = 0 imply
that ¢ can be expanded as

& =3 H()Yim(6,0), |- n”—;, (n=0,1,2,..). (25)
im



In our analysis below, we take only the n = 0 (homogeneous) or n = 1 (lowest) mode.
Using the normalized variables (2],

. JFJ _e, ._ [MBe
j=- OB = constant, ¢=m¢, s$= m T (26)

we rewrite (8) and (12) as

_\:2_?% (32%’) _ lil/;slz)¢= B(f/? (% _3'), j= (1 - %) (cosx +8cospsiny),  (27)

L= 32, (28)

The particle trajectory is given by integrating d8/dr = B™/B®, resulting in 8(s) = 0.\/s/s. for 0 < 1.
In the following analysis we fix some of the parameters: r, = 10km, (s, = 2.5 x 10%), ry = 2km,
Q=2rs"!, w./A=01, 8, = /Qr./c(n/0. = 217), x = 30° and 7, = 1.0001.

We can argue the behavior of particles by looking at the “force term” (LHS) of (27). If j > j, the
force term always positive; dvy/ds increases monotonically. If j < 3, on the other hand, the force term
takes both positive and negative, depending on V, and hence oscillating behavior is expected. Numerical
integration of (27) and (28) verifies this argument, as shown in Fig. 1. If we set ry = w = 0 (no
gravity) and x = 0 (no inclination), we reproduce Shibata's result, j = 1 [2]. The expression of j in (27)
indicates that both effects of gravity and of inclination reduce j, or equivalently, the critical value of j.
An qualitative difference from the result for the flat spacetime is that in the case of j < j oscillation does
not always continue to infinity but the particle velocity becomes V = 0 at some point, beyond which one
cannot integrate the equations. A stationary solution is nonexistent in this case.

Next, we consider the dynamics for 7 & j.. To see the approximate behavior, we expand j with &,
defined as s = s.(1 + £), up to the first order, resulting in

j=J1+Cg, C= 33' +%’coszptanx. (29)
This shows that j increases or decreases according to the sign of C. In the absence of gravity (w. = 0), its
sign depends simply on whether cos¢ > 0 (toward curvature) or cosy < 0 (away curvature), as claimed
in {2]. He showed, for example, that particles are accelerated after oscillation along away curvature lines
if j is slightly less than 1. The effect of gravity changes this behavior. If we take w./Q = 0.1 typically,
C can be negative only if 0. > 0.6} seccot x > 0.6 cot x even for away curvature. Unless x is large
enough, in most small-@ region, ; simply increases and acceleration after oscillation cannot occur. This
argument is confirmed by the numerical result in Fig. 2.

Finally, we discuss the effect of fluctuations of & in the non-radial direction, I({ + 1)¢/vFs>. Because
¢ is positive, this term acts as an “accelerator”. We consider two cases: (a) n = 0and (b) n = 1. In
Case (a) we find the solution where particles reach 4 = 10% but ¢ and v remain finite. This condition
is required to make particle energy large enough to cause creation of electron-positron pairs with finite
electric field. In Case (b), on the other hand, due to the effect of the lincar term of ¢, we have not found
such a solution. We will report a detailed analysis elsewhere.
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Figure 1: Spatial distribution of 7 along magnetic field lines. We choose ¢ = 0, (which leads 7. = 0.81),
and n = 1. -y oscillates or increases monotonically according to j. In this case oscillation eventually stops

with V approaching zero, in contrast with the non-gravity case.
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Figure 2: Spatial distribution of «y along “away” field lines. We choose 8, = 5°, ¢ = 180°, (which leads
J» = 0.822), j/j. = 0.997 and n = 1. Gravity changes particle dynamics drastically.
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Figure 3: We choose the same parameters except for /7, = 1.01 and n: (a) n =0 and (b) n =1. The
angular fluctuation term accelerates a particle.



Grad-Shafranov equation
in noncircular axisymmetric stationary spacetimes
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Abstract
We obtain the Grad-Shafranov equation, that is, a equation to which the basic equa-
tions for the axisymmetric stationary ideal magnethydrodynamic system are reduced,
in the noncircular spacetimes.

1 INTRODUCTION

Recently a new class of pulsars has been recognized, which is called magnetar. Magnetars are super
strongly magnetized neutron stars, whose magnetic fields are greater than the quantum critical field
By = m2c®/eh ~ 4.4 x 10! G. The ratio of the magnetic field to the gravitational energy can be

estimated as
5 (BA/BTUTRY/S) o B 0 R \'Y M \? M
GM?/R 2x 106G/ \106cm/ \14Mg/

Therefore the magnetic fields of = 10'® G may be important for the deformation of the neutron star
(e.g., [9]). The deformation of the neutron star is relevant to the precession of the neutron star, the
gravitational wave emission, the oscillation of the neutron star and so on.

In order to model magnetars, we have to consider the equilibrium configuration of magnetized stars in
the general relativistic magnetohydrodynamics (MHD). In this respect, we have to take the electromag-
netic energy into account in the source of the gravitational field, and have to solve the configuration of
the electromagnetic fields and the matter in a curved spacetime. So far several works have been devoted
to the equilibrium of the magnetized stars in axisymmetric stationary spacetimes (3, 4]. However these
works consider only poloidal magnetic field for simplicity. Indeed the poloidal field is compatible with
the circularity of the spacetime. The stress-energy tensor is said to be circular or nonconvective if

nTHneed = 0, €, ned =0, (2)

where n = 8/8t and £ = 3/8y are two Killing vectors associated with stationarity and axisymmetry,
respectively. This conditions are equivalent to the absence of the momentum currents in the meridional
planes orthogonal to two Killing vectors. In the case of a fluid, this means that there is no convective
motion but only circular motion around the axis of symmetry. Papapetrou [14] and Carter [6, 7] have
shown that when the stress-energy tensor is circular, there exists a family of two-surfaces everywhere
orthogonal to the plane defined by the two Killing vectors. In other words, one may choose coordinates
(t, 2,22, ¢) such that n = 8/8¢, £ = /9y and the metric components gy, go2, ga1, g3z are identically
zero. As a consequence the problem is simplified dramatically. However the toroidal field violates the
circularity condition. Thus in order to study the magnetars in general, we have to consider the noncircular
case.

The problem can be divided into two parts. The first part is to solve the Einstein equation for given
stress-energy tensor. And the second is to solve the configuration of matter and electromagnetic fields
in a curved spacetime. The formalism to solve the Einstein equation in the axisymmetric stationary
spacetime is developed by Maeda et al. [11], Sasaki [15], and Gourgoulhon & Bonazzola [8]. So here we
focus our attention on the second problem to solve the equation of motion of matter and electromagnetic
fields in a curved spacetime.
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It is well known that the basic equations for the axisymmetric stationary ideal MHD system can be
reduced to a single second-order, nonlinear partial differential equation, so called the Grad-Shafranov
(GS) equation, in the Newtonian case |10}, the Schwarzschild spacetime case [12] and the Kerr spacetime
case [13]. However, as far as we know, the GS equation for the noncircular spacetimes has never been
given explicitly. The purpose of this paper is to derive the GS equation explicitly in the general (i.e.,
noncircular) axisymmetric stationary spacetimes.

Greek indices run from 0 to 3, small Latin indices from 1 to 3 and capital Latin indices from 1 to 2.

2 BASIC EQUATIONS AND CONSERVATION LAWS

The basic equations governing the general relativistic ideal MHD are as follows. The first equation is the
baryon conservation,

(Pbu“)m =u!pp + pouty =0, (3)
where g, is the rest mass density and u* is the fluid 4-velocity (u,u* = —1). The second equations are
the equations of motion, which give the conservation of the fluid energy,

up, +(p+p)u*u =0, (4)
and the Euler equations,
(p+ plu*pu” + (¢ + wHu")p, — F*J, =0, (3)

where p, p and J# are the fluid energy density, pressure and the electric current 4-vector, respectively.
From Egs. (3) and (4) we have the relation,

dp _p+p ()

where g is the specific enthalpy (per unit mass). The third equations are the Maxwell equations,
Flapy =0, F*, = 4=J¥, ]

where the Maxwell field strength tensor F,, is given by the vector potential A, as Fj, = A, — Au,.
The electric and magnetic fields referred to the flow «* are defined as

1
E, =F,v, B,= E(,wagu"F"B (8)
where €uvag is the Levi-Civita antisymmetric tensor. Note that the inversion of the above equations is
given by Fy, = u,E, - 4, Ey + ¢uuapu®B? with E u* = B,u* = 0. Since the ideal MHD assumes the
perfect conductivity, the fourth equation is the frozen-in condition,

E, = Fuu’'=0. 9

The final equation is the equation of state, p = p{ps, p).

Our purpose is to solve the above basic equations under axisymmetry and stationarity. Bekenstein
and Oron [1] have shown that the axisymmetric stationary system has four quantities conserved on each
flowline. Conserved quantities are the magnetic flux per unit particle flux [C(¥)], the *angular velocity’ of
the magnetic field line [2(¥)], the total energy [E(¥)] and the total angular momentum [L(¥)], where the
flowline is characterized by the flux function ¥. A toroidal component of the vector potential A,£* = A,
can play the role of the flux function ¥ when we choose the gauge such that A, .n" = A,0 = 0 and
A, 6 = A, 3 = 0 since we can proof u#(§¥A,),, = 0. Here we use the fact that the Lie derivatives of
all physical quantities along the Killing vectors must vanishes, L u* = §"u*,, — u"¢*., = 0.

According to Bekenstein and Oron |1, 2], we can show that

Fos = 0, Fya=Q(¥)Faa, (10)
Fy U, = CV=gpu®, Fazy=-V3=Cy=gpu', Fiz=Cy=gp(uv’® - Qu’), 1y



where (¥) and C(¥) are conserved along each flowline. The above equations are effectively the
first integrals of the Maxwell equations (7). It is useful to rewrite the above equations as B¥ =
—Cps [(uo + Quz)u® + ¥ + Q€#]. Note that the conserved function Q(¥) is the W-derivative of the
electric potential, Q(¥) = —dA¢/d¥. In addition we can show that E(¥), L(¥) and D(¥) are also
conserved along flowlines where

B B
~D = p(ug + Quz), -E = xup+ Clup + 9“3)1?2' L = xuz + Clug + Qu3)4—;, (12)

where x = u+ B%/4wp,. The above equations are cffectively the first integrals of the Euler equations (5).
We can find the relation D = E — Q1L, which together with (12) implies that B2/p, + C(By + QB3) = 0.
Note that the conserved functions Q(¥), C(¥), E(¥) and L(¥) are given by hand.

3 GS EQUATION

The GS equation is the Euler equation in the transfield direction, so that our aim is to factorize the
derivative of the flux function from the Euler equation. With Eq. (6), the Euler equation (5) can be
written as

po (s’ + oy + upt®p, ) — FuyJ¥ = 0. (13)
The 1-component of the first term can be transformed as

P + 1 + pprrutp )
= pu(pure + wipa) + os(puron’ + puraut 4 punae®) 4 ppa (14 wut)
po2(pure + uapz) + ps(purou® + puyu + puygu®) + g (—ueu® — upu? — ugn®)
= mu(pure + wipa — uapa) + pepnan’ + poprror® + oy au’
- ou®(uuo) 1 + popu®(uon + Chyuy) — pou’(sus) 1 + popu(us;y + Myu,)
= pbuz(uul;g g —uzp) - Pblmz;lu2 - Pbun(#uo).l = Pbua(lmii),l
= peud(pur — pugy + wipe — uap) — pu®(pug)a — peu’(pua),, (14)

The second term of Eq. (13) can be transformed as

4,;3/_—9‘1"1 [Q(\/'—'ZFM),A - (\/—_QFM),A] + 41r\1/—_g

Since F'2 = —(—g)~Y2uoB;3 + (—g)~"/?u3By, the second term of the above equation is given by

1 — 12
471'\/—_9}:‘12( gF )J

_FlpJ“ = - Flg(\/—an).l. (15)

1
_ECpb(us — Qu®)(uoBs — ua Bo)1

1 1
= —p,,u(’ -ETCQ(UOBS el u;;Bo)]‘l - p(,‘u3 [4—7;0('“033 - u;;B()) R

1 1 .
- pruo(uoB:; ~ u3Bo)(CR)' ¥ 1 + pru“(uuB;; - u3By)C'¥,. (16)

From Egs. (14), (15) and (16) with Eqs. (12), we find that the Euler equation (13) can be transformed as
fas¥ = 0. A similar calculation can be applied to the 2-component, and we can factorize the derivative
of the flux function ¥ as fgs¥ 2 = 0. Then the GS equation is given by fgs = 0 where

Jes = a}—_—; [(uwr) .2 — (puz)a] + ‘mlﬁ [(\/—_QF“),A -Q (\/—_gFUA)‘A]
+ pou’ |E' - ;—ﬂ (uoBs — u3Bo) (CQ)’] - pou® [L' - % (uoBs — u3Bo) C’] =0. (17)

This is a second-order, nonlinear partial differential equation for the flux function ¥ but it is not so clear
since the flux function appears implicitly.



If we use the (2+1)+1 formalism ([8], see Sec. A), we have the GS equation as
1

fes = NMCEAB(I‘U-LA)IIB + po(ua + Bug) IE' - Z(CQ)’] - po(ue + Qug) |[L' - ZC"]
1 3A A -
+ war [(VMPA) - (vares) ] =0 (18)
where ©, u,#, ug and ug are given in Sec. B, and
1
U_LA = —WCAB‘I’,B - (‘un + eue)NJ_A - (UQ +Qun)MJ.A, (19)
1 1
Z = Z—(uoBs—ugBo)=ECpbue(l+GQ) [(mn*6.€” — (u€*)?], (20)
FoA (goa 40 _ g00 AB) QU g + (g% gAB 903943)\PB+ (e™g Az_gongl) Fiz
M/ AM M, AN
_- AB _J'—"' —— wpAB _ 7L V1
I PR I
_ N1 B+ NeM, B 4 MiAN,BM Cepc| Fra 21
__m €eg” + N2 —‘/=: ( )
F34 = (g%Bgh0 _ g0, ABY QP 5 + (g%g4F - g3BgA3)\I!3+ (%94 — g2 o) P
1 NiAM 1 Nv NiAN
- w7 AB L ES AB 1 1
= Nzl:NH T }Q‘Pai-[(Mz (N))H —N2M2 ]‘I’,g
1 Ne\? B N‘pNJ_B A NLANJ_BMJ_CEBC Fis
+ [{ (W - (T) ) My™ - =jz 8"+ NIM? Wik (22)
% = CpNM(u® - Qu®) = Cp,NMue (1 - Q6). (23)
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A (2+1)+1 DECOMPOSITION

Let n, be the unit timelike 4-vector orthogonal to t = const hypersurface ¥; and oriented in the direction
of increasing ¢, n, = —Nt,, where n,n* = —1. The 3-metric induced by gu on I, is given by
huv = gy + nun,. Let my, be the 4-vector field defined by m, = Mh,"p, = My, where mym* = 1.
The induced 2-metric on I, is given by H,, where

g"u = _npnll -+ h“y = —n"ny +4- m,,m., + Hpu' (24)

Note that /=g = Nv'h = NMv/H. Then any vector can be decomposed into the directions of n,,, m,
and the others. The Killing vectors are decomposed as

7% = Nn¥ — N* = Nn* — MN®m* — N\#, €% = Mm* — M, ", (25)

The component expressions are n, = (—N,0,0,0), n* = (1/N, N'/N,N?/N,N3/N), m, = (-MN¥,0,0, M),
m* = (0, M'/M, M?/M,1/M) and

( goo  9oj ) =( NNk~ N? —N; ) ( ¢ g% ) [ -~ - (26)
gio 9 -N; ki )’ gi® g9 N pb oM

N
hagp has \ _ ( Hap ~My, hAB  pA3 ) _f HAB g M,:{M 4 A:‘A -
hap  ha -M, g M2?4 MJ_AMJ_A 4 R3B  p3 | T AL- n F‘;



B INVERSION

All physical quantities can be derived from the flux function ¥ and the conserved functions C(¥), Q(¥),
E(¥) and L{Tl) when the metric g, is known. Let us derive all physical quantities explicitly in this
section [5]. First we decompose the fluid 4-velocity as

u* = ua(n” + Q6*) + ue(€* + O7F) + ur*, (28)

where (7% +2€#) is orthogonal to (£* +On*) so that © = —£,(n* + QE*)/nu(n* + QE#). With Egs. (12),
the coefficients of the 4-velocity are derived as

wo E-OL_ D u9=_(L-eE)( Arp )(1— rem )“ (29)
a Aqpu Aqu’ Aoy ApC?p, AnC?p, !

where 4mp/(AnC?ps) = dmupy(Aqua? —1)/B? := M,? is the square of the effective Alfvén Mach number
Mg, Aq = —(n, + Q&,)(n* + QE*) and Ae = (€, + On,)(€¥ + On*). With Egs. (11), the other terms of
the 4-velocity are derived as

1
B e 30
uy NMCpbc \I"I,, ( )

where the antisymmetric tensor is given by €4 = €uvapn®m?. The magnetic fields are derived from
B* = Cpy [Aququ® — (n* + Q&#)]. From the relation u,u” = —1 we have

D (4m*(L - BE)? ( _ dmp )'2 HABY 4V g

Agp? AQQAQC“pg AnC?p, N2M202pg

= -1, (31)

which is the equation for pj, (or u or p) with Eqgs. (6) and the equation of state.
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Slowly decaying tails of massive scalar fields in black hole
spacetimes
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Abstract

We study the dominant late-time behaviors of massive scalar fields in static and
spherically symmetric spacetimes. Considering the field evolution in the far zone
where the gravitational field is weak, we show under which conditions the massive
field oscillates with an amplitude that decays slowly as t~5/¢ at very late times, as
previously found in (say) the Schwarzschild case. Our conclusion is that this long-
lived oscillating tail is generally observed at timelike infinity in black hole spacetimes,
while it may not be able to survive if the central object is a normal star. We also
discuss that such a remarkable backscattering effect is absent for the field near the
null cone at larger spatial distances.

1 Introduction

One of the most remarkable features of wave dynamics in curved spacetimes is tails. Scalar, electromag-
netic and gravitational fields in curved spacetimes do not, in general, propagate entirely along the null
cone, but are accompanied by ’tails’ which propagate in the interior of the null cone. This implies that
at late times waves do not cut off sharply but rather die off in tails.

In particular, it has been well established that the late-time evolution of massless scalar fields prop-
agating in black-hole spacetimes is dominated by an inverse power-law behavior, as was first analyzed
by Price [1]. In a brilliant work, Leaver [2] demonstrated that late-time tails can be associated with the
existence of a branch cut in the Green’s function for the wave propagation problem. Gundlach et.al.
(3] showed that power-law tails also characterize the late-time evolution of radiative fields at future null
infinity, while the decay rate is different from that of timelike infinity. Furthermore, it has been shown
that power-law tails are a genuine feature of gravitational collapse Late-time tails develop even when no
horizon is present in the background, which means that power-law tails should be present in perturbations
of stars, or after the implosion and subsequent explosion of a massless field which does not result in black
hole formation. The existence of these tails was demonstrated in full non-linear numerical simulations of
the spherically symmetric collapse of a self-gravitational massless scalar field.

When the scalar field has a non-zero mass, the tail behaviors are quite different from massless ones.
For example, as is well known, the tails exist even in Minkowski spacetimes, which is related to the
fact that different frequencies forming a massive wave packet have different phase velocities(5]. If the
background spacetime is curved, it is expected that interesting features peculiar to massive fields develop
through the scattering due to the spacetime curvature.

Recently it was pointed out that the late-time tails of massive scalar fields in Reissner-Nordstrdm
spacetime are quite different from massless fields in the existence of the intermediate late time tails
[6](see also [7]). If the Compton wave length m~! of a massive field is much longer than the horizon
radius of a black hole with the mass M, namely mM <« 1, each multiple moment ¥ of the field evolves
into the oscillatory inverse power-law behavior

¥ ~ t~'"*sin(mt), 1)

at intermediate late times. It is clear from (1) that massive fields decay slower than massless ones,
and waves with peculiar frequency w quite close to m mainly contribute to massive tail, while the

! E-mail:hiroko@allegro.phys.nagoya-u.ac.jp
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dominant contribution to massless tails should be evaluated in the zero-frequency limit w — 0. Though
the oscillatory power-law form (1) has been numerically verified at intermediate late times, mM <«
mt <« 1/(mM)Z2, it should be noted that the intermediate tails are not the final asymptotic behaviors;
Another wave pattern can dominate at very late times, when it still remains very difficult to determine
numerically the exact decay rate |6, 7]. In the previous paper (8], we have analytically found that the
transition from the intermediate behavior to the asymptotic one occurs in nearly extreme Reissner-
Nordstrém background. The oscillatory inverse power-law behavior of the dominant asymptotic tail is
approximately given by

¥ ~ t~%/%gin(mt), (2)

independently of the multiple moment /, and the decay becomes slower than the intermediate ones. Then,
the similar result for the decay rate has been obtained by considering massive scalar fields in Schwarzschild
background (in the limited cases that mM <« 1 or mM > 1, where A is the black-hole mass) [9] and
massive Dirac fields in Kerr-Newman backgrounds (10]. Asymptotic behaviors of massive scalar fields in
dilaton black-hole backgrounds have been also discussed [11}.

These results given in [8, 9, 10] suggest that massive fields in black hole backgrounds decay as t—5/6
generally at very late times. So it is an interesting subject to study how universally such a slowly decaying
tail develops. It has been numerically shown [4] that a power-law tail develops even when the collapsing
massless scalar field fails to produce a black hole. This is an evidence for the late-time tail to be a direct
consequence of wave scattering in far distant regions. In this paper we prove that the decay law =56 of
massive scalar fields can be essentially determined by the analysis in the far zone where the gravitational
field is weak. However, we can also derive the conditions for the tails with the decay rate of ¢~/ to
dominate as an asymptotic behavior. Considering the physical interpretation of the conditions, we can
claim that any spherically symmetric black holes generate the same asymptotic tails, while the conditions
may not be satisfied if the central object is a normal star.

In Sec.2 we introduce the Green’s function analysis to investigate the time evolution of a massive
scalar field in any static, spherically symmetric spacetimes. In Sec.3 we consider the approximation valid
in the far zone, and we find the conditions for the tail with the decay rate of ¢t~5/6 to develop. The final
section is devoted to discussion , which contains a comment that the tail with the decay rate of t=5/% can
develop also in rotating black hole spacetimes.

2 Green’s function analysis

2.1 Massive scalar fields in spherically symmetric spacetimes

We consider the evolution of a massive scalar field in a static spherically symmetric background with the
asymptotically flat metric given by

ds? = — f(r)dt? + h(r)dr® + r?(d6® + sin® 0d?). (3)

Here we do not assume the metric to be a solution of the vacuum or clectrovac Einstein equations. The
scalar field & with the mass m satisfies the wave equation

0 = m3d. (4)
Resolving the field into spherical harmonics
o (e,
o=y 0.0, Q

hereafter we omit the index { of ¥/ for simplicity, and we obtain a wave equation for each multiple moment

N

ét—g—ﬁwLV(f) ¥ =0,

(6)



where r, is the Wheeler tortoise coordinate.
The time evolution of the radial function ¥ is given by

W(re,t) = / [G(r e, 75 )e(r". 0) + Gelra, £ 10(r",, O)]dr @
for ¢t > 0, where the retarded Green's function G is defined as
Z_ a—2+V G(r.,rist) = 8()5{r. —r.) (8)
atz arg LIt} - . L VA
The Fourier inversion formula is
1 so+tc . .
G(r.,riit) = ——/ G(r.,rl;w)e”“ dw, (9)
27 Josotic

where ¢ is some positive constant. Now the Fourier component of the Green’s function G(r.,r;w) is
expressed in terms of two linearly independent selutions for the homogeneous equation. The boundary
condition for the basic solution ¥ is that it should be well behaved on the event horizon if the central
object is a black hole, and at r = 0 otherwise. On the other hand, the other basic basic solution s is
required to be well behaved at spatial infinity, r — o0o. Using these two solutions, G(r,,’;w) can be
written by

~ ’. _ 1 1{:’1(7".,(0)@2(7’.,&)) y Te2> rl.
Glreyriw) = W(w) { Yi(ro,wa(r,,w) , r.<rl, (10)
where W(w) is the Wronskian defined by
Ww) = e, - Y. (11)

The integrand in (9) has branch points at w = £m. Considering the branch points, one may change
the integration path in (9). As will be shown later, the late-time tails are generated owing to the existence
of a branch cut (in ;) placed along the interval —-m < w < m.

2.2 The analysis in a region far from the gravitational source

It has been found in the previous papers (8, 9, 10, 11] that the oscillatory power-law tails of massive
scalar fields whose decay rate is £~5/6 dominate at asymptotically late times in black-hole spacetimes. In
this paper we show that the decay law can be simply derived by considering wave modes only in a far
distant region, as a generic behaviors observed in any black hole spacetime.
For that purpose, we assume

r
— 12
a7 > (12)
where M is the gravitational mass of a background field. Expanding (6) as a power series in M /r and
neglecting terms of order O[(M/r)?] and higher, we obtain the approximated form

2y -

7 Uy =0, (13)

where

oMuw?  2M'(m?-u?) A2-1
= (r ) _ r24' (14)

The coefficient ) in (14) depends on the multiple moment [ and the other parameters M, Af', Q and Q"
For example, in the case of Reissner-Nordstrém background with mass M and charge Q, we have

U = (m?-J7)

2
A o= \/(1 + %) +4m2M? — 1202 M? - m2Q? + 2,2Q2. (15)



We keep the term of order of O(M?2/r=2) in (13), in order to confirm that the decay rate of asymptotic
timelike tails found in [8, 9, 10, 11] is independent of A. Introducing the variable defined as

z = 2or, (16)
where w = v/m? = &%, (13) is rewritten by

[d’_l+£_u}¢=o, 17)

d2 4z z2

where x is

o M+ M. (18)

3 The conditions for the slowly decaying tails to develop

Our aim is now to show that the tail with the power-law decay of t=5/6 is a generic asymptotic behavior in
black-hole spacetimes by using the wave modes satisfying (13). One may claim that the inner boundary
condition to determine ¥, is missed if the analysis is limited to the range (12). Hence, we treat ¢, as a
general solution for (13) and reveal a condition which allows the excitation of the asymptotic power-law
tail. Fortunately we will be able to prove that such a condition is always satisfied if the event horizon
exist in the background spacetime.

First, let us give 4, by requiring that it damps exponentially for lw| < m and to be purely outgoing
for |w| > m at spatial infinity. The outer boundary condition leads to

%(wxr) = VV,;,,\(I), (19)

where W, x(z) is the Whittaker function [12]. Note that W, x(z) is a many-valued function of =, and
there is a cut in ¢¥2. The late-time tail is generated by the contribution from the branch cut in 1.7)2,
while ¥ is a one-valued function of w, as was shown in [8, 9]. This is because the late-time tail is a
consequence of backscattering. b In the following we will clarify under what kind of conditions for a and
b the power-law tail with the decay rate of ¢~/ asymptotically dominates.

In the far distant region ), is approximated by

U > AeTVRE | BemitVRE (20)
where A and B are
A = a2 Mag 4 (90)e i/ { - AqT(20)e A ~ K bI(-22)e™ } @n
and
B = a 'migV2a)em /4 {kAal(20)e'™ - kABI(-20)e" ), (22)

respectively. In this region, independently of A, the mode clearly shows a wave behavior with the ampli-
tudes |4| and | B| corresponding to the outgoing and ingoing parts for w > 0, while |A| and | B| correspond
to the ingoing and outgoing parts for w < 0. We find the conditions for the slowly decaying tail as ¢t —5/6
to develop are equivalent with the inequalities

1Bl 2 |4 (23)

for w 2 0 respectively. Therefore, it is sufficient to consider the inequalities (23) independently of A,
as the conditions for the tail with the decay rate of t-5/% to dominate at late times. (23) means the
amplitude of ingoing waves for ¥ is larger than that of outgoing waves in the far distant region.

The origin of the slowly decaying tail as ¢ ~%/6 of a massive scalar field can be considered a resonance
by cooperation between dispersion and backscattering. It is a common feature when the scalar field has a
nonzero mass that in far distant regions the effective potential (14) is a monotonously increasing function
with r and the radial mode shows a wave behavior. If the central object is a black hole, the conditions
(23) are surely satisfied because of the existence of the event horizon. So, we can conclude that this
long-lived oscillating tail is gencrally observed in arbitrary spherical symmetric black-hole spacetimes.



4 Discussion

"We have found that whether the tail with the decay rate of t~5/¢ develops at very late times can be
judged relevantly by wave modes only in far distant regions. Then, even when the central object is a
rotating black hole, only the parameters M’ and X in the effective potential (14) will be changed in far
distant regions. Since these are not relevant to the conditions (23), the same tail behaviors are expected
to dominate also in Kerr spacetimes.

Finally we comment about late-time tail behaviors when the central object is & normal star like as
a neutron star or a boson star. If the expression of ¢; is assumed to be extended to the region r < M,
then we must require ¥, to be regular at r = 0. This leads to the equality |A| = |B| which means that
the amplitude of outgoing is equivalent with that of ingoing. Then the tail with the decay rate of t~5/¢
never develops. Though this extension may not be valid, we can expect the equality |A] = |B| to be
valid, unless some absorption of waves occurs in the inner region. This is a future problem to be checked
by giving a background gravitational field with a regular center.
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Abstract

By using ASCA and Chandra, we discovered a new type of black hole, intermediate
massive black hole (IMBH), at the off-center position in the starburst galaxy M$2.
We also found and expanding molecular super bubble (EMSB) surrounding the IMBH
with Nobeyama Millimeter Array. One of the seven star clusters which we detected
with Subaru Telescope observation was identified with the IMBH within the absolute
position accuracy. The results suggest the IMBH was formed in the starburst activity
10° ~ 107 yrs ago. We also introduce a new formation scenario of SMBEH through the
merging of IMBHs which fall into galaxy center by the dynamical friction.

1 Introduction

The cxistence of two types of black holes (Blls) has been known. so far. One is the stellar mass black
hole, whose mass is ~ 10M;. A rcpresentative of this type is well-known Cyg X-1. This type of Bll is
born from a supcrnova due to the gravitational collapse of a high mass star. The other type is so-called
super massive black hole (SMBII), which is found at the center of almost all the galaxics. The mass of a
SMBH exceeds ~ 105M.: and sometimes reaches ~ 108M ;. which is same as the mass of a small galaxy.
Some of them. about ~ 1% to ~ 10%. have activitics and are observed as active galactic nuclei (AGN)
and QSO in many wave lengths.

Evolution of X-ray luminosity function of AGN dctected with X-ray decp surveys indicates that a
SMBII was very active in the carly Universe of : = 2 — 5 but is inactive at present{1]. The discovery that
the mass of a SMBII is proportional to the bulge mass proves that the origin of a SMBI connects with
the galaxy formation in spite that the SMBII is a very local existence at a galactic center{2].

After the big bang. the universe cooled down once and it was recombined from plasma state to neutral
state at the redshift of ~ 1000. After that. the birth of first star and galaxy formation were made at the
redshifts between 1000 and 10. At the redshift between 10 and 5. the whole universe was heated up and
re-ionized. again. The energy source of this big cvent is thought to be UV lights from QSOs containing
SMBII. Therefore. SMBII should have been formed at the same time or just after the galaxy formation.
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Thus, SMBH and AGN have been playing very important roles in the cvolution of the universe and
galaxy. However, the formation mechanism of SMBH is still mystery. Since the mass of a SMBH is very
high, it can not be formed at once, but it should have been growing up little by little. If it is the case,
the baby of a SMBII should be found in a young galaxy. Then, we scarch for a baby SMBH in obscrve a
young galaxy, that is starburst galaxy.

Starburst galaxy is thought to be a galaxy in which burst star formation is occurring at galactic
nucleus. In the casc of M82 galaxy, which is a prototype of starburst galaxy, the star formation rate is
~ 10* times higher than the value in our galaxy. Burst star formation causcs very high supernova rate
and burst formation of stellar mass black holes. Inter stellar matter heated up by the supernovac finally
escapes from the gravity of galaxy and galactic wind is formed. The starburst galaxy is thought to be a
prototype of young galaxy in the early universe. Among them, M82 galaxy is the most famous and the
ncarest starburst galaxy and has been investigated in many wavelengths. Then, we observed M82 galaxy
with X-ray, IR, and radio.

2 X-ray Observation

2.1 ASCA

We made X-ray obscrvations of M82 with two cpoch making X-ray satellites. One is Japancse X-ray
satellite ASCA, which was the first X-ray CCD mission and cnabled hard X-ray imaging observation
above 2keV duc to the multi thin foil mirrors. The other is Chandra X-ray obscrvatory launched in 1999.
The image resolution rcaches about one arcsee, which is almost same as the onc of Subaru telescope.
Figure 1 shows the X-ray spectrum of M82 obtained with ASCA [3]. The spectrum is well fitted
with two optically thin thermal plasma components with the temperatures of k7 = 0.32, 0.95keV and
a hard component, whose absorption and temperature are Ny = 1.9 x 1022cm=2 and &7 = 13.8kcV,
respectively.  Imaging analysis revealed that the two optically thin thermal plasma components arc
significantly extended. On the other hand, the hard component is point-like within the ASCA resolution.
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Figure 1: ASCA SIS0+1 (X-ray CCD) spectrum obtained within a 6.0 radius from the center of M82
and the best-fit model(3).

If the hard componcent originates in an actual point sourcc, it should have time variability. Thus, we
madc monitoring obscrvation with ASCA. The monitoring obscrvation was made at 9 exposurcs with
cach exposure time of 10ksec spanning over a half ycar.

The Icft pancl of figure 2 shows the long term light curves of 0.7-1.5keV and 3-10keV bands obtained
with GIS onboard on ASCA[4, 5]. There is significant time variability in 3-10keV. in spite that the
counting ratc in 0.7-1.5keV band is stable through the monitoring obscrvation. Adding to the long term



variability, we found short time variability in 3-10kcV band within a day, which is shown in the right
pancl of figure 2. This is a direct cvidence for the existence of a high luminous BII in M82.
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Figure 2: Long (lcft) and short (right) term light curves at the encrgy bands of 0.7-1.5keV and 3-10keV
obtained with ASCA GIS2 and 3[4].

2.2 Chandra

In order to investigate the precise position of the BII in M82, we madc obscrvation with Chandra X-ray
obscrvatory, The cxposures were made twice and we found about ten sources near the galactic center
shown in the left pancl of figure 3, most of which were time variable[6, 7]. No X-ray source is found at
the galaxy center of M82. Among the X-ray sources detected. only the brightest source No.7 can explain
the X-ray luminosity of the time variable source we found with ASCA (sce the right panel of figure 3).
Thus. we concluded that the source No.7 is the BII discovered with ASCA.

M82
CHANDRA HRC HRC-1 Exposure: 2788 s

09"38™ss* 09"35°%0"

HRC counting rate (1073 ¢/»)
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[

observation

0 2.6 68 18 36

Figurc 3: Chandra IIRC imagc of the center region of M82 obtained in the 1st exposure {left)[6]. The
light curves of point sources detected from the HRC observation (right).



2.3 Summary of X-ray Observation

The discussion and summary of X-ray obscrvations arc given in this section [6]). The source No.7 has
time variability of 3hr with high X-ray luminosity as shown in the ASCA light curve, which immediately
concludes that the source is an X-ray luminous BIl. The mass accretion onto the BII by its gravity is
madc against the radiation pressure from the source. Then, the lower limit on the mass of the BII can
be obtained from the following inequality (Eddington Limit),

orLx

M, —_—
B > dreGmy,

(1
where Mgy, Lx, oy arc the BII mass. X-ray luminosity and Thomson cross scction. The lower limit on
the BH mass is obtaincd to be 700M ., which is too heavy as a stellar mass BIL. Thus, the source No.7 is
not stellar mass BIl. Chandra observation revealed that the source No.7 is located at galactic off-center,
170 pc apart from the M82 dynamical center. SMBII known so far is always located at a galactic center.
Then, it is concluded that the source No.7 is not SMBH, cither. Since the mass of M82 within 170pc from
the galactic center is estimated to be ~ 107Mg, the mass of source No.7 is lower than 107M¢, otherwisc
its position should have been the dynamical center. Although we do not go into detail in this paper, the
mass of the source No.7 should be lower than ~ 106M.. from the discussion of the dynamical friction.
Then, the mass of the source No.7 is lower than the mass of a SMBIL. Thus, from the two significant
naturcs of its mass and position, we concluded that the source No.7 is a new type of BII and named it
Intermediate Massive Black 1lole (IMBII).

3 Near IR and Radio Observation

3.1 Subaru Telescope

Next, we made observation with Subaru Tclescope, 8.2m optical an infrared telescope on Mauna Kea.
Subaru Telescope has the largest single-picce mirror in the world. Figure 4 shows K’-band image of
central region of M82 with Subaru Telescopef8]. We detected many young star clusters in the center
rcegion of M82. Adding to this, we found that onc of the star clusters has the consistent position with
the one of the IMBII within the position accuracy (sce figure 4). Then. we concluded that the IMBII is
located in the star cluster.

B2 Cuntyr

Stz Clustae wain IMBEH

Figure 4: Near IR (K’-band) image of the center region of M82 obtained with CISCO of Subaru Telescope.



3.2 Nobeyama Millimeter Array

We made radio obscrvation with Nobeyama Millimeter Array (NMA) located in Nagano prefecture. NMA
is an interfcrometer with 6 10m antennas and cnables imaging and spectroscopy observation of molecular
clouds. The left pancls of figure 5 shows the radio image of carbon monoxide (CQO) in M82 obtained
with NMA[9). We next obtained a position velocity map (P-V map) along this line. P-V map is velocity
distribution of the molecular cloud as a function of position. As shown in the left bottom panel of figure 3.
we found a peculiar structure. In the normal case, a spiral galaxy is rigidly rotating. Thercfore, a straight
linc is expected in the P-V map (sce figure 5). On the other hand, the peculiar structurc found in M82
indicates the existence of an expanding molecular supper bubble (EMSB).

The right pancl of figure 5 shows the radio image of the EMSB, we discovered. The EMSB is located
at galactic off-center and its kinetic cnergy reaches ~ 10%%crgs, which is cquivalent with ~ 10* $Ne. We
estimated the age of ~ 10° yrs from the size and the cxpanding velocity of EMSB. These results suggest
that a burst star formation and ~ 10? SNc cxplosions occurred ~ 10° yrs ago at galactic off-center
position. From the comparison with X-ray imagc, we found that the IMBII is located at the center of
the EMSD.

1500 [K krn’s)

0
05
LIS

Lah

MSZ‘Cf.‘nwr

HATYIH (B1495d))

Yare
RIS
ENE
(e iy

Figure 5: Left: Radio image (top). P-V map (bottom) of CO in the center region of M&2 obtained with
Nobeyama Millimeter Array [9]. Whitc arrow in the P-V map indicates the peculiar expanding structure
newly discovered with our obscrvation. Right: Expanding Molecular Super Bubble in M82. The three
arrows indicate the positions of the source No.d. 5 and 6 in the left pancl of figured.

Obscrvational results and discussion give above arc summarized here. We discovered a new type of
black hole, IMBII, located at galactic off-center, whose mass is within the range from 10% to 10°~7M..
We also discovered an EMSB formed by 10 SNe at 10® yrs ago. The IMBII is located at center of EMSI
and in a young star cluster. From these results, we concluded that the IMBH was born from starburst
activity forming the EMSB.

4 Formation Scenario of SMBH and Galaxy Evolution
From the obscrvational results shown above. we introduced a new formation scenario of IMBII and
SMBII[10). The scenario is based on N-body simulation with the GRAPE computer, which is special

purposc computer designed for gravitational N-body simulation. The 6th generation of GRAPE reaches
100 Tflops. Figure 6. 7 and 8 show the schematic view of our scenario.



Phase 1: Formation of IMBH

1. In the beginning of the galaxy formation, starburst starts and many star clusters are formed from
the gravitationally collapsed molecular clouds in the primordial galaxy. In a star cluster, high mass
and low mass stars are born.

2. The high mass stars sink into the core of the star cluster by dynamical friction.

3. Since the cross scction of the high mass star is significantly large, the merging of high mass stars
occurs in the core of the star cluster and a single very massive star is born.

4. The very massive star immediatcly collapses into a BH with hundreds solar mass, which is the
baby of an IMBII.

5. The baby IMBII swallows the surrounding stars and ambient gas, then grows up to be an IMBII.

¢ | ’
N
BN
Sink of Massivo Stars into tho

Formation of Star Center duo to Dynamical Friction)
Ctustor o

3

Meming of Massivo Stare and
[~ ———— Birth of Vory Massivo Binglo Star

Collapso of tho Very Massivo Growth (nto IMBH cun to
Star and Birth of Baby IMBH accrotion of stars and gas

Figurc 6: Formation scenario of IMBII and SMBII (Phasc 1).

During the phase 1, other remaining high mass stars which did not merge cxplode as supernovac. As
a result, the inter stellar matter is heated up or swept by the shock wave from supernovae, then galactic
wind and EMSB arc formed.

Phase 2: Formation of SMBH and AGN

6. At the end of starburst in the phasc 1, an IMBII is born only in a star cluster with a high density
core. Then, a high mass star cluster contains an IMBII but a low mass star cluster does not.

7. lligh mass star clusters start sinking toward the galactic center by dynamical friction, again. The
high mass star clusters also convey IMBIIs into the galactic center. On the other hand, low mass
star clusters are blown off toward the halo.

8. The high mass star clusters merge cach others in the galactic center region. On the other hand.
the IMBHs conveyed by the star clusters continue sinking into the galactic center.

9. The merging of IMBIIs occurs by radiating gravitational wave, and a single SMBII is finally born.

10. Duc to the accretion of surrounding stars and ambicnt gas, the SMBII becomes active in radiation
and jet. Thus, the SMBII is obscrved as an AGN in the carly universe. On the other hand, the
remnant of merged star clusters forms the bulge structure of the galaxy. The low mass star clusters
blown off to the halo come to be globular clusters at present.



Phase 3: From an AGN to Quiet Galaxy
11. All the surrounding stars and ambicnt gas arc finally consumed by the AGN, then the SMBII stops
its activity and becomes quict. This is quict galaxy at present such as Andromeda Galaxy and our

Galaxy.
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Figurc 8: Formation scenario of IMBH and SMBII (Phasc 3).

5 On-going and Future Projects

The scenario stated above explains not only the formation of SMBII but also the cvolution of a galaxy.
However. it is still just a sccnario. Then, we arc making further studics on the birth of SMBII and



cvolution of galaxy. We have two on-going projects. A wide range is still allowed for the mass of IMBII
in M82. Then, the first project is the determination of the mass of the IMBII in M82 with the IRCS
Echelle spectrometer of Subaru Telescope.

The sccond project is the scarch for the 2nd M82. Recently, two groups have reported the detection
of candidates for IMBIls with Chandra observation. One is done in the starburst galaxy NGC3628.
Chandra detected a bright source at galactic off-center[11]. In spite that the X-ray luminosity of the
source is a factor of 10 lower than the IMBII in M82, the situation is very similar. The other onc is from
the Chandra obscrvation of the " Antcnnae”™ galaxics NGC4038 and 4039. The two galaxics of NGC4038
and 4039 are merging cach other and strong starburst is going on. Several X-ray sources with luminositics
of ~ 10%%rgs s™! were detected from Chandra observation[12]. These two studics are concentrated on
X-ray obscrvation. Iowever, we think that multi-wave lengths observation is cssential to figure out the
birth of IMBII and SMBH. Then, we are obscrving another promising starburst galaxy NGC2146 with
X-ray and radio bands, as we made to M82. The radio obscrvation was alrcady done and our Chandra
monitoring obscrvation in the summer of 2002 is scheduled.

After the on-going projects, I (TGT) would like to go into these two future projects with Astro-E2
satellite, which is scheduled to be launched in Feb. 2005. First onc is the study of the galactic wind. In
the carly phasc of galaxy evolution, galaxy is thought to have been injecting a large amount of cnergy into
intergalactic space as a form of galactic wind with metal enriched high temperature plasmas. Therefore,
it should have played important roles in the evolution of the universe and galaxy. The sccond is the
study of BH itsclf and gencral relativity. ASCA discovered gravitational redshifted iron K-cmission line
from AGN and gave the first direct obscrvational cvidence for the existence of Kerr BII[13, 14). This is
the beginning of obscrvational study on the black hole itsclf as a rcal cxistence and spacetime geometry
close to the black hole, which will be further pushed up by the observation of the fine structure of the
cmission lines with Astro-E2.
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Junichire Makino!

Department of Astronomy,
School of Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Recently, an "intermediate mass” black hole (IMBH) was found in the central region of
galaxy M82 through observations made by ASCA, Chandra and SUBARU. This is the
first finding of a black hole with the mass more than 100 solar mass but significantly
less than 1 million solar mass, and, as such, has completely changed our understanding
of the formation process of massive blackholes. We describe our new scenario in
which IMBHS serve as the "missing link” between stellar-mass and supermassive black
holes. IMBHs first form in young compact star clusters through runaway merging of
massive stars. While these IMBHs are forming, the host star clusters sink toward
the galactic nucleus through dynamical friction, and upon evaporation deposit their
IMBHS near the galactic center. The IMBHs then form binaries and eventually merge
via gravitational radiation, forming a supermassive BH.

1 Introduction

It is now well established that the central engines of QSO and AGN activities are supermassive black holes
(SMBHs) which lic at the very center of galaxies (see, e.g., [11]). In addition, there is rapidly growing
evidence for SMBHs in the centers of many galaxies (for a review, see [10]). Although relatively few
galaxies show conclusive evidences for central black holes, even fewer galaxies exist for which observations
indicate that a central SMBH does not exist [9).

Even so, how these SMBHs are formed is not at all understoed. Our theoretical understanding has
not advanced much beyond the scenarios described by Rees [25, 26] in the early 1980s. In his famous
diagram, Rees draw basically two scenarios in which SMBH are formed from massive gas clouds. The
first one is direct monolithic collapse, the second is via the formation of a star cluster, with subsequent
runaway collisions Jeading to BH formation.

However, numerical studies have demonstrated that either scenario is not likely. Let us consider
the first scenario. If we perform one-dimensional simulation of the spherically-symmetric collapse, we
can casily form SMBHs from initial gas clouds. However, in reality there are always non-spherical
perturbations such as rotations, external tidal ficld and small-scale structures. Any of these prevents
the formation of single massive BH, since at some point non-spherical collapse leads to fission. The final
outcome of the gravitational collapse of massive gas clouds is most likely a cluster of stars, not a single
SMBH.

How about the second scenario? Can we form SMBHs from star clusters? If the cluster is compact
enough, through thermal evolution the central core of the cluster would shrink and become relativistic.
However, in order for sizable fraction of the cluster mass to become relativistic, the velocity dispersion
of the cluster must be very high right from the beginning, since the velocity dispersion goes up only very
slowly as the collapse proceeds. In the case of the self-similar collapse, we have

pe x T 2% (N

where p. and r. are the central density and the core radius. From the virial theorem, we have v, o r7 %12,

where v, is the central velocity dispersion. Thus, it is clearly impossible to form a relativistic core from
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usual dynamical evolution of a stellar system. In practice, long before the core becomes relativistic,
the self-similar collapse would be halted by the energy production from binary stars formed through
three-body interaction.

A different possibility to form BH in a star cluster is through merging of stars or stellar-mass BHs
in close encounters. If there is a fair number of massive stars initially in the cluster, they might directly
evolve into stellar-mass BHs. At the time of the formation, they are not the most massive objects in
the cluster. However, in a relatively short time, they become the most massive object, since stars which
are more massive than stellar-mass BHs will become neutron stars through Type I supernovae. The
BHs then sink to the cluster core through dynamical friction, and might form a compact core of BHs.
Here again the velocity dispersion is not large. In fact, for the core of the massive object, the velocity
dispersion can be lower than the velocity dispersion of the cluster as a whole. A massive BH cannot be
formed even from a core made of stellar mass BHs.

However, as we stated above, the collapse of the core is halted by the formation of binary stars,
which transfer their gravitational binding energy to kinetic energies of other stars (BHs) in the core
through binary-single star scattering. Such scattering events, on average, result in the increase of the
binding energy of the binary, and therefore the orbit of the binary shrinks. If the orbit can shrink
sufficiently that the timescale of the gravitational wave radiation becomes short enough, a BH binary
would merge. However, recent N-body simulations [23] have demonstrated that practically all of these
black-hole binaries are ejected from the cluster by recoil of interactions with other BHs before they merge
through gravitational radiation. Thus, it is unlikely that BHs grow through merging in star clusters. In
fact, Portegies Zwart and McMillan [23] argued that this is the reason why we do not see any massive
BH at the centers of globular clusters.

There are a variety of other theories and scenarios to form SMBHs. Since there are zo many of them,
here we decline even from just listing some of them. All theories so far proposed share one common
shortcomming. There is no observational support. Of course, this is not the fault of any theorist. Just
that no one has ever seen an SMBH in its making.

2 IMBHSs in M82

M82 is one of the nearest starburst galaxies, and its central activity has attracted the interest of observers.
Matsumoto and Tsuru [16] observed the central region with ASCA X-ray satellite, and found a pointlike
source which showed short-time variation and AGN-like spectrum. The Eddington mass was around 400
Mg.

Matsushita et al. [18] observed the same region with Nobeyama Millimeter Array and found a huge
expanding shell of the molecular gas. They estimated the age and kinetic energy of the shell to be around
1 Myr and 10% erg, suggesting that a strong starburst took place a few Myr ago.

From these two observations, Taniguchi et al. [28] proposed that an IMBH of the mass around 103 M,
had been formed through the merging of compact objects formed by Type II Supernovae (SNe). The
energy of the expanding shell implies 10* SNe. So there are more than enough compact objects to form
an IMBH. Difficulty, however, is how we can let that many of compact objects to merge in such a short
time. As we have discussed in some details in section 1, compact objects in a star cluster are not likely
to merge with each other.

Recent high-resolution observations in X-ray and Infrared have completely changed our view of M82.

Matsushita and Tsuru {17] have identified nine bright compact X-ray sources in the central region
of M82 using recent Chandra data. The brightest source (No. 7 in their Table 1) had a luminosity
of 9 x 10%%rg/s in Jan 2000, corresponding to a BH with a minimum mass of 700M¢, (assuming the
Eddington luminosity). It probably consists of a single compact object, as its X-ray flux shows rapid
time variation [17]. This object is bright enough to explain the pointlike source observed by ASCA (]16]).
Among the eight other sources, at least three (5, 8 and 9) have Eddington masses greater than 30Mg,

Chandra results add quite a bit more information to what was already known by ASCA and NMA.
First of all, the pointlike X-ray source is really a collection of point sources, but most of the luminosity
comes from a single source. Second, this brightest source, with Eddington mass of 700My, is not at the
dynamical center of M82 but at the center of the expanding gas shell. Thus, it is quite unlikely that
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Figure 1: IR (K’ band) image of the central region of M82 by SUBARU IRCS. black dots are candidates of
star clusters and white circles are the locations of bright X-ray point sources found by Chandra. Courtesy
of Dr. Iwamuro.

these two are unrelated, but it is still unclear how we can form an IMBH from large number of compact
objects.

The key to understand the relation between the starburst and the IMBH was brought to us by
SUBARU. Harashima et al. [6] observed the same region in the IR (J, H, and K’-band) using the CISCO
instrument on the SUBARU telescope [6]. They identified a number of young compact star clusters. At
least four of them coincide with the X-ray sources within the positional uncertainties of Chandra and
SUBARU. The other five Chandra X-ray sources are far outside the central starburst region of M82. Even
80, two of them coincide with infrared sources in the 2MASS point source catalog. The logical conclusion
from these observations is that most of the Chandra X-ray sources, including the brightest one with an
Eddington mass of 700Mg, were formed in star clusters.

Therefore, we now “know” for sure that an IMBH (or its candidate) is formed in a young and bright
cluster. Nevertheless, we also know that it is unlikely that an IMBH is formed through merging of
compact objects in a star cluster, no matter how massive and how compact the star cluster is (except for
the case where we have really relativistic cluster). Clearly, some of the assumptions we made must be
wrong.

3 IMBH formation through runaway growth

One candidate of the wrong assumption is that merging would occur after massive stars become compact
remnants. This assumption is okay for globular clusters, where the timescale of the dynamical friction
for the most massive stars is much longer than the lifetime of massive stars. Typical relaxation time of
present-day globular clusters is 1 Gyrs or longer, and therefore the dynamical friction timescale of a 100
Mg star is around 10 Myr, since the dynamical friction timescale is proportional to the inverse of the
mass. Mergings are most likely to occur at the core of the cluster, where the number density of the stars
is the highest. If the most massive stars experiences SNe before they can sink to the core by dynamical
friction, it is reasonable to assume that the core of the cluster will be dominated by compact remnants.
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Figure 2: The growth of the most massive star in model clusters, in simulations by Portegies Zwart et al.
[21). The horizontal axis is time in Myrs and the vertical axis the mass in unit of the Solar mass. Solid
curve shows the result of the run with no mass loss during the main sequence phase. Dashed and dotted
curves are with different assumptions on mass loss. Figure kindly provided by Dr. Portegies Zwart.

However, the star clusters in M82 are young, having experienced SNe just a few Myrs ago, and yet
the IMBH is there. So we should consider the possibility that massive stars sink to the core before they
go SNe, and merge with each other.

Massive stars in star clusters have higher merging rates than less massive cluster members (or field
stars) because of their larger geometrical cross sections and a stronger gravitational focusing, and concen-
tration to the core by dynamical friction in the cluster. In addition, complex resonances in binary-single
star encounters contribute to a significant increase in merging rate of massive stars 8, 20]. If these effects
are strong enough, we expect that the “merging instability” [12], or runaway growth of the most massive
star, will occur in the cluster core. In fact, N-body simulations carried out by Portegies Zwart et al.
[21] have demonstrated that runaway merging can take place in a systems containing ~ 12,000 stars,
before stellar evolution eliminates the most massive stars. In their calculation, almost all merging events
took place during resonant three-body interactions. Stars are assumed to always merge when physically
collide in their calculation. This assumption is generally okay since the velocity dispersion of the cluster
is not very large, 30 km/s or less. We can regard encounters essentially parabolic, even in the cases in
which they occur during three-body interactions.

In one case, the most massive star experienced more than ten collisions and reached a mass of around
200M;, before evolving into a supernova. There is considerable uncertainty as to how much mass would
remain as a BH after the supernova explosion of such a massive star, but it is quite likely that the
remnant BH would still be one of the most massive objects in the cluster, and that the runaway merging
process would continue. There is also significant uncertainty concerning the rate of mass loss in the main
sequence phase, which has very strong effect on the final mass of the runaway merger. However, even
in the case where the mass loss is large, the runaway merger would still be the most massive star in the
cluster, and therefore the resulted BH would be one of the most massive stars in the cluster.

In order for the runaway merging to occur, dynamical friction timescale for the most massive stars
must be short enough that they can sink to the center during their lifetime of several Myr. The dynamical
friction timescale may be expressed as follows [equation 7-26 in [3]]:
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where log A is the Coulomb logarithm, G is the gravitational constant, v, is the local velocity dispersion,
r is the distance from the center of the cluster, r, and M are the half-mass radius and the total mass of
the cluster, and m is the mass of the star. Here, it is assumed that the background stellar distribution
is that of the singular isothermal sphere. Thus, if the cluster has a very large core, the above equation
underestimates the timescale for stars in the core. Such a large core, however, is probably unlikely.

In the following, we consider how dynamical friction works in the cluster found in M82. From the
infrared luminosity, Harashima et al. [6] estimate that the total mass of the cluster is ~ 5 x 10°Mg. They
also estimated the seeing-corrected radius of the cluster as 5 pc, which is most likely a good estimate of
ry. For r = 0.5pc ~ 0.1ry, a volume which contains about 5% of the total cluster mass, the dynamical
friction timescale is less than 10 Myr. We therefore conclude that a significant fraction of the most
massive stars sink to the cluster center and undergo runaway merging before exploding as supernovae.

Note that it is much harder to let runaway merging to occur in a typical globular cluster with the size
of 10 pc and mass of 5 x 10° M. Here again, massive stars within the distance around r = 0.5pc ~ 0.05r),
might participate in the runaway merging, but the total mass in this region is a factor of 30 smaller than
that in our cluster in M82. Thus, very roughly speaking, typical number of merging events would also
be smaller by a factor of 30.

After the BH has become much more massive than other cluster members, it forms a cusp near the
cluster center [1], and continues to swallow other stars. Unfortunately, no realistic simulations of this
phase of the evolution are available. Marchant and Shapiro [19] performed Monte-Carlo simulations of
this stage for a simplified cluster containing 3 x 10° solar-mass stars and one 50 solar-mass seed BH.

This initial condition itself is rather unrealistic, since the underlying assumption is that a BH can be
formed through the self similar collapse of globular cluster. Even so, we can use their result to predict
what would occur to a seed BH in our star cluster in M82.

They found that the BH mass jumped to over 10° Mg, (0.3% of the cluster mass) almost immediately
after they put the BH into the system. After this initial rapid growth, a slower phase ensued, with a
doubling timescale comparable to the relaxation time of the cluster. Their result should be regarded as a
lower limit on the BH growth rate, since realistic effects, in particular the presence of a mass spectrum,
would greatly enhance the accretion rate. Taking these effects into account, it seems safe to suppose that
0.1% of the total cluster mass accretes to form a ~ 5000Mg central BH in a few Myr.

As stated above, there are more than 10 bright star clusters in the vicinity of the IMBH host cluster
in M82, some of them apparently hosting small BHs. Their age is around 10 Myr [6]. Also, the starburst
in M82 is a long-duration event, having started at least 200 Myr ago [5). If we assume that clusters
form at a constant rate, we conclude that around 200 clusters have been formed. We believe it is safe
to assume that around one hundred clusters similar to our host cluster have formed in total, and that a
considerable fraction of them host IMBHs.

4 Building up the central SMBH

It seems we have at least one plausible theoretical model for the formation of IMBHs in young and
compact star clusters near the center of a starburst galaxy. It is also quite likely many other such IMBHs
are formed during the starburst. Thus, if we can let these IMBHs sink to the center and merge with each
other, we can make massive central BHs, of the mass 10° Mg, or more.

It is rather easy to bring IMBHs down to the center of the galaxy. The host cluster would sink toward
the center of the galaxy, by the same dynamical friction mechanism which brought massive stars within
the cluster to the center of the cluster.

Rewriting equation (2) using appropriate scaling for this case, we find that the timescale on which
the cluster sinks to the galactic center via dynamical friction is

2 6
- sf T Ve 5 x 10°Mp
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Clusters initially within 1 kpc of the galactic center can therefore reach the center within one Gyr. Note
that an IMBH can reach the galactic center only if its host cluster can sink to the center before it
evaporates. If the cluster dissolves before significant orbital decay occurs, the timescale for the IMBH to
fall to the center increases greatly.
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Figure 3: Schematic diagram of the formation process of an intermediate-mass black hole (IMBH). From
Ebisuzaki et al.[4].

Evaporation is driven partly by thermal relaxation and partly by stellar mass loss. Portegies Zwart
et al. [22] estimated that the evaporation timescale for a tidally limited compact star cluster is around
2-3 half-mass relaxation times, which is of the order of a few Gyr for our star clusters.

As the cluster sinks toward the center, the tidal field of the parent galaxy becomes stronger and the
mass loss rate becomes higher. However, for a thermally well-relaxed cluster, this effect is relatively
small since the cluster has almost isothermal cusp within the half-mass radius. In this case, very roughly
speaking, the mass within the Roche lobe is proportional to the distance to the galactic center. Thus,
even if we take into account the effect of enhanced mass loss, the timescale of orbital decay becomes
shorter as the cluster sinks, and it will deposit the central BH to the very center of the galaxy. At this
time, the entire cluster must have been dissolved.

The next, and final, question is whether multiple IMBHs at the center of the galaxy can merge or
not. The evolution of massive binary black holes was first discussed by Begelman et al. [2]. They took
into account dynamical friction from field stars and energy loss via gravitational radiation. They found
that the merging timescale depends strongly on mass, and for a very massive BH with a mass of 108M¢
in which they were interested, merging took much longer than a Hubble time.

A binary BH evolve much in the same way as a binary star in a dense star cluster evolve, through
interaction with other stars. In the case of a binary star, interactions with other stars results in a roughly
linear growth of the binding energy, since interaction cross section ¢ is proportional to the inverse of the
semi-major axis a in the regime of strong gravitational focusing. The average amount of the increase of
the binding energy E is around 0.4E (see Spitzer [27]).

In the case of usual binary stars in a star cluster, this process continues until two components merge
through collision or the binary itself is ejected from the cluster through the recoil of three-body encounter.
Most of the increase of the binding energy is carried away by the third star, but the center-of-mass motion
of the binary also receives kinetic energy. If the resulted velocity is larger than the escape velocity, they
escape from the cluster.

In the case of massive BH binary, however, the evolution is more complex. First, the binary would
not escape from the galaxy through interaction with usual field stars, simply because the binary is far
more massive. In practice, since the BH binary is so much more massive than field stars, the random
velocity of the BH binary is very small and the BH binary can be regarded as staying at the center of
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the galaxy.

However, this fact that the BH binary stays at the center causes a different problem. The BH binary
evolves through close encounters with other stars. In the case of a usual binary in a star cluster, the
random velocity of the center of mass motion of the binary is comparable to that of field stars and the
binary can interact with any other stars in the core. However, the BH binary can interact only with stars
with the angular momentum small enough to approach to BH binary. Once all the stars with low angular
momentum are expelled, the evolution of the binary would stop. The stars would then slowly diffuse
into orbits with low angular momentum through two-body relaxation. Begelman et al. [2] estimated the
evolution timescale of black hole binary and concluded that the timescale is much longer than the Hubble
time, for the case of supermassive BH binary (~ 10®°Mg) in clliptical galaxies. This is the so-called
“loss-cone depletion” effect, which also limit the growth timescale of a single BH in a cluster or a galactic
center.

However, whether this loss-cone depletion actually occur or not is still an open question. Recent
extensive numerical simulations [13, 14, 24] have shown that the hardening of the BH binary through
dynamical friction is in fact several orders of magnitude faster than the prediction from loss-cone argu-
ments. Though the number of particles employed (up to 256k} was not large enough to model SMBH
binaries, it was certainly large enough to model evolution of IMBH binaries. With 256k particles, the
mass ratio between the BH particles and field particles is 2560, which directly corresponds to the case of
IMBH.

In Makino [14], I simulated the evolution of binary BHs formed in the mergings of two identical
spherical galaxies both of which containing central BHs. Thus, the intention of my simulation was to
model the evolution of BH binaries formed in the merging of elliptical galaxies which already contain
massive central BHs. However, we can interpret results obtained in these simulations to predict the fate
of IMBHs which are brought to the center of the parent galaxy by sinking star clusters.

For all simulations, I set the BH mass as 1% of the initial total mass of the galaxy. For standard runs,
initial galaxy model is the King model with Wp = 7.

Figure 4 shows the evolution of the binding energy of the binary, for standard runs with a wide range



of number of particles. The system of unit is “Heggie” unit (7}, where M = G = —4E = 1. Here, M is
the total mass of one galaxy, G is the gravitational constant and E is the total energy of the galaxy. In
this unit, ¢, = 2¢/2 is the standard half-mass crossing time. We let two galaxies collide from a parabolic
orbit. Therefore the initial total energy of the entire system is 2E = —0.5.

We can see that the evolution of the binding energy of the BH binary is rather fast, reaching to the
binding energy comparable to the total energy of the system in 10 crossing time or so.

The timescale of the gravitational radiation is given by
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Here, v, is the velocity dispersion of the stars in physical unit and E, is the binding energy of the binary
BH in our unit. Thus, if the binding energy of the BH binary can reach around E, = 3 in our unit, BHs
would merge through gravitational wave radiation in about 1 Myrs. If the orbit is somewhat eccentric,
the timescale would be much shorter.

The dynamical timescale in our unit is translated to the physical unit by the following relation.

M, v -3
— q BH (3
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Within several hundred time units, E;, would reach unity. Thus, the merging timescale of an IMBH
binary would be several Myrs.

If the timescale of the merging is shorter than the typical time interval at which star clusters containing
IMBHS reach the center, we can conclude that BHs would merge and grow. However, several Myrs is not
quite short enough, since several tens of IMBHs might reach to the center with 100 Myrs or so. What
would happen if third BH falls in before two BHs merge?

One possibility is that at least the third BH is ejected through interaction with the binary, as it is in
the case of binaries in star clusters. However, there is one difference. The potential well of the parent
galaxy is much deeper than that of a typical star cluster. Therefore, the BH binary becomes very tightly
bound before it can escape from the galaxy. The typical orbital velocity of the binary components when
they escape from the parent galaxy (or cluster) is around 10v., where v, is the central velocity dispersion
of the galaxy. The gravitational wave timescale is still very long, if we assume a circular orbit. However,
here we almost certainly know that the eccentricity is high. The most conservative estimate would be
to assume that eccentricity e follows the thermal equilibrium, where f(e) = 2e. In this case, average
eccentricity is 0.7, for which {gg is almost two orders of magnitude shorter than that for the circular
binary. In practice, the effect of eccentricity is much larger, for the following two reasons. First, the
binary would experience more than one encounters with the third BH before ejection. Therefore, the
expected value for the maximum eccentricity is significantly higher than the average value of 0.7. Second,
it is known that the actual distribution of the eccentricity after strong interaction with the third BH is
biased to higher eccentricity than the thermal distribution. Makino and Ebisuzaki [15] analyzed the first
effect, and concluded that effective merger timescale by gravitational wave radiation is about 3 x 10°
times shorter than that for a circular binary.

Thus, when there are three IMBHs at the center of the galaxy, we can expect that in most cases two
of them would merge through gravitational wave radiation. In almost all cases where the merging would
take place, it would be between two most massive ones. The fate of the least massive one is difficult to
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intermediate-mass BHs (IMBHs). From Ebisuzaki et al.[4].

predict. In some cases it may be ejected from the galaxy. In other cases they would remain in the galaxy
when the two other BHs merge, and form the binary again.

Once one BH has become more massive than typical infalling BHs, it becomes extremely unlikely
that it will be ejected, since the recoil velocity from three-body interactions is inversely proportional to
the mass (because of momentum conservation). Thus, even though some of the infalling BHs might be
ejected by the slingshot mechanism, the central BH will continue to grow.

5 Discussion

In this paper, we have discussed the implications for our understanding of the SMBH formation mechanism
of the recent discovery of an IMBH in M82. Our conclusion is that the IMBH found in M82 plays the
role of “missing link” between stellar-mass BHs and SMBHs.

Our proposed scenario is a rather complicated two-stage one. In the first stage, the seed BH is formed
through merging of massive stars in a young and compact star cluster, which is formed during a nuclear
starburst. This seed BH grows further by mergings with other massive stars in the cluster, and eventually
becomes IMBH similar to what was found in M82.

In the second stage, the parent cluster of IMBH sink to the center of the galaxy through dynamical
friction, and deposits the IMBH to the center of the galaxy. If the starburst resulted in the formation
of many clusters, fairly large number of IMBHs would be brought to the galactic center. These IMBHs
would merge either through dynamical friction from field stars or through three-body interaction of three
BHs.

In both stages, two stellar-dynamical mechanisms play essential roles: dynamical friction and three-
body interaction. Dynamical friction brings the massive stars (stage 1) or star cluster (stage 2) to the
center. Three-body interaction of massive objects increases the chance of merging.

Clearly, the view presented here is biased by the fact I am a stellar dynamicist, and the scenario
discussed in this paper ignores many other physics which might play important roles. Here we just list
a few of them. First of all, we ignore completely the possible effect of the gas in star cluster or galaxy
center. In the case of the star cluster, gas dynamics would not be very important since the potential well



of the cluster is not deep enough to trap gas. However, for galactic center the gas would certainly play
important role, and most likely effect of the presence of gas is to greatly accelerate the merging of binary
BH [2]. Other important astrophysical processes include the evolution and final fate of massive stars and
the outcome of the close encounter of IMBH and massive main-sequence stars.

From the side of the theoretical study, the largest uncertainty is in the stellar evolution. Both
the study of the “microphysics”, namely the evolution of massive stars and merger outcome, and the
“macrophysics”, where we study the sensitivity of the outcome to the assumptions in microphysics, will
be important.

A more important question is to what degree we can regard M82 as “typical”. Certainly, M82 is not a
normal galaxy, because it is a nearby starburst galaxy. Most of galaxies might have experienced a period
of very high star formation rate when they were young, but whether the scenario we discussed here is
applicable to such young galaxies is something we cannot answer now.

On the other hand, it seems that our scenario fits rather well into the standard cosmological scenario
in which structures are formed “bottom up”. In the bottom-up scenario, galaxies are formed through
merging of a number of gas-rich protogalaxies. In such merging events, large fraction of the gas would
be swept to the center of the merger product, as has been demonstrated by a number of simulations of
merging and galaxy formations. Thus, nuclear starburst is a quite natural outcome expected from the
bottom-up scenario, and compact star clusters which is similar to what is observed in M82 may be a
common feature of such nuclear starburst.

A rather different question is whether we can form the supermassive galaxies in elliptical galaxies and
QSO0s with the proposed scenario. My personal opinion is that it's a bit unlikely, simply because QSOs do
have massive accretion disks and high accretion rate (otherwise they are not luminous). Clearly, the gas
accretion is the primary mechanism for the growth of supermassive BHs. If we consider that ellipticals
are formed through merging of smaller galaxies, we would expect similar infall of gas as in the case of
nuclear starbursts. So why in some cases nuclear starbursts occur, and in other cases the gas directly
reach to the vicinity of central black holes? One possible explanation is that the presence of the massive
BH itself prevents the star formation, either through strong gravitational field or through UV radiation.

To summarize, the finding of IMBH in M82 opens up the possibility of the understanding of the
formation process of massive BHs with, at least, some observational evidences and constraints. We
described one scenario which seems plausible. However, our scenario is certainly not the only possibility
and there many problems yet to be solved.
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Abstract

As a novel mechanism to build up a supermassive black hole, the radiation drag by
the intense radiation from a starburst in a bulge is considered. It is found that the
putative correlation between black hole mass and bulge mass is basically determined
by a fundamental constant, that is, the energy conversion efliciency for nuclear fusion
of hydrogen to helium, ¢ = 0.007. Based upon the present radiation hydrodynamical
model for the formation of supermassive black holes, a scenario for the QSO formation
is proposed in relation to ultraluminous infrared galaxies and narrow line type I
AGNs.

1 Introduction

The recent discovery of high redshift quasars (Fan et al. 2001) implies that the formation of supermassive
black holes proceeded in less than 10° yr. Also, the recent compilation of the kinematical data of galactic
centers in both active galaxies and inactive ones has shown that a central 'massive dark object’ (MDO),
which is the nomenclature for a black hole (BH) candidate, correlates with the properties of galactic
bulges. The demography of MDQOs have revealed the following relations:

1) The BH mass exhibits a linear relation to the bulge mass with the ratio of

fon = Mg
- Mbulge

= 0.001 — 0.006 (v

as a median value (Kormendy & Richstone 1995; Richstone et al. 1998; Magorrian et al. 1998;

Gebhardt et al. 2000a; Ferrarese & Merritt 2000; Merritt & Ferrarese 2001a).

2} The BH mass correlates with the velocity dispersion of bulge stars with a power-law relation as
Mgy x o®, n = 3.75 (Gebhardt et al. 2000b) or 4.72 (Ferrarese & Merritt 2000; Merritt & Ferrarese
2001a, b).

3) The fau tends to grow with the age of youngest stars in a bulge until 10° yr (Merrifield ct al. 2000).

4) In disk galaxies, the mass ratio is significantly smaller than 0.01 if the disk stars are included (Salucci
2000; Sarzi et al. 2001).

5) For quasars the fpg is of a similar level to that for elliptical galaxies (Laor 1998).

6) The fpu in Seyfert 1 galaxies is not well converged, which may be considerably smaller than 0.01
(Wandel 1999; Gebhardt et al. 2000a) or similar to that for ellipticals (McLure 2001), while the
BH mass-to-velocity dispersion relation in Seyfert 1 galaxics seems to hold good in a similar way to
elliptical galaxies (Gebhardt et al. 2000a; Nelson 2000).

On the other hand, the observations of the X-ray emission (Brandt et al. 1997) or Paa lines (Veilleux,
Sanders, & Kim 1999) intrinsic for active nuclei have been detected in roughly one forth of ultraluminous
infrared galaxies (ULIRGs). Furhtermore, it has been revealed that QSO host galaxies are mostly lumi-
nous and well evolved carly-type galaxies (McLeod & Ricke 1995; Bahcall et al. 1997; Hooper, Impey,
& Foltz 1997; McLeod, Rieke, & Storrie-Lombardi 1999; Brotherton et al. 1999; Kirhakos et al. 1999;
McLure et al. 1999; McLure, Dunlop, & Kukula 2000). These observations lead to the paradigm proposed
by Sanders ct al. (1988) that ULIRGs could evolve into QSOs. Comprehensively judging from all these
findings on QSO hosts and supermassive BHs, it is likely that the formation of a QSO, a bulge, and a
supermassive BH is mutually related.
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Some theoretical models have been hitherto considered to explain the BH-to-bulge correlations, e.g.,
hydrodynamical ones including a wind-regulation model (Silk & Rees 1998) or an inside-out accretion
model (Adams, Graff, & Richstone 2001), and self-interacting dark matter model (Ostriker 2000). But,
little has been elucidated regarding the physics on the angular momentum transfer which is inevitable
for BH formation, since the rotation barrier by the tidal spin up in a growing density fluctuation is given

by
Ruwe _ 1 ( M, —2/3( A )2 .
Rsw =10 (mBM@) o05) (1+3) (2)

in units of the Schwarzshild radius Rgcn, where M, is the baryonic mass, z is the cosmological redshift,
and A is the spin parameter which provides the ratio of circular velocity to velocity dispersion of dark
matter (Sasaki & Umemura 1996). Here, Ry, is estimated by Rparr = j3(2)?/GM,, where jp is the
specific angular momentum given by jp ~ Rmax0A with Ry, being the maximum expansion radius of the
fluctuation. Furthermore, required mechanisms for BH formation must work effectively in a spheroidal
system like a bulge. The a-viscosity or non-axisymmetric gravitational instabilities would effectively
transfer angular momentum once a disk-like system forms, but they are not likely to work in a spheroidal
system.

In this paper, as a potential mechanism in a spheroidal system, the relativistic drag force by the
radiation from bulge stars is considered, and the BH-to-bulge ratio is derived with incorporating radiation
hydrodynamics jointly with simple stellar evolution in a bulge. As a result, the BH-to-bulge ratio is
basically determined by the energy conversion efficiency for nuclear fusion of hydrogen to helium, ¢ =
0.007. Also, in relation to BH growth, a scenario for quasar formation is addressed.

2 Formation of Supermassive Black Holes

2.1 Mass Accretion due to Radiation Drag

A radiation hydrodynamical model which could account for the putative correlations between supermas-
sive BHs and bulges is recently proposed by Umemura (2001), where the relativistic drag force by the
radiation from bulge stars is considered. The radiation drag can extract angular momentum from gas and
allow the gas to accrete onto the center (Umemura, Fukue, & Mineshige 1997, 1998; Fukue, Umemura,
& Mineshige 1997). For the total luminosity L. of a uniform bulge, the radiation energy density is given
by

E=L./cR?, (3)

where c is the light speed and R is the radius of the bulge. Then, the angular momentum loss rate by
the radiation drag is given by
dlnJ/dt ~ —xE/e, (4)

where J is the total angular momentum of gaseous component and x is the mass extinction coefficient
which is given by x = K4/p with dust absorption coefficient x4 and gas density p. Therefore, in an
optically-thin regime, L
Tle
dinJ/dt ~ ——E, (5)
where 7 is the total optical depth of the system and M, is the total mass of gas. In an optically-thick
regime, the radiation drag efficiency is saturated due to the conservation of the photon number (Tsuribe
& Umemura 1997). Thus, an expression of the angular momentum loss rate which includes both regimes
is given by
L‘
M,
In practice, it is likely that optically-thin surface layers are stripped from optically-thick clumpy clouds

by the radiation drag, and the stripped gas losing angular momentum accretes onto the center (Kawakatu
& Umemura 2002). Since the radiative cooling is effective in the surface layers, the accretion is likely

dn J/dt ~ — (1-e7). (6)



to proceed in an isothermal fashion until an optically-thick massive dark object forms. Then, the mass
accretion rate is estimated to be

. dlnJ L, —r
M=-M, X _c3(1 e~ ") Y]
In an optically-thick regime, this gives simply
. L.
M=, (8
which is numerically
. L
= - ==
M =0.1Mgyr ( T Le) : (9)

This rate is comparable to the Eddington mass accretion rate for a black hole with 10°Mp,, that is,
v _ 1,1 { Msr
Masa =02Moy ™™ (1geo8) (10)

where 7 is the energy conversion efficiency. Unless otherwise stated, n = 0.42 for an extreme Kerr black
hole is assumed. The timescale of radiation drag-induced mass accretion is

2R - L. \'(z\!
tdmg >~ E =8.6x10 yrRlpc (m) (Z_@) ’ (11)

where Ry, = R/kpc and Z is the metallicity of gas. It is noted that the gas which is more abundant
in metals accretes in a shorter timescale, because the extinction is predominantly given by the dust
opacity. For the moment, an optically-thick stage is considered. Due to the mass accretion induced by
the radiation drag, a massive dark object (MDO) forms at the center on bulge. Then, the mass of MDO
is estimated by

t ¢
Mwupo = / Mdt ~ / L./cdt. (12)
0 [\]

Next, we employ a simplest analytic model for bulge evolution. The star formation rate is assumed to
be a Schmidt law, S(t) = kf,. If we invoke the instantaneous recycling approximation, the star formation
rate is given by

M. /M, = ke, (13)

where a is the net efficiency of the conversion into stars after subtracting the mass loss. The radiation
energy emitted by a main sequence star is 0.14¢ to the rest mass energy of the star, m.c?, where ¢ is
the energy conversion efficiency of nuclear fusion from hydrogen to helium, which is 0.007. Thus, the
luminosity of the bulge is estimated to be

L, = 0.14cke™ ¥ M, 2. (14)

By substituting this in (12),
Mwupo = 0.14ea'lM5(1 - e"""‘). (15)

The term M(1 — ¢~°**) represents just the stellar mass in the system which is Myuge observationally.
As a consequence, the MDO mass to bulge mass ratio is given by

Mupo
M, bulge

=0.14ea"! = 0.002ag;, (16)

where ags = a/0.5. It should be noted that the final mass is basically determined by ¢. This is just
comparable to the observed ratio.
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Figure 1: A picture for the formation of a supermassive black hole from a galactic scale to a horizon. The
radiation from a starburst in a bulge exerts the radiation drag onto dusty interstellar gas. Resultantly,
the interstellar gas sheds angular momentum and accrete onto the center to form a massive dark object
(MDO). The MDO is equivalent to a massive self-gravitating viscous disk. This disk undergoes the
inside-out viscous collapse to form a rigidly rotating supermassive star with accretion envelope. A rigidly
rotating supermassive star becomes subject to the general relativistic instability. Then, the supermassive
star collapse dynamically and eventually a Kerr black hole is born.



2.2 Towards the Horizon

In the above, the prediction for the MDO-to-bulge mass relation is made in the context of radiation drag-
induced mass accretion. However, the MDO itself is not a supermassive black hole, because the radiation
drag is not likely to remove the angular momentum thoroughly, but some residual angular momentum
will terminate the radial contraction. Hence, we should consider the further collapse of the MDO through
other physical mechanisms.

In the MDO, the viscosity is expected to work effectively because the timescale for viscous accretion
is given by j/ay,c2, where j is the specific angular momentum, a, is the viscous parameter, and ¢,
is the sound velocity. Thus, the MDO is likely to be a massive self-gravitating viscous disk. For a
self-gravitating viscous disk, some self-similar solutions are known to give an inside-out disk collapse
(Mineshige & Umemura 1996; Mineshige & Umemura 1997; Tsuribe 1999). In particular, Tsuribe (1999)
provided a convenient formula for the inside-out mass accretion rate,

3a,c

QG
where Q is the Toomre’s Q which is xc,/rGZ for the epicycle frequency x and the surface density .
Tsuribe (1999) has found a solution of stable accretion with @ = 2. The critical accretion rate is given
by

Ma = (17)

. T \¥?

a ™ g = 0.24M@yr‘1 (].OTK) . (18)
This rate is again comparable to the Eddington mass aceretion rate for a black hole with 103Mg [sce
(20)] if T =~ 10*K. Through this inside-out collapse, a central core grows. The core is expected to be a
rigidly rotating supermassive star because the viscous transfer of angular momentum works to smear out
any differential rotation in a self-gravitating system.

The equilibrium configuration and the stability of a rigidly rotating supermassive star has been scru-
tinized by Baumgarte & Shapiro (1999). They found that a rotating supermassive star becomes unstable
for R < 640/GM/c*. As for the dynamical collapse of a rotating supermassive star, Saijo et al. (2002)
performed post-Newtcnian calculations and found that'if a rotating supermassive star is in rigid rotation,
it can collapse towards the horizon scale without undergoing bar-mode instability. The final stage of the
collapse was investigated by Shibata (2002) with a full general relativistic approach and the emergence
of an apparent horizon of a Kerr black hole was shown. The resultant spin parameter of the black hole
is around 0.75.

Hence, a massive dark object formed by radiation drag-induced mass accretion could evolve into a su-
permassive Kerr black hole through the inside-out viscous collapse and the general relativistic instability.
The present picture for the formation of a supermassive black hole is summarized in Figure 1.

3 QSO Formation

3.1 Warm Regime

In this section, the QSO formation is addressed based on the radiation-hydrodynamical formation of
supermassive BHs. In the present picture, the MDO includes not only a central supermassive BH but
also a massive accreting disk. Since the mass accretion onto a BH is limited by the inside-out viscous
accretion, the BH mass grows according to

Mgy = Ma t. (19)

The viscous accretion rate is sensitively dependent on the disk temperature. Under an intense starburst,
the disk is exposed to strong ultraviolet radiation. Then, the disk could be heated up to 10°K, although
the detail is dependent on the dust extinction and radiative cooling. Here, we call the disk accretion with
10K a warm regime.

Since the MDO mass is given by (15), it exceeds Mpy in an early stage and stays greater than Mpy
until a time £¢rs, when (19) equals (15). After te;qq0, the BH mass must be limited by (15). The timescale
teross i5 estimated to be tcross = 10%yT.
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Figure 2: Schematic sketch of the QSO formation in the warm regime (Tyiok = 104K). The abscissa is
time and the ordinate is arbitrary. Mpyuge is the mass of stellar component in the bulge. Mumpo is the
mass of the massive dark object (MDO). Mgy is the mass of the supermassive BH. L. and Lagn are the
bulge luminosity and the black hole accretion luminosity, respectively.

However, before tcoss the interstellar gas may be brown out by a galactic wind. Kodama & Arimoto
(1997) argued that the color-magnitude relation of bulges can be reproduced if a galactic wind sweeps
away the gas at the epoch of a few 10° yr. After the galactic wind epoch t., the bulge would evolve
passively without the star formation episodes.

With considering tcross and t,, we propose a possible scenario for the QSO formation, which is
schematically shown in Figure 2. Here, the system is assumed to be optically thick before ¢, and become
transparent at t,. Att < t,, the mass of stellar component in the bulge, Myuige, increases with continuous
star formation and the MDO mass (Mupo) grows in proportion to Myuige by radiation drag-induced mass
accretion. The bulge luminosity (L.) gradually decreases with decaying star formation rate according to
the consumption of gaseous materials. This optically-thick bright phase may correspond to a ULIRG.
In this picture, a ULIRG harbors a more or less active nucleus. At t., the radiation drag-induced mass
accretion practically stops owing to the reduced cfficiency of radiation drag due to the small optical depth.
But, Mupo is still greater than Mpy and thus Mgy continues to grow until Zeross.

The AGN activity is regulated by the viscous mass accretion rate. However, if the accretion rate
exceeds the Eddington rate, the emergent luminosity is saturated around the Eddington luminosity due
to the photon trapping effects (e.g. Ohsuga et al. 2002). The Eddington rate is given by

Mgaa = Mg /tEdq, (20)

where tgaq is the Eddington time-scale which is tgqa = 1.9 x 10%yr for the adopted energy conversion
cfficiency. Super-Eddington accretion disk leads to a so-called slim accretion disk (Abramowicz et al.
1988). Recently, a slim disk is considered for the model of narrow line Syfert 1 galaxies (NLSls) (e.g.
sce Mineshige et al. 2000 and references therein). NLSls are thought to be the carly stage of black
hole growth (Mathur 2000). NLS1s have a characteristic property in X-ray spectrum that NLS1s exhibit
strong soft X-ray excess and show large photon indices (Boller, Brandt, & Fink 1996). If (20) is combined
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Figure 3: Schematic sketch of the QSO formation in the cold regime (Tusx & 10?°K). The abscissa is time
and the ordinate is arbitrary. Myuze is the mass of stellar component in the bulge. Mpmpo is the mass of
the massive dark object (MDO). Mpy is the mass of the supermassive BH. L, and Lgn are the bulge
luminosity and the black hole accretion luminosity, respectively.

with (19), then we have )
M, t
_— = 21
Mgdd tedq ( )
Hence, if ¢t < tgqq, then the accretion rate is super-Eddington. This early pahse may correspond to
narrow line type I quasar (NLQSO1). Although the nucleus in this phase is embedded in optically thick
interstellar medium, X-ray observations of ULIRGs might reveal this super-Eddington phase.
After tgg4q, AGN luminosity is just determined by M, which is constant if the disk is isothermal. At
teross, all gas of the MDO falls onto the BH and then
Mg

H -1
— =0.002a 22
Mbulge 0.5 ( )

is achieved. Simultaneously, the AGN luminosity (Lagn) drops abruptly, because the radiation drag-
induced accretion becomes weak in the optically-thin passive evolution phase and also the energy con-
version efficiency of an ADAF (advection-dominated accretion flow) is proportional to M /Mgdd. Such a
nucleus would be a low luminosity AGN (LLAGN) as suggested by Kawaguchi & Aoki (2001).

As a result, there is time delay between L. and Lagn, and the AGN is in high luminosity state
between tgaq and feross- This luminous phase of AGN may correspond to the QSO phenomenun. The
duration of the QSO phase is several times 10%r. Finally, Mpu/Mpuige is predicted to increase with
Lagn or age until £, and with the metallicity of the gas.



ULIRG (QSO 2) LLAGN

<1
.
M, BH
Ly«
tcross t Edd tw t

(=107yr)

Figure 4: Schematic sketch of the QSO formation in the hot regime (Tyisx ~ 10°K). The abscissa is time
and the ordinate is arbitrary. Mpug, is the mass of stellar component in the bulge. Mumpo is the mass of
the massive dark object (MDO). Mpy is the mass of the supermassive BH. L. and Lagn are the bulge
luminosity and the black hole accretion luminosity, respectively.

3.2 Cold and Hot Regimes

So far, the disk temperature is assumed to be around 10*K. But, the disk could be much cooler due to
the dust cooling (cold regime), or could have a large velocity dispersion due to the turbulent motion (hot
regime). Here, we consider the QSO formation in the cold and hot regimes.

In the cold regime (Fig. 3), the growth of BH is quite slow, and teroys becomes longer than 10'yr.
Hence, a luminous phase of AGN does not appear. Also, the the BH-to-bulge mass ratio is expected to
be considerably smaller than fps = 0.001. Thus, this cold regime fails to account for the QSO formation
and the BH-to-bulge mass ratio.

In contrast, the BH grows quickly in ~ 107yr in the hot regime (Fig. 4). A very luminous AGN
appear in optically-thick phase. This may correspond to type II QSOs. However, in optically-thin phase,
the AGN fades out due to the exhaustion of the fuel. Hence, again the hot regime fails to explain the
normal QSOs. But, the BH-to-bulge mass ratio can be realized.

In conclusion, to account for the QSO phenomenun, the warm regime seems most favorable.

4 Discussion

If the BH accretion causes the nuclear activity, one should add the further radiative mass accretion
induced by the nuclear luminosity Lygn. Finally, the BH mass to bulge mass ratio is predicted as

Mgy /Myuge = 0.14ca~ (1 — )~ = 0.003a; .. (23)

If the BH mass is determined by the present mechanism, the BH mass to velocity dispersion relation
is naturally understcod in the context of a cold dark matter (CDM) cosmology. Supposing the bulge is



a virialized system, then GM,oi /R = o® and
R ~ 0.5Rmax & ME3(1 + 2naa) ™Y, (24)
where Rmay is the radius at the maximum expansion epoch zmax. If 8 CDM cosmology is assumed, then
(1 + zmax) Mb'ﬂ, (25)

where § =~ 1/6 around M, = 10'2M, almost regardless of the cosmological parameters (Bunn & White
1997). Combining all these relations, we find Mpy o™ with n = 6/(2 — 38), which is 4 for 8 = 1/6.
This result is just corresponding to the inferred relation between the BH mass and the stellar velocity
dispersion.

The radiation drag cfficiency would be strongly subject to the effect of geometrical dilution (Umemura,
Fukue, & Mineshige 1998). If the system is spherical, the emitted photons are effectively consumed within
the system, whereas a large fraction of photons can escape from a disk-like system and thus the drag
efficiency is considerably reduced. This may be the reason why fpn is observed to be significantly smaller
than 0.01.
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Abstract
Based on the radiation drag model for the BH growth as well as the chemical evolution
of the host galaxy, we have constructed the coevolution model of a QSO BH and the
host galaxy. As a result, it is found that the luminosity in a QSO phase is changed
from the host-dominant phase to the AGN-dominant phase in the timescale of a few
108 years. Also, according to the prediction for the properties in the early phase of
QSO, we discuss a unified scenario for the evolution of an elliptical galaxies.

1 Introduction

Recent X-ray and optical observations indicate that active galactic nuclei (AGN) are divided into two
subclasses by the way of black hole (BH) growth; one is the rapidly growing phase, and the other is
slow growing phase [28, 5, 27). As for the Seyfert 1 galaxies (Syls), it has been known that Syls are
divided into two subclasses according to the broad emission line width, VeLr. Syls with VaLg less than
2000km/s are called narrow line Syls (NLSyls), the others with broader line width are called broad
line Syls(BLSyls). Then, NLSyls correspond to the rapidly growing phase of BH. On the other hand,
BLSy1s correspond to the slow growing phase of BH. Moreover, according to these observations, it has
been suggested that NLSyls may be Syls in the carly stage of their evolution [19). As for QSOs, it seems
to be expected that there exists the rapidly growing phase of QSO BHs by the analogy with NLSyls.
But, QSOs in the early phase have not been observed and all QSOs have been observed on the slow
growing phase of QSO BHs so far.

The recent further high quality observations of galactic center have shown that the estimated mass
of a central “massive dark object” (MDOQ), which is the nomenclature for a supermassive BH candidate,
does correlate with the mass of galactic bulges; the mass ratio of the BH to the bulge is 0.001-0.006 as a
median value [16, 29, 18, 17, 9, 7, 26, 22, 23, 33]. (It is noted that the bulge means a whole galaxy for
an elliptical galaxy.) In addition, a lot of recent efforts have revealed that QSO host galaxies are mostly
luminous and well-evolved early-type galaxies [20, 3, 10, 21, 4, 14, 25, 24]. These findings, combined with
the BH-to-bulge relations, suggest that the formation of a supermassive BH, a host galaxy, and a QSO
is mutually related. But, a physical link between the formation of a supermassive BH and the formation
and evolution of a host galaxy is an open question.

Recently, as a potential mechanism to work in a spheroidal system, Umemura [31)] has considered the
effects of radiation drag, and it has been found that this mechanism really works efficiently in a clumpy
interstellar medium (ISM) [11]. But, in previous our work the effect of the realistic chemical evolution
specified of the host galaxy has not been considered. Thus, the relation between a QSO BH and host
has not been physically up to now . Hence, in order to reveal the formation and evolution of QSOs and
clarify whether QSOs in the early phase correspond to the observed objects or not, it is important to
predict observable features of the rapidly growing phase of QSO BHs. Here, based on the radiation drag
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model with incorporating the effect of the chemical evolution, we construct a model for coevolution of a
QSO BH and the host. The purpose of this paper is to clarify the relationship between a BH growth and
the QSO host evolution and to predict the physical properties of QSOs in the early phase.

2 Coevolution model

First, we build up the BH growth model. Then, we suppose a simple two-component system that consists
of a spheroidal stellar bulge and inhomogeneous optically-thick ISM within it. In the radiation drag
model, it ig likely that optically thin surface layers are stripped from optically thick clumpy clouds by the
radiation drag, and the stripped gas losing angular momentum accretes on to a central massive object.
Then, the mass of an MDO, Mypo, which is the total mass of dusty ISM assembled to the central massive
object, is given by

- L
Mupo = fdrag /0 —:;'ﬁdt =~ 0.3eMyuige, )]

where Lyyjge is the bulge luminosity, 54rag is found to be maximally 0.34 in the optically thick limit, ¢,
is a galactic wind timescale, and ¢ is the energy conversion efficiency of nuclear fusion from hydrogen to
helium, which is 0.007 (31, 11].

In this model, we should distinguish BH mass from the mass of an MDO although the mass of an
MDO is often regarded as BH mass from an observational point of view. Supposing the mass accretion
driven by the viscosity on to the BH horizon is limited by an order of Eddington rate, the BH mass grows
according to

Mgy = Mget/tuaa 2

where v is the ratio of BH accretion rate to the Eddington rate, v = Mgy / Madd, which is about 0.1 for
QSO0s, and tgqq is the Eddington timescale, tgqq = 1.9 x 10%yr. Here My is the mass of a seed BH, which
could be an early formed massive BH with ~ 10°Mg [32, 30].

Next, we construct the model for QSO evolution. To treat the realistic chemical evolution, we use an
evolutionary spectral synthesis code 'PEGASE’ [8]. In this paper, we consider a giant elliptical galaxy as
a host galaxy to study the process of the evolution to QSOs. Then, we employ the galactic wind model
because it can reproduce the color-magnitude relation of a present-day elliptical galaxy [1]. Thereby, we
can estimate the evolution of the physical properties of QSO host, such as mass, luminosity, color and
metallicity.

3 QSO BH - QSO host relation

Based on this coevolution model, the evolution of the mass of stellar component in the bulge (Mpuige),
the mass of MDO (Mwmpo) and the mass of the supermassive BH (Mpy) in Figure 1 are shown, assuming
that the Eddington ratio is constant (v = 1). The BH mass reaches Mypo at a time tcross When
Mypo = Mpu. As seen in Figure 1, during ¢ < feyes, the BH mass fraction fpy increases with time. At
1 > teross, almost all of the MDO matter has fallen onto the central BH, and thercfore the BH fraction is
saturated to fey = Mumpo/Muyuige = 0.001. This is just comparable to the observed ratio.

Recently, it has been argued that color-magnitude relation of bulges can be reproduced if a galactic
wind sweeps away the gas at a wind epoch ., which is a few 10%yr [15). Since the bulge luminosity
decreases as shown in Figure 2, which shows the evolution of luminosity, the phase at ¢ < ¢, is a
bright, optically thick phase, which may correspond to a ultraluminous infrared galaxy (ULIRG) phase.
Even at t > t,, Mpy continues to grow until fc.oss and therefore the AGN brightens with time if the
Eddington ratio is constant (see Figure 1, 2). This optically thin phase may correspond to a QSO phase
(tw <t € icross). After the AGN luminosity (Lagn) exhibits a peak at ¢cross, it fades out abruptly. The
later fading nucleus could be a low luminosity AGN (LLAGN) (2, 13]. As seen from Figure 2, it is found
that QSO phase can be divided into two phases.; one is the host luminosity-dominant phase, and the other
is the AGN luminosity-dominant phase. However, a remarkable point is that all QSOs have been observed
to be on the latter phase so far. Thus, it is important that our model can predict the exsistence of the early
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Figure 1: BH growth, assuming My = 10°Mp and v = 1.0. The abscissa is time in units of yr. The
ordinate is mass in units of Mg. Mpuige is the mass of stellar component in bulge. Mmpo is the mass
of MDO. Mgy is the mass of the supermassive BH. ¢, is the galactic wind timescale. feress is defined so
that MMmpo = Mpu. The optically thin phase (#,, < ¢ < teress), Which is the hatched area, corresponds
to a QSO phase. The optically thick phase (¢ < ty) corresponds to a ULIRG phase. The phase of low
mass accretion rate corresponds to a low luminosity AGN (LLAGN).
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Figure 2: AGN luminosity and bulge one as a function of time. The ordinate is the luminosity in units of
L. teress is the time when Lyyge = Lagn. Here, we assume that Lagn is Eddington luminosity. QSO
phase can be divided into two phases; one is the host luminosity-dominant phase, which is dark hatched
area (ty <t £ teiy) and the other is the AGN luminosity-dominant phase, which is light hatched arca
(terit €t < feross)- The life time of both phases are comparable to each other, which is about 10%yr.



stage of QSO, which is the host-luminosity dominant phase, although the host-dominated QSOs have
not been observed. In Figure 2, it is also shown that the life time of both phases are comparable to each
other, which is about 108yt and the luminosity of hard X-ray is Lx = 10'° —5x 10" Lg if Lx = 0.1LagN
(6] in the early phase. Finally, comparing the properties of both phases, we show the broad emission line
width, the color of the QSO host galaxy. As for the broad emission line width, which coresponds to the
velocity, VaLr, we use the empirical law to estimate the its evolution. As a result, the circular velocity
of broad line clouds (VeLr) is given by VaLa = (GMsn/reLr)'/? = 1700(Mpy/10°Mp)'/*km/s, where
reLR is the size of BLR. Then, it is found that the broad emission line width in the early phase of QSOs
is less than 1500km/s. Next, we show the color at the rest frame in Figure 3. As seen in Figure 3, it is

3.5

108 100 1010
Time [yr)

Figure 3: U-B,B-V and V-K color at the rest frame as a function of time. The ordinate is the U-B,B-V
and V-K color. For B-V, QSO host in the early phase is about 0.5 magnitude bluer than that in the late
phase. This is an important observable feature that can distinguish two phases.

found that U-B color of the early phase QSO hosts can not be distinguished from that of the late phase
because the massive stars in host galaxies have declined at about 10% yr. Also, it is shown that B-V color
of QSO hosts in the early phase can be about 0.5 magnitude bluer than that in the late phase. Then, this
may be an important observable feature that distinguishs the early phase of QSO from the late phase
of one. Moreover, Figure 3 denotes that V-K color of QSO hosts in the early phase can be about 0.2
magnitude bluer than that in the late phase. But, this may not be the observable feature because V-K
regime corresponds to the far infrared at high redshift.

4 Conclusions

Based on the radiation drag model for the BH growth and the realistic chemical evolution model of the
QSO host, we have constructed the coevolution model for a QSO BH and the host galaxy. Then, we
have investigated the relationship between a QSO BH and the host physically, and also predicted the
properties of QSO in the early phase. The followings have been found. i) The luminosity in a QSO phase
is changed from the host-dominant phase to the AGN-dominant phase in the timescale of a few 10° years.
ii) The width of broad emission line of the early phase is narrower, which is less than 1500km/s. jii)
The QSO host in the early phase is about 0.5 magnitude bluer in restB-V color. Hence, this may be
the observable feature that distinguishes the carly phase of QSO from the late phase unlike other color
(U-B,V-K). iv) The X-ray luminosity is Lx = 10'® — 5 x 10" L if Lx = 0.1Lagn.

From these properties, some observed objects (e.g., a radio galaxy, an ULIRG with AGN activity and
a type 11 QSO) may be considered as the candidates of a QSO in the early phase. Then, we propose the
unified scenario for the evolution of elliptical galaxy (ULIRG - QSO(galaxy) - QSO(AGN) - LLAGN)
based on a radiation-hydrodynamical model [12].
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Abstract

We study the gravitational collapse of a rotating supermassive star by means of
a (3+1) hydrodynamical simulation in a post-Newtonian approximation of general
relativity. We evolve a uniformly rotating supermassive star from the onset of radial
instability at R,/M = 411, where R, is the proper polar radius of the star and M
is the total mass-energy, to the point at which the post-Newtonian approximation
breaks down. We introduce a scale factor and a “comoving” coordinate to handle
the large variation in radius during the collapse and focus on the central core of
the supermassive star. We find that the collapse is likely to form a supermassive
black hole coherently, with almost all of the matter falling into the hole, leaving
very little ejected matter to form a disk. In the absence of nonaxisymmetric bar
formation, the collapse of a uniformly rotating supermassive star does not lead to
appreciable quasi-periodic gravitational wave emission by the time our integrations
terminate. However, the coherent nature of the implosion suggests that rotating
supermassive star collapse will be a promising source of gravitational wave bursts.
We also expect that, following black hole formation, long wavelength quasi-periodic
waves will result from quasi-normal ringing. These waves may be detectable by the
Laser Interferometer Space Antenna (LISA).

1 Introduction

There is increasing evidence that supermassive black holes (SMBHs) exist at the center of all galaxies,
and that they are the sources which power active galactic nuclei and quasars. Large numbers of observa-
tions are provided by the Hubble space telescope suggesting that SMBHs exist in galaxies such as M31
(3 x 107Mg), M87 (1 ~ 2 x 10° M) and our own galaxy (2.5 x 10°Mg) (see for example, Ref. [1] for a
brief overview).

Although evidence of the existence of SMBHs is compelling, the actual formation process of these
objects is still uncertain [2]. Several different scenarios have been proposed, some based on stellar dy-
namics, others on gas hydrodynamics, and still others which combine the processes. At present, there is
no definitive observation as yet which confirms or rules out any one of these scenarios.

Here we focus on the collapse of a supermassive star (SMS). Baumgarte and Shapiro [3] investigated
the equilibrium, stability and quasi-static evolution of a SMS with uniform rotation. They showed that
the nondimensional ratios R,/M, T/W and J/M? for all critical configurations at the onset of collapse
are universal numbers, independent of the history or mass of the star. Here R, is the proper polar radius,
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M is the gravitational mass (total mass-energy), T is the rotational kinetic energy, W is the gravitational
binding energy and J is the angular momentum. They also pointed out the possibility of bar formation
during catastrophic collapse prior to black hole (BH) formation, assuming that the collapse is nearly
homologous (T/W o 1/R;). New and Shapiro [4] later investigated the quasi-static evolution of a SMS
with differential rotation, assuming negligible viscosity and magnetic fields. They showed that in this case,
bar formation prior to the onset of relativistic instability is inevitable. The investigation of supermassive
objects is one of the primary observational missions for space-based detection of gravitational waves.
Potential sources of high signal to noise events in the frequency range (10~4 ~ 10~! Hz) include quasi-
periodic waves arising from nonaxisymmetric bars in collapsing SMSs and the inspiral of binary SMBHs.
In addition, the nonspherical collapse of rotating SMSs to SMBHs could be a significant source of burst
and quasi-normal ringing radiation. In this paper we tract the collapse of a SMS by numerical simulation
to investigate some of these possibilities.

We take our initial stellar model to be a marginally unstable SMS star near the critical point, R,/M ~
430. We treat the gas adiabatically, since for sufficiently massive stars neither photon nor neutrino losses
are dynamically significant. We take the adiabatic index to be 4/3, appropriate for a radiation-pressure
dominated SMS, and construct a critical, uniformly rotating polytrope with index n = 3 for our starting
point. Our goal is to determine the final outcome of the collapse. We want to address the following
questions: Does a SMBH definitely form following the catastrophic collapse? Is the collapse coherent
or does the central region collapse first, followed by the gradual accretion of the envelope? Does the
collapsing configuration fragment? Does a disk form? Does a rotating bar form during the collapse?

We use a post-Newtonian (PN) hybrid hydrodynamical code in (3+1) dimensions to tract SMS col-
lapse. Our adopted hybrid scheme is relativistically exact for static spherical spacetimes. The onset of
radial instability occurs when T/W <« 0.1, so our initial equilibrium spacetime is very nearly spherical.
Locating the onset of radial instability in a SMS requires the presence of nonlinear gravitation to at
least 2PN order [3, 5). For these reasons, the nonlinearity captured in our hybrid scheme, which extends
beyond 1PN, is essential to treat this problem. Of course, it is necessary to use a fully general relativistic
code to follow the final implosion of the matter into a black hole (BH) and to reliably determine the
gravitational waveforms. However, a fully relativistic (3+1) code capable of handling the large dynamic
range spanned by SMS collapse is not yet available. Fortunately, since our initial configuration is nearly
Newtonian, we can use our hybrid scheme to track most of the implosion up to the point where the
formation of a BH is likely. Our hybrid scheme is also adequate to address most of the questions raised
above, at least in a preliminary fashion.

This paper is organized as follows. In Sec. 2 we present the basic equations of our PN formulation in
“comoving” coordinates. We discuss our numerical results for rotating SMS collapse in Sec. 3. In Sec. 4
we summarize our findings. Throughout this paper, we use geometrized units (G = ¢ = 1) and adopt
Cartesian coordinates (z,y, z) with the coordinate time ¢. Greek and Latin indices run over (t,z,y, 2)
and (z,y, z), respectively. A more detailed discussion is presented in Ref. (6}.

2 (341) PN Relativistic Hydrodynamics
in “Comoving” Coordinates

In this section, we briefly derive the (3+1) hybrid PN relativistic hydrodynamic equations in “co-
moving” coordinates. We solve the fully relativistic equations for hydrodynamics, but neglect some
higher-order dynamical PN terms in the Einstein field equations. Note that this approximation gives the
exact solution for a static spherical spacetime. To track the collapse over the vast dynamic range from
2 410M down to a few M and to investigate the central core at late times, we require a suitable comoving
coordinate system. Such a coordinate choice is possible because in Newtonian gravity, an n = 3 spheri-
cal polytrope collapses homologously. Therefore, we can construct a “comoving” frame, subtracting the
mean “Hubble” flow from the local velocity, to follow most of the collapse with sufficient grid resolution.

We write the PN line element in “comoving” coordinates as

ds? = (=& + BB¥)dt? + 2Bdi*dt + a24%6;;di di, (1

where a is the lapse function, 8* is the shift vector, v is the conformal factor, respectively. Note that A



will represent the quantity A as measured in “comoving” coordinates. Among the geometric quantities,
we only need to adjust the shift vector [6].

In the “comoving” frame, the continuity equation, energy equation, and Euler equation with [-law
equation of state including artificial viscosity for a perfect fluid are written as

8(a3p. a ,.

(atp)+§asp”)=0, (2)
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where d is the scale factor, p is the rest-mass density, p. is the coordinate rest mass density, v is a 3-
velocity, e, is a coordinate energy density, u’ is a 4-velocity, @' = (14 Te)u’, Py, is the artificial viscosity
pressure, P is a pressure.

Gravitational field equations in the PN approximation are derived from the Hamiltonian constraint,
momentum constraint and the maximal time-slicing condition. The equations in the comoving frame are
written as

Ay = —27a%y°py, (5)
Alay) = 2ma’w"'(ﬁu +29), (6)
J,JABJ + -a 8, = 167al;, )

=p - H#, (8)

where py = n,,n,,f““’, jf = —n,,iz..,ff“‘”, §$= ;l:‘il,'yjm", n, = (-a,0,0,0), fl,,., = Guv + Nun,, and Ais
the flat Laplacian measured in the “comoving” frame, H = &/a. Note that the quantity Wi subtracts
the Hubble fiow from 5' (see Ref. [6] for details).

3 Uniformly Rotating SMS Collapse

Consider an overview of SMS evolution. Cooling and contraction of a rotating SMS will ultimately
spin it up to the mass-shedding limit. After that, the SMS contracts secularly along the mass-shedding
sequence as it cools, slowly losing mass and maintaining uniform rotation via viscosity and/or magnetic
braking [5]. Upon reaching the onset of radial instability, the star will collapse catastrophically and form
a BH, or a flattened rotating disk, or some combination thereof. It is this catastrophic collapse which we
wish to follow with our dynamical code.

We slightly decrease the pressure and initiate the collapse. We install a triaxial density perturbation
to provide the seed for bar formation, should the physical situation lead to unstable growth. We evolve
the rotating SMS up to the point at which the PN approximation breaks down.

We show the density profile in the equatorial plane in Figure 1 and in the meridional plane in Figure
2. The ability of our scale factor implementation to resolve the matter distribution even as it becomes
increasingly compact during the implosion is evident from these snapshots. We find no indication of the
formation of a circumstellar disk with significant mass by the termination of our simulation. In fact,
the fraction of the rest mass outside a sphere of radius /M, = 7.0 is 26% and outside the sphere of
r/M, = 28.0 is 10%. Accordingly, most of the mass is concentrated in the center and is collapsing inward
when we terminate our integration. Note that by employing a density cutoff, we are not reliably resolving
the very outermost region. But we note that even with a cutoff, M, is conserved to 96% accuracy (Fig.
10 of Ref. [6]). We thus conclude that the rotation cannot provide sufficient centrifugal support in the
bulk of the envelope to counter gravity and form a disk with more than 10% of the total mass. Though
our computation is terminated when the lapse drops below a. ~ 0.3, we can still infer the final fate of
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Figure 1: Density contours p. in the equatorial plane at selected times during rotating SMS collapse. Snapshots
are plotted at (t/tp, p:, d) = (a) (5.0628 x 10~ 8.254 x 10~%, 10~7), (b) (2.50259, 1.225 x 10~, 10 %), (c)
(2.05360, 8.328 x 1073, 5.585 x 1077), (d) (2.50405, 3.425 x 1072, 1.357 x 10"?), respectively. The contour lines
denote densities p°* = pf x d'~/1® (i = 1,-..,15).

the collapse from examination of the velocity profile of the star (Fig. 2; see also Fig. 16 of Ref. [6]). The
growth of an appreciable inward radial component of the velocity field strongly suggests that immediately
after the time we terminate the integrations, the bulk of the matter will cross the event horizon of the
nascent BH in a dynamical timescale as measured at the center of the star.

Though the newly formed BH acquires the bulk of the mass in a coherent implosion, it does not
obtain all of the mass and angular momentum. Lingering gaseous fragments in the outermost envelope
containing negligible mass but nonnegligible angular momentum are not followed in our simulation, which
focuses on the imploding massive bulk of the star. These fragments may accrete on a longer timescale
(or even escape), but we cannot track their evolution with our current calculation.

If all of the initial mass-energy and angular momentum are consumed by the final BH, it will be
rapidly rotating with a/M = 1. Although we cannot follow the final formation and growth of the BH,
our PN simulations suggest that the final a/M may be slightly lower, due to the loss of angular momentum
carried by gas orbiting near the equator (see Shibata and Shapiro [7]).

4 Conclusion

We follow rotating SMS collapse from the onset of radial collapse at R,/AMp ~ 411 to the point where
the PN approximation breaks down (Rp/Mq ~ 8). The challenge of covering this large a dynamic range
is met by introducing a scale factor and a “comoving” coordinate system which takes advantage of the
homologous nature of the initial collapse.

Collapse of a uniformly rotating, relativistically unstable SMS is coherent and leads to the formation
of a SMBH containing the bulk of the mass of the progenitor star. We find no evidence of bars prior to
BH formation, so that the collapse is largely axisymmetric. As a result, little angular momentum can
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Figure 2: Density contours p. in the meridional plane at selected times during rotating SMS collapse (left panel).
The times, the central densities and contour levels are the same as in Fig. 1. Velocity field in the equatorial plane
at selected times during rotating SMS collapse (right panel). The times are the same as in Fig. 1.

be radiated away by gravitational waves. From the coherent, axisymmetric nature of the implosion we
conclude that the collapse of a SMS, rotating uniformly at the onset of collapse, is a promising source
of gravitational wave bursts. In the absence of bar formation, SMS collapse will not produce quasi-
periodic waves prior to SMBH formation. However, such waves will be generated by the nascent BH via
quasi-normal mode ringing.

Our (3+1) hybrid PN calculations offer a first glance at SMS collapse. An improved description will
require several refinements to our computational scheme. First, it will be necessary to employ a fully
relativistic treatment of Einstein’s field equations to explore the final dynamical phase of collapse once a
Bl has formed.

Secondly, our computation would benefit significantly from the nested grid method to handle the large
dynamic range characterizing SMS collapse. It is difficult to follow the small amount of matter in the
equatorial plane that is supported by centrifugal forces while the bulk of the matter collapses. The nested
grid method may provide one means of concentrating computational resources on the central region of
the star while simultaneously resolving the low density outermost regions.
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Abstract

Observations of Seyfert galaxies in X-ray region reveal the wide emissive lines in their
spectra, which can arise in inner parts of accretion disks, where the effects of General
Relativity (GR) must be counted. A spectrum of a solitary emission line of a hot
spot in Kerr accretion disk is simulated, depending on the radial coordinate r and
the angular momentum a = J/M of a black hole, under the assumption of equatorial
circular motion of a hot spot. It is shown that the characteristic two-peak line profile
with the sharp edges arises at a large distance, (about r = (3 ~ 10) r,). The inner
regions emit the line, which is observed with one maximum and extremely wide red
wing. High accuracy future spectral obscrvations, being carried out, could detect the
angular momentum a of the black hole.

The general status of black holes described in a number of papers (see, for example [1, 2, 3] and
references therein). As it was emphasized in these reviews the most solid evidence for an existence of
black holes comes from observations of some Seyfert galaxies because we need a strong gravitational field
approximation to interpret these observational data, so probably we observe manifestations radiation
processes from the vicinity of the black hole horizon (these regions are located inside the Schwarzschild
black hole horizon, but outside the Kerr black hole horizon, thus we should conclude that we have
manifestations of rotational black holes).

Recent observations of Seyfert galaxies in X-ray band [4, §, 6, 7, 8, 9] reveal the existence of wide
iron K, line (6.4 keV) in their spectra along with a number of other weaker lines (Ne X, Si XIILXIV,
S XIV-XVI, Ar XVILXVIII, Ca XIX, etc.). The line width corresponds to the velocity of the matter
motion of tens of thousands kilometers per second, reaching the maximum value v &~ 80060 — 100000 km/s
{5 for the galaxy MCG-6-30-15 and v = 48000 km/s [10] for MCG-5-23-16. In some cases the line has
characteristic two-peak profile {3, 11] with a high “blue” maximum and the low “red” one and the long
red wing, which gradually drops to the background level.

For individual objects, where the existence of the black holes is assumed, a strong variability of X-ray
brightness was registered [12], as well as the rapid changes of the line profile (Yagoob et al.[11], NGC 7413)
and the quasiperiodic oscillations ([13], GRC 1915+105).

The large amount of observational data requires its comprehension, theoretical simulation and inter-
pretation. The numerical simulations of the accretion disk spectrum under GR assumptions has been
reported in the paper [14]. In the paper [15] the observational manifestations of GR effects are considered
in X-ray binaries. Different physical models of the origin of a wide emissive iron K, line in the nuclei of
Seyfert galaxies are analyzed in the papers [16, 17].

The numerical approach, applied here based on the method, described earlier in papers (18, 19, 20, 21].

Many astrophysical processes, where the great energy release is observed, are assumed to be connected
with the black holes. Because the main part of the astronomical objects, such as the stars and galaxies,
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possesses the proper rotation, then there are no doubts that the black holes, both stellar and supermassive,
possess the intrinsic proper rotation too.
The stationary black holes are described by the Kerr metric [22]:

. 2 2
ds? = -% (dt - asin®0d0)* + + 75 2 [+ a?) do— adt]? + Hodr? + fRae?, M
where
P2 =r*+a%cos?8, A=1r?-2Mr+a (2)

The equations geodesics however can be simplified if we will use the complete set of the first integrals
which were found by Carter [23]: E = p, is the particle energy at infinity, L, = ps is z-component of its
angular momentum, m = p;p’ is the particle mass and Q is the Carter’s separation constant [23):

Q = p} + cos? 8 [a® (m? — E?) + L2/sin?0). 3)

As shown by Zakharov [24, 18], the equations of photon motion can be reduced to

X o —afasin?0-€)+ L (40— ), 4)
F=n ©)
% = 28+ (@®-E-n)r+(a-€+n, (6)
2= a Y
‘;—’: = coso(sif;o-azsinf)), (8)
% = -(a—si:—,o)+%(r’+a2—ea), (9)

where n = @/M2E? and £ = L./ME are the Chandrasekhar’s constants [25], which should be derived
from the initial conditions in the disk plane; r and a are the appropriate dimensionless variables. The
system (4)-(9) has also two integrals,

€ = rf—r“—(a2—{2—n)r2—2[(a—£)2+n]r+a2n=0, (10)
2
€& = ﬁ—q—mzo(a’—ﬁa)zo, (11)

which can be used for the precision control. This method differs from the approach which was developed
in papers (26, 27, 28, 29].

We assume that the hot spot emits isotropically distributed quanta in the local frame. First, one
should define the Chandrasekhar’s constants for each quantum and then integrate the system (4)-(9) to
either the infinity or the events horizon, depending on the constants values.

The trajectories classification, depending on the Chandrasekhar’s constants can be found in the papers
{30, 31}. The details of simulation and initial conditions can be found in papers |18, 21}.

The simulated spectrum of a hot spot for a = 0.9, # = 60° and different radius values is shown
in Fig. 1. The proper quantum energy (in co-moving frame) is set to unity. The observer at infinity
registers then the characteristic two-peak profile, where the “blue” peak is higher than the “red” one and
the center is shifted to the left. Some spectrum jugging near its minimum is explained by pure statistical
reasons and has no the physical nature.

As far as the radius diminishes the spectrum is enhanced, i.e. increases the residual between the
maximum and minimum quanta energy, registered by far observer. For example, fora =0.9,r =12 r,
and 0 = 60°, where ry has its standard form r, = 2kM /¢, i.e. in the vicinity of the marginally stable
orbit, the quanta, flown out to the distant observer, may differ 5 times in their energy. The red maximum
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Figure 1: Spectrum of a hot spot for a = 0.9, = 60° and different values of the radial coordinate. The
marginally stable orbit lays at r = 1.16 r,.
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Figure 2: Spectrum of a hot spot fora =09,r = 1.5 r, and different # angle values.

decreases its height with diminishing the radius and at r < 2 r, becomes almost undistinguishable. It is
interesting to note that the spectrum has very sharp edges, both red and blue. Thus, fora = 0.9, r = 31y,
6 = 60° the distant observer has registered 1433 quanta of 20417 isotropically emitted; 127 of them (=
9%) drop to the interval 1.184 < E < 1.202 (blue maximum) and 43 quanta drop to 0.525 < E < 0.533
(red maximum), whereas no one quantum has the energy E < 0.518 or E > 1.236.

A spectrum of a hot spot fora = 0.9, r = 1.5 ry and different @ values is shown on Fig. 2. The
spectrum for 6 = 60° and the same a and r values is included in Fig. 1 and should be added to the
current figure too. As it follows from the figure, the spectrum critically depends on the disk inclination
angle. For large @ values, when the line of sight slips almost along the disk plane, the spectrum is strongly
stretched, its red maximum is essentially absent, but the blue one appears narrow and very high. The red
wing is strongly stretched because of the Doppler effect, so that the observer registers the quanta with
5 times energy difference. As far as the @ angle diminishes the spectrum grows narrow and changes the
shape: its red maximum first appears and then gradually increases its height. At @ = 0° both maxima
merge to each other and the spectrum looks like the é-function. It is evident since all the points of the
emitting ring are equal in their conditions with respect to the observer. The frequency of registered
quanta in that case is 2 time lower than the frequency of the emitted ones. A fall in frequency consists
here in two effects, acting in the same direction: the transversal Doppler effect and the gravitational red
shift.

The strong variability of Seyfert galaxies in X-ray does not contradict the assumption, that we observe



1719783 euome 1478043 owena
Ly 96wy
o8 LT I V] 1)
in as iu o8
ga- o gm S
i i
‘u 63 o7 J a2
(Y] T (Y] t1]
oy toogy
19 w e 10
TI0BIM4 auoms 137788 e
.4 e ® =30 oey
os fos o o8
zu o8 :in o8
£n.- 04 SM 04
g f
(1] 63 ox o3
[T] T 65 ¢p o
Urorgy Energy
X woow "w
387449 euents ] 20491 cuaria
4= 15 euy o0 e
o } [T Y ) os
7
s os {u [Y)
iu ae gon (Y]
2z 3
i | i |
8] 07 o2 J 03
£y —J ' 22 a? - 2
1
[ ey

Figure 3: The spectral line shape for different values of 8 angle. The emitting region is the wide ring
and its inner boundary is the last stable orbit (for rotational parameter a = 0.9 this r-value is equal to
r = 1.161y), its outer boundary corresponds to r = 10r,.

the emission of the hot spots from the inner region of accretion disk, which can decay or grow dim, going
towards a horizon as time passes. The spectrum dynamics is understood qualitatively by reference to
Fig. 1, considered sequentially from top to bottom. It was considered the case of a wide accretion disk
[32) and it was shown that the shape of the spectral line retains its type with two peaks [32 (see Fig.3).
It is noted that the inner parts give the essential contribution into red wing of spectrum. and on the
physical nature of a hot spot and are not discussed here.

The assumption can be checked out in long-term systematic X-ray observations with high time reso-
lution of such Seyfert galaxies as NGC 1068, NCG 2110, MCG-6-30-15, NGC 4507, etc., where K, line
is sharply defined. The observations could confirm the existence of multiple spots, which motion and
dynamics lead to X-ray variability in intensity and spectrum.

This work was supported in part by Russian Foundation for Basic Research (project N 00-02-16108).
AFZ would like to thank organizers of the The 11th Workshop on General Relativity and Gravitation for
inviting to this conference and giving him the opportunity to present the results of recent efforts.
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Stability of Self-Similar Solutions with Perfect Fluids

Tomohiro Harada'

Department of Physics, Waseda University,
Shinjuku, Tokyo, 169-8555, Japan

Abstract
Self-similar solutions may play important roles in the future asymptotic behavior of
expanding universe and/or in the final stage of gravitational collapse. We do full-
order stabilily analysis of self-similar solutions with perfect fluids in general relativity
against the so-called kink mode. We find that a wide class of self-similar solutions
are unstable. This instability affects Lthe nature of self-similar solutions as attractors
or critical solutions.

1 Introduction

The most widely researched self-similar system in general relativity is a spherically symmetric self-similar
spacetime with a perfect fluid. The existence of such solutions requires the equation of state to be of the
form P = kp if it is barotropic.

It has been conjectured that self-similar solutions may play important roles in gravitational collapse
and/or in cosmological situations. Indeed, critical phenomena [1, 2. 3] and convergence phenomena [4, 3]
provide good examples for that conjecture. For Newtonian self-similar solutions of isothermal gas, which
is obtained as a limit ¥ — 0, Ori and Piran [6] pointed out the existence of kink instability in a wide
class of self-similar solutions. Here, the analysis is generalized to fully general relativistic case. See [7]
for details. We adopt units such that G=c = 1.

2 Basic Equations

2.1 Einstein’s Equations
The line element in a spherically symmetric spacetime is given by
ds? = —e7 ) dt? 4 e dr? 4 R?(t.r)(d6? + sin? 6d?). (n

We consider a perfect fluid as a matter field

T# = (p + P)u*u” + Pg"”, (2)
with the equation of state
P=kp. (3)
and we assume 0 < k < 1. We adopt the comoving coordinates. We define dimensionless functions such
as
R 2m M
=8nr?p. S==-. M=—. y=—:. 4
n = 8nrlp S M= oy=og (4)

where m(t.r) is called Misner-Sharp mass. It is often more convenient to use the following coordinates:
T
r=-—Injt. :Elul?l. (3)

We also define a velocity function 1", The 17 is the velocity of the » = const curve relative to the fluid

element. which is written as
"? = f2:+\.'—0. (6)
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We impose Einstein’s field equations. Then, o and w are integrated as
e’ = a,(t)(ne—h)"%‘, e = a,(r)q-‘%‘S", (7)

where a,(t) and a,(r) can be made constant using the rescaling freedom of ¢ and r. Using the di-
mensionless variables, Einstein’s equations are reduced to the following partially differential equations
(PDE’s):

M+ M =38*S5+S5"), (8)
M+ M = —knS*S$ + 5, (9)
R
—+=-2 S

S+258+S8 +[1+k n+n +1[(5+5")

k o—w=23 ("l ) ! l a-2xM+an:'

TTRe ~ 2)(S+S") 5¢ T (10)

and M
S =145+ 5) —e (S + 5')2, (11)

S
where three of the above four equations are independent.
2.2 Self-similarity

For self-similar solutions, we assume that all dimensionless quantities depend only on z. Then, from
equations (8)-(11), we obtain the following ordinary differential equations (ODE's):

M %I"Ty (12)
§ = -;o2s. (13)
v o= [2(1 P ‘1}521 i f)zew"] n (14)
and constraint equation
V(1= y)? = (k+ ) + (1 +K)%e“S72(1 - yn$?) =0. (13)
3 Sonic points
The sonic point is defined by
V2=t (16)

that is, V' is equal to the sound speed. At the sonic point. the system of the ODE's (12)-(14) is singular.
The regularity requires

ky - %(1 +kPe“n=0. (17)

From these equations. we can find that sonic points are parametrized by one parameter y,. where y, is
the value of y at the sonic point.
We introduce new independent variable ¢ which is defined as
dz
- =V?_p 1

du (18)
Using u in place of =. a sonic point turns out to be a critical point (or a singular point) of the resultant
system of the ODE's. A critical point is classified by the behavior of solutions around the point. Then. we
can obtain the linearized ODE’s in the matrix form. This matrix has two generically nonzero eigenvalues
Az (A= < A4). These two eigenvalues A4 are associated with the corresponding eigenvectors. respectively.



The sonic points are classified into saddles, nondegenerate nodes, degenerate nodes and foci with these
two eigenvalues. The focal sonic point is unphysical.

The eigenvectors correspond to the two allowed directions along which solutions cross the sonic point.

It can be seen that, along the allowed directions =+,

v vD

1
v=2Fusn’ (19)

where D, which must be nonnegative, is given by some polynomial of ¥ and y, and hereafter the upper
and lower signs denote the +ve and —ve directions, respectively.

4 Kink Instability

4.1 Equations for kink mode

We consider perturbations which satisfy the following conditions: (1) The initial perturbations vanish
inside (outside) the sonic point for ¢ < 0 (t > 0). (2) M, S and 7 are continuous everywhere. (3) n’ is
discontinuous at the sonic point, although it has definite one-sided values.

We denote the full order perturbations as

85(7,2) = S(7r.2) - Sp(2), SM(7.2) = M(7,2) = My(2), &n(r,2) = n(r,2) — p(z), (20)
where Mj, Sp and 1 denote the background self-similar solution. Hereafter we often omit the subscript
‘t’. By conditions (1)-(3), the perturbations satisfy M = 0,45 = 0,6y = 0,6M' = 0,65’ = 0,69 # 0
at the sonic point at initial moment r = 75, where the prime denotes the derivative with respect to 2
on the perturbed side. The evolution of the initially unperturbed region is completely described by the

background self-similar solution.
From equations (8)-(11). after a rather lengthy calculation, we obtain the following equation:

6‘." Vv P % F1%4 2
o)) ()
4.2 Stability analysis

If we linearize equation (21). we can obtain

— = const : ", (22)

asx_g(“_ff)b. (23)

In fact, equation (21) is easily integrated. Putting X = §V'/V. we rewrite equation (21) as

where

X-—aX+X?=0. (24)

There are two stationary solutions X’ = 0 and X = a. General solutions are the following:

[

X = 1 —exp(—art + const)’ for a#0 (25)
X = ; for a=0 (26)
T + const



4.2.1 D >0 case

First, we consider a > 0. It can be seen that, as 7 increases, X blows up to —o0o at some finite moment
T = 74 — 0 > 7 for an initial value Xy < 0, where
1 a
= -hn(l-—], 7
T4 'ro+an( Xo)' » (27)
while X' monotonically approaches a for Xy > 0. Next, we consider a < 0. It can be seen that, as t
increases, X monotonically approaches 0 for Xg > a, while X blows up to —co at some finite moment
T =14—-0> 79 for Xo < a. Actually these two analyses under two different backgrounds are only
apparently different local pictures of nonlinear dynamies. This case corresponds to a nondegenerate node
or saddle. The global dynamical behavior of the perturbation is schematically depicted in figure 1 (a).

42,2 D =0 case

We consider a = 0. It can be seen that, as 7 increases, X' diverges to —oo0 at some finite moment r — 74,
where 1
=1 - 2
Td T0 Xo' ( 8)
for Xo < 0, while X approaches 0 for Xo > 0. This case corresponds to a degenerate node for which
D =0 and (V'/V), = 1/2. The global behavior is depicted in figure 1 (b).
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(a) Nondegencrate case {b) Dcgenerate case

Figure 1: Dynamical behavior of the kink mode (a) for a nondegenerate case and (b) for a degenerate
case.

4.3 Stability criterion

We define instability as the blow up of density gradient in finite time interval, The obtained criterion is
summarized in table 1. The present criterion for stability should be considered as a necessary condition
for stability. while the criterion for instability should be considered as a sufficient condition for instability.



Table 1: Stability for the kink mode and the class of sonic points

t | Primary node Secondary node Degenerate node Saddle: + Saddle: —
>0 Stable Unstable Unstable Stable Unstable
<0 Unstable Stable Unstable Unstable Stable

5 Applications

The class of the sonic point of each known self-similar solution has been researched by several authors.
Here we only present the obtained stability of known solutions with the nature of the sonic points.

The expanding flat Friedmann solution is unstable against the kink mode for 1/3 < k < 1. The
collapsing flat Friedmann solution is also unstable for 0 < k < 1/3 against the kink mode. The expanding
flat Friedmann solution for 0 < k < 1/3 and the collapsing flat Friedmann solution for 1/3 < k < 1 do
not suffer kink instability.

The static self-similar solution is unstable for 0 < k < 1.

Nonanalytic self-similar solutions are all unstable for ¢ < 0. For ¢ > 0, nonanalytic self-similar
solutions do not suffer kink instability.

The Larson-Penston (attractor) solution is stable for the kink mode for 0 < k < 0.036, while it is
unstable for 0.036 < k. It is important that the kink mode does not affect the nature of the Larson-
Penston solution as an attractor for 0 < k& < 0.036, while it does for 0.036 < k.

The kink mode does not affect the critical nature of the Evans-Coleman (critical) solution for 0 <
k £ 0.89, while the Evans-Coleman solution suffers the kink instability for 0.89 < k. Since the critical
solution is assumed to have a single unstable mode, the Evans-Coleman solution for 0.89 < k cannot be
a critical solution.

6 Summary

A wide class of self-similar solutions are unstable against the kink mode. The development of this
instability will result in the formation of a shock wave. The implications are that the Larson-Penston
(attractor) solution loses its attractive nature for 0.036 < k, that the Evans-Coleman (critical) solution
loses its critical nature for 0.89 < k and that the flat Friedmann universe suffers kink instability for
1/3<k<1.
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Abstract
We have investigated spherically symmetric spacetimes which contain a perfect fluid
obeying the polytropic equation of state and admit a kinematic self-similar vector of
the second kind which is neither parallel nor orthogonal to the fluid flow. We have
assumed two kinds of polytropic equation of state in general relativity and shown
that such spacetimes must be vacuum spacetimes.

1 Introduction

In general relativity self-similarity is defined by the existence of a homothetic Killing vector field [1]. In
Newtonian gravity, self-similarity in the polytropic case differs from that in the isothermal case in having
the different form of the dimensionless variable since the sound speed is not constant in the polytropic case.
The dimensionless variable is c,¢/r in the isothermal case (p = c2p), while that is [VVK#2=7]/[GT~1)/2y
in the polytropic case (p = Kp”). In general relativity, there exists a natural generalization of homothety
called kinematic self-similarity which is defined by the existence of a kinematic self-similar vector field [2].
The natural counterpart of the self-similarity in the Newtonian polytropic case is the kinematic self-
similarity of the second kind.

In this paper we study the spacetimes which admit a kinematic self-similar vector field of the second
kind and contain a perfect fluid obeying the polytropic equation of state. We assume two kinds of
polytropic equation of state in general relativity and show that there is no non-trivial kinematic self-
similar solutions of the second kind obeying the polytropic equation of state with positive pressure. In
this paper we adopt the ¢ = 1 unit.

2 Spherically Symmetric Spacetime and Kinematic Self-Similarity

The line element in a spherically symmetric spacetime is given by

ds® = —e2®tnge? 4 2Vt gr? 4 R(¢,r)%d02, (1)

where dQ? = d6? + sin? 0dp®. We consider a perfect fluid as a matter field

Ty p(t, r)gu + (u(t,r) + p(t, r))ULU,, (2)
U, = (-€%,0,0,0). (3)

Here we adopt the comoving coordinates. Then the Einstein equations and the equations of motion for
the perfect fluid are reduced to the following simple form:
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o = P 0

B+p
o e 2R
‘[’t t m +p R ’ (5)
m, = 4nxuR.R?, (6)
my = -—4wpR.R?, (M
0 = —R;r + ‘I)rRt + ‘I"ths (8)
m = %R(l +e"2®R2 - e"?YR.2), (9

where m(t, ) is called the Misner-Sharp mass. In this paper, we assume two kinds of polytropic equation
of state in general relativity. One is

p=Kuy, (10)

where K and 7 are constants and the other [3] is

{ p=Knl, P (11)
p=mpn + -1
where the constant m is the mean baryon mass and n(t,r) is baryon number density. We call the first
one the equation of state (I} and the second the equation of state (II). Here we assume that K # 0 and
7 # 0,1. It is noted that the sound speed of the matter obeying the equation of state (II) does not
become faster than the speed of light since the equation of state (II) is approximated to the equation of
state p = (7 — 1) in the high (low) density region for 4 > 1 (y < 1) although the sound speed of the
matter obeying the equation of state (I) become faster than the speed of light in the high (low) density
region for y > 1 (y < 1).

A kinematic self-similarity vector £ satisfies the conditon

Lehyy = 2hy, LU, = aly, (12)

where hy = g, + UpU, is the projection tensor, C¢ denotes Lie differentiation along £ and a is a
constant (2, 4]. The similarity transformation is characterized by a which is referred to as the similarity
index. Here we treat only the case that a # 0, 1, corresponding to self-similarity of the second kind, and
a kinematic self-similar vector is neither parallel nor orthogonal to the fluid flow (these cases are treated
in [5]). Self-similarity implies that the metric functions can be written as

R=r5§), ®=9(), ¥¢= ¥(€), (13)

where £ = r/(at)!/* is the self-similar variable. The Einstein equations imply that the quantities m, u
and p must be of the form

2Gm = r (Ml(f) + ;;Mz(ﬁ)) ) (14)
8xGu = -;12- (Wl(f) + ng(f)) , (15)
sy = % (R©+5A), (16)



and a set of ordinary differential equations resluts by demanding that the Einstein equations and the
equations of motion of the matter field are satisfied for the different terms separately. The resulting
equations for a perfect fluid (4)-(9) reduce to the following:

M +M] = W,8%S5+8", (17)
M2+ M, = WlS%S+8), (18)
M, = -PS§*S, (19)

2aM;+ M), = -P,S%S, (20)
My = S1-e"?%(S+53, (21)

oM, = 88?7, (22)
(A+W)® = 2P -P, (23)
(R +W2)® = -P, (24)
WiS§ = —(P+W)(¥'S+ 28", (25)

(2aWo + W3)S = —(Py+ Wo)(¥'S +28"), (26)
§"+8 = SV +(S+85W, (27)

where the prime denotes the deviation with respect to In&.

3 No Go Theorem

The following theorem is proved.

Theorem (No Go Theorem for Kinematic Self-Similarity of the Second Kind with Polytropic
Equation of State).
Let the (M*,g) be a spherically symmetric spacetime which

a) admits a kinematic self-similar vector of the second kind £# which is neither parallel nor orthogonal
to the fluid flow; and

b) satisfies the Einstein equations for a perfect fluid with positive pressure obeying the equation of state
(1) for v # 1 or (II).
Then (M?4,g) is the Minkowski spacetime for any positive a or the Schwarzschild spacetime for a = 3/2.

Proof. We assume that the spacetime is not a vacuum spacetime and lead to a contradiction. When a
perfect fluid obeys the equation of state (I), we find from equations (15) and (16) that

K

a=v P=W;=0, P= mf_h“’? (case (A)), (28)

or
L powizo, P= K2 apr (case (B)) (20
a=2, R=Wi=0 A= WE 2 (case . )

When a perfect fluid obeys the equation of state (II), we find from equation (15) and (16) that

K

_ _ - -2
a=7y, PA=0, H—Wﬁ

WY = (y-1)W, (case (C)), (30)
or

2/a
= %__lewg =(y=1)W; (case (D). (31)

-



In case(A), &' = 0 can be obtained from equation (23) and then P, must be constant from equation
(24). On the other hand, ¥'S +2S = 0 can be obtained from equation (26) and then W; must be constant
from equation (25). These contradict to equation (28), and therefore this spacetime must be a vacuum
spacetime.

In case(B), ¢’ = 0 can be obtained from equation (24) and then P,  £2 can be obtained from equation
(23). On the other hand, ¥'S + 25 = 0 can be obtained from equation (25) and then W> o £-22 can be
obtained from equation (26). These contradict to equation (29), and therefore this spacetime must be a
vacuum spacetime.

In case(C), ¢’ = 0 can be obtained from equation (23) and then P, must be constant from equation
(24). Equation (30) gives that W) « £2. On the other hand, M, must be constant since equation (19),
and then M S’ = 0 can be obtained with differentiating equation (21) and using equation (27). When
M, = 0, equation (17) gives that S + S’ = 0, however this contradicts to equation (21). When S’ = 0,
equation (17) results in that W), must be constant, however this is a contradiction. Then it can be
concluded that this spacetime is a vacuum spacetime.

In case(D), ¢’ = 0 can be obtained from equation (24) and then P, « £? can be obtained from
equation (23). Equation (31) gives that P, = (y ~ 1)W; « £2 and W must be constant. On the other
hand, M{S = M,;S’ can be obtained with differentiating equation (21) and using equation (27) which
means that M, = 0 or M{/M, = §'/S. When M, = 0, equation (17) gives that S + §’ = 0, however
this contradicts to equation (21). When M{/M, = S'/S, S'(P, + W1)(S + S’} = 0 can be obtained from
equations (17) and (19) which means that $' = 0 or S + §' = 0 since ¥ # 0 here. When §' = 0 = Mj,
W) must be constant from equation (17), however this is a contradiction. When §’ + S = 0, equation
(21) gives that M; = S, and then P, = —1/52 can be obtained from equation (19) which means negative
pressure. This is a contradiction, and thercfore it can be concluded that this spacetime is a vacuum
spacetime.

From Birkhoff’s theorem, this spacetime is the Minkowski spacetime or the Schwarzschild spacetime.
The Schwarzschild spacetime can be obtained only for @ = 3/2 in which case equations (18) and (20) are
degenerated. The Schwarzschild black hole in Lemaitre’s coordinates is written as

_ i dRr? 3 s
ds? = —di? +rg (m— + [E(R - t)] dﬂz) , (32)

with 3/2(R - t} = r, being the Schwarzschild radius. Changing the radial coordinate as R = r3/2,

9/4dr?

ds® = —di® + rg§ 3
[g(l - t/r%)]

3 3
472 [5(1 - z/ri)] do? |, (33)
can be obtained. g

4 Summary
We have shown that there is no non-trivial spherically symmetric solution that contains a perfect fluid
with positive pressure obeying the polytropic equation of state and admits a kinematic self-similar vector
of the second kind which is neither parallel nor orthogonal to the fluid flow. In order to show the whole
picture of the generic collapse of the polytrope gas, the full numerical simulations of gravitational collapse
will have to be done.
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Abstract
In this talk, we review the present study of the gravitational self-force problem, and

discuss the possible direction of the future investigation.

1 Introduction

A space-based project LISA was proposed, which has an extremely long base line as a perticular feature[1].
Recently, ESA and NASA signed a letter of understanding to construct and fly LISA jointly, and the
development of LISA’s detector technology is now vigorously underway. For the success of this project,
we have to establish the theoretical tools to identify astrophysical parameters of gravitational-waves
sources from the detected gravitational waves. Among possible astrophysical sources, binary systems
of supermassive blackholes (thought to exist at galactic centers) and solar-mass compact objects (like
blackholes, neutron stars, white dwarfs) are indentified to be the most promising targets of LISA as their
event rates are expected to be large enough]l}.

As the supermassive blackhole dominates the gravitational field, we consider to approximate such
binary systems by the linear perturbation to a Kerr blackhole. For the mathematical simplicity, we
use a point particle as a compact object inspiralling to the background blackhole, which induces the
perturbation. Once an orbit of the point particle is given, there is a method to calculate the observable
waveform. Therefore, the remaining problem is to establish a method of calculating the orbital evolution of
the particle, which is efficient enough for the realistic application to the gravitational-wave data analysis.

For this purpose, we consider to calclulate the self-force acting on the particle. Here we encounter
the divergence of the self-field and we need a regularization calculation to extract out the physically
meaningful finite part corresponding to the self-force. The regularization scheme was discussed in Ref.|2)
using the harmonic gauge condition. Schematically the reaction force is given by

Fa(n) = :_{iglm)Fa[th‘](x), Folhi)(@) = Falt)(z) - Falbl)(2), (z#2(r), (1)

where 2 is the orbit of the particle with the proper time 7, and 7 is the time of the orbital point which
we calculate the force. h}jﬁ‘ is the tail part of the metric perturbation induced by the point particle, and
is regular at the coincidence limit  — 2(r). A is the full metric perturbation induced by the point
particle, and AZY s its direct part as defined in Refs.(2], both of which diverge at the coincidence limit
x — 2(7). Fal...] is a tensor operator on the metric pertubation, and is defined as

1
Falhy] = -m (haﬂ;'v - '2‘h67;o) VA, (@)

V@ is a vector defined on the field point z, which coincides the four velocity v®(mq) when we take the
coincidence limit  — z(7y).

Because of the divergence of the full part and the direct part, it is a non-trivial task to perform the
subtraction, which we call the ‘Subtraction Problem’. We shall discuss the present status to this problem
in Sec.2. The self-force in the linear gravitational perturbation is a gauge dependent vector, therefore,
one has to fix the gauge appropriately in evaluating both the full metric perturbation and its direct part
before calculating the force, which we call the ‘Gauge Problem’. We shall discuss the present possible
idea to this problem in Sec.3.

1 E-mail:mino@wugrav.wustl.edu
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consider that we can simply extend the calculation to the case of a Kerr blackground. Meanwhile, the
calculation of the full part has been derived only for the circular orbit in Ref.[4] under a post-Newtonian
expansion approximation. Therefore, we stil have two problems here; the generalization of the orbit and
the fully relativistic calculation Lastly, we comment that the convergence behavior is not good in this
approach.

2.2 Mode decomposition Approach

In this approach, we first evaluate the full part and the direct part at 2@ = {{g,r,0, ¢}.
We decompose the full part by the tensor spherical/spheroidal harmonics Y;f,'")"(O, ¢) as

L ¢
hl(z) = Jim 37 3 3 hiimalt, )V E™A6,9). 8)

=0m=-{ A

Then we have a decoupled equations for the mode coefficients h{j,, 5 (t, ), which we can evaluate numer-
ically.

Contrary to the full part, the direct part is defined only at the neighborhood of the particle’s orbit([2],
which is insufficient for the mode decomposition in the exact sense. In the regularization calculation
(1), we take the coincidence limit  — 2(7y) after the subtraction. thence, only the part non-vanishing
in the coincidence limit makes a contribution to the final result. With the local coordinate expansion
technique in Ref.[3], one evaluate this part of the direct part by the background coordinates, then one
can decompose it by the mode-decomposition formula[3] as

(@) = Jim Z Z D Bty a(n)Y A6, 6). (9)

b momest A
This approach has made a most successful progress when the background is a Schwarzschild blackhole(3].
Ref.[3] has derived a quite general formula to decompose all the typical terms under the local coordinate
expansion. However, the extention to a Kerr case is still a problem.
The convergence problem of this approach is not yet solved, however, the solution seems to be
promising[8]. The direct part in this approach have an ambiguity in adding a vanishing term. Using
this freedom, one can re-define the tail part such that it has a good convergence behavior.

3 Gauge Problem

The regularization scheme (1) is defined in the harmonic gauge condition, and the more important thing is
that we have the analytic description of the direct part only in the harmonic gauge condition. However,
we do not have a systematic method to calculate the metric perturbation in the harmonic gauge like
Regge-Wheeler formalism{11] or Chrzanovsky formalism[12}4.

In the following subsection, we shall describe some possible ideas for a systematic and efficient calcu-
lation of the full part, Starting from a systematic method in calculating the metric perturbation, such
as Regge-Wheeler formalism[11] and Chrzanovsky formalism|12]. We may have two approaches to this
problem; local harmonic gauge approach and gauge invariant approach, which we shall discuss below.

3.1 Local Harmonic Gauge Approach

The strategy here is to calculate the Green function of the metric perturbation which satisfies the harmonic
gauge condition at the neighborhood of the particle. Under the Fourier-Harmonic decomposition, the

4An idea to calculate the metric perturbation in the harmonic gauge is proposed when the background is a Schwarzschild
blackhole[10].



Green function® can be constructed by the sum of homogeneous solutions as

Gf‘u‘il“'u' (z’ zr) = Z g(lrnu)AA' (1', rf)y(lmu)A(0¢)y(lnw)A'.(01¢i)e-iu(!-¢') . (10)
(tmw)AA’

(h?z”mm(f)h‘i?;wm(f')"(f = 1) + Wi AT Ry 4 (F)O( — r)) (1)

Giemuyaar(r,r')

thence, the problem is how to calculate the homogeneous metric perturbation in the harmonic gauge
condition.

By the power expansion technique we can replace the radial homogeneous Regge-Wheeler/Teukolsky
functions with a finite number of power of the radius r under a given order of precision|5]. Then we obtain
the homogeneous metric perturbation in the Regge-Wheeler gauge[11] or in the radiation gauge[12], whose
radial dependence has a fairly simple analytical structure. Because of its simplicity, the calculation of
the gauge transformation is possible at the neighborhood of the particle[13].

We, however, note that there may remain another gauge problem. When integrating the equation of
the gauge transformation, we cannot take into account the boundary condition as we have an approx-
imated source term just around the particle, thence, an unknown homogeneous gauge mode might be
added to the final result.

3.2 Gauge invariant Approach

This approach is established only in a Schwarzschild background for the ‘gauge invariant property’ of the
Regge-Wheeler gauge condition. We, therefore, focus on the case when the background is approximated
by a Schwarzschild blackhole.

The genuity of the Regge-Wheeler gauge condition is its gauge invariant nature under the spherical
harmonic decomposition. Once a metric perturbation of an unknown gauge condition is given as

hu(T) = ) humalt, )Y E™4A(0,0), (12)
tm,A

one can uniquely calculate the gauge transformation vector 5,““” by a linear differential operation of the
mode coefficients of (12) as

W hi(z) = ) i alhemyal(t, )Y ™A, ). (13)
&m,A

We note that this is purely a property of a gauge transformation and it hold even when h,, does not
satisfy the Einstein equation.

Using the gauge invariant property of the Regge-Wheeler gauge, we define a metric perturbation in
the hybrid gauge condition® as

R (2) = R (2) + VBV e (7), (14)
H

where hZ, is the full metric perturbation in the harmonic gauge, and h'a"H s its tail part.
We note that we have a freedom to add a finite gauge transformation to the full part in the regular-
ization scheme (1)[14]. One can prove that £&W [hta!H](z) is finite around the orbit, and we can use the

hybrid gauge condition in (1) as

Fam™(m) = lim FaliZ™W(), (15)
B (@) = B (2) - hiM(a)
h¥ (@) — (B P (@) + Vg b H)(@) , (@ # 2(r), (16)

where ARW is the full metric perturbation in the Regge-Wheeler gauge condition. As the divergent part
is determined only by the direct part derived in Rel.[2], we have a modified regularization scheme which
only used the conventional perturbation calculation.

5The special feature of the (quasi-)harmonic gauge condition is that there is no ‘local term’ in the radial Green function,

i.e. the term proportional to 6(r — r’), which is in contrast to the Regge-Wheeler/radiation gauge condition.
$The name ‘Hybrid gauge’ comes from the talk by L. Barack at Capra 4[14)




4 Conclusion and Future Prospect

In this talk, we review our present understanding of the gravitational self-force problem. We pointed
out some new problems to be solved; the convergence problem in the regularization calculation, and the
problem for an efficient calculation method of the full part.

As for subtraction problem, we discuss two proposed expansion methods; the power expansion method
and the mode decomposition method. The power expansion method is effective for the Green function
regularization under the Fourier-Harmonic decomposition, whereas the mode decomposition method ap-
plies both to the field regularization and to the Green function regularization. We also note that the
mode decomposition method is simpler in calculating the full part (besides tha gauge problem), and has
more prospect in solving the convergence problem. Therefore, we conclude that the mode decomposition
approach seems to be advantageous in the present study of these approaches.

As for the gauge problem, we discuss two possible approaches in adapting the conventional formalism
of the metric perturbation for the regularization calculation; the local-harmonic gauge method and the
gauge invariant method. The advantage of the local harmonic gauge method is that it is applicable to
a Kerr case, however, the calculation is expected to be very complicated. The gauge invariant method
adopt a well-defined gauge condition in whole the background spacetime, however, the calculation method
is established only when the background is a Schwarzschild blackhole. We conclude that we still need
more study in both approaches.
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Abstract
Covariant structure of the self-force of a particle in a general curved background has
been made clear in the cases of scalar, electromagnetic, and gravitational charges.
In this paper, we propose a practical method to calculate the self-force of a particle
orbiting a Schwarzschild black hole.

1 Introduction

For a particle carrying a scalar, electromagnetic or gravitational charge, the field configuration of the
corresponding type varies in time as it moves around a black hole. To the lowest order in the charge, the
particle motion follows a geodesic in the black hole background in the absence of external force fields.
However, a part of the time-varying field becomes radiation near the future null infinity or future horizon
and carries the energy-momentum away from the system, and a part of it is scattered by the background
curvature and comes back to the location of the particle. Hence the motion of the particle is affected
in the next order. The force exerted by the back-scattered self-field is called the local reaction force or
simply the self-force. To establish a calculational strategy of this force is our ultimate goal.

When we attempt to calculate the reaction force on a point charge (particle), we encounter the
divergence of the force. Hence, it is necessary to extract out the physically meaningful finite part of the
force. Since the force is a vector by definition with respect to a background space-time, and any vector
depends on the choice of coordinates in a covariant manner, the finite reaction force should be given
covariantly. The covariant structure of the reaction force was investigated in the scalar case in (1], in the
electromagnetic case in [2], and in the gravitational case in (3, 4]. In these investigations, the divergent
part of the force was found to be described solely with the local geometrical quantities, whereas the finite
part that contributes to the equation of motion was found to be given by the tail part which is due to
the curvature scattering of the self-field.

Since the tail part depends non-locally on the geometry of the background spacetime, it is almost
impossible to calculate it directly. However, for a certain class of spacetimes such as Schwarzschild/Kerr
geometries, there is a way to calculate the full field generated by a point charge. Considering a field
point slightly off the particle trajectory, it is then possible to obtain the tail part by subtracting the
locally given divergent part from the full field. Thus denoting the field by ,¢ for the scalar (s = 0),
clectromagnetic (s = 1) or gravitational (s = 2) case, with its spacetime indices suppressed, the reaction
force is schematically given by

Fa(m)= _lim Fals¢")(z), Fals6)(z) = Falo¢"")(z) - Falud™)(z), (a7 (7)), (1)
! E-mail:denden@vega.ess.sci.osaka-u.ac.jp

? E-mail:misao@vega.ess.sci.osaka-u.ac.jp
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where 2z is the orbit of the particle with the proper time 7, and 7y is the proper time at the orbital point
at which we calculate the force. The symbol ,¢'3! stands for the tail field induced by the particle which
is regular in the coincidence limit z — 2(7), ,¢™! for the full field, and ,¢9 for the direct part as defined
in Refs.[1, 2, 3, 4]. Both ,¢™" and ,¢%" diverge in the coincidence limit z — z(v). Fa[..] is a tensor
operator on the field, and is defined as

anBvli(b (s = 0),
Fa[a¢] = epaa(¢‘r:5 - ¢B;1)V7 . \ (s = 1)’ (2)
—mPof (G5vis — 396105 — 30188 + 19+6¢°s) VIVE (s =2),

where P,? = 8,2 + V,V? is the projection tensor with V® being an appropriate extension of the four
velocity v®(7p) off the orbital point. ,

In practice, it is a non-trivial task to perform the subtraction of the direct part, which we call the
‘Subtraction Problem’. 1t should be noted, however, that solving the subtraction problem is not enough
when one deals with the gravitational case. In the scalar or electromagnetic case, the reaction force is
a gauge-invariant notion. In contrast, the reaction force in the gravitational case depends on the gauge
choice. Therefore, one evaluates the full metric perturbation and its direct part in the same gauge before
calculating the force. We call this the ‘Gauge Problem’, which seems to be a very difficult problem to
solve. We do not discuss the possible solution of the gauge problem in this paper, but leave it for future
work. In this paper, as a first step, we consider the case that the background is approximated by the
Schwarzschild blackhole and use the Boyer-Lindquist coordinates,

2M aM\ 7!
ds? = - (1 - -r—) dt? + (1 - T) dr? + r? (d02 +sin? Gdoz) . 3)
We use the notation that z = {t, r, 8, ¢} stands for a field point, and z(70) = 20 = {to, ro, 0, ¢} for
an orbital point. Here we focus on the scalar case. The mode decomposition regularization of the
clectromagnetic and gravitational cascs are differed in our paper [6].

2 Mode decomposition regularization

We call the regularization calculation using the spherical harmonic expansion by the mode decomposition
regularization. In this section, we briefly describe the regularization procedure in this approach.

The harmonic decomposition is defined by the analytic structure of the field on the two-sphere.
However both the direct field and the full field have a divergence on the sphere including the particle
location, the mode decomposition is ill-defined on that sphere. Therefore, we perform the harmonic
decomposition of the direct and full fields on a sphere which does not include, but sufficiently close to
the orbit. The steps in the mode decomposition regularization are as follows.

1) We evaluate both the full field and the direct field at
z = {t,r0,0¢}, (4)
where we do not take the coincidence limit of either ¢t or r

2) We decompose the full force and direct force into infinite harmonic series as

Falaémul(x) - Z Fém[s¢flxll](z) . Fo [a‘bdhl(-r) — Z F:‘m[sédir](l’) . (5)
m im

where Fa|,6M1/4¥"|(z) are expanded in terms of the spherical harmonics Yym(0, ¢) with the coef-
ficients dependent on ¢t and r. For the direct part, the harmonic expansion is done by extending
the locally defined direct force over to the whole two-sphere in a way that correctly reproduces the
divergent behavior around the orbital point z¢ up to the finite term.



3) We subtract the direct part from the full part in each £, m mode to obtain
Fere®™] = (FMe¢™] - Fam[,6")). (6)

The we take the coincidence limit £ — 29. Here we note that one can exchange the order of the
procedure, i.e., first take the coincidence limit and then subtract, provided the mode coefficients
are finite in the coincidence limit.

4) Finally, by taking the sum over the modes, we obtain the self-force as

Fa(m) = ) Fems6*"(z0). (7
&m

It should be noted that because of the divergence of the full force and direct force along a timelike orbit,
the mode coefficients of the full force and the direct force are not uniquely defined when we take the
coincidence limit in 3). However, the tail force is regular along the orbit(1, 2, 3, 4], and it is uniquely
defined. Therefore we expect the non-uniqueness of the direct force does not cause a problem as long as
the coincidence limit is taken consistentlly for both the full force and the direct force.

3 Decomposition of the direct part

3.1 Local coordinate expansion

Though we have the covariant form of the local bi-tensor expansion of the direct part, it is not useful for
the derivation of the infinite series expansion of it until we evaluate it in a specific coordinate system.
Here we discuss the method to evaluate the bi-tensors in a general regular coordinate system.

We derive the direct part of the force with the local bi-tensor expansion using the equal-time condition,

0 = [d-i‘ra(z, z(‘r))] . (8)

T=Tog(2)

We define the extension of the four-velocity off the orbit by Vo(z) := gaa(z,zw)vg, where §os is
the parallel displacement bi-vector, zeq = 2(Teq(2)), and v§, = d2%/d7|, -, (z). Using the formulas in

Ref. (2, 3], we have

Fal¢"")(z)

i

9da" (z, zeq)# {a;a(x,z.,q) + %e"'R&gﬁs(zm)quﬂﬁ(z,zeq)vil} +0(y), (9)

V2o@z), & = y-oas(z, )il (10)

3.2 Harmonic decomposition of the direct part

~
It

Without loss of generality, we may assume that the particle is located at 8y = 7/2, ¢g = 0 at time ¢o.
Since the Fourier modes are independent of the spherical harmonics, we may take the field point to lie
on the hypersurface t = ty. That is, we consider the local coordinate expansion of the direct force at a
point {to,r,6, ¢} near the particle localtion {to, 7o, 7/2,0}. The local expansion of the direct force on the
Boyer-Lindquist coordinates can be done in such a way that it consists of terms of the form,

R"le"2¢"3
gnetl ! (11)
where n,, n3, n3, ng are non-negative integers, and
- b 1/2 -
E::\/iro(a—cos0+§(¢—¢')2) ’ R:=T—T0, e:=0—§’ (12)
— 1 3 3 2 p2 _L ,._
a'_1+2r(2,r20+£2(r0—2M)2'R , b:= =L ¢ = r§+£2u'R’ (13)



where £ := —gydt/dr, L := geedd/dr, and u, := gprdr/dr, and @ is the relative angle between 6,¢)
and (n/2,¢'). Since the orbit always remains on the equatorial plane, the force is symmetric under the
transformation § — 7 — @, which implies there is no term proportional to odd powers of 8. Hence we
only need to consider the case of nz being an even number in the general form given by Eq. (11). Then
the factor 8" may be eliminated by expressing ©2 in terms of £, R and ¢, and we are left with terms of
the form,

ket ¢'33

Explicitly, we find

i £ __R__ i R_ 9 12i+L71 1 & 1
T T Nre-2M B (ro-2MEE "B T3 13 & 2ro-2ME

LErdracter g 22 ¢ 3(rg+ Lt 3 e ¢‘) (15)

2 S € r-2ME 2 r3 €  2r-2M&

where F3¥f = F,[¢%"]. The other components of the direct force are derived in the same way. After the
decomposition, we can take the radial coincidence limit r — rg.

4 Regularization Counter Terms

In this section, we present the mode decomposition of the direct force, and compare the resulting reg-
ularization counter terms with those obtained by Barack and Ori[l1] in their mode-sum regularization
scheme (MSRS)[7]. Barack and Ori define the regularization counter terms as

oo
Jim Ff = Aol +Bo +Ca/L+O(L™?). Da=)_ Lllrgo Fi* — AqL - B, - Co/L]. (16)
=0

where FJif is the multipole {-mode of F3", L = ¢+ 1/2, and Aa, B, and C, are independent of L. The
A, term is to subract the quadratic divergence, the B, term the linear divergence, and the C, term the
logarithmic divergence. The D, term is the remaining finite contribution of the direct force to By the
detail analysis, we find C, = D, = 0 in agreement with Barack and Ori[7].

4.1 The A-term

The A-term describes the quadratic divergent terms of the direct force. Thus we consider the most
divergent terms of the direct force, R/€® and ¢/€3. The term ¢/£® may be replaced as R/£3. The
essential fact is that this is odd in R. This leads to the harmonic coefficients proportional to sign(R).
We obtain

-2M  u, @ 1 &

ro 1-L2/r3 t2ro—2M 1 - L2]r2’

These A-terms vanish when averaged over both limits R — 0.

2
. T .
A= sngn(R):{—2 9 A, = —sign(R) Ay =0. Q17)

4.2 The B-term

The linearly divergent terms are described by the B-term, which are of the form, ¢2"/£2"+!, We find in
terms of the hypergeometric functions as

(r0—2M)Su,- § § ‘ £_2
2 T\ i) (18)

_ (ro-2M)? (33 (2 1
B = 2r3 Flaghs 2] 2r2 F\z

11
2'2
_ (ro—2M)Ly, 33, 0 33, £\ 92 (55, L
Bs = Tor3 8Flppli—7) ~¥ipzt—g)+FFlagyd-7)) 0

Bg=



The above results for the A and B-terms perfectly agree with the results obtained by Barack and Ori
in a quite different fashion(10, 11].

5 Conclusion and Discussion

In this paper, we have only discussed a possible approach to the subtraction problem. We have intreduced
a regularization method which utilizes the spherical-harmonic decomposition, and have derived the direct
part of the self-force, which turns out to be independent of the spin s of the field under consideration. The
harmonic decomposition of this direct part has been carried out, and the regularization counter terms for
the self-force have been derived for a general geodesic orbit. We have found our result agrees completely
with the result obtained by Barack and Ori{11} in their mode-sum regularization scheme (MSRS) (7].

It is worthwhile to point out that the gauge problem in the gravitational case seems far more serious
than the subtraction problem. What we know at the moment is that the gravitational self-force is
described by the tail part of the metric perturbation induced by a particle[3, 4]. However this is justified
only in the harmonic gauge, while the full metric perturbation can be obtained only in the Regge-
Wheeler gauge or in the radiation gauge where the identification of the tail part is highly non-trivial. A
prescription to identify the tail part of the metric perturbation has been proposed in (8], but it needs
to be verified. The gauge problem for the non-radiative monopole and dipole components of the metric
perturbation which are not obtainable in the Teukolsky formalism seems to stand as additional serious
obstacle. Possible resolutions for the gauge problem are under investigation [13].
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Abstract

To obtain the self-force on a particle moving in the curved spacetime, we consider
the regularization for the metric perturbation induced by the particle. It's known
that, under harmonic gauge conditions, we can divide the metric perturbation into a
regular tail part and the singular direct part. This singular part does not contribute
to the motion of the particle. Thus we can obtain the regularized perturbation by
subtracting the singular part from the full field. The singular part can be given locally
in the harmonic gauge. Here, in order to obtain the full field in the harmonic gauge,
we consider the gauge transformation from the Regge-Wheeler gauge, in which we
already have the solution of the field equation, to the harmonic gauge.

1 Introduction

When we consider a point particle (mass ) moving around a black hole with mass M, its trajectory
deviates from the geodesic of the background metric because of the self-force of the particle. In order to
know the particle’s trajectory precisely, we need to obtain the self-force and solve the equation of motion.
The self-force can be given in terms of the perturbations of the gravitational field, &, where we consider
up to O(u/M). The self-force has a divergence at the location of the particle because the gravitational
field diverges. Therefore we have to introduce an appropriate regularization. Under the harmonic gauge
condition, the full field can be divided into two parts[1]: One is the called the tail part, which has regular
behavior. The other one is called the direct part, which is singular at the location of the particle and has
no effect on the motion. The tail part is obtained by subtracting the direct part from the full field. To
carry out this procedure, we face two problems. One is the ‘Subtraction Problem’, which is discussed in
Ref.[2]. The other one is the ‘Gauge Problem’. We consider the latter here.

In performing the subtraction to obtain the regularized field, the full field and the direct part must be
evaluated in the harmonic gauge because the self-force has the gauge dependence and the concept of the
tail part and direct part is defined only in the harmonic gauge. The direct part can be evaluated locally
in the harmonic gauge. For the full field, however, we can calculate it only in the Regge-Whecler (RW)
gauge or the radiation gauge(3, 4, 5|, not in the harmonic gauge. So we consider the gauge transformation
between the harmonic gauge and RW or radiation gauge.

For an infinitesimal gauge transformation,

TH g = gh g,
the change of the self-force can be given:

SFP = —ul(g"® + uHu®)E + RY, uEru”], 1)
where the overdot denotes the covariant differentiation with respect to the proper time of the particle,
u® is the four-velocity of the particle. If £ has a sufficiently regular behavior, the direct part of the
full force has no change by the transformation and we can regard (1) as the change of the self-force[6].

! E-mail:sago@vega.ess.sci.osaka-u.ac.jp
2 E-mail:denden®vega.ess.sci.osaka-u.ac.jp
3 E-mail:misao@vega.ess.uci.osaka-u.ac.jp



However when we consider the transformation between the harmonic gauge and the RW gauge, £ is
singular around the location of the particle. In this case, we can divide £* into two parts. One part is the
singular part {5, ., which causes the singular change of the bare-force. The other one is the regular part
&reg» Which is the rest of £* and does give only a change to the self-force. As we will see, we find that §aing
consists of the direct part of the metric perturbation. If we can obtain it, we can evaluate gy except
for the degree of freedom of the homogeneous solutions. Here, as a first step, we consider the problem at
the first post Newtonian order and report the resuit.

2 Gauge Transformation from the Regge-Wheeler Gauge to the
Harmonic Gauge

Here, we consider the metric perturbation in the Schwarzschild background:
huu = Quv — ,(‘l:)v (2)

where g,(}:) is the Schwarzschild metric by the Boyer-Lindquist coordinates,

o®dzbda? = —f(r)de? + f(r)~'dr? +12(d6® +5in?0dg?),  f(r) =1 Ef—l @)

Next, we consider the transformation from RW gauge to harmonic gauge:
Thw — Th =Tpw +& @
hf}}av d h;l:{v = hﬁ:v - fuw = &vipy (5)

where £¥ is the infinitesimal displacement vector of the gauge transformation. The indices, H and RW
denote the harmonic and RW gauge respectively. _
By substituting (5) into the harmonic gauge condition h;‘,,"‘ = 0, we obtain the equation for £*:

. = = 1
€™ = Ay by = by — '2'9;(3)"-- (6)
According to the ‘mode decomposition regularization method’[2], we rewrite £#, hy,, in the Fourier-

harmonic expansion form. For simplicity, in the following, we consider only the odd part, which has the
odd parity (—1)¢tL:

& = [ wy g hema(r) (0.0, Z50,Yen(0, ), 550004 Yim 0, #) e (7)
V208+1) _,,
h"y = /d‘t)% fﬂ t

(D] hz,m“,(,)d,,,.w], ®

X [‘hﬂtmw(r)cgom)pu + ihllmw(r)clmuy +

where cﬁ?,),‘w,cm,.,,, demyy are harmonic tensor with odd parity[4]. By substituting Egs. (7), (8) into Eq.
{6), we obtain the equation for Agm,(r) in the following form:

. 3272
Chemalr) = ~4iRenlr) ~ e g e ®

where Ry, (r) is the Regge-Wheeler gauge invariant variable, Dy, (r) is the Fourier-harmonic coefficient
of the stress-energy tensor and

St

& o d
CEf(r)Er—g+.f(f)g+(m- 3



If we can solve this equation, we can perform the gauge transformation from the RW gauge and obtain
the metric perturbation in the harmonic gauge. As we mentioned previously, however, £ has the singular
behavior at the location of the particle. It is difficult to solve Eq.(9) directly because of the singularity
of A¢gmuw(r). To avoid this difficulty, we consider the following procedure:

From (5), we obtain the relation between the harmonic coefficients of the metric perturbation and dis-

placement vector:
hema(r) = hgma(r) = Atmu(r).

Since hZ}y,, = 0 in the RW gauge, we find that Asmu(r) = A, (r). Noting that AY,  can be divided
into the regular part and the singular part, that is, the tail part and the direct part:

Bema(r) = Mg (r) + B (), (10)
then we can regard Ajmné(r) = A9 (r). Thus we can evaluate A58 (r) from the direct part of the
metric perturbation. Furthermore, substituting this into (9), we obtain:

32712 Dy (1) (1)
V2 +1)(e-1D){E+2)

As we will see in the next section, we can evaluate each term on the right hand side of (11). If the right
hand side of (11), regarded as the source term, is finite as a whole, it means ALE (r) is regular, we can
analyze A% (r) by expanding it around the location of the particle in the local coordinates.

mu

LASSB (r) = —Eh;l’dir (1') - 4':lew(r) -

tmw tmw

3 Evaluation of the singular part

Here, we evaluate each term on the right hand side of (11) in the case of the point particle and investigate
their behavior.

® Dyp,(r) term

For a point particle, Dem (2, 1) is given in the following form:

Dy(t,7) = - Ziud(r — ro) [% (9421 ~ sin? 9053) &".—(-03’;%) ~ sinfydobo Wi (00, 60) | ,
foy/38(¢ + 1)(€ - 1)(€ + 2) sin o
(12)
where z(7) = (to(7), ra(7), 80(7), ¢o(7)) represents the orbital point and
a (o
Xin0.6) = 255 (5 - t0) ¥en(0.6), (13)
8? 9 1 &
Wem(6, ¢) (W - cotfop ~ mm) Yem(6, 6)- (14)
Performing the inverse Fourier transformation, we can cbtain D¢, (r):
Dimu(r) = % / dtDm(t, 7). (15)

® Rymu(r) term
We can obtain R¢m.(r) by solving the RW equation:
dq R(m(r)

g V) Reno(r)
_ 8wir f(r) [di (£(r) Demu(7)] = &)-\/(l = 1)(¢ + 2)Qemu(r)| , (16)
Viae+E-1ye+2) Lar "
) = (1 _ 31:_4) (e(e:;l) _ gg) (17)



where dr = f(r)dr. and Qgm,, is one of the harmonic coefficient of the stress-energy tensor. We can
construct the Green function for (16) from the homogeneous solutions, which can be obtained by the
method of Mano et al. [7]). Using this, we obtain Rgp,(r).

° hH,dlr

stme(T) term

From (8), we can obtain h;"'g:;(r) in terms of the direct part of the metric perturbation:

Hdir _ \/51‘2
tmw = JEEF )€ -

sy J (18)

where 7 = diag(-1,1,1/r?,1/r?sin’g). The components of k!, are given locally around the location
of the particle in the following form [1]:

AmGe(u(z, 2)g
Ryt = Mi(z'z )zy)uw(z’ 2 se38 VBT 2)

, (19)

T=Trot

where o(z, z) is the bi-scalar of half the squared gecdesic distance, A(z, z) is the generalized van Vleck-
Morette determinant and §a(2, 2rct) is the parallel displacement bi-vector. To evaluate these, we expand
o(z, 2}, A(z, 2) and gay(Z, 2ret) around the location of the particle in the local coordinates [2}.

For example, we consider the case of a particle moving in a circular orbit (rp = const., 6y = %)
and investigate the behavior of the right hand side of (11). In this case, each term can be given in the

following form:

imed _ IR
Dymu(r) i()\/?f(f R 5 8(r — ro)d(w IM())X["'(G(), o), (20)
321nm¢ﬁX,‘m (0(), ¢0)6(w‘ - ﬂud()) - plil _ _ T(l)'H _
Rema (7) Rie+ (- D+ @) | DT -0 - (AT 0 ) (21)
ir 167 ;2.2 .
L:h?i:w = - Tol(€ 1 1’;;;"_‘3501';2[ 12) 6(r = ro)é(w — mwo) X ¢, (80, 00), (22)

where wy = %—" = const. and we considered up to the first post Newtonian order. Substituting these into
(11), we find that the most singular parts in £LhA29" and Dy offset each other.

2Um

4 Summary

To obtain the full field in the harmonic gauge, we considered the gauge transformation from the Regge-
Wheeler gauge to the harmonic gauge. But the displacement vector £# has singular behavior around the
location of the particle. Then we tried to divide £ into two parts, regular and singular. Noting the
relation between the metric perturbation and the displacement vector, we assumed that the singular part
of £&# consists of the direct part of the metric perturbations. To see the regularity of the rest of £#, 3
we investigate the source term of the equation for it. We find that the most singular part of the source
term vanishes. But this is not sufficient to show that the source term is finite and £rg Is regular. We
need to take into account the higher order terms. Furthermore it is necessary to solve the equation for
the tail part in order that we obtain the metric perturbation in the harmonic gauge, which is our first
aim. This issue is left for future study.
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Abstract
We analysed the data from the TAMA300 detector and the LISM detector taken in
2001. We searched for gravitational waves from inspiraling compact binaries using
matched filtering. The mass range searched is from 1Mg to 2My. The initial results
of the analysis are reported.

1 Introduction

The TAMA300 detector is a laser interferometric gravitational wave detector which is located in the
campus of NAO, Mitaka, Tokyo. It is a Fabry-Perot-Michelson interferometer with arm length of 300m.
The LISM detector is also a Fabry-Perot-Michelson interferometer with arm length of 20m. It is located
in the Kamioka mine, Gifu, and it is operated now as a project of ICRR, Univ. of Tokyo.

The TAMA300 detector became ready to operate in the summer of 1999[1]. Since then, several data
taking has been performed(2]. It performed a long data taking from August 1th to September 20th,
2001, and more than 1100 hours of data were taken. This data taking is called TAMA DT6. The best
sensitivity was about 5 x 10~2!(1/v/Hz] around 800Hz. The LISM detector performed a coincident run
with TAMA300 during Aug. 1 to 23, and Sep. 3 to 17. The total amount of data was about 780 hours.
The best sensitivity was about 6 x 10-2°[1/v/Hz] around 800Hz. Both detector showed a good stability,
and the data can be used for the physical study like gravitational wave event search. Considering the
amount of data, it is a unique chance to experience coincidence analysis using the real interferometer
data, since the coincident run by two or more interferometer detectors was not performed for such long
duration in the past.

In this paper, we report initial results of the inspiraling compact binaries event search. Based on this
work, we also perform a coincident event search, which initial results is reported by H.Takahashi in this
volume [3].

2 Inspiraling binaries

Gravitational waves from inspiraling compact binaries, consisting of neutron stars with mass ~ 1.4Mj
or black holes, have been considered to be the most promising target for laser interferometers. These
compact binaries can be produced as a consequence of normal stellar evolution of binaries. It has been
also suggested that MACHOs in our Galactic halo may be primordial black holes with mass ~ 0.5Mg.
If s0, it is reasonable to expect that some of them are in binaries which coalesce due to the gravitational
radiation reaction[4].

Because the amount of data is very large compared to the data taken by TAMA300 during the last
two years, we decided to search for the mass range between 1Mg and 2M first, by the matched filtering
method with a one step parameter search algorithm. Much wider mass range will be perform separately
by a computationally more efficient matched filtering algorithm called hierarchical search algorithm.



3 Matched filtering

We denote the strain equivalent one-sided power spectrum density of the noise by Sa(f). In order to
calculate the expected wave forms, which are called templates, we used restricted post-Newtonian wave
forms of order 2.5, in which the phase evolution was correctly taken into account up to the 2.5 post-
Newtonian order, but the amplitude was evaluated by using the quadrupole formula. As for the 2.5
post-Newtonian phase evolution, we used formulas derived by Blanchet et al.j6] We did not include the
effect of spin angular momentum of each star.

When the gravitational wave passes through the interferometer, it produces a relative difference AL
between the two arm lengths L. The gravitational wave strain amplitude is defined by AL = Lh(t).
The wave form h(t) is calculated by combining two independent modes of the gravitational wave and the
antenna pattern of the interferometer as

h(t) = Alha(t — t.) cosa + hs(t — tc) sina], 83

where t, is the coalescence time, and h.(t) and h,(t) are the two independent templates with the phase
difference w/2. To construct filters, we need the Fourier transforms of h.(t) and h,(t). They were
computed directly by using the stationary phase approximation. The parameters to distinguish the wave
forms are the amplitude A, the two masses m, m2, the coalescence time ¢, and the phase a.

We denote the data from the detector as s(f). We define a filtered unnormalised signal-to-noise ratio
p after the maximization over a as

P =V (8 he)? + (8, hs)?, (2)

_ &N ()
@d = 2f o dm ®

where a(f) denotes the Fourier transform of a(t) and the asterisk denotes the complex conjugation. This
p has an expectation value v/2 in the presence of only Gaussian noise. Thus, the signal-to-noise ratio,
SNR, is given by SNR= p/v/2.

The real interferometer data contains non-stationary and non-Gaussian noise. In order to remove
the influence of such noise, we introduced a x? test of the time-frequency behaviour of the signal (7).
We divide each template into n mutually independent pieces in the frequency domain, chosen so that
the expected contribution to p from each frequency band is approximately equal. For two template
polarizations h.(t) and h,(t), we calculate x? by summing the square of the deviation of each value of p
from the expected value[8]. This quantity must satisfy the x2-statistics with 2n — 2 degrees of freedom,
as long as the data consists of Gaussian noise plus chirp signals. However, there was a strong tendency
that an event with large x? has a large value of p. Thus, by applying a threshold to the x? value, we
can reduce the number of fake events without significantly losing the detectability of real events. For
convenience, we use a reduced x? which is defined as x2/(2rn — 2). In the current analysis, we chose
n = 16.

In order to search for the mass parameter, we prepare a mesh in the mass parameter space. There is a
novel way to describe The mass parameter space can be described by a geometrical language[9]. Tanaka
and Tagoshi[10] found that the parameter space is described approximately as a flat Euclidian space,
and that we can introduce useful mass parameters which simplifies the algorithm to determine the mesh
points. The spacing of the mesh points was determined so as not to lose more than 3 % of signal-to-noise
due to the mismatch between actual mass parameters and those at mesh points.

The parameter space defined by using our new mass parameters turned out to contain about 200 to
1000 templates for the TAMA300 data, and about 200 to 600 templates for LISM data. Typical number
of template is 700 for TAMA300 and 400 for LISM.

4 Matched filtering algorithm
In this section, we briefly describe the one step matched filtering algorithm which are used for TAMA300

and LISM data analysis. We introduced some techniques which are given by Tanaka and Tagoshi[10] for
a two step matched filtering algorithm. But we do not explain them here.



The time sequential voltage data from the interferometers are divided into small length of data with
length of 52 seconds. Each peace of data have overlap portion with 3.2 seconds. The data are Fourier
transformed, and are applied the transfer function to transform the voltage data into strain equivalent
data. The method to calibrate the data was explained in [5]. We then calculate Eqs. (2) and (3) for
a mass parameter on the mesh point. For each 25 ms of the coalescing time t., we search for ¢, which
realize the maximum value of p. If the value is p > 7, we calculate the value of x? which correspond to
the t.. The same calculation are performed for other mass parameters. All the results are stored so that
we can perform analysis of the event search with criterion to identify the events which may be different
from the one described below.

In this initial analysis, we search for the mass parameter which realize the maximum of p for each 25
ms of ¢t.. All the information of the events are recorded in the event lists.

5 Results and Discussion

Our analysis was done with 9 Compaq Alpha machines, and also with 12 Intel Pentium4 machines in
our laboratory at Osaka University. The matched filtering codes are written in C language, and are MPI
parallelled.

Among the TAMA DT6 data, we analysed 1039 hours of data. Other portion of data are unlocked,
or some adjustment are made. The portion of data which For the LISM data, we have only analysed the
data from the last two weeks. The length analysed is 322 hours.
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In Fig. 1, we show scatter plots of (p, 1/x2) of events for TAMA results. We see a correlation between
p and \/)? In Fig. 2, we plot the histogram of p/ \/)? We can show from simulations, that by setting
a threshold to the value of p/1/X? of the events, and identify events which p/+/XZ exceed the threshold
as the candidate real events, we can obtain reasonable event detection efficiency. Fig. 3 and 4 are results
of the LISM data. Fig. 2 and 4 can be used to set the threshold.

In this analysis, we did not see events which exceed the tail of noise distribution significantly. In
such cases, we estimate the limit to the upper limit to the event rate. Using 1000 hours of data, we will
be able to obtain an upper limit to the event rate about 0.004 events/hours (C.L.=90%). This number
should be compared to the value obtained by previous analysis of laser interferometers data, e.g. Caltech
40m detector’s results[11]: 0.17/hours (1Mg ~ 3M©®), TAMA DT2 results{12]: 0.59/hours (0.3Mg ~
10M©®), TAMA DT4 results[13]: 0.02/hours (0.3Mg ~ 6M®).

We will also perform simulation of Galactic binaries events to set upper limit to the event rate in our
Galaxies.

Note that these value are based on the matched filtering analysis by using only one detector’s data
independently. By performing coincident analysis, it is expected that we will obtain upper limit to the
event rate which has different meaning from the results of one detector case, and would be more stringent.
We will work on these in the near future.
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Abstract
We performed a coincident event search for inspiraling compact binaries using
TAMA300 and LISM data taken in the summer of 2001. We have not observed
significant coincident events.

1 Introduction

Several laser interferometric gravitational wave(GW) detectors are now under the construction. These
include LIGO [1],VIRGO [2), GEO600 [3],and TAMA300 [4].

In Japan,there are two laser interferometric gravitational wave detectors.One is the TAMA300 de-
tector.The TAMA300 is an interferometric GW detector with 300m baseline length located at Mitaka
campus of the National Astronomical Observatory in Tokyo(35.68°N, 139.54°E).The other is the LISM
detector which is operated mainly by people in ICRR (Univ. of Tokyo).It is an interferometric GW
detector with 20m baseline length located at Kamioka mine,Gifu (36.25°N, 137.18°E).

The TAMA300 and LISM observed during August 1st and September 20th,2001(JST). (Data Taking
6) The best sensitivity of the TAMA300 was about 5 x 10~2! /VHz around 900H z. 1038 hours of data
was taken during Data Taking 6. The best sensitivity of the LISM was about 6.5 x 10-2*/\/Hz around
700H 2. 777 hours of data was taken during that period.

In the past,very little work has devoted to develop the coincident analysis using real data of two or
more laser interferometers. A coincident analysis of bursts events in a pair of laser interferometers has
been performed by D. Nicholsen et al. [5]. They do not use the matched filtering techniques. we perform
a coincident analysis based on matched filter using real interferometers(TAMA300 and LISM) data.

2 Inspiral compact binaries

Gravitational waves from inspiral compact binaries,consisting of neutron stars or black hole, have been
considered to be the most promising target for laser interferometers because expected cvent rate of NS-NS
merger is a few within 200M pc/year and their waveforms can be theoretically calculated to a very high
accuracy.

!E-mail:hirotaka@astro.sc.niigata-u.ac.jp
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3 Onestep Search

We assume that the time-sequential data of the detector outputs s(t) consists of a signal plus noise
n(t). We also assume that the waveform of the signal is predicted theoretically with sufficiently good
accuracy.Hence the signal is supposed to be identical to one of the templates except for the normalization
of it’s amplitude.

To characterize the detector noise ,we define one-sided power spectrum density Sn(f) by

Sl =2 [ <nlne+7) > *7ar o

where < > represents the operation of taking the statical average.

We adopt the templates calculated by using the post-Newtonian approximation of of general relativity[6].
We use a simplified version of the post-Newtonian templates in which the phase evolution is calculated
2.5 post-Newtonian order, but the amplitude evolution contains only the lowest Newtonian quadrupole
contribution. We also use the stationary phase approximation.

The parameters consist of the coalescing time i,the total mass M(= m; + mgz),the mass ratio
(= myma/M?),and the spin parameters.(We have neglected the spin effects at 2.5 PN order.) In this
analysis,we did not take account of the effect of spin angular momentum.The templates corresponding
to a given set of the parameters are represented in Fourier space two independent templates h, and 4,(7]
as h(f) = h.(f)cos ¢, + hs(f) sin ¢. where ¢, is the phase of wave.

Here we define outputs of matched filter as

plams,ma te,-- 22 [~ AR g = (o @

where * means the operation of taking the complex conjugate.In equation (2),we can analytically take

the maximization over ¢..

p = v/ (she)? + (s|h,)? (3)
This p has an expectation value v/2 in the presence of Gaussian noise.Thus ,the Signal-to-Noise Ratio
(SNR) is given by SNR = p/v/?2

Analyzing the real data,we found that the noise contained a large amount of non-stationary and non-
Gaussian noise whose statistical properties have not been understood well yet.In order to remove the
influence of such noise,we introduce a x* test [8).In this paper,we do not explain a x? test in detail which
was explained by the Tanaka and Tagoshi [7).

We searched the parameter space of 1.0Mg < my,me < 2.0Mg.In this parameter spaces,we prepared
a mesh.The mesh points define templates used for search.The mesh separation is determined so that
maximum loss of SNR becomes less than 3%.We use the Tanaka-Tagoshi coordinates. Using geometrical
arguments, Tanaka and Tagoshi{7] introduced a new parameterization of masses that simplifies algorithm
to determine the mesh points. The parameter space defined by using the Tanaka-Tagoshi coordinates
turned out to contain 200 ~ 1000 templates with the TAMA300.

We independently performed onestep search using TAMAJ300 and LISM data.As a results of onestep
search,we obtain p and x? as functions of masses and coalescing time ¢..In each small interval of coalescing
time At,,we looked for an event which had the maximum p. In this search,we choose Af, ~ 3.2sec.If the
events which had the maximum p were p > 7,we wrote the events on TAMA(LISM) event lists.

4 Coincident event search

In this search,the parameters on which the waveforms depend are ¢ = (A4, te, dc, M, 1) where A and
M = Mn?/3 are the amplitude of waveform and the chirp mass respectively. If the events are ’true’
gravitational waves,they should have the same intrinsic parameters in the both detectors. However, we
may observe real events with different parameters by the effects of detector noise. Therefore we have
to determine the allowed parameter windows. The parameter windows were determined to satisfy the
following criterion.

Criterion :  If the probability that cvents are the same real cvents is less than 0.1%,we reject it from
coincident event list.
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4.1 ¢, - veto

The distance between the TAMA300 and the LISM is ~ 220km.Therefore,the maximum delay of GW
signal arrival time is Atqg4i,y ~ 0.73msec. Moreover,the parameter-estimation errors of ¢, by the effects
of detector noise Atcpoisewere determined by using Fisher Information Matrix[9].We defined the time
window which satisfy criterion as At¥in4e® = At 4.0 4 Atcpoise. If the parameters ti3meHsm observed
in both detectors satisfy

|tzama - tf:i‘ml < Aticm'ndaw (4)

we write the candidate GW events on coincident event lists.

4.2 mass - veto

The parameter-estimation errors of mass parameters by the effects of detector noiseAM,An were deter-
mined by using Fisher Information Matrix.We defined the time window which satisfy criterion as AM,An.
If the parameters Miama,tism,ftame,tism Observed in both detectors satisfy

IMtama-Mliaml < AM (5)
lﬂtnmn‘ﬂh’sm' < Aﬂ (6)

we write the candidate GW events on coincident event lists.

4.3 p- veto

The parameter-estimation errors of p by the effects of the LISM detector noise Aplis™, were determined
by using Fisher Information Matrix.If p;;,m satisfy

L]
b

Plism )

PramaT — Aplism £ Plism < PtamaT — APrism ( )

Ptama

we write the candidate GW events on coincident event lists.

5 Results

The total length of data used for onestep search was ~ 322hours. As a result of the onestep search,we
obtain the independent TAMA(LISM) events lists.In order to perform the coincident event search,we
extracted the TAMA (LISM)events lists for common lock parts(~ 245hours).As a result,there are the
1580707 (142465) candidate GW events with the TAMA300(LISM) (Table 1). Over these candidate GW
events,we performed the {.-veto.As a results, there are the 124 candidate GW events.Moreover,over the
events that survived #.-veto,we performed the mass-veto.As a results,there are the 17 candidate GW
events.Fig.1 shows the p distribution of coincident events that pass the ¢, and mass-veto. Over the
events that survived the £, and mass-veto,we performed the p-veto.As a result,there are no significant
GW events.

Results of onestep search | after ¢, -veto | after t. and mass -veto | after ¢, ,mass and p-veto

TAMA 1580707 124 17 0
LISM 142465

Table 1: Results of coincident event search.

6 Discussion

We performed a coincident event search for inspiraling compact binaries using TAMA300 and LISM data.
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Figure 1: p scatter plots of coincident events passing the ¢t. and mass-veto.

In the future work,we will evaluate the accidental coincident rate. And even in the case if there are no
significant events,we can obtain upper limit to the event rate in the data using e.g. Poisson statistics. It is
also important that we understand the detection efficiency of this methods using Monte-Carlo simulations.
Morcover,we compare upper limit to the event rate concluded single detector analysis with upper limit
to the event rate concluded coincident analysis.
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Abstract

It may be possible to construct a laser interferometer gravitational wave antenna in
space with Arpm, ~ 10727 at f ~ 0.1Hz in this century. We show possible specification
of this antenna which we call DECIGO. Using this antenna we show that 1) typically
10° (10' ~ 10°) chirp signals of coalescing binary neutron stars per year may be
detected with S/N ~ 10*. 2) We can directly measure the acceleration of the universe
by ten years observation of binary neutron stars. 3) The stochastic gravitational waves
of Qe 2 107%° predicted by the inflation may be detected by correlation analysis for
which effects of the recent cosmic acceleration would become highly important. Our
formula for phase shift due to accelerating motion might be also applied for binary
sources of LISA. This proceeding is based on Ref.[1].

1 Specification of DECIGO

The scnsitivity of a spacc antenna with an arm length of 1/10 of LISA (2] and yet the same assumption
of the technology level, such as a laser power of 1 W, the optics of 30 em, cte. will be 4 x 10-21[1z~1/2
around 0.1 Iz in terms of strain, a factor of 10 better than the planned LISA sensitivity around 0.1
Iz (sce also http://www.physics.montana.cdu/maggic for a project named MAGGIE around this band).
The scnsitivity could be improved by a factor of 1000 for the next gencration of a space antenna with
more sophisticated technologics such as implementation of higher-power lasers and larger optics in order
to increasc the cffective laser power available on the detectors, and thus to reduce the shot noise. The
ultimate scnsitivity of a spacc antenna in the far future could be, however, 3 x 10727 around 0.1 Hz in
terms of strain, assuming the quantum limit scnsitivity for a 100 kg mass and an arm length of 1/10
of LISA. We name this detector DECIGO (DECi hertz Interferometer Gravitational wave Obscrvatory).
This requires an cnormous amount of cffective lascr power, and also requires that the other noisc sources,
such as gravity gradicnt noise, thermal noise, practical noise, etc. should be all suppressed below the
quantum noisc. Here we assume that such an antenna may be available by the end of this century,
although we note that within the next five years or so NASA will begin serious discussions of a follow-
on to the planned NASA/ESA LISA mission, so DECIGO technology may be achicved sooner. Note
here that when the pionecring cfforts to detect the gravitational waves started in the last century using
resonant type detectors as well as lascr interferometers, few people expected the present achievement

} E-mailsetoQvega.ess.sci.osaka-u.ac.jp
? E-mail:sciji.kawamuraGnao.ac.jp
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in rcsonant type detectors. Therefore all the experimentalists and the theorists on gravitational waves
should not be restricted to the present levels of the detectors. Qur point of view in this note is believing
the proverb “ Necessity is the mother of the invention”™ so that we argue why a detector like DECIGO is
necessary to measure some important parameters in cosmology.

The sensitivity of DECIGO, which is optimized at 0.1 Hz, is assumed to be limited only by radiation
pressure noisc below 0.1 Hz and shot noisec above 0.1 Hz. The contributions of the two noise sources
arc cqual to cach other at 0.1Hz, giving the quantum limit sensitivity at this frequency. The radiation
pressure noisc has a frequency dependence of  f~2 (in units of Hz~!/?) because of the inertia of the
mass, while the shot noisc has a dependence of approximately o« f! (in units of Hz~'/?) because of the
signal canccling cffect due to the long arm length. In figurc 1 we show scnsitivity of various detectors
and characteristic amplitude k. for a chirping NS-NS binary at z = 1.

2 Direct Measurement of the Acceleration of the Universe

Recent distance mcasurcments for high-redshift supernovac suggest that the expansion of our universe is
accelerating [3] which mcans that the cquation of the state of the universe is dominated by “dark energy”
with p + 3p < 0. SuperNova / Acccleration Probe (SNAP, http://Ibl.gov) project will observe ~ 2000
Type Ia supernovac per year up to the redshift = ~ 1.7 so that we may get the accurate luminosity
distance dp (=) in ncar futurc. Gravitational wave would be also a powerful tool to determine di (=) [4].

From accurate dp (=) onc may think that it is possible to determine the energy density p(z) and the
pressure p{z) as functions of the redshift. However as shown by Weinberg [5) and Nakamura & Chiba [6],
p(z) and p(z) can not be determined uniquely from dp (=) but they depend on one frec parameter Qo
(the spatial curvature).

Recent mcasurement of the first peak of the anisotropy of CMB is consistent with a flat universe
{Qxo = 0) for primordially scale-invariant spectrum predicted by slow-roll inflation under the assumption
of A cosmology. Ilowever it is important to determinc the curvature of the universe irrcspective of the
theoretical assumption on the cquation of the state and the primordial spectra also. In other words
an independent determination of (¢ is indispensable since Qo is by far the important parameter. As
discussed in [6], the direct measurement of the cosmic acceleration [7] can be used for this purpose. 1lerc
we point out that the gravitational waves from the coalescing binary ncutron stars at z ~ 1 observed by
DECIGO may be used to determine 9. Even in the worst casc the redundancy is important to confirm
such an important finding as the dark cnergy.

Cosmic Acceleration. —

A Cosmic Acccleration.—— We consider the propagation of gravitational wave in our isotropic and homo-
gencous universe. The metric is given by ds? = —df? + a(t)?(dz? + r(z)2(d0? + sin® 0d¢?)), where a(t) is
the scalc factor and a(t)r(z) represents the angular distance. The relation between the observed time of
the gravitational waves ¢, at r = 0 and the emitted time ¢, at the fixed comoving coordinate z is given
by f:: a—‘::—) =z = const. Then we have dt,/dt, = a,/a, = (1 + ) and

dat,
d?

=(1+4 :)0:1(61000) - 61“(‘6” = Geos(=) = (1 + 2)((1 + 2) Ho = 1(z)), (1)

where 11(z) is the Hubble parameter at the redshift = and Hg is the present Iubble parameter. For an
cmitter at the cosmological distance = 2 1 we have geo, (=) ~ O(t5!) where ¢g is the age of universe tg ~

3x 107 scc. From above equations we have At, = At (1 +:)+9-*‘°§ilAtf +- -+, where At, and At, arc the
arrival time at the observer and the time at the emitter, respectively. When we obscrve the gravitational
waves from the cosmological distance, we have At, = AT+ X (2)AT? +- -, with X(2) = geos(2)/2(142)?,
where AT = (1 + z)At, is the arrival time neglecting the cosmic acceleration/deceleration (the second
term). Now for AT ~ 10° scc, the time lag of the arrival time due to the cosmic acceleration/deccleration
amounts to the order of second ~ 10'8/(3 x 10'7) ~ 1 [sec]. From Eq. (1), if X(z) is positive, then
dra(t,) > Bra(te). This clearly means that our universe is accelerating. Thercfore the value of this time
lag is the dircet evidence for the acecleration/deccleration of the universe.

As shown in [6]. if the accurate value of X' (=) at a single point =, is available it is possiblc to determine
Quo as o = {1 = (dr(2,)/d=)*(1 + 2,020 — 2X (2, )} {r(=,)2 113} ", where we have assumed that the
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quantity r(z) = dp(z)/(1 + =) is obtained accurately, c.g., by SNAP. Even if the accurate values of
X(z) are not available for any points, we may apply the maximal likelihood methed to determine Q.
Using the value of o thus determined, we can obtain the cquation of state of our universe without any
thcoretical assumption on its matter content [6].

B Evolution of Phasc of Gravitational Waves from Coalescing Binary at Cosmological Distancc. —

Let us study an inspiraling compact binary system that cvolves sccularly by radiating gravitational
wave [8]. For simplicity we study a circular orbit and evaluate the gravitational wave amplitude and the
cnergy loss rate by Newtonian quadrupole formula. We basically follow analysis of Cutler & Flanagan
[8] but properly take into account of cffects of accelerating motion. The Fourier transform A(f) =
S5 ¥/t h(t)dt for the wave h(t) is evaluated using the stationary phasc approximation as h(f) =

Kdy(z)"* M3/ f=716 exp[i®(f)], where K is determined by the angular position and the orientation of
the binary relative to the detector, and M. is the chitp mass of the system. Keceping the first order term
of the coefficient X(z). the phase ®(f) of the gravitational wave becomes

25
32768

where ¢, and ¢, arc integral constants and M.: = M.(1 + z) is the redshifted chirp mass.
If we include the post-Newtonian (PN) cffects up to P!'®N-order, the term 3/4(87AM..f)~%/3 i

cq.(2) should be modificd as 3(8mMe. /)= 1+ 22 (22 + 1) 2 + (45— 16m)2%/2 -], where z =

(m M, f(1 + 2))*/® = O(v*/c?) is the PN expansion parameter with M, being the total mass of the bina-
rics. The term proportional to @ in P3N order (x £3/?) is caused by the spin cffect [8, 9). In gencral
P¥N contribution depends on the frequency f as O(f(=3%2¥)/3) and is largely different from the depen-
dence f~13/3 caused by the cosmic acceleration. This difference is very preferable for the actual signal
analysis.

&(f) = 27 fle — 9 - (erc_ 7T e X (2) TR ME B 3, (2)

=

C thc cstimation crror. —

For the circular orbit of the binary ncutron stars (NSs) of mass M; and Af> with the scparation a at
the redshift z, the frequency of the gravitational waves f is given by f = 0.11Iz(1 + =)~ (M, /2.8 M;)*/?
x(a/15500km)'3/2. The coalescing time t., the number of cycles Neyere and the characteristic amplitude
of the waves h. arc given by

te = T+ ) (M /1.AMz) " (Ma/1.4M: )~ (M, /2.8M )" (a/15500km) yr (3)
Neyete = 1.66 x 107(My/1.4Mz) " (Ma/1.AM: )" x (M, /2.8Mg)~/*(a/15500km)*/?  (4)
he = 1.45x 10°23(1 + £)¥/S(M./1.2M:)%/6(£/0.1112) " V/5(dL, /10Gpc) ™! (5)

Let us evaluate how accurately we can fit the parameter X(z). We take six paramcters A, =
{A. M. pt..te, 00, 1\!"0/3\( z)} in the matched filtering analysis up to 1PN-order for the phase ®(f)

and Newtonian order for the amplitude [8]. Illere A is the amplitude of signal Kdy(z)~'AM: 12/ in the
previous subsection and 1, is the redshifted reduced mass p; = (14 )My M2/M;. As the chirp mass M.
can be determined quite accurately, we simply put AX{:) = A {M';w’s,\'(:)} /Mc—:m/:). For simplicity
we fix the redshift of sources at = = 1 and calculate S$/N and the error AX for cqual mass binarics with
various integration time At before coalescence. We use the cffective factor 1/4/5 for reduction of antenna
sensitivity due to its rotation [2]. For the present analysis we neglect the binary confusion noisc since
double White Dwarf binarics do not exist at frequency f 2 0.111z [2].

We found that we can detect NS-NS binarics at z = 1 with $/N =~ 20000 and AX/t5' ~ 7.0 x 10~3
for integration time At = 16yr (Neyete ~ 107 orbital cycles), and S/N =~ 10000 and AX/t; 1~ 1.96
for At = lyr (sce Fig.2]). With this detector it would be possible to determine X () and obtain the
information of the cosmic accelcration quite accurately. With AT = 16yr we have the cstimation crror
for the redshifted masscs as AM.. /M.. = 1.5 x 10~ Ap./pu. = 4.2 x 1078 and for the wave amplitude
AAJA ~ (S/N)~! =5 x 10~%. Although the more detailed study is nceded to estimate the error of
the binary inclination angle, it is cxpected that the luminosity distance d. can be determined accurately
so that the redshift = can be determined using the inverse function = = d *(distance) of the accurate
luminosity distance from c.g. SNAP. As a result we can know two (not redshifted) masses My and Mo
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for ~ 10° binarics per year up to = = 1 [10]. This will be large cnough to establish the mass function of
NS which would bring us important implications for the equation of the state of the high density matter
and the explosion mechanisms of Typell supernovac.

As the S/N and the cstimation error scale as S/N « h;), and AX o hrm,, we can attain AX/ty) =
7.0 for the integration time 7' = 16yr using a less sensitive detector with Apm, ~ 10~2% (1000 times worsc).
Even though the error bar AX is fairly large for this detector, the likelihood analysis would be an cfficicnt
approach to study the cosmic acceleration. Considering the estimated cosmological coalescence rate of
NS-NS binaries (2 2 x (10Gpc/350Mpc)? ~ 10%yr=1) [10), we may expect the decrease of the estimation
error AX roughly by a factor of ~ 1/300 = 1/v/105,

D Acccleration in the Very Larly Universe. —

In the inflationary phasc there was an extremely rapid acceleration of the universe. In this phase
the gravitational waves were generated by quantum fluctuation (11}, With CMB quadrupole anisotropies
mecasured by COBE, the slow-roll inflation modecl predicts a constraint on the stochastic background
Quw S 1071310718 at f ~ 0.111z [12). Ungarclli and Vecchio [13] discussed that the strain sensitivity
hrms ~ 10~2% is the required level at f ~ 0.111z for detecting Qgw ~ 1071€ by corrclating two detectors
for decades. It is important to notc that the band f > 0.1 Hz is free from stochastic backgrounds
gencrated by White Dwarf binaries. The radiation from ncutron stars binarics is present in this band
and it is indispensable to rcmove their contributions accurately from data stream, where effects of the
cosmic acceleration would be highly important. Thus mcasurement of the present-day cosmic acceleration
is closcly rclated to detection of the primordial gravitational wave background that is one of the most
intcresting targets in cosmology. If DECIGO with fepm, ~ 2 x 10727 at f ~ 0.111z is available we
can detect the primordial gravitational waves background cven if the encrgy density is cxtremely low
Qaw ~ 10~2° by correlating two detectors for a decade.

Confusion noise duc to NS-NS (or NS-BII, BH-BII) binarics might be important in the band f ~
0.1Hz. Ungarclli and Vecchio [13] investigated the critical frequency f, where we can. in principle,
remove signal from individual NS-NS binarics by matched filtering analysis and the obscrved window
becomes transparcnt to the primordial stochastic background. They roughly cstimated f; ~ 0.1Hz
where the number of binarics per frequency bin (~ 10-811z) is less than one. But binaries around
J ~ fg ~ 0.1 chirp significantly within obscrving time scalc and the situation would be more complicated
than monochromatic sources [2). Although morc detailed analysis is needed, a much smaller NS-N§
coalescence rate than ~ 10%yr=! might be required for our analysis to be valid.

3 Discussions

The determination of the angular position of the source is crucial for matching the phase [2]. The phase
modulation at the orbital radius 1AU corresponds to 2AU/c ~ 1000[scc). Thus, in order to match
the phase within the accuracy of 0.1[sec] we need to determine the angular position with precision ~
0.1/1000 [rad] ~ 20”. In the matched filtering analysis we can simultancously fit parameters of the angular
position as well as the relative acceleration between the source and the barycenter of the solar system.
Duce to their corrclation in the Fishcr matrix, the mecasured acceleration would be somewhat degraded if
we cannot determine the angular position by other obscrvational methods. Using the gravitational wave
alone, we can, in advance, specify the coalescence time and the angular position of the source within some
error box. If coalescence of NS-NS binaries would relcase the optical signal (c.g. Gamma Ray Bursts
as proposed by [14]) we may mcasure the angular position accurately by pointing tclescopes toward the
error box at the cxpected coalescence time from the chirp signal. Therefore we have not tried to fit the
angular position of the source in the matcehed filtering method {2]. We might also determine the redshift
of the source by using optical information of host galaxics.

Let us discuss the cffects of the local motion groear of the emitter on the second derivative d*t,/dt?.
As the effect of bulk motion of galaxy is much smaller than cosmological cffect. we cstimate the internal
acceleration within the galaxy based on the obscrvational result of NS-NS binary PSR 1913+16. As
shown in Table 1 of [15], the dominant contribution of its acccleration # comes from the global Galactic
potential ficld and has time scale ¢/F ~ 10to( R./10kpc)(17or /200kms™!) that can be comparable to
the cosmic signal g.,, where R, is the cffective radius of the acceleration and V%, is galactic rotation

—109-—



velocity. Iowever the contamination of local cffect giocq can be reduced by taking the statistical average
of many binarics as (gcos + Grocat) = (9eos). We also note that the cosmological change in phasc of a
coalescing binary [given by the last term in Eq. (3)) may have other applications, and may under certain
circumstances be obscrvable by the planned LISA mission.
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Figure 1: Scnsitivity (effectively S/N=1) for various dctectors (LISA, DECIGO, LIGOII and a detector
10% times less sensitive than DECIGO) in the form of hym, (solid lincs). The dashed line represents
cvolution of the characteristic amplitude 4, for NS-NS binary at = = 1 {filled triangles; wave frequencices
at lyr and 10 yr before coalescence). The dotted lines represent the required sensitivity for detecting
stochastic background with Q¢ = 106 and Qg = 10=%° by ten years corrclation analysis (S/N=1).
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Abstract

We calculate how accurately the positions of the short-period binaries
(107 Hz £ f < 1072 Hz) will be determined from the gravitational wave sig-
nals by LISA. We analyze LISA's measurement accuracy for all source parameters,
including effects of the chirp signal f and the long time observation Tyss. It turns out
that the chirp signal should be included in the matured filtering at higher frequencies
f 2 107 Hz for solar mass binaries. We find that the distance to the chirping
binary is determined within ~ 20% (normalized by signal-to-noise ratio equals 10) at
best. The fitting formulae of the estimation errors as a function of f and Tos, are
also obtained.

1 Introduction

The Laser Interferometer space Antenna (LISA) would establish gravitational wave astronomy at low
frequency band (107 Hz < f < 107! Hz). It would bring us essentially new information of the
Universe [1]. For example gravitational waves from merging super massive black holes (SMBHs) would
be detected with significant signal-to-noise ratio (SNR)} > 10%, though event rate of such merging is
highly unknown (e.g. [2]). Galactic binaries are promising sources of LISA (3, 4, 5]. Gravitational waves
from some existing binaries (e.g. X-ray binary 4U1820-30) would be detected with SN R > 3 by one year
integration (1]. In addition more than thousands of close white dwarf binaries (CWDBs) are expected
to exist in LISA band. Our target in this article is these Galactic binaries. We examine how accurately
information of binaries can be extracted from gravitational waves observed by LISA.

Cutler (1998) studied the estimation errors for binary parameters with special attention to the angular
variables such as direction and orientation of binaries (see also |7, 8, 9]). He used approximation that
emitted gravitational waves would be moncchromatic, namely neglected the effects of the chirp signal f.
But wave frequency or the chirp signal are fundamental quantities for gravitational wave astronomy. From
the measured chirp signal f we can estimate the so called chirp mass M, = M;’/ ‘r'Mg/ r'(M; + Mp)~V/o
(M, My: masses of two stars) for a binary whose orbital evolution is determined by gravitational radiation
reaction. Furthermore the distance to the binary could be obtained from the chirp signal f and the
amplitude of the wave signal [10]. The frequency [ also contains important information. One of the
authors (Seto 2001) pointed out that signature of the periastron advance could be detected in gravitational
waves from an eccentric binary by measuring its wave frequencies preciously. If this method works well,
we can estimate the total mass My = My + Mo of the binary beside the chirp mass, and consequently
each mass of the binary is obtained separately.

Estimation errors for fitting parameters complicatedly correlate to each other and depend largely on
observational situations. For example longer observation period would improve not only signal to noise
ratio but also resolution of the frequency space. Note that the latter is crucial for reducing Galactic binary

! E-mail:takahasi@tap.scphys.kyoto-u.ac.jp
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confusion noise at ~ 10-3Hz, as the number of resolved binaries increases [12]. At LISA age it would
become an interesting challenge to optically identify the binaries whose gravitational waves are detected
by LISA. We also discuss impacts of these observational efforts for estimation of binary parameters.

This article is organized as follows. In §2 we briefly discuss the gravitational waveforms of chirping
binaries and parameter extraction. In §3 we numerically evaluate the parameter estimation errors. §4 is
devoted to summary.

2 Gravitational Waveforms and Parameter Extraction

2.1 Gravitational Waveforms

We study the short-period (1074 Hz < f < 1072 Hz) binaries such as the close white dwarf binaries
(CWDBs) or the neutron star binaries (NBs) in the Galaxy [5]. We only discuss binarics with circular
orbits. This is an excellent approximation for CWDBs, as their orbits are circularized by strong tidal
interaction.

The chirping gravitational waveform is given with the use of quadrupole approximation [13] as

Acos [271' (f+ %f’t)u» ¢p(t) + ¢0] x [1 + (L-ﬁ)2 ,
—2A4sin [21( (f + %ft) t+ép(t)+ ¢u] x (l: . 7'1) , (1)

bl
—_
=

]

ad
x
—
—~
<

I

where L {given by 01, éL) is the unit vector in the direction of the binary’s orbital angular momentum, #
(given by 0s, @s) is the unit vector toward the binary and ¢y is an integral constant. These angular vari-
ables with bars are defined in a fixed barycenter frame of the solar system. The frequency f and the time
variation of the frequency f in Eq.(1) are assumed to be constant. We set f = 0 for the monochromatic
waveform which is studied in Cutler(1998). When gravitational radiation reaction dominates evolution
of the binary as in the case of CWDBs or NBs, the chirp signal f is given as f = (96%/3/5) f1V/3 1, o3,
The amplitude A in Eq.(1) is given in terms of the wave frequency f, chirp signal f and the distance D
5 _f

9672 fAD° )

Thus we could determine the distance D, if we could measure three observables f, f and A [10]. The

term ¢p(t) in Eq.(1) is caused by annual revolution of LISA around the Sun and called the Doppler
phase. Its explicit form is given by

¢p(t) = 27 f Rsin s cos [o(t) - J)s] s (3)

where R = 1 AU and (t) = 2xt/T (T = lyr) is the direction of LISA in the fixed barycenter frame.
The signals h;,;;(t) from a binary are written as hy ;;(t) = (v3/2)( (F i (Ohy(t) + Fi i (Ohx(t)),
where F;: 111 7(t) are the pattern functions which depend on the source’s angular parameters (L and 1) and

detector’s configuration. Further discussion and details about the pattern functions are seen in Cutler
(1998).

2.2 Parameter Extraction

We assume that the signal h,(t) is characterized by some unknown parameters ¥ (eight parameters in the
present case: (A, f, f, éo,0s, és, 0L, #L)). In the matched filtering analysis [14] the variance-covariance
matrix of the parameter estimation error A+; is given by inverse of the Fisher information matrix I';; as
(Avily;) = (P l)u

For a quasi-monochromatic binary (f7,5, < f) the noise spectrum Sn(f) is necarly constant in the
frequency region swept by the binary and the Fisher matrix simply becomes (6]

ah,.(z ) Bha (1)
Z/ &y )

a=1.11

Ty = sn(f)
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Figure 1: LISA’s measurement accuracy for the binaries as a function of the frequency f (left) and
observational period Tos, (right), under a typical case (cosfs = 0.3, ¢s = 5.0,cos8;, = —0.2,6; = 4.0).
These lines correspond to Af,Af, AA, AQ, Afds from top to bottom. The accuracies are normalized to
SNR =10 at 1 (10)yr observation for the right (left) figure. The dotted lines represent the case source
positions are known in advance.

The error boxes for the angular parameters L and 7 become cllipse in the celestial sphere due to the
correlation of two parameters € and ¢. In this article we represent the estimation errors for direction and
orientation of binaries in the form defined in Cutler (1998) as follows

AQ = 2m/(Ap2){A?) - (Apde)?, (5)

where we have defined g = cos §. In the same manner the signal to noise ratio (SN R) is given by

q...e.
(SNR)? = mmﬁ 5 \.. dt ha(t)hal(t). (6)
=ou~.:

From equations (4) and (6) it is apparent that the expressions for the estimation errors (A4 A«;) do
not depend on the noise spectrum S,(f) when they are normalized by the signal-to-noise ratio [6]. In
this article we extensively use this normalization method.

3 Results
3.1 General Behavior

We have numerically evaluate parameter estimation errors for various quasi-monochromatic binaries. In
this subsection we show results for a typical example with a fixed set of angular paramecters at cosfs =
03,065 = 5.0,cos8;, = ~0.2 and ¢, = 4.0. We made figure 1 to clearly demonstrate dependence on
wave frequency f (left figurc) and observation period Tos, (right figure). All results are normalized by
SN R = 10 after integration period T, = 1(10) yr for the right(left) figure. The solid lines are results for
fitting all the eight parameters. The dotted lines represent the case when the angular position (s, os) are
removed from the fitting parameters. For observation Tos, 2> 2 yr the difference between the solid and

the dotted lines is very small especially for AA, Af and A \ . Their asymptotic time dependence are given

—-113-



1000 — y——rrr
100 p

10k

M, (Mg)

Af/f=1
0.1 3

0.01 - Tona=10 yr

L " PR | N TS
0.0001 0.001 0.01

f (Hz)

Figure 2: Contours of Af/f in the parameter space f and m.. In the region of Af /f < 1, effects of
the chirp signal should not be ignored. In the region of A f /f < 0.1, the LISA’s distance determination
accuracy is AD/D ~ 0.2 (SNR/10)™".

as AA x To;:/z, Af x To-b:/z, Af x To;flz, and AQg x SNR™! To;: This fact means that the cross
correlation between the source’s angular position (fs,$s) and the other parameters (A, f, f, ¢, Oz, ¢ L)

becomes very small for s, 2> 2 yr. In other words, Fisher information matrix ';; becomes diagonalized
to the two parts which are the source angular position (fs, ¢s) components and the other. We also find
that the accuracy of the estimation does not strongly depend on the frequency except for the angular
resolution AQs. The angular position of the higher-frequency sources is determined from the periodic
Doppler phase which is proportional to the frequency f (see Eq.(3)). Thus Fisher matrix is i, o f2 for
the (fs, ¢s) components (see Eq.4) and AQg o f~2.

In Fig.2 we plot the contours of A f/f in the parameter space f and M, for Top, = 10 yr. In the region
of Af/f < 1, the parameter f should be included in the matured filtering, but the simple prescription
f = 0 would be better at A f1f 2 1 since the expected signal would be completely buried in error.

The chirp signal f is essential to determine the distance D. From the simple relation A = 5f/96m2 3D,
the estimation error for distance D is roughly evaluated as AD/D ~ AA/A + Af /f. So in the region of
Af{f < 0.1 the distance determination accuracy is AD/D ~ 0.2(SN R/10)~?! (see Fig.1).

3.2 Statistical Analysis

In this subsection we present statistical results for their various combinations at the asymptotic region
Tops 2 2yr. We have made 100 realizations of # and L that are distributed randomly on celestial
spheres. Then we calculate the estimation errors Af and Af for each binaries normalized by SNR=10
with Top, = 10yr. We find that theses errors depend very weakly (less than 10% scatter) on the directions
f and L. We calculate their mean values and obtain results given in the following forms

SNR\™'__
Af = 0'22(T) T )
. SNR\™!
Af = 0'43(T) To2. (8)

Note that these results do not depend on the frequency f and would be useful for quantitative analysis
of quasi-monochromatic binaries with 74, 2 2y
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We have also studied the estimation errors AQg, Ay and AA /A. The distributions for the latter
two have very large scatters. This is because the Fisher matrix elements relating to the orbital direction
L become singular at the highly symmetric configuration fi = +I and the estimation of the amplitude
A is closely related to the inclination. For majority of realizations with | - L| £ 0.8 we have typically
AA/A >~ 02(SNR/10)~!. To determine the source direction # we can use the information of the Doppler
phase in addition to the annual amplitude modulation caused by LISA’s rotation. Thus the error AQg
does not show such a bad behavior. For the above 100 realization at f = 0.01Hz with SNR = 10 and
Tobs = 10yr we have 1.3x 10™%r < AQg < 3.7x 10~ %r and the mean value Adg = 7.1 x 10~4. Therefore
the following relation roughly gives the estimation error for the source direction with T, > 2yr

_sSNR\? -2
Ag~T.1x10 “( 10 ) (lO'j;Hz) sT, (9)

at f 2 2x 107%Hz where the Doppler phase becomes more important than the annual amplitude due
to the rotation of LISA.

4 Summary

We calculate LISA’s measurement accuracy for the short-period binaries (10~4 Hz < f £ 1072 Hg),

including the effects of chirp signal f and the duration of observation Toss- It turns out that the chirp
signal should be included in the matured filtering at f 2 2 x 10~3(M./1Mg)~5/11(Typ, /10yr) ~8/M Ho.
The distance to the chirping binary is determined within ~ 20% (SN R/10)~! at best. We obtain the
fitting formulae of the estimation errors for the source parameters (such as frequency S, chirp signal
f. amplitude A, angular position Qs and distance D) as a function of f and Toss( 2> 2 yr). We find

that for Tops 2 2 yr the cross correlation between the angular position (@s,ds) and the others become

negligible. The estimation errors Af and A f are independent of the frequency f and do not strongly
depend on the source’s position and orientation.
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Abstract

We investigate the possibility of reconstructing the initial spectrum of density fuc-
tuations from the cosmic microwave background (CMB) anisotropy. As a first step
toward this program, we consider a spatially fiat, CDM dominated universe. In this
case, it is shown that, with a good accuracy, the initial spectrum satisfies a first
order differential equation with the source determined by the CMB angular correla-
tion function. The equation is found to contain singularities arising from zeros of the
acoustic oscillations in the transfer functions. Nevertheless, we find these singularities
are not fatal, and the equation can be solved nicely. We test our method by consid-
ering simple analytic forms for the transfer functions. We find the initial spectrum is
reproduced within 5% accuracy even for a spectrum, that has a sharp spike.

1 Introduction

The cosmic microwave background (CMB) anisotropy provides us with a great deal of information of the
primordial fluctuations, and it is considered to be a powerful tool for studying the early universe [1].

In most of previous investigations, when cosmological model parameters are estimated from the ob-
servational data by likelihood analysis, the initial spectrum is assumed to have a power-law shape [2].
It is true that a conventional slow-roll inflation model, that has now become a ‘standard model’, gives
a power-law spectrum which is almost scale-invariant(3]. However, when analyzing the observed CMB
anisotropy, it is much more desirable, and probably much healthier, to constrain the initial spectrum
solely by observed data without any theoretical prejudices. For example, even within the context of
inflationary cosmology, a variety of generation mechanisms for non-scale-invariant perturbations have
been proposed [4]. In this connection, recently several authors have discussed extraction of non-power
law features from the CMB observations [5], where the initial spectrum is allowed to have a piece-wise
power-law shape.

We approach this issue in an entirely different way, namely, by formulating an inverse problem as
faithful as possible. Such an approach will be eventually needed if we seriously want to constrain the
initial power spectrum solely from observations of the CMB anisotropy. An approach to this inversion
problem has been discussed recently [6].

As a first step, we consider a simple situation in which the transfer functions that relate the input
power spectrum P(k) of the gravitational potential to the output CMB angular correlation function C(0)
are given analytically. This is certainly a toy model. However, it has almost all the essential features
a realistic model would have. In particular, unlike [6], our model takes account of not only the Sachs-
Wolfe (SW) effect but also the Doppler effect . The latter, which gives rise to zero points in the transfer
functions, is the main cause of the difficulty in this inversion problem.

The advantage of adopting this simple situation is that our method of inversion, which we shall
develop below may be easily tested at various stages of calculations. Since our primary concern here is
to formulate the inversion problem, we fix the cosmological parameters and do not study the dependence
of P(k} upon them.
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2 Basic Equations

Each Fourier mode of temperature perturbations, ©(x, k), obeys the Boltzmann equation [7],

JGO2P2(w) — iuVi], (1

where the dot denotes a derivative with respect to the conformal time 7, & is the comoving wave number,

p = k~lk -+, 7 is the differential Thomson optical depth and V} is the bulk velocity of baryons. ¥ and

® are the gauge-invariant Newtonian potential and spatial curvature perturbation, respectively(7].
Integrating Eq. (1), we obtain

O +iku(@+ V)= -d+ 70 -6 -

(© + ¥)(no, ky 1) = /Om {[Go + ¥ — inV)V(n) + (¥ - d))e—r(n)} gikmin-m) g (2)

where g is the conformal time today and V(5) is the visibility function given by
o
Vi) = Hn)e ;7= [+’ Q
E]

We have neglected the quadrupole term on the right hand side of Eq. (1) since its contribution is negligible
in the tight coupling approximation. The visibility function has a sharp peak around the last scattering
time 7. so that we assume that recombination occurs instantaneously at # = n.. Then, the multipole
moments of each & mode is approximately given by

Oulmo,K) = (G0 + W)me, )2 + 1)i(kd) + B1(re, )2 + ) (k0
o
w4 1) [ dnf (W) - O, Rl — ), @
N

where d = 19 — 7. is a conformal distance from the present epoch to the last scattering surface (LSS).
Conventionally, C; is expressed as

2 + L 218:(m, k)
f dk k2= (5)
From Eqs. (4) and (5), we find
2 [* . 2 . v 2
Gi=7 | dkk*[(@0 + W)(n.)it(kd) + Ou(r)si(ha)] (6)
The angular correlation function is calculated from Eq. (6). Here, we define r by
r = 2dsin g . (7

This is the spatial distance between two points on the last scattering surface which are observed with
the angular separation . Since the thickness of the LSS is neglected in Eq. (4}, there is a one-to-one
correspondence between the observed temperature anisotropy and the perturbation variables on the LSS.
Using the relation,

o0 ’
>+ DR(eos )3 (k) = 22 ®)
1=0
the angular correlation function C(r) is given by
R T osinkr  |6;)? [sinkr
(S :;‘)e] (_sxzfr + cos kr)
2 .
% (% — coskr — krsin kr)] . (9)
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We can generally express the relation between C(r) and the initial spectrum as
o -
C(r) = / K (K, rYP(k)dk, (10)
0

where we normalize the initial condition in terms of the curvature perturbation ®(n = 0, k) and define
P(k) = (|2(0, k)%).

3 Inversion Method

In the above discussion, we have tacitly assumed that r runs from zero to infinity. In reality, however,
r is bounded in the finite range 0 < r < 2d. Furthermore, it is observationally impossible to determine
C(r) on large scales due to the statistical ambiguity, i.e., the cosmic variance. However, the scales which
we are interested in are r < d and it is expected that modes with k£ > 1/d have little effect on these
scales. We therefore neglect the terms proportional to 1/d and 1 /d% in Eq. (9). In this limit, after a little
calculation, we have

B(r) = 3rC(r) +13C'(r) = # /; ” dk P(K) {F(E)Pr coskr + (2P(K) + G(k))k sin k). ()

where we have defined

F(k)P(k)
G(k)P(k)

(S0 + ¥)()P,
[©1(k)P, (12)

for notational simplicity. Integrating by parts and employing the Fourier sine formula, we obtain
o0
—FK?P' 4 (-F'k + G)kP = 4n / Ci(r) sin krdr . (13)
0

This is a first order differential equation. We discuss a method for solving this equation in the rest of
this section.

We now give the expressions for F(k) and G(k) explicitly in order to examine the properties of Eq.
(13), and to verify if thus obtained solution correctly reproduces the original spectrum. For a given
model, F(k) and G(k) are determined by the coupled Einstein-fAuid equations which are to be solved
numerically. However, in order to understand the property of Eq. (13) and to establish a method which
we can apply to general cases, we analyse a toy model in which F(k) and G(k) are given analytically.

The solutions are given by

%@(0) cos(ke,n),
¢s®(0) sin{kc,n), (14)

(60 + T](n)
O1(n)

where ¢, = 1/v/3 and we take the adiabatic initial condition as Bo(0) = ¥(0)/3 = —®(0)/3 and ©,(0) = 0.
From Eq. (13), we obtain

—% cos® kr.k*P' + (gkr. cos kr, sin kr, + % sin? kr.) kP = S(k), (15)
where r, = ¢,7, and
b -~
S(k) = 47.'/ C(r)sin kr dr. (16)
0

Now let us describe our method. Eq. (15) has singularities at kr, = {n+1/2)7 which cause difficulties
when we solve it numerically. We can, however, determine the values of P(k) at these singularities if we
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Figure 1: The original spectra (the solid curves) and the reconstructed spectra (the boxes and triangles).
The left panel shows the case of the double power-law spectrum given by Eq. (18) and the middle and
the right panels show the single power-law spectra with a sharp peak (s = +1) and a dip (s = —1),
respectively, given by Eq. (19). The triangles show the locations of the singular points. We stopped the
numerical integrations in the vicinity of the singularities when the relative error exceeded 10%.

assume that the derivative of P(k) is finite. Then the first term on the left-hand side of Eq. (15) vanishes
at kr. =(n+ %)ﬂ', and the values of P(k) at these singularities are given by

P[k:(n+1)1]=3—’;s[k=(n+l)1]. ar)
2/ 7. (n+3)n 2/ r,
Once these values are given, we can solve Eq. (15) by expanding it around the singularities. We search the

true solution which connect the adjacent singularities using the shooting method. We solve the equation
until the 5th singularity, kd = 450, for the following two cases of the original spectra:

-3
PU) = s Pk k), 18)
P(k) = (kd)= [1 + Acxp {-(ﬂ’—"a’“"—d)z}] exp(—k/ko); 5= 1. (19)

The first one is a double power-law spectrum and the second is a single power-law spectrum with a spiky
structure, either with a peak (s = +1) or a dip (s = —1). The results for the choice of the parameters as
p=2, A=10, kpd = 600, o = 10 and kod = 1000 are shown in Fig. 1. We find our method reproduces
the original spectra with a good accuracy. In particular, even if the spectrum has a sharp peak or a dip,
we can resolve such a local structure using this method. The numerical solution diverges as it approaches
the singularities (indicated by the triangles), but the relative error except for the regions close to the
singularities is below 5 %.

Finally, it is worthwhile to comment that the presence of the singularities in the differential equation
(13) may be regarded as an advantage, since the values of P(k) at the singularities can be estimated
without solving the differential equation. In particular, if there is a good reason to believe that the
spectrum should be a smoothly varying function, a qualitative feature of the spectrum can be obtained
at once. For example, in the case of the double power-law spectrum (18), one can see that the original
spectrum can be approximately recovered by simply interpolating between the adjacent triangles shown
in Fig. 1.
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4 Conclusion

We have considered the problem of reconstructing the initial power spectrum of metric perturbation P(k)
from C; data. As a first step, we have investigated a simple case, namely, the Einstein-de Sitter universe
with negligible baryons and negligible thickness of the LSS. In this toy model, the relation between the
initial spectrum and the angular correlation function is expressed in terms of an integral equation. We
have shown that this equation can be transformed to a first order differential equation for P(k). The
resulting equation is found to have singularities that comé from the acoustic oscillations of photons, hence
their presence is inevitable in any cosmological models not restricted to our simple model. Fortunately,
however, the presence of these singularities turns out to be not only harmless but rather advantageous.
We have found our method can reproduce the original spectrum with a good accuracy even for a spectrum
with a sharp, spiky structure.

The method presented here is applicable only to the Einstein-de Sitter universe in which the [SW
effect is negligible. The ISW effect gives an important contribution even in a flat universe model if
the cosmological constant is present. Such a model, called the ACDM model is preferred by recent
observations(8]. Our next step is to include the ISW effect in our method which is currently under study.
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Abstract

Disk galaxies are highly complex systems where gas, stars and dark matter interact
through many processes: star formation, stellar wind, supernovae explosions, and
more. We present a numerical model in which the warm and cold gas components
follow different dynamics. The diffuse warm (T > 10* K) gas is treated as a fluid
through a SPH code, while the cold fragmented gas (i.e. the molecular clouds),
is treated with a sticky particle scheme. The following processes are included: heat-
ing/cocling of the gas, star formation, supernovae feedback, stellar massloss and metal
enrichment. We compute the formation and evolution of Milky Way type galaxies
over 2 Gyr. We obtain exponential density profiles for the baryonic components, and
study the sensitivity of the baryonic matter composition to variations of the main
physical parameters.

1 Introduction

The dynamics of galactic disks is the sum of many contributions. Understanding and accounting for the
most important of these contributions is a necessary step toward building consistent numerical models,
able to follow the formation and evolution of galaxies.

The main ingredient is gravity, which drives the dynamics both at large scale (global rotation equilib-
rium) and at smaller scales (spiral arms, formation of cold gas clumps, etc...). This part of the dynamics
is well handled in grid simulations by FFT method, and in N-body simulations by the treecode method
(1. Both methods compute gravity at a cost growing as ~ N In(N) where N is the number of dynamic
degrees of liberty. However, gravity alone is not sufficient to model the evolution of the interstellar
medium (ISM}, which is essential to the dynamics of spiral galaxies. The ISM is a dissipative system
which behaves as a fluid to some extend. Consequently, it is usual to introduce it in simulations as a
continuous fluid in Eulerian grid codes or through the SPH algorithm in N-body codes [2].

There has also been a steady effort Lo include the most relevant physical processes linking the different
matter components: dark matter, stars and gas. First, and foremost for the gas dynamics, are the heating
and cooling processes. Heating comes in from UV radiations emitted by galactic and extragalactic sources
[3]. Radiative cooling of the gas arises from many microscopic phenomena, and is usually quantified using
values from interpolation tables (e.g. [4]). Star formation comes next when the gas has cooled down into
molecular clouds. It is usually treated using local physical criteria such as Jeans instability (e.g. [3}),
or/and a local Schmidt law [6]. The effect of supernovae thermal and kinetic energy input in the gas
has also been studied ([7], [8]). The stellar reinjection of gas in the ISM through winds or supernovae
explosions has been included too ([9], [10]), showing that the instantaneous recycling approximation used
to compute the evolution of the metallicity can be improved on.

! E-mail:semelin@gravity.phys.waseda.ac.jp
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To model the gas has a continuous fluid, is not an obvious choice. Although it appears reasonable in

the case of the diffuse warm gas (T > 10°K), it is not so for the cold fragmented state found in molecular
clouds. Indeed simulations of galactic disks usually have a mass resolution of 10% — 108Mg, and the
cold gas particles represent large portions of giant molecular clouds, which are actually fragmented and
self-gravitating. This is far from the ideal gas description of SPH codes. Moreover these particle-clouds
behave as ballistic particies encountering inelastic collisions with other clouds, rather than as a continuous
fluid. For these reasons, it appears important implement different dynamics for the warm diffuse gas and
the cold fragmented gas. Some work in this direction has been done by Noguchi {11], using a sticky
particle scheme, or by Andersen & Burkert [12], who have developed a collisional fluid model for the cold
gas.
In this work, we present a N-body numerical model for galaxy formation and evolution which takes
into account dark matter, stars, and two gas components with different dynamics, the warm and the cold
gas. We implement all the physical processes mentioned above, including a realistic massloss scheme.
The model is applied to the formation of a Milky Way type galaxy from a pure gas disk.

2 Some details on the implementation

Four types of particles are included in the simulation: dark matter, star, warm gas (SPH particles) and
cold gas (sticky particles). The gravity contribution is computed in a tree algorithm with a § = 0.8
opening criterion. The SPH hydrodynamics is computed for the ideal gas equation of state:

P=(y-1)pu (7=§)

We use a spline function for the kernel (13] and make an arithmetic average of the adaptative smoothing
lengths to compute the SPH quantities. We follow the time update scheme of smeothing lengths proposed
by Hernquist & Katz (2] and we use the viscosity described in [14].

Radiative cooling is implemented by interpolation in the table from Sutherland & Dopita [4]. We also
include the most basic model for the UV heating: a constant value of ~ 10~2 erg s™!, which mainly
accounts for extra-galactic sources. It has been noted by many authors (e.g. [15}) that in dense region,
the cooling time of the gas can become much shorter than the dynamical cooling time. Moreover, the
cooling factor A changes by several orders of magnitude in the temperature range 10 000 K - 20 000
K. To obtain a stable integration of the thermal behavior, we first use an integral scheme comparable
to Thomas & Couchman to compute A. Then, if the local internal energy variation within one time
step is larger than 1/4 of the current value, we damp it to 1/4 (a similar method is used by Weil et al.
[16]). When warm gas temperature falls down to 11 000K, the chosen temperature for the transition, the
particle is transformed into a cold gas particle.

Star formation occurs in the cold gas phase only, without further conditions. We use a local Schmidt
law:

dpsear

% =C p;a.s’
The constant C, which depends on the star formation efficiency, is adjusted to produce physical overall
star formation rates. Supernovae feedback is taken into consideration. We use a typical lower estimate
of 10% erg per solar mass of formed star. The thermal energy is deposited on a few (2 or 3) neighbors.
Thermal damping prevents it to be instantaneously radiated. A small kinetic part (a few %) is also
imparted to all the neighboring gas particles.

Stellar winds and supernovae explosions return over 40 % of the star mass to the ISM over a few Gyr.

A continuous stellar massloss rate was proposed by Jungwiert et al. [10], based on integration over usual
Initial Mass Functions. We implement a similar simple version:

dM, c
—= = My 7——m——————,
dt (t = togen + T(l)

with ¢=0.055 and T = 5 Myr. The gas released by the stars is enriched using a constant value for the
yield y = 0.02.

( n=1.5 in ref. model).
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Fig 1: Reference
simulation. Config-
uration of the three
baryonic phases after
200 Myr (top) and
after 1.2 Gyr (bot-
tom).

3 Reference simulation

All simulations start from a gaseous disk within a dark matter halo. The dark matter is distributed in a
Plummer sphere with a typical radius of ram = 5 Kpc. The total mass of the halo is My, = 1.710}! M,
The distribution is truncated at 5 rgp,.

Initially, all the baryonic matter is in the form of warm gas at a temperature of 15000 K. It is
distributed within a Miyamoto-Nagai disk {17], with typical radius rym = 5 Kpc, and typical thickness
2tm = 0.3 Kpe. The total mass of the baryonic matter is Mpm = 5.710'°Mg. This choice results in a
stable disk. The angular speed is computed to provided rotational support and the velocity dispersions
have the usual relations to the surface density and epicyclic frequency. Our setting produces a Toomre
stability criterion @ = 5 in the center of the disk and Q = 2 at the edge. In all the models we use 10*
dark matter particles and 510% baryonic particles. The softening of the gravity for baryonic particles is
30 pc and 300 pc for dark matter particles. We compute the evolution over 2 Gyr with a time step of 1
Myr.

Fig. 1 presents a face-on view of the three components at 0.2 Gyr and 1.2 Gyr. An interesting feature
is that clusters of stars form at the edge of the disk in the early evolution, and later merge in the central
part. This phenomenon is present for a large range of parameters and, as noted by Noguchi [11], may be
the mechanism of the bulge formation. Usual features such as spiral arms are also present. We observe
a strong depletion of the gas phase after 1.2 Gyr. This is quantified in Fig 2. The thermal equilibrium
between warm and hot gas is almost instantaneously reached. Then, both phases are depleted through
star formation. The evolution slows down after the first Gyr. After 2 Gyr the total gas content is ~ 20
%. In Fig. 3, the surface density profiles of the baryonic components are plotted. The stellar disk profile
is exponential with a typical radius of 2 Kpc. The warm gas disk is also exponential but with a larger
typical radius of 10 Kpc. Cold gas falls in between. The rotation curve (not plotted), is rather flat
between 5 Kpc and 15 Kpc, at a value of 250 km s~!. This set of diagnoses suggests a rather realistic
galactic disk.

4 Composition of the baryonic matter: effect of various pro-
cesses
We have made several runs for the simulation, changing some of the most relevant parameters for the mass

equilibrium betwecen the baryonic phases. The characteristics of each run and corresponding composition
of the baryonic matter are presented in the table.
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Fig 2: Evolution of the composition of the bary- Fig 3: Surface density profiles of the various bary-
onic matter. The mass fraction of each of the onic components of the disk as functions of the
three components is plotted against time. radius. The density scale is logarithmic. The pro-
file are roughly exponential with 10 kpc typical
radius for the warm gas, and 2 kpc for the stars.
Maodel At 0.5 Gyr At 2. Gyr
Stars | Warm gas | Cold Gas | Stars | Warm gas | Cold gas

1: Reference model 58.7% | 125 % 288% [789% | 109% 10.2 %

2: Schmidt law n=1 53.7 % 13.3 % 33 % 84.8 % 103 % 4.9 %

3: No stellar massloss 654% | 11.8% 228% [86.2% 87% 51%

4: No SN feedback 58 % 7.6 % 344% |775% 4.9 % 17.6 %

5: Thermal SN feedback || 61.2% | 11.3% 215% [795% | 104 % 10.1 %

6: High SN feedback 61.4 % 13.2 % 2564% [785% 11.2 % 10.3 %

The effect of changing the index from 1.5 to 1 in the Schmidt law is the expected one. Initially, when
the gas is dense, the star formation rate is smaller, but it catches up later when the gas density decreases,
and the final amount of star formed is larger. The effect of switching off the stellar massloss, which
transfers matter from stars to hot gas is more unexpected: the cold gas phase gets depleted. Indeed, the
different density dependence of the heating and cooling processes actually creates a density threshold g
below which the warm gas stops cooling. The warm gas density is close p. after 0.5 Gyt in the reference
simulation, this is why it stops decreasing (see Fig 2.). Stopping the input from stellar massloss does
not affect the threshold; warm gas settles at p. and the transfer to the cold gas stops. Since cold gas
keeps forming star, it is soon depleted. On the other hand, the three runs with varying feedback from
supernovae explosions show that thermal feedback, which heats up cold gas into warm gas, is actually
able to keep the warm gas density somewhat above the critical density, as we can deduce from the smaller
warm gas mass at t= 2 Gyr when no feedback is present.

5 Conclusions

We have presented a numerical model for disk galaxy formation which includes several components with
different dynamics: dark matter and stars follow collisionless gravitational dynamics, warm gas evolves as
a dissipative fluid (SPH method), and cold gas is treated with collisional cloud-particles (sticky particle
scheme). Heating, cooling, star formation, SN feedback and stellar massloss are taken into account. We
have computed the evolution over 2 Gyr of a typical spiral galaxy, starting from a 100 % warm gas
disk. The model produces reasonable and stable values for such properties as baryonic mass composition,
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surface density profile, or rotation curve. The influence of several physical processes on the baryonic
matter composition is studied. The mass composition responds to these processes without showing
strong instability.

Complementary studies prove that intergalactic gas accretion is needed to produce a star formation
rate that does not decrease too strongly with time, compared with observations. Our aim in future works
is to include the accretion consistently in our model.
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Abstract
We study an effect of inhomogeneity of density distribution of the Universe. We
propose a new Lagrangian perturbation theory with a backreaction effect by inhomo-
geneity. The inhomogeneity affects the expansion rate in a local domain and its own
growing rate. We numerically analyze a one-dimensional plane-symmetric model, and
calculate the probability distribution functions (PDFs) of several observed variables
to discuss those statistical properties.

1 Introduction

The present Universe shows a variety of structures. How such a structure is formed in the evolution of
the Universe? One of the most plausible explanations is that the nonlinear dynamics of a self-gravitating
system provides such a scale-free structure during the evolution of the Universe. As for a perturbation
approach, however, it is just an approximation and will break down in a nonlinear regime, although the
Lagrangian approach would be better if we are interested in density perturbations. This is just because
a density fluctuation J and a peculiar velocity v are perturbed quantities in the Eulerian approach(1],
while a displacement of particles from uniform distribution is assumed to be small in the Lagrangian
approach|2, 3]. The Lagrangian approach is confirmed to be better than the Eulerian approach by
comparison of exact solutions in several cases. Therefore, we will adopt the Lagrangian approximation
in this paper and discuss about how to improve it.

In the standard approach of Newtonian cosmology, the global cosmological parameters such as Hubble
expansion rate and mean density are given first by a solution of the Einstein equations, i.e. the so-
called Friedmann-Robertson-Walker (FRW) universe, which is an isotropic and homogeneous spacetime.
According to observation, however, a local structure in the Universe is definitely not homogeneous and
isotropic. In the standard approach, the density averaged over the whole space (or a horizon scale) is
assumed to be the energy density of the FRW spacetime. However, here the problems of how to average
inhomogeneous matter fluid and how to define an averaged isotropic and homogeneous spacetime are
arisen. We discuss averaging procedure in local domain, which is smaller than Horizon scale, relativistic
effect may not be so important. Therefore in this paper, in order to avoid such a difficulty, we discuss
only an averaging procedure in the Newtonian framework.

Proposing a averaging procedure, which is defined by spatial average of physical quantities, Buchert
and Ehlers lead the averaged Raychaudhuri’s equation[4]. The equation describes how the averaged ex-
pansion rate of domain with a finite volume evolves. This equation has an additional term, which we
call a 'backreaction term’ of inhomogeneities on averaged expansion. Then, Buchert, Kerscher, and Sicka
estimated the backreaction term using the conventional Lagrangian perturbation approach[5]. They first
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consider density perturbations in Einstein-de Sitter (E-dS) Universe, then calculated the backreaction
term and solved the averaged Raychaudhuri’s equation. They showed difference between a cosmological
parameter such as Hubble expansion rate in their averaged model and that of the E-dS model. Although
they included a backreaction term to estimate the averaged variables in a local domain, they used the per-
turbed quantities from the E-dS Universe. In other words, they have not take into account a backreaction
on the evolution of density perturbations.

Here we improve their approach, i.e. we include a backreaction effect to averaged expansion rate
and solve the averaged Raychaudhuri’s equation (the generalized Friedmann’s equation) with evolution
equation of perturbations in the averaged domain [6]. In an averaged domain, the averaged density is
either higher or lower than that of the E-dS universe. This difference will change the evolution of density
perturbations. In fact, if the domain is overdense, growth rate of perturbations behaves as that in the
closed universe, While, if it is underdense, it is just like a solution in the open universe.

2 Averaging of inhomogeneity

2.1 The generalized Friedmann equation

In the Newtonian cosmology, the expansion of & domain is influenced by inhomogeneity inside the domain.
Such an effect may be evaluated by spatial integration of field variables in the Lagrangian domain, which
evolves with matter fluid. Hence in this paper we study fields averaged over a simply-connected spatial
Lagrangian domain D at time ¢, which evolved out of the initial domain D; at time t;. The locally
averaged scale factor ap, depending on the content, shape and location of the domain D, is defined by
the volume of domain Vp(t) = |D]| and its initial volume Vp, = |D;| as

ap(t) = (Mt—))m .

Vo, (1)

We define a spatial averaging for any rank tensor field A = {Aij.(r,t)} by the volume integral
normalized by the volume of the domain as

1 .
A tE——/d"r.Ar,t. 2
Using this averaging, we can derive the generalized Friedmann equation|[4]:
ip
3av +47G (p)p — A =Qp, (3)
where Qp means backreaction term.

Q0= 2 (%), - 003) +2 (%) - (o)) “

On the other hand, we also derive the consistent equations for the Lagrangian perturbations with the
backreaction term Qp.

Vi, (gb + 2%35) = —4nGpp(J — 1) - Qs. (5)

., x (é., +z?s,,) o0, ()
b

where S means Lagrangian displacement vector.
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3 Effect of inhomogeneity

Here, we study a simple model to show new aspect in our approach. We assume a plane-symmetric
1-dimensional model. The Lagrangian perturbation is given by

Vot = 8(q) = b()(s(m),0,0) . ()

In the conventional Lagrangian approximation, ZA gives an exact solution in a plane-symmetric case.
However, it does not take into account a backreaction effect of inhomogeneity on the Hubble expansion.
Since our approach includes the backreaction effect, we will analyze this simple one-dimensional model
and compare our results with those by ZA. We also look at a difference of the backreaction term estimated
by the conventional Lagrangian approach [5].

As for initial conditions, we adopt a power law spectrum with the index n = 1:

Pi(k) x k. (8)

We also introduce a cutoff at small scale, which wave number is ke, = 1024k, where kg = 27/L. We set
that the initial time is @ = 1. Then the amplitude of Aluctuation is chosen so that the first shell-crossing
occurs at a ~ 1000. The number of grids is N = 2% and we use a periodic boundary condition. We take
an ensemble average over 500 samples, which initial conditions are given by random Gaussian. In our
approach, since we do not know where we are living, we study its statistical properties. In particular,
we will see the scale dependence of the averaged variables and the probability distribution of the Hubble
parameter, deceleration parameter, and pair-wise velacity.

3.1 Hubble parameter

First we analyze the expansion rate of local domain. If we fix the Hubble parameter f/y by local ob-
servation in a domain D, the most probable value of Hy is given by the averaged expansion rate of the
domain, which is (8)5, /3. We solve Eq. (3) for ap with a backreaction due to inhomogeneity. If we are
living in an underdense region on average, the expansion rate will be faster than the Hubble one for the
whole universe. While, if we stay in an overdense region, the rate will be slower than the global Hubble
one. If our domain is small, the deviation from Hj, gets large. For example, the dispersion of the Hubble
parameter is about 1.2 % for the ! = 128-grid domain, while 0.66 % for thel = 256-grid domain. The
dispersion of our model is consistent with the result by Shi and Turner(7].

3.2 Density fluctuation

Next we show the PDF of density fluctuations. In the Eulerian linear approximation, if initial data is
given by random Gaussian distribution, the PDF of density fluctuations will remain its Gaussian form
during evolution. On the other hand, in the Lagrangian approximation, there appears a nonlinear effect.
In fact, Kofman et al shows that the PDF approaches to a log-normal function rather than a Gaussian
function in the cases of the Lagrangian approximation[9) and N-body simulation([8].

Here we analyze the PDF of density fluctuations using our approximation. The results are shown in
Fig.1. From comparison with the result of ZA, the void region (i.e. an underdense region; § < 0) is found
in higher probability in our approximation. Especially, if the size of a domain is smaller, the difference
gets larger. On the other hand, the probability to find an overdense region (§ > 0) decreases in our
approximation.

The reason is very simple: During evolution, an overdense region shrinks and a nonlinear structure
is formed as the Zel'dovich’s pancake. On the other hand, an underdense region expands. Therefore,
although the initial volumes of overdense underdense regions are the same, the volume of the latter gets
larger than that of the former in a nonlinear stage. In addition to this Lagrangian nonlinear effect, we
take into account a backreaction effect. This effect enhances expansion of an underdense region and
contraction of an overdense region. As a result, the above difference between ZA and our approximation
appears.
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Figure 1: The PDF of density fluctuation at a = 900 for { = 128-grid domain and that with the ZA. The
probability to find an overdense region for [ = 128-grid domain is less than that with the ZA (a). On the
other hand, the probability for an underdense region increases for / = 128-grid domain (b).

3.3 Deceleration parameter q

Another interesting observable variable is a deceleration parameter. The recent observation of type Ia
supernova may suggest an acceleration of the Universe{10]. Although this result may naively suggest an
existence of dark energy such as a cosmological constant A, we could find some effective model without
dark energy which explain the observation. Then we shall estimate a deceleration parameter averaged in
a local domain here.

We define local deceleration parameter ¢p as

apd
qp = — '1.32'9 ] (9)
ap

which can be evaluated by Eq. (3) and Hp. Buchert et al.[5] showed the evolution of deceleration
parameter for the ZA. Although our approach includes a backreaction consistently, our analysis shows
that a deviation of ¢p does not get so large. The difference of gp from the ZA is very little even just
before the shell crossing. We show the time evolution of gp for a plane-symmetric 1-dimensional model
in Fig. 2. Even if a domain is extremely underdense, the domain is decelerating. This may be because
our approach is still perturbative. We will discuss it further in the next section.

4 Summary

We propose new Lagrangian perturbation theory with a backreaction effect by inhomogeneity of density
perturbations and present a set of basic equations. The inhomogeneity affects the expansion rate in a
local domain and its own growing rate. In a one-dimensional plane-symmetric model, we have numerically
analyzed our approach, and calculated the growing rate density perturbations and the PDF of several
observed variables. We set our initial conditions as random Gaussian distribution. From our analysis,
we show that the expansion rate of an underdense region is faster than that of the whole universe as
expected.

We mention about recent observation about cosmological parameters. According to the observation
of type Ia supernova, the expansion of the Universe seems to accelerate{10]. The result suggests existence
of dark energy such as a cosmological constant A. However, this produces another difficulty, that is the
so-called cosmological constant problem. To avoid such a difficulty, if we could explain the observation
without cosmological constant, it would be more natural. Recently, Tomita discussed such possibility
assuming we are in a large local void[11]. Globally the Universe is flat (E-dS universe), but we are sitting
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Figure 2: The evolution of a deceleration parameter ¢gp for ! = 64-grid domain. The overdense domain
shows increase of gp (a solid line for maximum value), while the underdense domain shows decrease of
¢p (a dashed line for minimum value).

near the center of a local void, which existence is observationally confirmed. Then he calculated the
luminosity distance, finding that the observation can be explain by such a model. In our model, when
we calculate the luminosity distance, even if we do not sit we would near the center of a local void, we
may explain the observation.
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Abstract
Even for the observed luminosity distance Dy (z) which suggests the existence of the
dark cnergy, we show that the inhomogeneous dust universe solution without the
dark energy is possible in general. Future observation of Dy, (z) for 1 £z < 1.7 may
confirm or refute this possibility.

1 Introduction

Recent measurements of the luminosity distance D, (z) using Type la supernovae [1, 2, 3} suggest that
accurate Dy (z) may be obtained in near future. Especially SNAP [4} will give us the luminosity distance
of ~2000 Type la supcrnovac with an accuracy of a few % up to z ~ 1.7 cvery year. On the other hand
from the observation of the first Doppler peak of the anisotropy of CMB, it is now suggested that the
universe is flat [5, 6], which may be proved in futurc by MAP and Planck. Under the assumption of the
homogencity and the isotropy of our universe, these observations suggest that the dark coergy is dominant
at prescot. To interpret what the dark energy is [7) many arguments have been done so far. However
at present we do not have a firm and reliable theoretical basis to discuss such a small amount of energy
scale compared with the Planck one. In short the dark energy under the assumption of homogencity and
the isotropy of our universe is by far the great mystery.

From the observed isotropy of the CMB, if we are not in a special part of our universe, the universe
should be homogencous. However if we are in a special part, the universe might be inhomogencous
although the CMB is isotropic. Such cosmological models have been constructed using spherically sym-
metric models in which we arc near the symmetric center. Some authors have considered such models to
interpret the SNla data for small 2[8] as well as up to large z assuming a void structurc[9] to avoid the
dark cnergy. One may regard such possibilitics absurd.

Recently, we have investigated to construct a possible inhomogencous dust universe derived from the
obscrved Dy (2) without any dark encrgy [10].

The analysis of high redshift supernovac gives us the luminosity distance-redshift relation D 1(2) along
the obscrvational past null conc up to z ~ 1 [1, 2, 3]. The data fit well with D (z) in the homogeneous
and the isotropic universe with 2, = 0.3 and Q4 = 0.7 given by

1 : d2’
Dutz)= g1+ Z)./o VORI + 22 + 0, M
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Here we assume that Dy (z) is given by Eq. (1) with Q,,, = 0.3 and Q4 = 0.7 for 2 £ 1. This is just for
simplicity to make the arguments clearer. We do not claim that Dy (2) with Qp, = 0.3 and 23 = 0.7 is
confirmed. While Dy (2) for 1 < 2z < 1.7 is not certain even at present and will be obtained in future, for
cxample, by SNAP.

2 Formulation

Here we intreduce the differential equations that we should investigate. Sce Ref. [10} for the derivation
of them and the meanings of the variables.
The obscrvational past null cone t = {(r) satisfics

d_i _ _RZ(R,f) Ey Elvth ,Blr)

dr V1+2Er2 (2)
The redshift 2(r) along the past null cone is given by
dz 142 ; ,
£ = T—*-\/—2?2-RJ(R’ t, E, El,tg,t’g,r). (J)
The total derivative of R on the past null cone is written as
dR _ Ri(R.E,7) . , ,
Fe (1 sy Ra(R, L E, E' tp, t,1). (4)

Our basic equations arc Eqs.(2)—(4). These three cquations can be regarded as a system of first order
ordinary differential cquations for three of the five functions R(r), i(r), E(r), tg(r) and z(r). In order
to integrate these cquations, we should specify two conditions on these live functions. The luminosity
distance Dy (z) is related to R [11] as

_ Di(2)

As alrcady mentioned, we assume that Dp(2) is given by Eq.(1). Further we will specify one condition
for E, tg or the combination of them.

3 Results

At first we consider pure Big-Bang time inhomogeneity. In this case the curvature function E(r) is set to
be constant. From Eqs. (3) and (4), we have equations for z(r) and the Big-Bang time function ¢ g(r).
The model is specified by Q9 = 2Mo/HZ which is the present central density 3Mp/4n divided by the
present central critical density perje = 3HE /8w, where Hop is the present central Hubble parameter and
we set it to be unity. We numerically integrate these two differential equations from r = 0 for ten §2o
from 0.1 to 1.0. The initial conditions are given by z=0 and tg = 0.

From Eq. (4) R’ > 0 for positive density while from Eq. (9) R’ > 0 for monotonically increasing z(r)
so that the intcgration is terminated cither of the following incqualitics is violated,

R>0 o R >0 (6)

In Fig. 1 we show the relation between the paramcter 2o and the redshift when the integration is
terminated. For low €} = 0.1 0.4 (open triangles), shell-crossing singularitics occur when dR/dz = 0.
For high 0 = 0.5 1.0 (open square), the second condition of Eq. (6) is violated first. This occurs when
R = 2M.
Fig. 2 shows thc Big-Bang time functions ¢ g for cach §y. For all 0y the Big-Bang time functions tg
decrease as z increases up to z ~ 0.5.
In Figs. 3 we plot the redshift space density
. 47 R*R'dr r? dr
P2) = p gy = Soga g enit: (@)
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along the past null cone. Obsecrvations of the mass distribution along the past null conc would give us
this density profilc.

Next we consider the pure curvature inhomogencity. In this casc the Big-Bang time function ¢ g(r)
is set to be zero. From Egs. (2), (3) and (4) we obtain three differential equations for three variables
z(r), E(r) and {(r). We numerically integrate these three differential equations from r = 0. The initial
conditions are given by z =0, E = (1 — Q0)/2 and

S0 (sinhno — 70)
2 (1-Q)f

i(0) = , (8)

where

(9)

In Fig. 1 we show the rclation between the parameter €)g and the redshift when the integration
is terminated (cross marks). For the case of curvaturce inhomogencity, it was shown that the second
condition of Eq. (6) is violated first [12].

Fig. 4 shows the curvature functions E for cach §g. We can sce E decreascs as z increases except for
the Qo = 1.0 case.

The decreasing E is consistent with the apparcnt acceleration. E determines the specific energy of
the dust clements so that the “initial” velocity is slower for more distant shells. This causces the apparent
acceleration since the velocity at r = 0 can be the largest.

Fig. 5 shows the redshift space density p along the past null cone as a function of z.

4 Conclusion

We have constructed inhomogencous dust models without the dark energy. These models can be consistent
with the observed Dp(2) up to z = 1 since from Fig. 1 we have no difficulties up to 2z ~ 1 for any
paramecters in both the Big-Bang time inhomogencity and the curvature inhomogencity cases. For z > 1,
we have difficultics in our inhomogencous dust modecls. Recently, the SNIa at the redshilt of ~ 1.7 was
found [13, 14] with rather large crror bars. However only a single SNIa at the redshift of ~ 1.7 is not
cnough to construct the accurate D (z) although it scems to rule out the 'grey-dust’ hypothesis. If future
obscrvations confirin Dy (z) up to 2 ~ 2 with Q,, ~ 0.3 and 25 ~ 0.7, our inhomogencous dust models
are incompatible with the obscrvations and some form of the dark cnergy will be the case. However, if
future obscrvations confirm that D (z) for z > 1 docs not follow Eq. (1) appreciably, the possibility of
our inhomogencous dust models remain to be studied more extensively. In such a case, the first Doppler
pcak as well as the higher oncs will give us another constraints to the inhomogencous universe models.

Using the cluster temperature cevolution data for 0.3 < 2z < 0.8, it was reported that the best-fit
value of Q,;, = 0.45 £ 0.1 for open universe and Q,, = 0.3 £ 0.1 for flat universe [15). However recent
analysis shows that the systematic crror is comparable to the statistical crror {16). So we may say that
0.1 < Qpn < 0.5 for 0.3 < 2 < 0.8 data. It is not clear that the Press-Schechter formalism can be applied
to our inhomogencous modcls. One of the possible estimate would be based on the locally homogencous
approximation. As we know, the massive cluster cvolution is very sensitive to the matter density. It
scems that the model with local density paramecter ), which largely conflicts with the best-fit value
would not explain the observed cluster evolutions. The pure curvature inhomogencity case with g 2 0.2
may be difficult to survive because it is approximated by flat universe at high z. Also the Bang time
inhomogencity casc with €y ~ 1.0 can not survive. However, it can be expected that the pure Bang time
inhomogeneity with €2 ~ 0.5 and the purc curvaturc inhomogencity with Qg ~ 0.1 would predict the
observed cluster abundances.

The cstimate of the lensing rate and the distribution of the scparation of the images depend on the
model of the mass distribution of the lensing object and the luminosity function of the source objects
as well as the cosmological paramcters. However it has been shown that the dependence on the lens
model and paramcters is much larger than that on the cosmological parameters [17]. In addition, the
mass distribution of the lensing objects would deeply depend on barvon density 2, [18]. Therefore we
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conclude that the cstimate of the cosmological paramcters from the lensing rate and the distribution of
the scparation of the images is difficult at present so that we can not rule out the inhomogeneous model.

As shown in Fig. 6, the look back times along the past null conc have little difference between the
inhomogencous model and the corresponding homogencous model with cosmological constant for z < 0.5.
For z ~ 1, the difference appears, but some of the inhomogeneous models arc not so different from the
homogeneous model even there. The ages of stellar population would not distinguish the inhomogencous
modecl from the homogeneous one.

As a result, the model dependence including various undetermined paramcters and the observational
uncertainty arc much larger than the dependence on the cosmological parameters. Therefore we think
that these observations can not easily rule out the inhomogencous model.

Here we comment on how we can be place away from the center of the symmetry. The displacement
from the center would correspond to the dipole mode of CMB. Thercfore we can be ~ 10 Mpc away from
the center.

In conclusion, the dark energy is not the only solution to the apparent acccleration of the present
universe but inhomogencous dust modcls can also explain the obscrvations.
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Figure 1: Plots of maximum redshifts when cither
of incqualities in Eq. (G) is violated as a function of
the present density parameter. The open triangles
and the open squares are the ones for the Big-Bang
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Figurc 2: Plots of the Big-Bang time functions as a
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Figure 3: Plots of the redshift space density 5 di-
vided by the central critical density. The dotted
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Figure 4: Plots of the curvature functions.

Figure 5: Plots of the redshift space density divided
by the present central critical density. The dotted
line denotes the Q, = 0.3, 24 = 0.7 homogencous
model.
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Figure 6: Plots of the look back time along the
past null conc. Solid line denotes the homogencous
2y = 0.3 and 24 = 0.7 casc. Brokca and dotted
lines denote the pure Big-Bang time and the pure
curvature inhomogencity casc of {1y = 0.1,0.3,0.7
in descending order, respectively.
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Abstract
We show that an oscillating scalar field in supergravity of mass of the order of ~
TeV with a nonzero vacuum expectation value (~ 10'® GeV) can be a candidate of
cold dark matter (CDM). To avoid the gravitino problem, we need a low reheating
temperature after the primordial inflation. Then, the energy density of the oscillating
scalar field satisfies all the requirements for CDM at present in the universe.

1 Introduction

It is widcly belicved that a significant fraction of encrgy density in the universe is in the form of cold
dark matter (CDM). Recently it was reported that the contribution of CDM to density paramcter is
approximately Q = 0.3 (for a review, scc Ref. [2]). It is one of the most important problems in cosmology
and particle physics to clarify the naturc and the origin of dark matter.

In this paper, we consider stable scalar ficlds with an clectrowcak scale mass ~ O(TeV) and a large
vacuum expectation value (VEV) ~ ©(10'°) GeV. Thesc scalar ficlds naturally appear in supcrgravity.
It is intercsting that such a scalar filed can have a net oscillation cnergy after inflation because of the
coupling with the inflaton ficld through Kéhier potential and an additional SUSY breaking cffect during
the inflation 3, 4]. On the other hand, however, whenever we consider a model based on supergravity
within the framework of inflationary cosmology, we arc faced with some sticky problems. In particular,
“gravitino problem” would be one of the severest problems in cosmology [3, 6]. To avoid the gravitino
problem, i.c., to restrain the production of gravitinos and the photodissociation of light clements duc to
their late-time decays, we need a low rcheating temperature after the primordial inflation [7]. In this
situation, we show that the cnergy density of the oscillation of the scalar ficld satisfics the requircments
for CDM at present in the universe.

2 Model

In supergravity, we know there cxist a lot of scalar ficlds with an almost flat potential. These scalar ficlds
arc expected to acquire masscs of the order of the clectrowceak scale from a supersymmetry breaking cffect
and might have a nonzcro VEV.

We consider a chiral superficld & which is the gauge singlet and contains a scalar ficld ¢. We assume
that it has a minimal Kahler potential

K = |®]*Mz? (1)
and a superpotcential,
A (I,n+3

T n+3 MR '

where Mg = Mp/V87 = 2.4 x 10'8GeV is the reduced Planck mass, A ~ O(1), and C is a constant.

W (2)
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In addition, the scalar ficld acquires a soft mass (~ 1 TeV) through a SUSY breaking cffect. When
we assume that the cosmological constant vanishes at the VEV, it is natural to take C = my/, MZ, where
my,2 is the gravitino mass (~ 1 TeV). Then, we obtain the following low cnergy cffective potential,

n \C ¢n+3 +¢on+3 2|¢|2n+4

7 = Vi — m2lal? hdhal
V(g) = Vo — mplo| +n+3Mé"; M2 M (3)

Onc finds that the VEV of the scalar ficld M = (¢) is given by

Mt 1 nC nC\? ) ]
M2 T 2(n+2)X [Hg""\/(v(z;) +4(n +2)mi|, (1)
and the vacuum encrgy at ¢ = 0 becomes
sontl ool o nC nC n_C_ 2 X ]
o= at [m" T Hn+ 2 + ML (M(’; *ylaz) THn+Dmo )| (3)

From Eq. (4), we sce that M ~ moMg ~ ©O(10'%) GeV in the casc of n = 1.

After the primordial inflation, the inflaton ficld oscillates around its minimum and dominates the
energy density in the universe until the rcheating time ¢ ~ I‘,", where Iy is the decay rate of the inflaton
ficld. While the Hubblc expansion rate is Jarge H 3> mo, the scalar ficld ¢ would be trapped dynamically
at the origin by an additional SUSY breaking cffcct which is explained in the following rcason {3, 4]. In
supergravity, the scalar potential of the inflaton ficld J and the scalar ficld ¢ is expressed by

V(g,1) = ¥ (GGG - 3], ©)

where G = K +In|W|? and G; = 8G/8¢',G’ = 8G/8¢; and G} = 8°G/8¢'0¢;. During the oscillation
of the inflaton ficld, the scaler potential is related to the Hubble expansion rate as V (4, I) ~ py ~ 3MZH?
through the Fricdmann cquation, because the energy density in the universe is dominated by the inflaton
ficld. Then, the scalar potential is modified as

V(¢) = Vo + 3H?|¢f*, M

and ¢ would be trapped at ¢ = 0.

On the other hand, when the Hubble expansion rate becomes smaller than the mass of the scalar ficld,
i.c., H £ my, the additional SUSY breaking cffect disappears and the scalar ficld begins to roll down to
its VEV while the oscillating inflaton ficld still dominates in the encrgy density in the universe because
of the low rcheating temperature in order to avoid the gravitino problem.

Hercafter we mainly consider the case of n = 1. The encrgy density of the scalar ficld at the reheating
time (t = tg) is cstimated as

peltn) = 22| prta), @)
PI lH=m,
with the cnergy density of the inflaton ficld,
x?
PI(tR) = %90731 (9)

where T is rcheating temperaturce and g, is the degree of freedom in the thermal bath. When the
rcheating process finished, the ratio of the cnergy density of ¢ to the entropy density s is cstimated as

po _ _YoTm_
s AMZm}’
T, M \?
~ = -9 r R
~ 0.5 x 10°GeV (107ch) (10!0ch) , (10)
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where s = 27%9.T3/45. Both py and s decrease as a(t)=3, so that the ratio py/s is constant unless the
additional entropy is produced after the rcheating. If we adopt inflation models with a low rcheating
temperature, ¢.g., Tp < 107GeV, in order to avoid the gravitino problem [7], the energy density of the
dark matter cannot be larger than the critical density and does not overclose the universe.

The present value of the encrgy density of dark matter to entropy density ratio is given by

oM _ QoMPper
So So
~ 3.6 x 107%QppA2GeV, (11)

where p.r is the present critical density of the universe, s is the present cntropy density, Qpa is the
density paramecter of dark matter (~ 0.3) [2], and & is the present Hubble paramcter normalized as
Hy = 100hkm/sec Mpc™!. From Eq. (11) we sce that the encrgy density of the oscillating scalar ficld
almost coincides with the cnergy density of dark matter. Namcly the contribution of ps to density
paramecter () is cstimated as

Pe
Q, = £
¢ Per

Tr M \*ro7\?
0.28 (107G0V) (10“’G0V) (T) ' (12)

From Eq. (12) we sce that 2, ~ 0.3 (0.03) for Tp =~ 107 (108) GeV.

?

3 Conclusion

In this paper, within the framework of inflationary cosmology we have shown that the stabic scalar ficld
with the electroweak scale mass and the large VEV is now oscillating, and the encrgy density of the
oscillation significantly contributes to the density parameter Q and satisfics the requircments for CDM
at present in the universe. It is interesting that such a scalar ficld naturally appears in supergravity. In
addition, it is also fascinating that when we require the low rcheating tempcrature after the primordial
inflation to avoid the gravitino problem (T < 107 GeV), it automatically cnsures the appropriate cnergy
density for CDM (0, ~ 0.3).
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Abstract

Gravitational radiation (GR) drives an instability in certain modes of rotating stars.
This instability is strong enough in the case of the r-modes to cause their amplitudes
to grow (in the absence of other dissipation) on a timescale of tens of seconds in rapidly
rotating neutron stars. GR emitted by these modes removes angular momentum from
the star at a rate which would spin it down to a relatively small angular velocity within
about one year, if the dimensionless amplitude of the mode grows to order unity. A
pedagogical discussion is given here of the mechanism of GR instability in rotating
stars, on the relevant properties of the r-modes, and on our present understanding of
the dissipation mechanisms (including interactions with the crust and hyperon bulk
viscosity) that tend to suppress this instability in neutron stars. The astrophysical
implications of this GR driven instability are discussed for young neutron stars, and
for older systems such as low mass x-ray binaries. Recent work on the evolution and
saturation of the r-modes by non-linear hydrodynamic effects is also described.

1 Introduction

The non-radial pulsations of stars couple to gravitational radiation (GR) in general relativity theory (2, 3],
and the GR produced by these oscillations carries away energy and angular momentum from the star. In
non-rotating stars the effect of these GR losses is dissipative, and the pulsations of the star are damped.
Chandrasekhar first noted |4, 5] that in rotating stars the situation can be quite different: the emission
of GR causes the amplitudes of certain modes to grow. The mechanism that drives this GR instability
is fairly easy to understand: Modes that propagate in the direction opposite the star’s rotation (as seen
in the co-rotating frame of the fluid) have negative angular momentum, because these modes lower the
total angular momentum of the star. In a rotating star some of these counter-rotating modes are dragged
forward by the rotation of the star and appear to an inertial observer to propagate in the same direction
as the star’s rotation. Such modes, as illustrated in Fig. 1, emit positive angular momentum GR since
the density and momentum perturbations appear to an observer at infinity to be rotating in the same
direction as the star. The angular momentum removed by GR lowers the (already negative) angular
momentum of such a mode, and therefore the amplitude of the mode grows.

Gravitational

AVAVAVAVE 2

Radiation

Figure 1: A counter-rotating mode (solid curve) that is dragged forward by the rotation of the background star (dashed
curve) is driven unstable by the emission of gravitational radiation.

“The introductory portions of this review are based very closely on Ref. [1).
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This GR driven instability was first studied extensively by Friedman and Schutz [6, 7} for the fun-
damental (f-)} modes of rotating stars. They demonstrated that the GR instability has the remarkable
property that it makes every rotating perfect fluid star unstable in general relativity theory. This dis-
covery sparked an interest in the possibility that GR might play a significant role in the evolution of real
neutron stars. Does the GR instability determine the maximum spin rate of pulsars? Is the GR emitted
by an unstable rapidly rotating neutron star detectable? Unfortunately the generic nature of this desta-
bilizing process does not guarantee that it plays any role at all in real neutron stars. Internal dissipation
(e.g., viscosity) within a star tends to damp the pulsations that are driven unstable by GR. If the internal
dissipation is sufficiently strong, then the GR instability can even be suppressed completely |8, 9]. De-
tailed calculations of the effects of GR and internal dissipation on the f-modes of rotating stars revealed
that the GR instability is effective only in very rapidly rotating stars |10, 11, 12, 13]. Stars with angular
velocities smaller than some critical value, Q < € are stable, while those rotating more rapidly, 2 > Q,,
are subject to the GR instability. This critical angular velocity, 2, for the stability of the f-modes is
depicted in Fig. 2 for realistic neutron-star models. The strength of the internal dissipation processes in
neutron stars is temperature dependent, and consequently the critical angular velocity €2, is temperature
dependent as well. Figure 2 illustrates that the GR instability is completely suppressed in the f-modes
except when the temperature of the neutron star lies in the range, 107 < T < 10'°K. Further, the internal
dissipation is so strong that the f-modes are never unstable unless the angular velocity of the star exceeds
0.91Q.. Thus the GR instability in the f-modes can not significantly reduce the spin of a neutron star
below the maximum, and substantial amounts of GR can not be emitted by this process.

1.00
0.98
g 0.96
g
o094
092
080, 10° 10° 10"
Temoeralure (K)

Figure 2: Temperature dependence of the critical angular velocity f2c in rotating neutron stars: an f-mode is driven
unstable by gravitational radiation when the star’s angular velocity exceeds ..

This pessimistic view of the GR instability began to change when Andersson [14] and Friedman and
Morsink [15] showed that the r-modes were also subject to the GR instability. Indeed they showed that
all the r-modes are driven unstable by GR in all rotating perfect fluid stars. Subsequent calculations
by Lindblom, Owen and Morsink [16] showed that the GR instability in the r-modes was also strong
enough to overcome the simplest internal dissipation processes in neutron-star matter, even in relatively
slowly rotating stars. Thus the GR instability in the r-modes is strong enough that it might be capable
of significantly reducing the angular momenta of rotating neutron stars, and the GR emitted during such
spin-down events might perhaps be detectable by LIGO [17]. The remainder of this paper discusses recent
developments related to the GR instability of the r-modes. Section 2 discusses the basic properties of the
r-modes and their GR instability. Section 3 reviews the astrophysical scenarios in which the r-mode GR
instability might play an important role. This discussion focuses on recent work that evaluates the effects
of the neutron-star crust, hyperon bulk viscosity, and non-linear hydrodynamics on the r-mode instability.
Taken together these various effects now make it seem rather unlikely that the r-mode instability plays
an important role in any of the proposed astrophysical scenarios. Section 4 summarizes some of the open
questions that prevent us at this time from knowing for certain whether the r-mode instability plays an
important role in real astrophysical systems.
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2 Gravitational Radiation Instability in the r-Modes

The r-modes (also called rotation dominated modes, inertial modes, or Rossby waves) are oscillations
of rotating stars whase restoring force is the Coriolis force (18]. These modes are primarily velocity
perturbations, which for slowly rotating barotropic stars have the simple analytical form

r\™=p

7)) Fimet +O(), (1)
where a is the dimengionlm amplitude of the mode; R and § are the radius and angular velocity of
the equilibrium star; Y2 = # x rVY,,,/{/ii+1) is the magnetic-type vector spherical harmonic; and w is
the frequency of the mode. The associated density perturbation, 6p = O(Q?), vanishes at lowest order.
Because the Coriolis force dominates, the frequencies of the r-modes are independent of the equation of
state and are proportional to the angular velocity of the star (at lowest order),

66=aRQ(

_ (m=1)(m+2)

a m+1
The velocity field of the r-mode, Eq. (1), is everywhere orthogonal to the radial direction 7, and has an
angular structure determined by Yy,m. Figure 3 gives equatorial and polar views of this velocity field for
the m = 2 r-mode, which plays the dominant role in the GR instability. Figure 4 shows another view
of the same field in standard polar coordinates (@, ¢). The four circulation zones propagate through the
fluid with angular velocity —%Q, toward the left in Fig. 4. The fluid elements respond by moving on
paths described by the Lagrangian displacement, £ = —-i89/(w -+ mQ). To first order these are ellipses,
with #-dependent eccentricities, as illustrated on the left side of Fig. 4.

Q + O(Q). (2)

Polar View Equatorial View

Figure 3: Polar and equatorial views of the flow pattern of the m = 2 r-mode. This velocity field propagates through the
fluid with angular velocity %0 relative to the inertial frame, and -g-n relative to the fluid.
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Figure 4: Polar coordinate (8, @) representation of the flow pattern of the m = 2 r-mode. The pattern moves past the
individual fluid elements which respond by moving on small elliptical paths as illustrated on the left.

The effects of dissipation (i.e., viscosity and GR) on the evolution of the r-mode are most easily
studied by considering E, the energy of the perturbation (as measured in the co-rotating frame of the
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fluid). To lowest order in £, £ is given by

E= %/psa' -6vd%z + O(N). (3)
This energy is conserved in the absence of dissipation, and more generally satisfies (16]
dE _ 2 2 . ASJim|? . ab . 3
i w(w + mQ) Z Nw [|6D1m| + m /(21)600,,50 +(éodo) d’z, 4)

>m

where Ny = 4zG(1 + 1)(! + 2){cA*+1I(1 - 1)[(21 + 1)11)2} ! are positive constants; and 6D, and 6J;,, are
the mass and current multipole moments of the perturbation,

8Dy, = /Jpr'Y,,',,d:‘a:, (5)
8im = /r'(p66+ ép7)-YBr a2, (6)

The second term on the right side of Eq. (4) represents the dissipation due to the shear and bulk viscosity
of the fluid: n and ¢ are the viscosity coefficients, and do® and o are the shear and expansion of
the perturbed fluid respectively. These viscosity terms in Eq. (4) always decrease the energy E and so
tend to damp the r-modes. The first term on the right side of Eq. (4) represents the effect of GR on
the perturbation. The sign of this term is determined by the sign of w{w + mQ), the product of the
frequencics in the inertial and rotating frame. This product,

2(m — 1)(m + 2)
(m+1)2
is negative for the r-modes, thus GR tends to drive the r-modes toward instability. Further this desta-
bilizing force is generic [14, 15]: GR drives all the r-modes in all rotating stars (i.e., for all values of m
and Q) toward instability.
To evaluate the relative strengths of the destabilizing GR force and the dissipative viscous forces, it
is convenient to define the combined dissipative timescale 1/7,

ww +mQ) = — 02 <0, )

1 dE 11
—_— =} — 8
2F dt TGR TV ®
which is just the imaginary part of the frequency of the mode. The integrals on the right sides of Eqs. (3)-
(6) are easily performed to determine the GR and the viscous contributions to 1 /7 respectively. Using
Newtonian stellar models based on fairly realistic neutron-star matter these timescales are [16, 19}:

l —_—
==

1 1 0\
- _(_) , (9)
7GR 38s Qmnx

1 1 (1°K\* 1 T \7 2\ (10)
v  3x108\ T 5 x 101g \ 109K Quax /

For small angular velocities, <« Qmax, the GR timescale is very large so viscous dissipation always
dominates, 1/7cp < 1/7v. Thus neutron stars are always stable in this limit. Conversely, when € is
sufficiently large the GR timescale is shorter than the viscous timescale and the neutron star is unstable.
The critical angular velocity 2,

1
— 0, 11
=N (11)
marks the boundary between stability and instability. Since the viscosities are temperature dependent in
neutron-star matter, so too is €2.. The solid curve in Fig. 5 illustrates the temperature dependence of .
for the r-modes including the effects of standard microscopic shear and bulk viscosity. The minimum of
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this curve accurs at min Q2 = 0.045y,.. For comparison Fig. 5 also illustrates Q. for the GR instability
in the f-modes. It is obvious that GR is capable of driving the r-modes unstable over a far wider range
of angular velocities than the f-modes. Thus the GR instability in the r-modes might play an interesting
role in limiting the angular velocities of neutron stars, and the GR emitted during a spin-down event
might be detectable. We will return to a more in depth discussion of some more realistic dissipation
mechanism which may effect the r-mode instability after introducing the principal scenarios where the
instability may play an interesting role in real astrophysical systems.

1

% 0 10" 10"
Temperature (K}

Figure 5: Temperature dependence of the critical angular velacity §2. for rotating neutron stars. Solid curve gives {2 for
the instability in the m = 2 r-mode, while for comparison the dashed curve gives €Qc for the f-modes.

3 Astrophysical Implications

Two astrophysical scenarios have been proposed in which the GR instability of the r-modes might play an
interesting role in the evolution of real neutron stars. These are illustrated by the two evolution curves,
A and B, in Fig. 6. In scenario A a rapidly rotating ncutron star is formed with a very high temperature
(T 2 10"K) as the result of the gravitational collapse of the neutron-star progenitor [16]. In this scenario
the star cools within a few seconds to a point that lics above the r-mode instability curve (the dashed
curve in Fig. 6). The amplitude of the r-mode then grows exponentially (with a timescale of about 40s
for a very rapidly rotating star), and becomes large within a few minutes. If the dimensionless r-mode
amplitude a saturates (by some yet to be understood process) with a value of order unity, it would take
about 1y for the star to spin down to a point where stability is re-gained [17]. In this scenario a star
could lose up to 95% of its angular momentum, and up to about 99% of its rotational kinetic energy by
emitting GR. This scenario might provide a natural explanation for the lack of rapidly rotating neutron
stars in young supernova remnants. The GR emitted in this scenario might be detectable for neutron
stars as far away as the Virgo cluster |17, 20].

In scenario B an old, cold slowly rotating neutron star is spun up by accreting high angular momentum
material from a companion star (21, 22]. Once the ncutron star’s angular velocity reaches the critical
value €, the amplitude of the unstable r-mode grows exponentially. It was once thought that in this
situation the amplitude of the unstable mode would grow until the rate of angular momentum lost to
GR just balances the amount gained from accretion [23]. However Levin [24] has shown that viscous
dissipation in the growing r-mode rapidly increases the temperature of the low specific-heat neutron-star
matter. This moves the star along the horizontal section of the evolution curve B in Fig. 6. At some point
the r-mode amplitude saturates (by some yet to be understood mechanism) and thermal equilibrium is
cstablished between viscous heating and neutrino cooling. The star then spins down by emitting GR
until stability is regained. It has been suggested that this scenario provides an explanation for the range
of rotation periods observed for the neutron stars in low mass x-ray binaries (LMXBs) [25].

These scenarios are just rough sketches and considerable work has been (and continues to be) done
to fill in the details and see whether they represent realistic astrophysical possibilities. In the case of
scenario B for example, it is clear that the sketch given above is too simple. The core temperatures of
neutron stars in accreting systems like the LMXBs are expected to be in the range 10* —~ 10°K (26, 27).
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Figure 6: Rotating neutron stars may become unstable to the r-mode instability in two ways: a) hot young rapidly
rotating stars may cool along path A, become unstable, and finally spin down to a small angular velocity; or 5) old cold
slowly rotating stars may be spun up by accretion along path B, becoming unstable, then heated by the growing r-mode,
and finally spun down to a smaller angular velocity.

Simple shear viscosity gives rise to Q: < 0.16€, in this temperature range, as seen in Fig. 5. This
upper limit (of about 160 Hz) on the angular velocities of accreting systems is in conflict with the observed
300 Hz spin frequencies of the neutron stars in LMXBs, and the 600 Hz frequencies of pulsars that are
believed to have been spun up in LMXB-like systems. Thus some additional dissipation mechanism must
act to suppress the r-mode instability in these accreting systems. It was suggested [16] that additional
dissipative effects associated with the superfluid transition in the ncutron-star matter at about 10°K
might effectively suppress the r-mode instability. However, the calculations done to date indicate that
the dominant superfluid dissipation mechanism (mutual friction) is generally not effective in suppressing
the r-mode instability [28]. Bildsten and Ushomirsky [29} have suggested that viscous dissipation in the
boundary layer between the liquid core and the solid crust of a neutron star might provide the needed
stability. And Mendell [30] has shown that dissipation associated with Alfven waves (which are excited
by the r-modes and then travel along magnetic field lines that are pinned to the solid crust) could in
some circumstances be even stronger than the viscous boundary layer dissipation. At present it appears
that some combination of these crust, magnetic field, and superfluid effects are the most likely candidates
for stabilizing the r-modes in this temperature range.

At the interface between a viscous fluid and a solid (e.g., the crust of a neutron star) the fluid velocity
must match the velocity of the solid. Therefore viscosity significantly modifies the velocity field of an r-
mode, at least in the neighborhood of the crust-core boundary. The solution of the viscous fluid equations
in this boundary region {29, 33, 34] shows that the r-mode velocity field is modified significantly only in
a thin layer with scale-height d,

N 10°K \ { Qumax \ /2
d= 2pn-~.0.6cm( T Q . (12)

The magnitude of the shear of the fluid in this boundary layer is approximately |60°?| ~ |V*60'| = |6%]/d,
which is larger by the factor B/d = 10° than the shear of the inviscid r-mode velocity field. The formation
of a rigid crust therefore increases the total dissipation due to shear viscosity by approximately the factor
R/d. The viscous timescale for the m = 2 r-mode (using a typical neutron-star model) then becomes [34],

_ (205, T<10°K \ [ T \(Qma\"? 13)

V= es0s, T>10K /\T0%K/ \ "0 '
Figure 7 illustrates the critical angular velocity €. for the r-mode GR instability including the effects
of this boundary-layer dissipation. The solid curves are based on neutron-star models from a number
of realistic equations of state. Figure 7 illustrates that dissipation in the boundary layer significantly
increases the stability of the r-modes. This suggests that rapidly rotating neutron stars, such as the

1.6 ms pulsars, are consistent with a spin-up process that operates in the 10* — 10” K temperature range.
And this suggests that the apparent clustering of spin frequencies in the LMXBs is probably not due
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to the GR instability in the r-modes. However, additional work is needed to understand fully whether
scenario B ever operates in real neutron stars or not. In particular the effects of a semi-rigid crust (which
tend to reduce the boundary layer dissipation) |35] have not been included in Fig. 7, nor have the effects
of the neutron star’s magnetic field (36, 37, 30], nor have other possible effects of the superfluid core (e.g.,
the possibility that the core vortices are pinned to the crust, or a possible dissipative interaction between
neutron vortices and magnetic flux tubes).
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Figure 7: Solid curves represent 2. for neutron star models (from a variety of realistic equations of state) with rigid crust.
Dashed curve represents the stability curve for a neutron star without crust.

Let us turn our attention now to astrophysical scenario A. At present it also seems unlikely that
this scenario will play an interesting role in the astrophysics of real neutron stars. This pessimistic
view is based on our current understanding of the effects of several complicated physical mechanisms
on the r-modes. In particular the formation of a solid crust, exotic forms of microscopic dissipation in
the fluid, and non-linear hydrodynamic effects are all now expected to reduce in a significant way the
importance of the r-mode instability in scenario A. Here I review briefly what is known at present about
how each of these processes effects the r-modes. Let us consider first the role of a solid crust. When a
neutron star cools to about 10'*K (within about 30 s after its birth according to the standard modified
URCA cooling model, or within as little as a fraction of a second according to cooling calculations
that include the direct URCA process [31, 32]), a solid crust begins to form initially at densities of
about p. = 1.5 x 10Mgm/cm? [34]. Figure 8 shows typical values for the critical angular velocity Q. (the
dashed curve) based on the boundary-layer dissipation from a rigid crust in the temperature range that is
relevant for scenario A. If cooling proceeds by some rapid mechanism, such as direct URCA (as suggested
by recent observations [38]), stars rotating slower than ~ 0.8(y,a, could never develop significant r-mode
amplitudes: the star would cool into the stable range before the instability had time to grow. And even
if the slower modified URCA cooling dominates in the portions of the star where the crust will form, only
stars rotating faster than ~ 0.5Q,,,,« could develop a significant r-mode instability.

If a neutron star is born with a large angular velocity, then it may still be subject to the r-mode
instability even in the presence of a rigid crust. In this case fluid flow in the boundary layer soon
becomes turbulent as the amplitude of the r-mode grows. Under these conditions turbulent viscosity
significantly increases the dissipation at the crust-core boundary. Wu, Matzner, and Arras [39) have
shown in this case that non-linearities in the energy dissipation rate cause the amplitude of the r-mode
to saturate at the value ag.: ~ 0.002(02/ax)®. In very rapidly rotating stars, © > 0.87p.., this
amplitude is large enough that dissipation in the boundary layer can re-melt the crust [34]. But in more
slowly rotating stars the mode saturates by this turbulent viscosity mechanism before the critical melting
amplitude is reached. In these cases, 2 < 0.87Q,,y, it appears that the crust prevents the r-mode from
growing large enough to significantly change the angular momentum of the neutron star before the star
cools into a region where the r-modes are no longer unstable.

Another effect that may play an important role in the r-mode stability is a form of bulk viscosity caused
by hyperons in the neutron-star core {40, 41, 42]. At densities which are found in the cores of realistic
neutron-star models, £~ and A hyperons probably exist in 8-equilibrium with the neutrons and protons.
When a fiuid perturbation (such as an r-mode) changes the density of this material, weak interactions
will attempt to adjust the concentrations of the hyperons to re-establish 8-equilibrium. However these
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Temperature

Figure 8: Curves representing the critical angular velocity £, for the r-mode instability: solid curve assumes no crust has
formed, dashed curve assumes standard viscous boundary layer dissipation with o rigid crust,

wesk interactions are rather slow, and so equilibrium is not re-established instantancously. There results
a phase lag between the physical pressure perturbation in the material, and the appropriate equilibrium-
state pressure for fluid at the density associated with the perturbation. This pressure mismatch causes
dissipation, which may be characterized as a (frequency dependent) bulk viscosity. Figure 9 illustrates
this bulk viscosity for a range of neutron-star matter densities, and for a range of temperatures relevant
for neutron stars [42]. The effect of this type of bulk viscosity on the r-modes has been evaluated using the
expressions in Eq. (4) and (8). Figure 10 iliustrates the resulting neutron-star critical angular velocities
for a range of neutron-star masses. We see that hyperon bulk viscosity completely suppresses the r-mode
instability in 1.4 Mg neutron stars for temperatures below a few times 10? K. Cooling calculations which
include direct URCA reactions involving neutrons, protons and/or hyperons suggest that a neutron star
will cool below this temperature within a matter of seconds: too rapidly to allow the r-mode amplitude
to grow large enough to emit any significant amount of GR. Thus it appears likely that rapid cooling and
the hyperon induced bulk viscosity (in addition to the dissipation from a crust discussed earlier) make
it very difficult for the r-mode instability to play an interesting role in young neutron stars according to
scenario A.
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Figure 9: Density dependence {in units of 10'5 g/em3) of the hyperon bulk viscosity (in units of g/cm s) for a range of
temperatures. .

Finally, there have been a number of recent efforts to explore the effects of non-linear hydrodynamics
on the evolution of an unstable r-mode. What would happen if an r-mode in a very rapidly rotating
star were somehow to escape the various dissipation mechanisms discussed above and manage (despite
present expectations) to grow for several minutes so that its amplitude became large? How large could the
amplitude of such an r-mode grow? What mechanism finally limits the amplitude of such a mode? There
have been several large scale numerical studies, and some interesting recent analytical insights into these
questions. The large-scale numerical studies consisted of putting a rapidly rotating neutron-star model
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Figure 10: Critical angular velocities for neutron stars as a function of hyperon core temperature. Each curve represents
a neutron star of fixed mass, ranging from 1.2Mg to the maximum mass of 1.79My for the equation of state used here.

with excited r-mode on a 3D numerical grid and then evolving the non-lincar hydrodynamic equations
to see what happens. Stergioulas and Font [43] used fully relativistic hydrodynamics in the Cowling
approximation to model this system. They found that large amplitude non-linear r-modes evolve without
significant dispersion in rapidly rotating fully relativistic stellar models (for tens of rotation periods).
Lindblom, Tohline, and Vallisneri {44, 45] studied the growth of an unstable r-mode using Newtonian
hydrodynamic equations coupled to a post-Newtonian expression for the GR reaction force. Neither study
found any non-linear hydrodynamic process that prevented the amplitude of the r-mode from growing to
a value of order unity. These studics however were limited by the availability of computational resources
to somewhat unphysical representations of the physical system of interest: using fairly coarse spatial
resolution of the fluid, lasting for only tens of rotation periods (compared to tens of thousands needed
in the physical case), and using unphysical strengths for the GR reaction force (absent completely in
Ref. [43], and thousands of times stronger than the physical case in Refs. [44, 45]). Recent analytical
studics by Schenk, et. al{46], Morsink [47], and Arras, el. al [18] were able to overcome these limitations.
They studied the non-linear hydrodynamic effects on the growth of an unstable r-mode by considering
non-linear coupling between modes in the weak coupling limit. They show that an unstable r-mode
couples strongly to other modes in this way. When the amplitude of an unstable r-mode reaches a
certain level, aggy, the energy which drives the instability is diverted by these non-linear couplings into a
cascade which excites hundreds (or thousands) of other modes where the energy is ultimately converted
to heat through viscous dissipation. Arras, et. al 48] compute the level where this saturation of the GR
driven r-mode instability occurs to be

[a. [2x105 / Q \*?
Qaqe = 0L005,/ == —(—) , 14
sat 0.1 TGHQmax anx ( )

where 7GR dmax is the dimensionless product of the GR growth time and the angular velocity of the most
rapidly rotating star. The “matching parameter” a. is a measure of the strength of the mode-mode
coupling, which is estimated to be in the range 4 x 10~ < a, < 0.1. So non-linear hydrodynamic forces
will limit the growth of the r-mode amplitude to values in the range: 107% < a.q < 5 x 1073, Such
small amplitudes will prevent the r-modes from radiating significant amounts of GR before the neutron
star becomes quite cold and consequently, according to our present understanding, quite stable. This
limitation on the amplitude of the r-mode also limits the flux of GR that could be emitted during any
period of instability to levels that are unlikely to be detectable.
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4 Concluding Remarks

At the present time it appears that the GR instability in the r-modes may be not be strong enough to
overcome the numerous dissipative processes that act to suppress it in real neutron stars. But there remain
a number of important questions effecting this conclusion which have yet to be completely resolved. It
is not yet completely understocd {although see Refs. [36, 37, 30, 49, 50]) what role magnetic fields play
in the evolution of the r-modes. Will magnetic fields suppress the instability, limit its growth, or merely
change the values of the frequency and growth times? Is the formation of a solid crust delayed long enough
by differential rotation or pulsations after the birth of a neutron star to allow the r-mode instability to
act? Do semi-rigid crust effects move the critical angular velocity to small enough values that the GR
instability can act in the LMXBs? Do superfluid effects (e.g., pinning of the core vortices or vortex-
fluxtube dissipation) suppress the r-mode instability completely in these stars? Does the equation of
state of real neutron-star matter contain hyperons, kaons, or even free quarks which strongly increase the
dissipation in the r-modes? And do rapid direct-URCA type interactions cool young stars on timescales
that are short compared to the r-mode instability timescale?
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Abstract

A new criteria of the dynamical instability in rapidly rotating stars is presented. [t
is well known that a rotating self-gravitating fluid becomes unstable under rapid ro-
tation. FEspecially, simple models as like Maclaurin spheroid have been studied in
detail, and it is known that in Maclaurin model bar-mode becomes dynamically un-
stable when the stellar T7/]10| is larger than 0.27. Here, T is the rotational kinetic
energy, and W is the gravitational potential energy of the model. For more compli-
cated models, however, there is no general consensus whether the result for Maclaurin
model can be applied or not. Although a large number of analysis and simulations
have been done, the general criterion that instabilities set in have not been given, for
compressible stars or differentially rotating stars. In this paper, we have studies the
limits where dynamical instabilities set in, by using linear stability analysis method
for rapidly and differentially rotating compressible stellar models. As the result, when
we adopt the parameter 7'/|W} as the indicator of rotation, we find that the criteria
ol dynamical instabilities strongly depend on the degree of differential rotations. The
critical T/|W| decrcase as the degree of differential rotation get stronger. If strong
differential rotation i~ assumed, the critical value of 7/|W| becomes about 0.2, This
value, i.c. T/|W| ~ 0.2 is much smaller than the critical value for Maclaurin spheroid,
T/|W| =0.27.

1 Introduction

Itis well known that a rapidly rotating self-gravitating fluid is unstable, mainly against m = 2 mode. Iere,
m is the wave number in azimuthal direction. The m = 2 inode is also called as “bar-mode” according to
its deformation. Also it is known that there are two types of instabilities. First one is sccular instability,
which grows with dissipative time scale, as like time scales of viscosities, gravitational wave radiations,
and so on. On the other hand. the second type of instability. dynamical instability, grows very rapidly
with dynamical time scale. In the present study, we will discuss about only dynamical instability. The
physical properties of these instabilitics are well known in Maclaurin spheroid, that is, rigidly rotating
self-gravitational gascous body with uniform density, and corresponding to the polytrope with N = 0.
Dominant types of instabilities are depending on the degree of the stellar rotation [8] [12] . In order
to describe the strength of rotation. we often use a parameter 7'/|W’|, where T is the rotational kinetic
energy, and 1V is the gravitational potential energy of the star. In the case of Maclaurin spheroids, very
important criteria have been derived. That is, when the stellar rotation is enough large, quantitatively,
when T/[1¥] is larger than 0.14, the star is sccularly unstable against bar-mode. Further more, when the
stellar rotation is drastically large, that is, when T/[W| is lager than 0.27, the star is also dynamically
unstable against bar-mode. As mentioned before, these thresholds of instabilities have been derived from
the analysis about Maclaurin spheroid. But, please notice that, also from Tensor Virial analysis about
differentially rotating compressible stars, almost the same results were obtained. Ilence, some authors
have believed that these critical values are universal criteria, and can be expand into more general cases.
From astrophysical points of views. these instabilities may play important roles in the cases involving
rapid rotations. Especially, dynamical instability is quite important since it grows much faster than
secular instability. Lor iustance, in the star forming regions. or in the collapsing massive stellar cores,
dynamical instability may play a crucial role to pull out the angular momentum from the central core.

! c-mail:karino @valis.c.u-tokyo.ac.jp
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In the past, such discussions had been made by using the stability criteria given from the case of
Maclaurin spheroids. Namely, even if we adopt compressible equations of state, we had regarded the
criteria to be the same as the case of rigidly rotating non-compressible cases. This expansion, however,
has no guaranteed basis, because Tensor Virial method which is one of the most popular method used
for stability analysis cannot be applied to differentially rotating cases, in fact.

Recently, some studies which indicate that the stability criteria in the compressible stars should be
revised, have been published. Before "90s, we had believed that the stability criteria are universal values,
and do not depend on the stellar parameters as like equation of states, or rotation laws. Contradictory,
some authors have presented their results of numerical simulations indicating that, bar-mode grows
rapidly even if T/|W| is less than 0.27, in differentially rotating stars [3] [6] [7] [10]. As mentioned
before, such a change of properties of the stellar stability may influence astrophysics. Therefore, it is
necessary to check whether the other stability analysis give the same result with those simulated results.
For such a motivation, we have tried to obtain the stability criterion of differentially and rapidly rotating
self-gravitating fluid bodies, by using linear stability analysis.

2 Numerical Method

In differentially rotating polytropes, we are studying the critical values of rotation where dynamical
instability sets in, by using linear stability analysis. The reason why we use linear stability analysis is
following; (1)Former analytic, or semi-analytic methods as like Tensor Virial method, are very strong
for simple cases as like Maclaurin spheroids. Contrary to this, for complicated models, for example
models accompanied with differential rotations, those analytical methods cannot applied. (2)Non-linear
simulations can not give precise limits of instability without vast computing time, although they can
pursue the non-linear evolutions of unstable modes. The purpose of this paper is obtaining the criteria
for several models, so non-linear analysis are not suitable for the present study. Therefore, in the present
study, linear stability analysis is applied to obtain the criteria where instability sets in.

2.1 Equilibrium Models

To analyze the stability, we have to obtain the equilibrium configuration of the stellar model. We have
used the SFNR (Straight Forward Newton-Raphson) method to obtain equilibrium states of differentially
rotating stars [4]. Here, to compute the equilibrium state, we have assumed only polytropic equation of

state,
p=Kp't¥, (1)

where I’ and N are the polytropic constant and the polytropic index, respectively. Also, axisymmetric
configurations and Newtonian gravitation are assumed. Now, since the cases accompanied with differential
rotations are considered, the angular velocity is assumed to be expressed by the following formula:

2 _ Jo .

T = e 2)
where R is the distance from the rotation axis, and jp is a constant. The quantity .4 is a parameter which
represents the degree of differential rotation. The rotation becomes more differentially as 4 becomes
small, and, on the other hand, when we consider the limit of 4 — >, the stellar rotation comes back
to uniform rotation. As an example, when 4 = 1, the central angular velocity is as twice as the surface
angular velocity on the equatorial plane. Assuming these conditions, a hydrostatic equation and a Poisson
equation for gravitational potential are solved numerically by SFNR method. The solved equilibrium
configurations are next used as the non-perturbed states for following stability analysis.

2.2 Perturbed States

To compute the perturbed states, perturbations are assumed to be adiabatic. The method which we use
to obtain the behavior of bar-mode is advanced version of the linear stability analysis code which has
been used 1o study f-mode secular instability [13] and r-mode instability [5].The basic concept of this
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scheme is to solve the perturbed fluid equations for rotating polytropes by the Newton—Raphson iteration
scheme. As solving perturbed fluid equations, the perturbed quantities (the velocity components in each
directions, density perturbations) are expanded as following manner;

6fl (7’,0, ‘p’t) = ZGXP(T(W - m‘P))fm(r: 0)1 (3)

where 6 f means the Euler perturbation of the corresponding quantity. Iere, (r,8,¢) are the ordinary
spherical coordinates, and m is the azimuthal wave number. Since we are considering bar-mode, we deal
only the case with m = 2, in this paper. o is corresponding to the eigenvalue of the mode. Constructing
a system of perturbed fluid equations with perturbed gravitational potentials, and solving them under
above conditions numerically together with boundary conditions, we can obtain the eigenfunctions and
eigenvalue of the modes. Ilere, the point is to solve not only the real part of solved eigenvalue, o, but also
its imaginary part. Since solved quantities are expanded as eq.(3), if the eigenvalue has finite imaginary
component, solved mode can be regarded to be dynamically unstable. Therefore, the critical value of
instability corresponds to the first point where the imaginary part of the eigenvalue emerges when the
stellar rotation getting faster.

3 Discussions

3.1 Numerical Results

By iterating computations along certain sequences with fixed the strength of differential rotation (i.e.
fixing the parameter A), we can get critical points where dynamical instability sets in. Ilere, as the
parameter describing the effect of rotation, we use a parameter, rp = raxis/Teq, called “axis ratio”. roxis
and req are the surface radii on the rotational axis and equatorial plane, respectively. By fixing A (and
also fixing equation of state) and changing r,, we can obtain each sequence. At present, only intermediate
compressible model with A’ = 1.0 have been examined, and the parameter A have been computed in the
region up to A~! = 2.0. For the models with large As, mass shedding from equator would occur before
dynamical instability sets in, hence it is not necessary to consider lager A in the present context.

In Figure 1, the absolute value of imaginary part of the eigenvalue is shown as an example. The stellar
model is a polytrope with N = 1.0 and is under slight effect of differential rotation, where A = 1.0. In this
case, it is clear that the absolute value of the imaginary component of eigenvalue is growing up rapidly
when the stellar rotation becomes faster than T/|W| =~ 0.27. Such a rapid growing of imaginary part of
the eigenvalue is a typical feature of dynamical instability. Ilence, in this case, it is reasonable to regard
that the instability appears around the point of 7/|W| = 0.27. When the degree of differential rotation
get stronger, however, this critical value of rotation tends to decrease, as shown in Figure 2. This figure
shows the critical points of T/|Ws, plotted against the parameter A. The horizontal axis is the reciprocal
value of the parameter A, and the right-hand side is corresponding to strong differential rotations. These
points in figure 2 shows that, in strong differential rotation regions, the critical point where dynamical
instability sets in, becomes smaller. When we choose extremely strong differential rotation as A~! = 2.0,
the critical values of T/|W]| takes only about ~ 0.2. This value is much smaller than the case of rigidly
rotating Maclaurin spheroid. This tendency clearly means that in strong differential rotation, bar-modes
will grow rapidly and non-linearly even if the stellar rotational energy is not so large. The astrophysical
implications will be discussed in following section.

3.2 Astrophysical Application

The tendency that dynamical instabilities may appear even if the rotational speed is not so fast when
the strong differential rotations are considered. This result agrees with the previous results obtained
by non-linear simulations about differentially rotating masses [3] [6] {7] [10). These agreement implies
that when we consider rapidly and differentially rotating astrophysical objects, we should not apply the
stability criteria given from uniformly rotating fluids.

Also such a change of aspects makes us modify and reconstruct our understandings about astrophysical
objects. Although there are only a few situations influenced from dynamical instability since such an
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instability appears only in the cases with drastically rapid rotations, in some cases this kind of instability
is so important from the astronomical point of view.

One example case being important subject of dynamical instability is nascent neutron stars. Since
the radius of a neutron star is so compact, the rotational velocity is quite rapid if the angular momentum
of the progenitor is conserved during neutron star formation. Additionally, it is suggested that young
neutron stars made from accretion induced collapses of white dwarf - giant binary systems, and from
coalescence of neutron star - neutron star binaries are differentially rotating [6) [11]. Therefore those
nascent neutron stars may be suffered from dynamical instability because of their rapid and differential
rotations. Hence, the decrement of the critical rotation rate where dynamical instability appears may
play important roles. Neutron stars suffered from dynamical instability will be deformed due to nonlinear
growth of non-axisymmetric perturbations. Then those nonlinearly deformed compact stars with rapid
rotation will emit large amount of gravitational wave. Such young neutron stars with unstable modes
will be important target of next generation laser interferometer [9] {10].

Another example which should be concerned with dynamical instability is star forming gas cloud. A
proto-stellar object is made from widely expanded gas cloud. During contraction of a huge gas cloud into
a small young stellar object (YSO), the radius of the gas cloud decreases for many orders. Throughout
such a star formation, the total angular momentum must be almost preserved. Ilence, the rotation rate
of the final young stellar object will be extremely high, and it may be suffered from dynamical instability.
What will happen if dynamical instability grows during star formation is still unclear. Several authors
thought that dynamical instability during star formation is concerning with binary formation, and other
some authors predicted the new systems consisted of the central young stellar object object and circum-
YSO disk [1] [2]. To obtain the fact, reliable non-linear simulations and high-resolution infrared/radio
observations about star forming regions.

We think that such kinds of stability analysis must be done in more detail, in ncar future, to discuss
dynamical instability in differentially rotating compressible fluids.

We would like to thank M. Shibata for his helpful discussions and comments. We are grateful 1o K.
Uryu and S'i. Yoshida for their discussions and useful comments.
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Figure 1: Imaginary part of eigenvaluc of m = 2 mode is shown. The stellar model is N = 1.0,4 = 1.0.
in slowly rotating regions, this value is constantly zero. Contrary, once stellar rotation reaches certain
point, the value grows very rapidly. This point correspond the critical limit where dynamical instability
sels in.
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Figure 2: The behavior of critical points where dynamical instability appears. The stellar model is again
N =1.0,4 = 1.0. When strong differential rotations are considered, the critical value of 7'/]1¥] tends to
decrease.
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Abstract
We have computed the eigenfrequencies of f modes for a constant rest-mass sequences
of rapidly rotating relativistic inviscid stars in differential rotation. The frequencies
have been calculated neglecting the metric perturbations (the relativistic Cowling
approximation) and expressed as a function of the ratio between the rotational ki-
netic energy and the absolute value of the gravitational energy of the stellar model
B = T/|W|. The zeros and the end-points of these sequences mark respectively
the onset of the secular instability driven by gravitational radiation-reaction and the
maximum value of 8 at which an equilibrium model exists. In differentially rotating
stars the secular stability limits appear at a 8 larger than those found for uniformly
rotating stars. Differential rotation, on the other hand, also allows for the existence
of equilibrium models at values of 8 larger than those for uniformly rotating stars,
moving the end-point of the sequences to larger 8. As a result, for some degrees
of differential rotation, the onset of the secular instability for f modes is generally
favoured by the presence of differential rotation.

1 Introduction

Instabilities of rotating relativistic stars have been studied for more than three decades in relation to
the emission of gravitational waves driven by radiation-reaction. Since the discovery of the so called
Chandrasekhar-Friedman-Schutz (CFS) instability [4, 12], in fact, the stability properties of a number
of non-axisymmetric stellar oscillations have been investigated using different techniques (see [11, 1] for
recent reviews). The f (fundamental) modes were among the first modes of oscillations ever to be studied
in rotating relativistic stars. These are spheroidal modes with harmonic indices = m and represent the
generalization of the Kelvin modes of Newtonian Maclaurin spheroids to compressible fluid stars. Over
the years, the literature on the subject has been continuously updated and the limits for the onset of
the instability have been improved through different approaches. This has been done by several groups
focussing on Newtonian stellar models [2, 7, 6, 9, 14, 23, 15, on post-Newtonian stellar models [8], and
on rapidly rotating relativistic stars [30, 28, 25]. Part of the interest in these modes comes from the fact
that they have long been regarded as the modes of oscillation most susceptible to the CFS instability. In
particular, for stars rotating at a rate at which mass starts being shed at the equator (the mass-shedding
limit), general relativistic calculations on the stability limit indicate that the { = m = 2, f-mode (also
referred to as the “bar-mode”) could have the shortest growth timescale. Because of this, and because
of a possible weakening of the bulk viscosity at very high temperatures [19], the bar-mode may represent
the most important non-axisymmetric instability in very hot and rapidly rotating newly born neutron
stars.

!E-mail:yoaohida@ainsa.it
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The occurrence of an f-mode instability in a newly born uniformly rotating neutron star is in general
prevented by the large bulk and shear viscosities of nuclear matter in those conditions and detailed
calculations have shown that the instability is suppressed except for very large rotation rates, close to
the mass-shedding limit [16]; for superfluid stars an even stronger damping was calculated [20). More
recently, however, a number of new clements have improved our understanding of the instability and have
again increased the expectations that the f mode instability might characterize the carliest life stages
of a newly formed neutron star. The first of these new elements was provided by [8] who have shown
that, within a post-Newtonian approximation, general relativistic effects tend to further destabilize the
f mode, lowering the critical value of the ratio between the stellar rotational kinetic energy and the
absolute value of the gravitational encrgy, 8. = (T/|W|). at which the secular f-mode instability is
triggered. Analogous results have also been found by [30] within the relativistic Cowling approximation
and by [28] in fully general relativistic calculations. The second new clement was provided by [27], whose
fully general relativistic hydrodynamical simulations have shown that the remnants of binary neutron star
mergers could be, at least for polytropic equations of state, rapidly and differentially rotating stars. In
addition to this, [22] have recently computed the structure of objects formed in accretion-induced collapse
of rotating white dwarfs and found that these objects can rotate extremely rapidly and differentially.

Within this framework, differential rotation has two major consequences. Firstly, it allows for the
existence of an equilibrium model at values of 8 which are considerably larger than the ones supported
by the counterparts with the same rest-mass but uniform rotation [3). Secondly, as shown by a number
of authors for Newtonian stellar models [23, 14, 13] , it increases the critical value 8. for the onset of
the secular instability. In this revised picture, we have computed the eigenfrequencies of f modes and
determined the secular stability limits for rapidly rotating relativistic stars with differential rotation.

2 Basic equations

The equilibrium stellar models are assumed to be stationary and axisymmetric and are constructed with
a numerical code based on the method of [18]. Their spacetime is therefore described by the line element

ds? = —e*dt* + e**(dr® + r’d6?) + e**r?sin® 0(d¢ — wdt)? , 1)

where v, a, 4, and w are the “gravitational potentials” and are functions of the r and 8 coordinates only.
The stars are modeled as relativistic polytropes with the equation of state (EOS)

p p 1+1/N
—=Kk|—- e=p+Np, 2
o (pc) ) p+Np (2)

where p,p,e arc the pressure, the rest-mass density and the total cncrgy density, respectively. The
subscript “c” refers to the maximum value for the equilibrium model which is used for normalization.
In order to investigate how the limits for the secular instability depend on the “stiffness” of the EOS,
we have performed calculations for two different polytropic models whose properties are summarized in
Table I (We adopt units in which ¢ = G = Mg = 1.). Along each sequence of rapidly rotating stellar
models, the polytropic constant , the polytropic index N and the total rest-mass M, are kept constant.

N K A’[o/b!@
Model (a) 0.5 6.02 x 107 1.60
Model (b) 1.0 1.00 x 102 1.52

Table 1: Properties of the polytropic equilibrium models.

The rapidly rotating stellar models are constructed after specifying a law of differential rotation
! = Q(r,0) with a choice which is, to some extent, arbitrary. This is because there are a number of
differential rotation laws that satisfy the integrability condition of the equation of hydrostatic equilibrium
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as well as the Rayleigh criterion for dynamical stability [29]. All of these laws are physically consistent,
cannot be excluded on physical grounds and might influence the qualitative behaviour of the results. We
here follow the formulation suggested by [18] who have modeled the rotational angular velocity profile as

(9 = w)r? sin? geln-v)
1 - (0 — w)r? sin® ge(s-v)

A -0)= (3)
Here (1 is the angular velocity at the rotational axis and A, is a dimensionless parameter accounting for
the degree of differential rotation. In particular, the degree of differential rotation increases with AZL,
and in the limit of A7! — 0, the profile reduces to that of uniform rotation. In the Newtonian limit, the
differential rotation law (3) reduces to the so-called “j-constant” law [5]

2
a2 = ____AN_Z , (4)
lo A2 +r2sin®0
and is commonly used in Newtonian calculations [10, 17, 26].
Once the rapidly and differentially rotating cquilibrium stellar model has been constructed, we intro-
duce “adiabatic” perturbations in the fluid variables so that the adiabatic index of the perturbed matter
coincides with the polytropic exponent of the cquilibrium configuration

Ap ( I)Ap i
Z_l1+=12¢. 5
> N &)

Here, A refers to a Lagrangian perturbation of a variable. Becausc of the stationary and axisymmetric
background, the Eulerian perturbations are naturally decomposed into a harmonic component of the type
~ exp(—iot + im@), where o is the mode angular frequency and m is an integer. Working within the
Cowling approximation [24], we do not include Eulerian perturbations in the metric and the fluid oscil-
lations are investigated in the fixed background spacetime of the equilibrium star (1) This simplification
clearly introduces an error which is particularly large in the case of the lower order f modes. However,
as discussed in previous works [21, 32, 30], the results obtained with this approximation reproduce well
the qualitative behaviour of the mode cigenfrequencies with the errors being of the order of 10% for low
mode-numbers and progressively less for high mode-numbers [21, 30]. Furthermore, by neglecting the
contributions coming from the metric perturbations, the Cowling approximation tends, at least for the
lowest mode-numbers (i.e. m = 2,3), to overestimate the stability. [30]

Introducing the harmonic perturbations in the hydrodynamical equations yields a system of four
partial differential equations accounting for baryon number conservation and conservation of the stress-
energy tensor. These cquations are then solved for the four unknown functions represented by the Eulerian
perturbation of the 3-velocity 6v™,8v?,8v% and the dimensionless quantity ¢ = op/(e + p). The partial
differential equations are discretized on a two-dimensional numerical grid and are solved following the
strategy discussed by [30], after imposing Ap = 0 at the surface of the unperturbed star as a boundary
condition. For each degree of differential rotation A, and for each mode-number m, the solution to the
eigenvalue problem is found for increasing values of 4 until the limit of mass-shedding is found, which is
indicated with B, (see [18] for a definition of 3).

3 Results

The results of these calculations are presented in Fig.2, where we plot the frequencies of the m = 2 mode
as a function of the parameter 8 for the model (b) of Table I. Different curves refer to different degrees
of differential rotation. Note that the values of 8 at which ¢ = 0 (i.c. A.) signal the onset of the secular
instability (neutral points) and that these increase as the degree of differential rotation is increased. At
the same time, however, the differentially rotating models are able to support larger values of 8 before
reaching the mass shedding limit 8,, represented by the end-points of the curves in Fig.2.

Given the results of Fig.1 it is natural to ask whether differential rotation favours or not the onset of
the f-mede instability in rapidly rotating relativistic stars. The evidence that B, increases with increasing
differential rotation is not sufficient to draw a conclusion since differentially rotating models can support
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Figure 1: [Left] Eigenfrequencies of the m = 2 mode as a function of the parameter § = T/|W| for the
model (b) of Table I. Different curves refer to different degrees of differential rotation, with the Al=00
line being the one of a uniformly rotating model. The filled dot indicates the neutral stability point of a
uniformly rotating star computed in full general relativity [28).

Figure 2: [Right] 3. as a function of the rate of differential rotation. The two panels refer to the two
models of Table I and the different line types refer to different mode-numbers. The filled symbols show
a comparison with the fully general relativistic calculations of [28].

values of 8 which are considerably larger than those of uniformly rotating stars before reaching the
mass-shedding limit. This is simply due to the fact that in the differentially rotating model described
by eq. (3) the inner regions can rotate rapidly while the outer regions rotate more slowly, preventing
mass-shedding. Thus, to quantify the importance of differential rotation for the onset of the instability
we need to measure not only the secular stability limit 3., but also how close the latter is to the ultimate
limit of mass-shedding 3,. A relative measure of the two quantities across sequences with different degrees
of differential rotation can provide information on the likclihood of the existence of a configuration at
the onset of the secular instability and clarify the role played by differential rotation. In this sense, the
normalization of 8. with 8, is equivalent to the normalization, commonly used for uniformly rotating
stars, of writing the stellar angular velocity in terms of the mass-shedding angular velocity.

In Fig.2 we show the behaviour of the ratio 8. = 8./8, as obtained for degrees of differential rotation
ranging between A_! = 0 (uniform rotation) to A7! = 1.25.

The two panels of Fig.2 refer to the models (a) and (b) of Table I, respectively. In each panel, the
different lines refer to the mode-numbers m = 2,3 and 4. As anticipated above, the Cowling approxima-
tion overestimates the stability of the stellar models by introducing an error which is of the order of 10%
for the m = 2 mode but is considerably smaller for higher mode-numbers. This can be appreciated by
comparing with the fully general relativistic values of 8. computed for uniformly rapidly rotating stellar
models [28] and indicated with filled symbols in the lower panel of Fig.2. The overall decrease of 3. for
increasing degrees of differential rotation provides a clear indication that the onset of the secular f-mode
instability is in general favoured by the presence of differential rotation. This is most evident in the case
of a stiffer EOS [model (a) of Table I} where, for reasonable degrees of differential rotation, g, is reduced
by about 17%.

A more detailed discussion of the results presented in this paper can be found in (31).

1t’s a pleasure to thank John Miller and Nick Stergioulas for useful discussions and comments. This
research has been supported by the MIUR, EU Research Training Network Contract HPRN-CT-2000-
00137 and Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science (12640255).
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r-modes of Slowly Rotating Relativistic Stars

Shijun Yoshida'
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Abstract

We investigate properties of r-mode solutions of Kojima'’s equation characterized by
the regular eigenvalue problem in slowly rotating relativistic polytropes. Here, Ko-
jima's equation is the master equation for pure r-modes in slowly rotating relativistic
stars. Our numerical results suggest that discrete r-mode solutions of Kojima's equa-
tion for the regular eigenvalue problem exist only for restricted polytropic models.
In particular, the r-mode associated with [ = m = 2, which is considered to be the
most important for gravitational radiation driven instability, does not have a dis-
crete mode as a solution of the regular eigenvalue problem for polytropes having the
polytropic index N > 1.18, even in the post-Newtonian order. Furthermore, for an
N = 1 polytrope, which is employed as a typical neutron star model, discrete r-mode
solutions for regular eigenvalue problem do not exist for stars whose relativistic factor
M/R is larger than about 0.1, where M and R are stellar mass and stellar radius,
respectively.

1 Introduction

Since the discovery of the gravitational radiation driven instability of the r-modes by Andersson {1] and
Friedman and Morsink [2], a large number of studies on the properties of r-modes and inertial modes of
rotating stars have been done to prove their possible importance in astrophysics (for a review, see, e.g.,
Lindblom’s contribution of this volume or [3, 4]). Although our understandings of r-modes have been
largely improved by recent energetic investigations, most studies concerning r-modes have been done
in the framework of Newtonian gravity. As for r-modes in the framework of gencral relativity, Kojima
[5] found the possible existence of a continuous spectrum for pure r-modes in relativistic stars. Here,
and throughout this paper, we call the rotational mode whose eigenfunctions are composed of only one
axial parity component in the non-rotating star limit a “pure r-mode”. Beyer and Kokkotas [6] generally
verified the existence of a continuous spectrum. Kojima’s formalism was developed by Kojima and
Hosonuma (7, 8] to include high order rotational effects. Recently, Lockitch, Andersson, and Friedman [9)
have shown that pure r-modes in a relativistic star can exist only in non-isentropic stars, whose specific
entropy distribution is not constant. They have also found that discrete r-mode solutions in Kojima's
equation can exist by considering uniform density stars. It is reasonable Lo consider that such discrete
r-mode solutions correspond to those of Newtonian r-mode. However, their study was restricted to the
case of uniform density stars. As mentioned later, the frequency range for the regular eigenvalue problem
is confined to the narrow region, and depends on the structure of equilibrium stars. Thus, it is interesting
and important to answer the question of whether r-mode solutions of Kojima’s equation for the regular
eigenvalue problem exist in all non-isentropic relativistic stars. In this paper, therefore, we study discrete
r-mode solutions of Kojima'’s equation for a large class of polytropic and non-isentropic relativistic stellar
models. Throughout this paper, we will use units in which ¢ = G = 1, where ¢ and G denote the velocity
of light and the gravitational constant, respectively.

2 Method of Solutions

We consider slowly rotating relativistic stars with a uniform angular velocity Q, in which we take into
account the first order rotational effect in §2. The geometry around the equilibrium stars can be described
by the line element (see, e.g., [10]):

ds? = —e®Mdt? 1 22Ndr? | r2dp? 4 r2sin? 0d? — 2w(r) r? sin’ Odtdy . 1)

1E-mail:yoshida@astr.tohoku.ac.jp
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Throughout this paper, the polytropic equation of state is assumed:
p=K 6l+7{' » (2)

where N and K are constants. Here, p and ¢ stand for pressure and mass-energy density, respectively.

We consider oscillation modes in rotating relativistic stars such that the eigenfunctions are stationary
and are composed of only one axial parity component in the limit 2 — 0. A subclass of those modes should
be a relativistic counterpart of r-modes, which are able to oscillate in all slowly rotating Newtonian fluid
stars. According to Lockitch et al. [9}, such modes are allowed to exist only if the star has non-isentropic
structures. Therefore, we assume stars to be non-isentropic, although the effects due to deviation from
isentropic structure on oscillation modes do not appear in the first order in Q. According to the formalism
by Kojima (5] (see, also, {9}), let us write down the pulsation equation for relativistic r-modes with
accuracy up to the first order in Q. The metric perturbation, dg,s, and the Eulerian changes of the fluid
velocity, éu®, that do not vanish in the limit £ — 0 are given as

(60, 500) = itoutr) (220 00 ¥in(0,6)) e, )
6 5oy - 0T [ BoYim(0,0) BoYim(0,0)\ i
(dv’, du?) r2 sin@ ' sin@ e @

where Y, (8, ) are the usual spherical harmonic functions, and ¢ denotes the oscillation frequency
measured in the inertial frame. All other perturbed quantitics become higher order in . The metric
perturbation, Ag, obeys a second order ordinary differential equation,

_ —2A
Dim(r; 5) [eu—)\i (e‘”“’\ @) - (l(l +1) + 2 +,.36 + 8= (p + c)) ho.l}

dr dr r?
+ 16%(p+ hoy =0, (5)
where oma
mo
Din(r;6) =1 = ———, 6
im(73) W+ e ()
Here, we have introduced the effeclive rotation angular velocity of the fluid, & = € —w, and the corotating
oscillation frequency, & = o + m§. The velocity perturbation of fluids U; is determined from the function

ho, through the algebraic relation,

9
[1 —I(I_T%E] Up + hot = 0. @
Because equation (3) is second order ordinary differential equation, two boundary conditions are required
to determine solutions uniquely. For physically acceptable solutions, the function hy; must vanish both
at the center and at spatial infinity. When these boundary conditions are imposed, our basic equations
are solved as an eigenvalue problem, with an eigenvalue . As shown by Kojima [5], when Dy, (r;5) = 0
is satisfied inside the star, the system of our basic equations becomes a singular eigenvalue problem,
since the function Dy, (7; &) is proportional to the coefficient of the second derivative of function hq,.
On the other hand, we can treat the equation as a regular eigenvalue problem if Dy, (r;&) = 0 is not
satisfied inside the star, because the last term of equation (5) vanishes outside the star, as well as the
function Dy, (r;&). Because of this singular property of the basic equation, Kojima also concluded that
a continuous spectrum can exist in relativistic rotating stars (see, also, [6]). Recently, Lockitch et al.
[9] have showed that the equality Dy, (r;6) = 0 must be satisfied at some spatial point to have non-
trivial solutions hq;. Because @& is a monotonically increasing positive function of r, according to the
considerations of Lockitch et al. [9], in order for the equation (5) to be treated as a regular eigenvalue
problem the frequency & must be in the region,
2ma(R) <<

i+

2ma(oc)  2mQ
TR ®)
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where R is the stellar radius in the coordinate (1). On the other hand, when & satisfies the inequality

2ma(0) _ _ _ 2ma(R)
T+ %S Tr @

we must treat equation (3) as a singular eigenvalue problem.

3 Numerical Results

In this study, we consider only r-mode solutions of a regular eigenvalue problem, since a discrete eigen-
frequency can be obtained. Therefore, we focus on cigenfrequencies in the range (8). We compute the
frequencies of the r-mode for several polytropic stellar models. In the present study, only the fundamental
r-modes, whose eigenfunction U; has no node in the radial direction except at stellar center, are obtained.
In Figure 1, scaled eigenfrequencies, ¥ = /9, of discrete r-modes are given as functions of M/R for
modes with m = {. Note that for modes associated with [, we can directly obtain the eigenfrequency of
a mode with any value of m from a mode with m = . Therefore, only results for modes associated with
m = { arc shown throughout this paper. Eigenfrequencies for stars with four different polytropic indices,
N =0, 0.5, 0.75, and 1, are shown in the four panels of Figure 1. In each panel, frequency curves for
mades with I = 2, 3, and 4 are depicted versus the relativistic factor M{/R. From the figure, we find
that the frequencies x monotonically decrease as the relativistic factor M/ R increases. This behavior is
caused by the dragging of the inertial frame, due to the stellar rotation. We find that some frequency
curves in Figure 1 are terminated at some value of M/ R, beyond which equilibrium states can still exist.
Here, the maximum values of A//R for polytropic equilibrium stars with N = 0, 0.5, 0.75, and 1.0 are
given by 4/9, 0.385, 0.349, and 0.312, respectively. We also find that the length of those curves tends to
be shorter as either the polytrope index N or the angular quantum number ! increases.

Critical values of M/R are shown as functions of polytropic index N in Figure 2. Curves of critical
values, (M/R)crit, for modes with { = 2, 3, and 4 are given in the figure. Note that values of (M/R)crit
shown here are numerically approximated ones. These only give the lower limit for accurate values of
(M/R)crie- In Figure 2. stars whose parameters are in regions under the curves of (M/R)crie have a
discrete r-mode spectrum. Results of our numerical analysis also suggest that for the N = 0 case, the
critical value of M /R is ncarly equal to 4/9. Indeed, discrete r-mode solutions with frequencies in the
range {8) may exist in all uniform density stars, independently of the value of Af/R. This is consistent
with the result by Lockitch et al. |9]. The figure also suggests that even in nearly Newtonian stars, whose
value of relativistic factor Af/R is sufficiently small, r-mode solutions of the regular eigenvaluc problem
disappear if the value of N is over some critical value, say Nepi, (for details, see [11]).

4 Discussion and Conclusion

We have investigated the properties of r-mode solutions of Kojima's equation characterized by the regular
eigenvalue problem in slowly rotating relativistic polytropes. Our numerical results suggest that discrete
r-mode solutions of Kojima's equation with frequency in the range (8) disappear for some polytropic
models.

As mentioned by Lockitch et al. (9, r-mode solutions with frequency in the range (8) might be
considered to be counterparts of Newtonian r-modes, since the true relativistic analogue to a Newtonian
r-mode should be a distinct mode with an well-defined eigenfunction. In fact, such an r-mode solution
exists in all N' = 0 polytropes, as shown numerically in Lockitch et al. [9] and in this study [11]. However,
for some N # 0 polytropes. we numerically find that an r-mode solution with frequencies in the range
(8) do not appear when Af/R > (M/R)crit. o N > Nery. Although we do not have a mathematically
rigorous proof for these numerical results, we can make conjectures about the relativistic r-mode as
follows: for N — 1 polytropic models, which is employed as a typical neutron star model, discrete r-
mode solutions with frequencies in the range (8) do not exist for stars whose relativistic factor M/R is
larger than about 0.1. If those conjectures are true, most typical neutron stars do not have a discrete
r-mode solution with frequencies in the range (8), since a typical relativistic factor for a neutron star is
considered to be about 0.1-0.2. The r-modes associated with I = m = 2. which is considered to be the
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most important for gravitational radiation driven instability, does not exist as a solution for the regular
eigenvalue problem for polytropes having N > 1.18, even in the post-Newtonian order. As is well known,
however, r-modes exist in all Newtonian stars with uniform angular velocity. Thus, it is likely that
distinct r-modes can propagate in nearly Newtonian stars. Accordingly, results obtained in this study
are somewhat strange. Form this consideration, some approximations used in this study might break
down.

Finally, let us consider possible effects to obtain regunlar r-mode like solutions in relativistic stars. If
the frequency has a non-zero imaginary part, a continuous part of spectrum might disappear because
the singular point of our basic equation does not appears for the complex frequency. For example,
the frequency should be complex when gravitational wave radiates due to r-mode oscillation. Recently,
however, Yoshida and Futamase |12} and Ruoff and Kokkotas [13] have suggested that this is not the
case. According to them, radiation reaction effects cannot regularize singular cigensolutions of Kojima's
equation. Regrettably, we cannot still exclude this possibility because those studies employed some
approximation to include radiation reaction effects. Another possibility is to include high order effects of
rotation in pulsation equations. Kojima and Hosonuma [8] derived extended Kojima's equation, taking
into account the rotational cffects up to the third order with Q. They found that extended Kojima's
equation does not have singular properties unless the buoyant force inside the star vanishes. Although
solutions of extended Kojima'’s equation have not been obtained yet, this equation might have regular
r-mode like solutions. However, those are only speculations. In order to have a clear understanding of
r-modes in relativistic stars, the further progress of studies is needed.
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Figure 1: Scaled frequencies, & = ¢/, of the r-modes in polytropic models with N = 0, 0.3, 0.73, and
1, plotted as functions of A{/R in the four panels. In each panel, the frequencies for modes with { = 2, 3,
and 4 are given. Labels indicating the polytropic index N are attached in the corresponding panels. The
cigenvalues of the r-modes that are described above but are not given in the figure, for instance { = 3
mode in N = 1 polytrope, are not obtained by using our numerical method. Vertical dotted lines show
the maximum values of A{/R for equilibrium states: M/R = 0.444 for N = 0, AMf/R = 0.385 for N = 0.5,
M/R =0.349 for N = 0.75, and M/R = 0.312 for N = 1.0.
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Abstract

Evolution of purely axial displacement given as the initial data is calculated on slowly
rotating relativistic stars. The radiation reaction effect is incorporated by the near-
zone boundary condition with the out-going wave solution. We numerically evaluate
the growth rate of the amplitude of the Ruid oscillation due to the radiation reaction
instability. The growth rate agrees with the Newtonian estimate by a factor 2 even
in relativistic cases. We also discuss the secular change of the functional form in long
term evolution.

1 Introduction

The axial oscillations in the rotating stars have been attractive, since the discovery of the r-mode insta-
bility [1, 2]. The radiation reaction instability may play a significant role in the spin-down of neutron
stars as well as being a strong detectable gravitational wave source. Most of the studies are however
limited to idealized situations. Some realistic effects such as the magnetic field and the solid crust may
significantly modify the previous estimate. In this paper, we do not consider such realistic ingredients.

One important question arises. Are the estimnates based on the Newtonian r-mode still good in the
relativistic star? The answer is trivially no. We cxpect the validity breaks down in general as the
relativistic factor increases. We may say that the Newtonian estimate is valid in white dwarfs, but not
so good in neutron stars. One method to answer in definite way is to calculate the normal mode in lots
of stellar models. We here follow a different approach. Assuming that a certain kind of displacements is
dominated, the subsequent evolution is numerically calculated. The function imposed at the initial time
is the axial displacement with a single spherical harmonic. This is a solution in the limit of Newtonian
incompressible fluid. Since minor parts of the displacement are neglected during the carly phase, the
calculation is simpler. However, there is no reason that such spatial form is preserved with time. The
symmetry will be broken in general, since the oscillation in the rotating star is mixed with the different
spherical harmonics. The range of our approach is therefore limited by the time-scale. The time-scale is
evaluated by the sccond order effects of rotation, and is rather long in the slow rotation case. Among
the higher order effects of rotation, the radiation reaction is the most important factor, which we focus
on in this paper. We calculate the evolution of purely axial displacement in the lowest-order equations,
but effectively included the radiation reaction effects, which is of order ¥%+2.

Recently, some authors have published their works about numerical evolution of the r-mode oscillation.
Stergioulas and Font [3] performed numerical simulation with 3-D general relativistic hydrodynamical
code. They followed the time-cvolution of fluids up to 20 rotations in fixed gravitational field, i.e. without
the gravitational radiation. They did not consider the radiation reaction. Lindblom et al [4] studied the
non-linear cvolution of the Newtonian r-mode with the gravitational radiation instability. Our method
is complementary to these works. We use approximate equations based on a relativistic perturbation
theory with the radiation reaction.

! E-mail:numa8theo.phys.sci.hiroshima-u.ac.jp
2 E-mail:kojima@theo.phys.sci.hiroshima-u.ac.jp
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2 Formulation

2.1 Basic equations inside the star

We consider perturbations on the uniform rotating star with the angular velocity €. For the general
oscillations with small amplitude, polar and axial parts are mixed in the lowest order of the rotation
rate, and they form the hybrid mode. However, the classical r-mode can be described by a single purely
axial spherical harmonic. The tangential components of the 3-velocity on the sphere are dominant for
the mode. They can be described by the axial vector spherical harmonic. They are written in a local
orthogonal frame

(619, 6v%] = ® (dv(t,r) [-ﬁaoy.,,.(o,o),sin 005 Yim (0, o')]) , (1)

where the symbol R means taking the real part, but is omitted from now on. We here restrict our
calculation to the lowest order in the slow rotation formalism of the perturbation theory [5, 6|. The
equations of axial oscillations depend on the time and radial coordinates,

(B + im(S2 — x)Uim(t.7) + 47(po + po)rie™ (8¢ + imQ)Pyn(t,7) = 0, (2)

'2,..2 1 .

14— [F(Jr‘%m(t,r))’ = (v 4 167(po t pa)c)Pum(t, r)] = Upa(t, 1), (3)

where a prime denotes a derivation with respect to r. The function @, is related to components
of the metric perturbations, i.c. dgrg = —r?®p,/sin09,Y:, and dgie — r2®pn sin03yYim. The fluid
perturbation Uy, is related to the function in Eq.(1) as

U,m(l, r)

dv(t,r) = . 4
(&) (po + po)re=" )
Equation (2) can be formally integrated as
Upn(t,7) = c"*"'(""")‘U‘m(O,r) —dn(po 1 po)rie™
¢
x (7)) - eimit-xt {d’l,,,((),r) - imx/ e""“’"""%,,,(s,r)ds}]. (5)
]

In general cases, we solve the coupled equations between du,,(t,7) and Upn(t.7), Eqs.(2) and (3). The
value of ®;, at t is determined by solving the second order radial differential equation, Eq.(3) with the
source term Uyn. The right hand side of Eq.(5) is constructed by the history of the function &, (¢'.r),
o<t

2.2 Boundary conditions

We need two boundary conditions solving Eq.(3). One is imposed at the stellar center, the other is on
the surface. The boundary condition at the center is regularity of the function, @y, i.c., P x i1,

Outside the star, the dynamical freedom of fluid motion vanishes. As a result, the perturbation
equations describe the gravitational waves only. The frequency of the gravitational wave should be
connected with that of the r-mode oscillation, which is proportional to the stellar rotation. The terms
with the square of frequency in the wave equation are higher order with respect to the rotation. We
neglected them in the slow rotation formalism. In this way, the perturbation equation in the lowest
approximation is not wave equation, but rather determines the stationary field.

It is necessary to include all kinds of more than second order corrections for the consistent calculation of
radiative evolution. Such calculation would be very complicated. Among several effects, the gravitational
radiation is the most important of the reaction instability. For this reason, we consider the radiation
effects in the simplified situation. We approximate the exterior solution as the out-going wave in the
spherical Schwarzschild space-time. That is we neglect all terms associated with the rotation except the
frequency. The first order rotational effect just gives the corrections |7]. The exterior equation becomes
the Regge-Wheeler equation.
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As derived in Ref.[8], the metric perturbation of the out-going wave with e~#¢* at the near zone is
expressed in Fourier space by

<. (21+1)(1 + 2)53H! (241 (©
=2 | Cerr o - n ’ )

Dy (&; T)

where C and & denote the normalization constant and the frequency of the gravitational wave, respec-
tively. This is valid for 6r « 1 (near zone) and M/r < 1 (non-relativistic), where M is the total mass
of the star. We usec this condition at the stellar surface r = R, but there is no a priori justice of such a
usage. Lindblom et al [9] tested the same kind of boundary condition for the f~mode in several relativistic
stellar models and confirmed the accuracy within 0.1%. We may follow the same approximation, but we
need the boundary condition in time domain for our calculation. Such an expression can be in principle
obtained by the Fourier transformation. By the direct transformation, the term with 6%*! becomes
(d/dt)®+!, which is difficult to be included in the numerical calculation. Rather we adopt the following
form as the exterior solution to be connected with the interior solution in real space

Dim(t, R) = (1 - ia)®f, (¢, R), (7)

where <IJ (t ) is & stationary solution of Eq. (3) in vacuum. In the limit of non-relativistic, ® s, —
C/rit?, \Ve have introduced the real number a in Eq.(7). The value of & = @ corresponds to no
radiation. The boundary condition (7) is appropriate in the non-relativistic limit, when a = ag, which is
defined by

(‘)l + 1)(1 |- 2)02“1 24 l (8)
T2ty DV -1)

In this way, the value of & represents the effects of radiation in a sense. Indeed, in the normal mode
calculation, a is related to the imaginary part of the frequency, i.e. the growth/decay rate. Since jag| < 1,
we extrapolate to the moderate value in the numerical caleulation. We artificially change the a in Eq.(7)
and examine the effect of it. As shown in the next section, the numerical solutions for several values of
a grow as exp(ft). The true growth rate & = B(ao) is guessed by the extrapolation with a — aq.

Equation (7) is employed as an exterior solution to be connected with that of interior. Then we
impose the junction condition, so that @}, /@, should be continuous at the stellar surlace.

[21)]

3 Numerical results

We carry out the time-evolution of the perturbation on the equilibrium models, assuming that the initial
function is given by Eq.(9). Our numerical ealeulation is limited to quadrupole, { = m = 2 only. The
time-reversal symmetry is checked as an estimation of numerical errors of our code. That is, after the
function ¥y,(t, 7) is calculated from the initial data ¥4, (0,7), the calculation goes backward from ¢ to
0, and the resulting function is compared with the original one. The initial data is set by

Utmn(t,7) = N{po 4 po)r*tie ™ (me ¥ )-1/2, (9)

This equation is reduced to the exact solution in the non-relativistic incompressible fluid. Such a solution
is widely used in the estimation of the radiation reaction instability.

We begin with the analysis of the radiation effects. We have introduced a parameter a in Eq.(7), which
is associated with the radiation. The time-scale would be extremely long, when we compute with the
true value of ag < 1, defined in Eq.(8). Such a numerical calculation is time-consuming. \We artificially
increase the strength of the radiation with increasing the vatue of @ ~ O(1) to shorten the time-scale.
However, as discussed later, it is possible to find out the ‘true’ growth rate from the calculation with an
artificial parameter.

By substituting a suitable a, the amplitude of oscillation can grow manifestly. The growth rate
increases with a. The time-variation of the envelope of oscillations can be fitted by the exponential
curve. The ratio can be well fitted by exponential curve with a constant B3, i.c., fo(t)/fo(t) o« €.
The ratio is much better than fitting of f,(t) with the exponential curve. For several choices of a, we
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Table 1: The growth rates for the numerical calculation and the multipole formula for some different
values of M/R. For the relativistic case, the value of ¢; is too small and not reliable from the numerical
calculation. The parameter ¢ is defined by (R3Q?/M)!/2,

[ model | M/R | ag/e (g /P)e® | (taw /P)ed | t1/Pfe |
0.0001 [1.0x10- ™[ 1.0 x 107* | 1.0x 10™* 10%
0.001 | 3.2x10~% | 3.1 x 10 | 3.1 x 101® 10%
0.01 9.4x10-% | 1.1 x 107 1.1 x 107 102
010 | 1.8x1073 | 6.7x10% [ 9.0x10% 10
025 | 20x1072 | 2.2x10% | 5.0x 102 -

[ BN A

calculate the growth rate 5. Within a reasonable range of a, 8 can be expressed by a linear relation,
8= 2‘—(‘](& — ag) + Bo, where Sy is the true growth rate.

This numerical calculation gives the growth rate around a ~ O(1). We now apply our result to the
realistic situation, i.e., around a ~ O{ayg). Extrapolating from numerical calculated value of a to ag, we
obtain a kind of an estimation of the growth rate 8y, which is tabulated in Table 1. For comparison, we
also show the gravitational radiation time-scale by the Newtonian estimates [10]. The time-scale is given

by
1 _321C (=D 142\ 5, /" por?2dr (10)
tow 23 [0+ DIZN\T+1 o ' ’

where we have recovered the light velocity ¢ and the gravitational constant G. In the Newtonian modcls,
our estimate of the growth rate exactly agrees with Eq.(10). But, in the relativistic models, deviation is
obvious. The origin is not clear at this stage. Our scheme is not approved, ¢.g., there is the ambiguity in
the choice of ap. This result however suggests a kind of estimate.

We define the time #; when the relative error between the fitting curve and the original envelope
computed from the numerical calculation becomes more than 10%. This deviation does not arise from
the radiation cffect. We numerically confirmed that the functional form is almost the same even when
the radiation cffects are neglected, i.e., & = 0. The functions U, and @, with a = 0 are not completely
pericdic but have an additional secular change. This comes from the fact that Eq.(9) is not the normal
mode solution but approximate form which reduces to the normal mode solution in the Newtonian
incompressible limit. There are several effects involved in a relativistic system. The frame-dragging is
associated with the differential rotation, which caused the functional form to be deformed. The relativistic
system differs from the Newtonian one by a factor of M/R. These combined effects alter the Newtonian
results. Equation (9) is no more the normal mode solution.

We investigate how good the functional form Eq.(9) evolves in almost Newtonian case. We estimate
the time-scale ¢). For example, for Af/R = 10~% and 10~*, we can estimate ¢; to be ~ 10* and 10* period
respectively. Thus these time-scales are not so much longer. The gravitational radiation time-scale is
much longer as shown in Table 1. They are 107 and 10'° times longer respectively.

4 Discussion

In this paper, we have carried out the time-evolution of axial component of velocity within the first-order
slow-rotation formalism. We only considered a class of the functional form that can be represented by a
single magnetic-type spherical harmonic. It contains the classical r-mode solution in the limit of Newto-
nian incompressible fluid. In the relativistic cases, the functional form is no more exact but approximate
one. We expected that the kind of form is still valid, but examined how good the approximation is. Such
an axial velocity can be constrained from the relation between the density and pressure perturbations.
We used the velocity perturbation as the initial data, and follow the time-evolution.

From extrapolation of large a region, we can well estimate the growth time induced by the radiation. It
shows quite agreement with the results from the current multipole formula in the cases of the compactness
less than 0.01. It differs by a factor 2 in a typical relativistic model. Ruoff and Kokkotas [11] studied
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the time-evolution of axial oscillations with the normal mode approach. Their results show the better
agreement with the Newtonian estimates. Our numerical estimate is in reasonable range as for the growth
rate. In this way, the numerical method to include radiation reaction is satisfactorily tested.

The numerical results of the velocity perturbation can be described by a single frequency and the
growth rate in the early stage. However such a simple treatment is broken as the system evolves in
a longer time-scale. The time-scale ¢; ~ P/(M/R) is numerically evaluated. This time-scale is much
longer than the dynamical time-scale or oscillation period. However this is shorter than the time-scales
associated with the secular effects such as the radiation reaction.

Some authors used the dynamical code to simulate the evolution [4]. They had to intensify the
radiation reaction effects to save the computational time. Their calculations are limited to 10 ~ 30
rotation period. In their models, the radiation effects are appropriately included. However, when one
simulate the longer evolution to mimic a realistic situation, our results suggest that the deviation is
obvious around ¢;. The time-scale ¢, is much shorter than the growth time of gravitational radiation
tew even in the Newtonian case. Time-scale ¢; is just one of the examples associated with the secular
changes, which originate even from weak effects. In a realistic cases, there are many secular effects. Our
numerical result gives a lesson that it should be careful with longer aspects as well as the short dynamical
aspects for the radiation reaction instability.

Finally we comment on the validity of the numerical calculation partially including the first order
rotational effects. The equations relevant to the axial oscillations are derived by expansion of rotational
parameters [6]. The equations adopted here are simplified or oversimplified by neglecting the higher
order terms, and hence were easily calculated. The equations are asymptotically valid as 2 — 0, but
not uniformly. That is, the approximation may break down elsewhere in space-time, e.g., by increasing
the significance of the neglected terms. The problem can be answered by carefully examined whole set
of equations derived in Ref.[6] and others. But the methed is highly cumbersome. One practical way
is to calculate without any justification. We followed this method here. The secular growth of the
numerical solution suggests the drawback. This property may be removed by using another appropriate
gauge condition, and/or including the higher order terms in a consistent way. The drawback in the
naive treatment means the unsuccessful finding, but never became clear without any actual calculation
presented here.
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Abstract

We consider compact binary systems, modeled in general relativity as vacuum or
perfect-fluid spacetimes with a helical Killing vector k7. Remarkably, there is the
exact fist law relating the change in the asymplotic Noether charge @ Lo the changes
in the entropy, baryvon mass, and vorlicity of the fluid and in the area of black holes,
for such stalionary equilibriums, although the mass and angular momentum of such
a system are nol defined. For asymptotic {lat systems such as post-Newtonian ap-
proximation or the spatial conformal flatness formalism (lsenberg-Wilson-Mathews
formalism) one can define an asymplotic mass M and angular momentum J. An
equilibrium sequence of binary neutron star is constructed numerically for the same
entropy, rest mass and vorlicily, obey the relation §M = Q4J. For such models, a
turning point theorem can be applicable, which claims that the simultaneous minima
of M(d) and J(d) is the 1SCO in this framework.

1 Introduction

Perfect fluid spacctime with a helical Killing vector k@ has been used as once of the most general model
for the general relativistic compact binary in quasi circular orbit [1]. Such spacctimes have to have cqual
amounts of incoming and outgoing radiation to maintain circular orbit cxactly. Becausc the radiation
ficld of such a stationary solution has infinite encrgy, spacctimes that describe the corresponding gen-
cral relativistic binarics are not asymptotically flat. Instead, the asymptotic mass riscs lincarly with a
naturally defined radial coordinate.

For the exact vacuum and perfect-fluid spacetimes, the Nocther current of the helical Killing vector
assigns to cach spacctime a charge @ [2, 3]. Despite the lack of asymptotic flatness one can choose the
current to make @ finite, and it is indcpendent of the 2-surface S on which it is cvaluated, as long as §
lics outside the matter and all black holes. The Nocther current assigns to cach black hole a charge that
can he identified with its entropy (its arca, in the spacctimes we consider); and we obtain a version of
the first law (Eq. (6) below) that cxpresses the change §Q in terms of changes in the vorticity, baryon
mass, and entropy of the fluid, and in the arca of black holes.

In the context of the first and second post-Newtonian approximation or spacetimes with conformally
flat spacclike slices which satisfics truncated set of Einstcin equations, there is no radiation and onc regains
asymptotic flatness. In such asymptotic flat spacctimes, the helical Killing vector has the asymptotic form
k% = 1" + Q6™ where t™ and ¢ arc asymptotic Killing vectors associated with time-translations and
rotations. The variation of charge @ rclates to the ADM mass M and angular momentum J of the
spacctime as §Q = d M — Q4J. Modcling the cvolution of binary inspiral by a sct of cquilibrium solutions
with fixed baryon-mass density, entropy and vorticity of fluid particles (and constant arca of black hole
if any), the solution sequence satisfy conditions to apply turning point theorem to determine the orbital
stability of binary system, one of which is the first law in the form 6M = Q46J.

VE~mailuryu@uwm.edu
i‘E—maiI:friedm:mﬁuwm .edu
“E~-mail:shibata@provence.c.u-tokyo.acjp
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In this article, we bricfly introduce the gencralized thermodynamic laws of perfect fluid spacctimes
with a helical symmetry. It is applied to binary systems with asvmptotics, especially, for the case with
conformal flat 3-gcometry. We compute a set of cquilibrium solutions of binary ncutron stars numerically,
which modecls final inspiraling phasc as a result of gravitational wave cmission, and discuss that we may
identify the point of orbital instability.

2 Thermodynamic laws of perfect fluid spacetimes with helical
symmetry

We consider globally hyperbolic spacctime M, gag. A helical vector £® is heuristically defined by com-
bining a timelike vector t* and rotational vector ¢® with nonzcro constant Q, k% = (® + Q¢°. Following
gencral definition of helical vector is equivalent with the above cxpression when the space time admit a
foliation by timelike lines. A vector ficld k® is helical if there is a smallest T > 0 for which P € M and
x7(P) are timelike scparated for cvery P outside the history T of a sphere S, where x: is x: is the family
of diffcos gencrated by &k, and T is the timelike surface swept out by the action of x;: on a spacclike
sphere 8 which includes black hales: T(S) = Uex:(S)

For a spacctime with a globally defined Killing ficld &£ that is transverse to Cauchy surface, cvent
horizon is proved to be a Killing horizon. In this case, the horizon satisfy the zcroth law of black hole
thermodynamics, that is, the Killing vector £* is tangent on the event horizon to the null generators and
the surface gravity » defined by

Fsk® = xke, (1)
is constant on the horizon. The proof follows from an analogous theorem proved by Iscnberg and Moncricf,
and by Fricdrich, Racz and Wald [4] (scc Friecdman, Uryi and Shibata [3] in detail).

As we have mentioned, spacctimes with black holes and perfect-fluid sources with a helical Killing
vector will not in gencral be asymptotically flat. However, onc can obtain a generalized first law of
thermodynamics in terms of Nocther charge @ associated with the Killing vector ficld and action of
perfect-fluid spacctime.

Given a family of perfect-fluid spacetimes specified by

Q(}) = [gas(A), u(A), p(A), 5(A)], (@)

one defines the Eulerian change in cach quantity by 6Q := “%Q(I\)- We also introduce Lagrangian
. perturbation associated with a displacement €7 as follows:

AQ = d—‘i\-\I’_,\Q(A)h:u = (6 +£e)Q, (3)

where ¥, is a diffco mapping cach trajectory {worldlinc) of the initial fluid to a corresponding trajectory
of the configuration @(A). Then the tangent £*(P) to the path A = ¥, (P) can be regarded as a vector
Jjoining the fluid element at P in the configuration @(A) to a fluid clement in a ncarby configuration. The
energy momentum tensor for perfect fluid is defined as T2 = cu®u?® + pg®?, where ¢°7 = g°% 4+ u®u”.
Here, u®, p, p and ¢ arc four-velocity, the baryon-mass density, the pressure and the cnergy density,
respectively. We assume that the fluid satisfies an cquation of state of the form p = p(p, 5}, ¢ = ¢(p, 5).
where s is the entropy per unit baryon-mass.
Our Nocther charge @ is similar to that defined in [2].

Q:f Q°%dSss, where Q= -—%V“kﬂ +k°B? — k°B°, 4)
s ‘

and B%(A) is any family of vector ficlds that satisfics

.
V=g d\
By choosing B*(0) = 0 for an unperturbed spacctime, we make Q(A) finite ; and, Q is indcpendent of

the sphere S, as long as S encloses the fluid and any black holes. Note that for A = 0, @ coincides with
Komar charge Qi = —z& §s V*k?dSas with the above choice for B®.

(B*V=R) = 0%, where 0 = (c+pgPubs + 1= (979" — 605" Vabgs.  (5)
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The first law follows from a variation of Eq.(4) :
T h a 1 .
Q = [3 [pu—zAsu"‘dSa + (;‘? + hugv ) A(pu®dSy) + v"’A(hu,q)pu“dSa] + 2,- 8-——“.0»,-6‘4,-
1 a a 3 1 af afd 5 L
——40 | (G% — 87T%}k"dSs + — (G = 85T )igas + £°VaT%| k7dSy,  (6)
8= ] b)) 167

where v® is defined as u® = u' (k% 4 v*) where u®Vol = u' and v°V, I = 0. The change of Q relates to

As, A(pu®y/=g), A(hu,), and §A;, which are the changes in the cntropy, the changes in baryon mass, a

term relate to the changes in vorticity of fluid and the changes in the arca of black holes, respectively.
We have mentioned that @Q(A) is independent of the 2-surface S on which it is evaluated if S enclose

the fluid and any black holes. For unpcerturbed spacctime with A = 0, it follows from the fact that

Q(0) = Qx, and for general Q(A) = Q(0) + 5@, Eq.6 shows 4@ and hence Q(A), arc independent of S.
For an iscntropic fluid conscrvation of rest mass, entropy and vorticity have the form,

Ly(pv/=g) =0, Lys=0, £uwa,‘i =0, (7)

where weg is the relativistic vorticity, was = g5795® [V (hus) — Vs (huq)] = Vo (hus) — Vg (hug) . The
perturbed conscrvation laws have the first integrals,

Apu®/—=g) =0, As=0 Awas=0, (8)

which models dynamical cvolution of binary systems. It is immediate the first and sccond terms in Eq.(6)
vanish. The third term vanishes for (i) co-rotating binary (v® = 0); and (i) irrotational binary, (potential
flows hu, = V,P).

In the first post-Newtonian and in the Isenberg-Wilson-Mathews (IWM) spacctimes [6, 7] that have
been used to describe binary systems [8, 9, 10, 11], the 3-metric has the asymptotic form 44 = fop +
O(r~"). Using the 341 formalism, we can relate §@ to the changes of ADM mass M and the angular
momentum J associated with asymptotic rotational Killing field as follows

6Q = 6M - Q8J (9)

where 1 |

M= — / (% = [ [N Doy dSay I = / K°, ¢dS,. (10)

167 foo ‘ 87 Joo ‘

In the IWM framework, the trace part of extrinsic curvature Ky is artificially omitted, and, conscquently,
onc component of the Einstcin cquation is not satisfied. However, remarkably, the difference of charge Q
in the Einstcin spacctime and corresponding quantity in the IWM spacctime becomes a surface integral
which vanish for asymptotics. As a result, for the IWM spacctime with no black hole, the first law takes
a form

§M =Q8J (11)

for constant cntropy and baryon-mass, and for co-rotating or irrotational flow in the binary systems.

3 Stability of close binary orbit

A criterion for orbital stability of binary in asymptotic flat system is derived from a turning point thcorem
[12] which rclics on a first Jaw in the form Eq.(11). For binary ncutron stars, if one fixes the baryon
numbcr, entropy and circulation for cach fluid clement, the simultancous extrema of Af and J indicate an
cxchange of stability. We solve a set of equations for IWM spacctime and cquations of fluid numerically
[11] fixing thc above quantitics. Changing a scparation, a sequence of cquilibrium solutions are computed
and a turning point is found for ccrtain models depending on equations of state (the polytropic index N
in our casc) as well as the compactness of the ncutron star.

In the left pancl of Fig.1, we show such a solution sequence with a turning point. According to the
turning point thcorem, right (left) branch of the curve with respect to the minima corresponds to stable
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(unstablc) branch. Although, in general, the turning point method claims that the left branch is scculary
unstable, for irrotational

The right pancl of Fig.1 shows that a sct of cquilibria computed numerically satisfy the first law. The
size of mesh for finite diffcrence method we adopted for numecrical computation could introduce about
1% crror in cach solution. Also, computing a fraction §M/Q4J for ncarby cquilibriums using a finite
difference formula cause numerical crror. The figure shows that the first law is satisficd in rcasonable
accuracy, despite of these possible sources of crror.

0.016 v v &M=Q8) for GR binary in quasiequilibrium
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Figure 1. Left pancl: The angular momentum is plotted against the binary scparation for
the case with the polytropic index N = 0.5 and the compactness (M/R)o = 0.19. Right
panel: The rclation §M /Q4J - 1 is evaluated from numecrical solution sequence for the case
with the polytropic index N = 1.0 and the compactness (M/R)o = 0.14 and 0.19.

4 Discussion

As wc have discusscd above, the first law provides a criterion for orbital stability for the asymptotically
flat modcls of binary. The determination of the ISCO is crucial to develop a reliable template for matched
filtering method to extract signals from data taken from ground based interferometric gravitational wave
detectors. Post-Newtonian method, appropriate for binary black holes, has been successfully developed
for this purposc, however it involves an indeterminate paramcter which can change a location of 1SCO.
(Sce for example [13] for recent development.) This suggest that it is desirable to investigate the location
of ISCO rclying on a turning point of a solution scquence of cquilibriums as an alternative method [14].
For a ncutron star binary, the location of ISCO systematically changes with thc compactness of the
ncutron star and a typical valuc of MQ at the ISCO can be ~ 50% smaller than that predicted by post-
Newtonian method when the compactness of ncutron star is in a realistic range 0.14 £ (M/R). < 0.20
(11). This implics that the method using cquilibrium sequence which solve internal structurc of a star
numcrically, is a promising way to determinc the ISCO for binary ncutron stars and probably for stellar
mass ncutron star-black hole binarics.

References

(1] J. K. Blackburn and S. Detweiler, Phys. Rev. D 46, 2318 (1992); S. Detweiler, Phys. Rev. D 50,
4929 (1994).

[2) R. M. Wald, Phys. Rev. D. 48, R3427 (1993); V. Iver and R. M. Wald, Phys. Rev. D. 52, 4430
(1995); V. Iver, Phys. Rev. D. 55, 3411 (1997);

[3] B. F. Schutz and R.D. Sorkin, Annals of Phys., 107,1 (1977); R.D. Sorkin, Proccedings of the Royal
Socicty London A 435: 635-644 (1991); J. D. Brown, Class. Quant. Grav. 10, 1579 (1993).

—174—



[4] V. Moncricf and J. Iscnberg, Comm. Math. Phys. 89, 387 (1983); J. Isenberg and V. Moncraif, J.
Math. Phys. 26, 1024 (1985); H. Friedrich, I. Rdcz, and R. M. Wald, Comm. Math. Phys. 204, 691
(1999).

{5} J. L. Friedman, K. Uryii, and Masaru Shibata, Phys. Rev. D in press, (gr-qc/0108070)

[6] J. Iscnberg and J. Nester, in General Relativity and Gravitation Vol.1, cedited by A. Held, (Plenum
Press, New York 1980); Waveless Approximation Theories of Gravity, preprint (1978), University of
Marvland. ’

[7] J. R. Wilson and G. J. Mathews, Phys. Rev. Lett. 75, 4161 (1995); J. R. Wilson, G. J. Mathcws
and P. Marronctti, Phys. Rev. D 54, 1317 (1996).

(8] T. W. Baumgartc, G. B. Cook, M. A. Schecl, S. L. Shapiro and S. A. Teukolsky, Phys. Rev. D 57,
6181 (1998); ibid 57, 7299 (1998).

{9] S. Bonazzola, E. Gourgoulhon and J.-A. Marck, in the proccedings of 19th Texas Symposium on
Relativistic Astrophysics: Texas in Paris, Paris, France (1998); S. Bonazzola, E. Gourgoulhon and
J.-A. Marck, Phys. Rev. Lett. 82, 892 (1999); E. Gourgoulhon, P. Grandclement, K. Taniguchi, J.-A.
Marck, S. Bonazzola, Phys. Rev. D63 (2001) 064029.

[10] P. Marronetti, G. J. Mathews and J. R. Wilson, in the proceedings of 19th Texas Symposium on
Relativistic Astrophysics: Texas in Paris, Paris, France (1998); P. Marronctti, G. J. Mathews and
J. R. Wilson, Phys. Rev. D 60, 087301 (1999).

[11] K. Uryit and Y. Eriguchi, Phys. Rev. D. 61, 124023 (2000); K. Uryii, M. Shibata and Y. Eriguchi,
Phys. Rev. D. 62, 104015 (2000).

[12] R. Sorkin, Astrophys. J. 249, 254 (1981).
[13] L. Blanchet, Phys. Rev. D. in press (gr-qc/0112036).

(14] E. Gourgoulhon, P. Grandclement, S. Bonazzola Phys. Rev. D 65, 044020 (2002); ibid., 044021
(2002).

—175—



Quasi-equilibrium sequences of binary neutron stars

Keisuke Taniguchi?

Maz-Planck-Institut fiir Gravitationsphysik, Albert-Einstein-Institut
Am Miihlenberg 1, D-14476 Golm, Germany

Eric Gourgoulhon?

Laboratoire de I’Univers ct de ses THeories (LUTH), CNRS/Obscrvatoire de Paris
F-92195 Meudon Cedez, France

Abstract

Quasi-cquilibrium sequences of binary neutron stars are numerically obtained in both
cases of synchronized and irrotational rotation states. In the present article, we use
the spectral method and adopt the conformally flat spatial metric in the general rel-
ativistic framework. We will show the numerical results of binary systems composed
of both identical and different mass stars with the polytropic index v = 2. The stellar
mass combination in a binary system is parametrized by its compactness (M/R)c
instead of mass itself, where A and R denocte the gravitational mass and radius of a
spherical star with the same baryon mnass, respectively. The computations are per-
formed for the cases (M/R)oc,star 1 v5. (M/R)oc,star 2 = 0.12v5.0.12 and 0.12vs.0.14.
We will discuss the difference between identical and different mass stars.

1 Introduction

Coalescing binary ncutron stars are expected to be one of the most promising sources of gravitational
waves that could be detected by the ground based, kilometer size laser interferometers such as LIGO,
VIRGO, GE0600, and TAMA300%, and also arc considered as one of candidates of gamma-ray burst
sources[2].

Due to the emission of gravitational radiation, binary neutron stars decrease their orbital separations
and finally merge. When we consider such an evolutionary sequence, it is convenient to separate it into
three phases. The first one is the snspiraling phase in which the orbital scparation is much larger than
the radius of a neutron star, and the post-Newtonian expansion constitutes an excellent approximation.
(For a recent review, see [3]). The second one is the intermediate phase in which the orbital separation
becomes only a few times larger than the radius of a neutron star, so that hydrodynamics as well as
general relativity play an important role. In this phase, since the shrinking time of the orbital radius due
to the emission of gravitational waves is still larger than the orbital period, it is possible to approximate
the state as quasi-equilibrium(4, 3, 6, 7]. The final one is the merging phase in which the two stars
coalesce dynamically. As in the intermediate phase, since hydrodynamics as well as general relativity
play an important role, fully relativistic hydrodynamical treatments are required in this phase which
results in the field of numerical simulation. The first stable computation of binary neutron star merger
from their innermost stable circular orbits to black hole or massive neutron star formations has been
succeeded in by Shibata(8, 9]

In the series of our research[5, 10, 11], we have paid particular attention to the intermediate phase.
This stage is important because we may get informations about equation of state of neutron stars through
the gravitational wave signal. Furthermore, the initial data for the merging phase is obtained. Until now,
several groups produce initial data for binary neutron stars. There are results of both synchronized{12, 13,
14] and irrotational rotation states[4, 5, 6, 7] in general relativistic framework for identical star binaries,

1E-mail:keisuke@aei-potsdam.mpg.de
2E-mail:Eric. Gourgoulhon@obspm. fr
3TAMA300 has already started data taking, and the recent result of the data analysis was published1].

—176—



and those in Newtonian gravity for both identical[15, 10] and different mass star binaries[11]. However,
the calculations for different mass star binaries in general relativity have not been performed yet. In the
present article, we will show the numerical results of binary systems composed of not only identical stars
but also different mass stars, even though we restrict our computations in the case of polytropic index
vy =2

Throughout this article, we adopt the units G = ¢ = 1 where G and ¢ denote the gravitational
constant and speed of light, respectively.
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Figure 1: Isocontours of the baryon density of synchronized and irrotational binaries with v = 2 and
(M/R)oostar 1 VS. (M/R)eostar 2 = 0.12vs.0.12 and 0.12vs.0.14 just before contact or appearance of cusp.
The plots are cross sections of ¥ = 0 planes. The thick solid lines denote the stellar surface.

2 Formulation

The basic equations, the numerical method, and the solving procedure which we use in this article are
explained in detail in Paper I[5). Then, we briefly summarize the formulation here.
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Figure 2: ADM mass along a constant baryon mass sequence. Here d; denotes the separation between
the centers of mass of two stars.

2.1 Basic assumptions

¢ Quasi-equilibrium:
Since the time scale of the orbital shrinking is larger than that of the orbital revolution, we assume

that there exists a Killing vector: { = - + Q—

o Perfect fluid:
The matter stress-energy tensor: T, = (¢ + p)uyu, + pgu.

bt By

o Synchronized or irrotational flow:
Although the realistic rotation state will be irrotational one[16, 17], we calculate both cases in order
to compare their differences.

¢ Polytropic equation of state: p = xn”

e Conformally flat spatial metric: ) o
Then the full spacetime metric takes the form: ds® = —(N? — B;B%)dt? — 2B;dtdz' + A% f,;;dz'dz

Here ¢ denotes the fluid proper energy density, p the fluid pressure, u, the fluid 4-velocity, g,. the
spacetime metric, n the fluid baryon number density, £ and 7 some constants, N the lapse function, B*
the shift vector, and A the conformal factor.

2.2 Basic equations

1. Fluid equations

o First integral of fluid motion: H + v — InTy + In T = constant
o Differential equation for the velocity potential of irrotational flow:

Vi

CHAYo + [(1-CH)V'H + CHV 8] V%o = (W' — W3V H + (H(W§Vi(H - B) + vF—\‘v,-r.,)

2. Gravitational field equations

e The trace of the spatial part of the Einstein equation combined with the Hamiltonian constraint

equation: o
Av =47 A% (E + S) + A*K;KY - Vwvip

AfB =47 A%8 + %AH{.-,-K"" - %(ﬁ;u@"u + V8V g)
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e Momentum constraint equation:

AN+ %6"(6,1\0) = —167NAXE +p)U* + 2NAKYIT,(33 - 4v)

Here H := Inh denotes the logarithm of the fluid specific enthalpy, v := InN, 8 := In(AN), K;; the

4
extrinsic curvature tensor, and N = B + 95;.
please read Paper I in detail.

3 Numerical results

In Figs.1 - 4, we present the isocontours of the baryon
density, the ADM mass along a constant baryon mass
sequence, the relative change in central energy density,
and the equatorial to polar ratio of the radial derivative
of enthalpy. One can see from Fig.2 that there is no
turning point for the cases of irrotational binary systems
with v = 2. On the other hand, the turning point
appears clearly for the synchronized case of identical
mass stars. It is marginal for the synchronized case of
different mass stars with compactness 0.12vs.0.14. This
is because the tidal force from massive star is larger
than that of identical mass star and it becomes casier
for the less massive star to reach its mass-shedding limit
before the turning point.

One of important results in the present work is that
there is no increase of central energy density. The re-
sults are shown in Fig.3. The reason why the relative
change is about 10% for synchronized cases while only
a few % for irrotational ones is that there exists an in-
trinsic spin for the former case which contributes the
decrease of central energy density.

Finally we discuss the end points of sequences. A
good indicator of the appearance of a cusp at the stellar
surface is the quantity x which is defined as

- (BH/ar)eq.comp
(6H/6r)pole !

where (JH/8r)eq.compl(OH [8r)pote] stands for the ra-
dial derivative of the enthalpy at the point on the stellar
surface located in the orbital plane and looking toward
the companion star [at the intersection between the sur-
face and the axis perpendicular to the orbital plane and
going through the stellar center (z axis)]. The mass-
shedding limit corresponds to x = 0. Comparing  with
d/(ay + a}) which becomes unity for a contact config-
uration, we can determine whether a quasi-equilibrium
sequence will end by a mass-shedding configuration or
by a contact one. Here d and a; denote the coordinate
orbital separation and the radius of a star towards its
companion, respectively. The prime (') means the value
concerning with the companion star. It is found from

Since there are some terms which we do not define here,
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=
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Figure 3: Relative change in central energy
density. The curves for different mass cases
arc those of less massive stars.
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Figure 4: Equatorial to polar ratio of the ra-
dial derivative of enthalpy.

Fig.4 that the two stars contact with each other in the synchronized case for identical mass binaries,
while the synchronized sequences for different mass binaries and the irrotational ones terminate by a

cusp point, if we extrapolate the curves up to x = 0.
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4 Summary

We have calculated quasi-equilibrium sequences of binary neutron stars with synchronized and irrotational
rotation states in general relativity. Although we have shown only the case of v = 2 in this article, we
have preliminary results of other polytropic indices. The summary including such results is as follows:

1. End points of sequences

o Irrotational sequences terminate by a cusp point (mass-shedding point).
o The two stars contact with each other in the synchronized case for equal mass binaries.
o For different mass binaries, sequences terminate by a cusp point.

2. Turning points of ADM mass

e They appear in the case of -y > 2.5 in the irrotational case for equal mass binaries.
e They appear in the case of ¥ > 1.8 in the synchronized case for equal mass binaries.
o For different mass binaries, the critical v becomes larger in both cases.
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Abstract

We compute configurations and evolutional sequences of binary neutron stars for
several realistic equations of state by assuming that neutron stars are in quasiequi-
librium states and synchronously rotating. We find that for typical neutron stars,
there appear minimum angular momentum states along the evolutional sequences for
constant rest mass binaries prior to contact phases, i.e., the binary system would
suffer from secular instability against excitation of internal motion and that behavior
of the system cannot be described by a single polytrope during its evolution.

1 Introduction

One of the most important problems for theorists of relativistic astrophysics is constructing reliable
models for quasiequilibrium configurations of binary neutron star systems. This is because such systems
are the most promising sources of gravitational waves which will be observed by the gravitational wave
detectors under construction.

It is, however, still difficult to deal with three-dimensional configurations such as binary neutron star
systems in general relativity. This difficulty is mainly due to the non-linearity of the Einstein equations
and the boundary conditions at infinity, and practically due to the requirement of a large amount of
computational resources.

Since the timescale of the orbital change due to gravitational wave emission is rather long compared
with the orbital period except for the final stage of coalescence, we can neglect gravitational wave emission
for the most stages of evolution. In other words, we can treat the systems in “quasiequilibrium”. Even
if we assume the quasiequilibrium condition, we further need to consider many other physical situations
or conditions such as effects of viscosity, the form of the rotation law, and so on. In particular, we have
to be careful about the equation of state (EQS), although, in all the previous works, the EOS has been
assumed to be polytropic. There is no assurance that neutron stars can be approximated by polytropes
all through their evolutions of binary systems.

In this work, taking several realistic EQS into account, we construct quasiequilibrium sequences with
constant rest mass which can be considered to approximate evolutionary tracks, and compare the results
with those of polytropic binary systems. Hereafter, we use the unitsof c=G = 1.

2 Models of binary neutron star systems in quasiequilibrium

2.1 Equations of state

We make use of three kinds of realistic EOS: (1) Bethe & Johnson’s [1] model (I), (2) Bethe & Johnson’s [1]
model (V), which are referred to as models C and D by Arnett & Bowers [2], respectively, and (3) Wiringa
et al.’s [3], joined to the more modern EOS by Lorenz et al. (4], which is