Obscured Star Formation in the Distant Universe Probed by Radio Observations

ニミリ波・サブミリ波ディープサーベイで 見えてきた遠方銀河の性質 –

Bunyo Hatsukade

(Institute of Astronomy, The University of Tokyo)

初代星・初代銀河研究会2017@呉 2018/02/10-12

Extragalactic Background Light (EBL)

Obscured Star-formation Activity

Burgarella+13

Submm/mm Observations

Submm/mm-bright Galaxies (SMGs)

- Deep surveys uncovered a new galaxy population
 - in the late-1990s; Smail+97, Hughes+98
 - Dust-enshrouded galaxies
 - Most of the energy is emitted at FIRsubmm
 - L(FIR) > 10^12 Lsun
 - SFR > a few 100 Msun/yr
 - Redshift: $z_{median} \sim 2-3$
 - several SMGs are found to be at z > 4, 5

Progenitors of present-day massive *ellipticals*?

Contribution to EBL

- Contribution of SMGs ($S_{1mm} > 1 \text{ mJy}$) ~ 10%-20%
- → EBL is dominated by fainter, normal star-forming galaxies

Lensed SMGs

Negrello+14

Issues in Single Dish Surveys

- Coarse angular resolution (~15"-30")
 - confusion limit
 - source blending
 - misidentifications of counterparts

multiple counterpart candidates within a beam

Wang+11

ALMA Reveals Faint Submm Sources

- ALMA (2011~)
 - high sensitivity
 - high angular resolution
 - ➔ no confusion limit
- >10x fainter sources compared to single-dish surveys even with a short obs time (<10 min)
 - serendipitous detection of faint sources (<1 mJy)

connecting between SMGs and normal SF galaxies

Faint End of Number Counts

- >50% of the EBL has been resolved in ALMA studies
 - Based on the ensemble of serendipitous sources
 - Hatsukade+13, Ono+14, Carniani+15, Fujimoto+16, Oteo+16

ALMA Deep Surveys

ALMA Deep Surveys

SXDF-ALMA

- A contiguous 105" x 50" (~2.5 arcmin²) window in SXDF-UDS-CANDELS field
 - Kohno+16, Tadaki+15, Hatsukade+16, Wei-Hao+16, Yamaguchi+16

-5°10'00"

11'00"

12'00'

13'00"

14'00'

15'00"

16'00"

17'00"

Jec (J2000)

- PI: K. Kohno, cycle 1
- Band 6 (1.1 mm, 274 GHz)
- 19-point mosaic
- *T*_{obs} = 3.6 hours
- $\theta = 0.53'' \times 0.41''$
- σ = 55 uJy/beam

ALMA 1.1mm (FWHM ~ 0.5")

ALMA 1.1mm (FWHM ~ 0.5")

25 (6) sources with a peak SN of $\geq 4\sigma$ ($\geq 5\sigma$) Speak = 0.2-1.7 mJy/beam

ASPECS

- Spectral scan at band 3 & 6
 - PI: F. Walter, E. Aravena, cy2 & 4 large
 - Walter+16, Aravena+16a,b, Bouwens+16, Carilli+16, Decarli+16a,b
 - 1.2 mm & 3 mm
 - ~1 arcmin²
 - 1σ = 12.7 uJy (1.2mm), 3.8 uJy (3mm)
- Source detection
 - 9 sources (>3.5σ) at 1.2 mm
 - 16 sources (> 3.0σ)
 - 1 source at 3 mm
 - S(1.2mm) = 46-553 uJy

HUDF/GOODS-S

ec (J2000)

- HUDF (PI: J. Dunlop, cy1)
 - Dunlop+17, Rujopakarn+16
 - 1.3 mm
 - ~4.5 arcmin²
 - 1σ = 35 uJy/beam
- Source detection
 - 47 candidate sources
 - >3.5σ, >120 uJy
 - 29 negative sources
 - 16 "robust" sources
 - >3.5σ, >120 uJy, optical counterparts

ALMA twenty-Six Arcmin² survey of GOODS-South At One-millimeter (ASAGAO)

SXDS (2 arcmin²)

ASAGAO (250 kλ taper)

ASAGAO+Dunlop+Elbaz Combined

ASAGAO+Dunlop+Elbaz Combined

- Combined Map
 - 250 kλ taper
 - beam size: 0.59" x 0.53"
 - representative freq.: 243.047 GHz (1.23 mm)
 - total continuum coverage: 28 GHz

BH et a. (in prep.)

7.0

Counterpart ID

- ZFORGE
 - FourStar galaxy evolution survey (Straatman+16)
 - Ks = 26.0 mag (80% completeness), 26.3 mag (50%) (5σ)
- Cross match between ASAGA and ZFORGE
 → 66 ASAGAO sources (3.5σ) with ZFORGE counterparts
 - 85%, 55%, and 12 % of ASAGAO sources with 5σ, 4.5σ, and 3.5σ

Redshift from Existing Catalog

Redshift Distribution

M*, SFR

ASAGAO sources: massive end of main sequence

M*, SFR

ALMA-detected/undetected: IRX

X-ray AGNs at z = 1.5-3

- Cross-match with Chandra 7-Ms catalog
 - flux limit: 5x10⁻¹⁷ erg/cm²/s (0.5-7 keV)
 - 8 ASAGAO sources (out of 10)
 - 6 UDF sources (out of 13)
- High AGN fraction
 - 90% for ULIRGs
 - 57% for LIRGs
- Lx-LIR ratio is smaller than "simultaneous evolution"
 - Star formation occurs first, AGN-dominant phase follows later?

Ueda, BH, et al. 2018

Clustering

- Cross-correlation between ASAGAO & ZFOURGE sources
 - 35 ASAGAO sources, ~4800 ZFOURGE sources
- Projected correlation by using z probability distribution
- First detection of significant signals
 - for fainter submm sources (<3 mJy)
 - without source blending

Clustering

Clustering

Number Counts

Contribution to EBL

Contribution to EBL

Contribution is only 32% down to 0.013 mJy

Luminosity Function

• ALMA probes faint end of L(IR) LF

Koprowski+17

Luminosity Function

- redshift evolution
 - positive luminosity evolution
 - negative density evolution

 $L_{250} \,/\,{\rm W\,Hz^{-1}}$

Comparison with Herschel LF

- Herschel LF overestimate faint and bright end?
 - source blending, miss ID of counterparts, AGN contamination?

Contribution to SFRD

- Fall-off in obscured SF at higher-z
- Dominated by unobscured UV component at z > 4?

Optically-faint High-z Sources?

- ASAGAO sources without optical counterparts: *"K dropouts"*
 - 15% for 5σ sources
 - 45% for 4.5σ sources
- Spurious?
- High-z dusty galaxies?

Summary

- ALMA deep surveys
 - several surveys ongoing
 - 1σ ~ 10-100 mJy/beam, area ~ a few 100 arcmin2
- Faint submm sources detected in ALMA deep surveys
 - z ~ 2, M* ~ 10¹¹ Msun, SFR ~ 100 Msun/yr
 - massive end of main sequence
 - higher L_{IR}/L_{UV}
- Contribution to EBL
 - ~50%-100%, but the faintest end (<0.1 mJy) is still unclear
- Contribution to SFRD
 - ALMA sources are dominant population at z ~ 2-3
 - dominated by unobscured UV component at z > 4?
 - but the contribution of "*K* dropouts" is yet unknown