Using Stellar Archaeology and Pair-Instability Supernovae to Detect the First Stars

Tilman Hartwig

Naoki Yoshida, Mattis Magg, Anna Frebel, Simon Glover, Facundo Gómez, Brendan Griffen, Miho Ishigaki, Alex Ji, Ralf Klessen, Brian O'Shea, Nozomu Tominaga, Volker Bromm, Avi Loeb

THE UNIVERSITY OF TOKYO

Kure - February, 11th

The first stars set the scene

Observing the First Stars

Star formation after the first SNe

Semi-analytical model of Pop III star formation

- 30 MW-like DM merger trees from Caterpillar simulation
- Pop III star formation based on Hartwig+15b, Magg+18
- Chemical yields from Nomoto+13

Tilman Hartwig

Methodology

Probability of 1SN per halo

- Poisson statistics with on average one SN per 100M_{sun} of stellar mass
- Single-enriched 2nd generation stars only in one out of 100 halos.

Tilman Hartwig

Single-enriched 2nd generation stars occupy specific regions in the chemical plane

Results

Probability to find single-enriched 2nd generation stars

Results

Illustrate PopIII SN yields in chemical plane: "chemical displacement"

Results

Novel diagnostic to identify single-enriched 2nd generation stars: Divergence of the chemical displacement

- Computationally cheap
- Depends only on SN yields
- Other element ratios provide additional information

Tilman Hartwig

NIRcam filters are well suited

Introduction

Lightcurves for a long exposure time

years (observer frame)

Visibility time depends on:

Tilman Hartwig

- redshift
- progenitor mass

Lightcurves for different exposure times

More efficient to observe 10 field of view with t_{exp} = 600s each or observe 1 field of view with t_{exp} = 6000s?

Tilman Hartwig

Optimal Exposure Time and Filter Combination

Tilman Hartwig

Detecting the First Stars

- Stellar Archaeology is a powerful tool to derive the masses of individual Pop III stars
- New diagnostic to identify single-enriched 2nd generation stars (1% probability)
- PISNe are bright enough to be seen with JWST, but they are rare so that we need optimised survey strategies (50,000 FoV)
- (non-)detections with JWST will probe the high-mass end of the Pop III IMF
- Gravitational Waves will probe the high-mass end of the Pop III IMF over the next decade(s) (Hartwig+16,Kinugawa+16,Inayoshi+16)

Conclusion