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Introduction
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Low-mass Population III Stars

3
Can we find low-mass PopIII stars as metal free star in our Galactic halo?

l Study the initial mass function (IMF) of PopIII stars. 

l Top-heavy PopIII IMF has been predicted, while some might have < 1 M◉

l Low-mass PopIII stars < 0.8M◉ are still in Main-sequence phase, if they exist. 
Machida+13 Stacy+16

e.g., Nakamura&Umemura01

http://pages.uoregon.edu/
jimbrau/astr123/

?



Origin of Metal Poor Stars
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1. Second generation stars?

SNR CasA, Chandra

↑metal poor

metal poor↓
Matsuda+15

2. Chemically enriched PopIII stars?

Shen+17

[Fe/H] ~ -2!

Study of scenario 2 predicts 
[Fe/H] ~ -2 in an extreme case.
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Accretion or Wind?
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Bondi-Hoyle-Lyttleton accretion Formation of astrosphere

Shima+86
Shima+85

VS.

Case of our Sun: interstellar particles are picked up by the solar wind!! 

Mobius+09

Can interstellar 
heavy elements 
accrete onto 
low-mass PopIII 
stars against 
their wind? 



Model
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Stellar Wind & ISM
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The parameters of stellar wind are set to the Solar values.

nsw(r) = nsw?
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vsw(r) = vsw?,

(i) Thermal driven supersonic flow

nHL(r, ✓, ⇠) =
nISM⇠2

r sin ✓(2⇠ � r sin ✓)
,

vHL,r(r, ✓, ⇠) = �
r

v2rel +
2GM?

r
�

⇠2v2rel
r2

,

(iii) Bondi-Hoyle-Lyttleton
accretion flow

Conditions for astrosphere formation around low-mass star?

Neutrals in the ISM behave different from ionized ones!!



Stellar Model
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Stellar parameters (effective 
temperature, radius of low-

mass PopIII stars

B-field of  ≪ Gauss at surface is 
enough to trap ionized Fe.
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Rate Equation
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Motion of neutrals in 
gravitation fieldv(r) = �

r
v2rel +

2GM?

r

Recombination processes 
can be neglected.

�ph,i / r�2

ni(r)

nISM,i
= exp

"
�
p
2�ph?,i

⌦K?

 s
v2rel
v2esc?

+

R?

r
� vrel

vesc?

!#

What fraction of Neutral ISM attains to 
stellar surface before photoionized?
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Formation of Magnetosphere
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Pressure balance between accretion and wind flows.

For (R★ <) ξBHL < RTS

Volume fraction of nISM > ncrit is very small even at Gal. disk.
=> Magnetosphere is sustained!!
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Survival Probability
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Discussion & Conclusions
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Accretion from n > ncrit
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Density probability distribution P(n, t) and metallicity distribution Z(n, t)

MZ,acc =

Z
dt

Z 1

ncrit(t)
dnP (n, t)Z(n, t)ṀBHL(n, t).

Shen+17 Shen+16

Accretion @ high-z is 
dominant because 
MBHL ∝ (vrel)-3

Shen+16 set ncrit = 0, 
i.e., no wind and always 
n < 102 cc-1!
(difficult to resolve n > 
102 cc-1 numerically.)

Johnson & Khochfar11 
estimated that the 
probability of 
encounter of a star and 
a cloud at high-z is less 
than 0.1.
[Fe/H]~-6 for one 
encounter.

.



Conclusions & Further Studies
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Conclusions
l [Fe/H] is reduced by photoionization ([Fe/H] < -14 even for extreme case).

l Currently observed metal poor stars are not low-mass PopIII stars.

l Low-mass PopIII stars will be found as metal free stars or current 
observations have already constrained PopIII IMF.

l Metal poor stars preserve their initial metallicity.

Further Studies
l Metal accretion in dust phase (however, Johnson2015).

l Binary case.

l Stellar wind from low-mass PopIII stars (Suzuki17)

l Bondi-Hoyle-Lyttleton accretion with stellar wind
l Used ncrit may be over-simplified because we consider 1D trajectory.


