

Tanaka，Chiaki，Tominaga，\＆Susa，ApJ，844， 137 （2017）

Blocking metal accretion onto low－ mass PopIII stars by stellar wind

低質量初代星への
星間金属降着に対する

Shuta J．Tanaka ${ }^{(1) \rightarrow(2)}$

with
Gen Chiaki ${ }^{(1),(3)}$ ，Nozomu Tominaga ${ }^{(1),(4)}$ ，\＆Hajime Susa ${ }^{(1)}$
（1）Konan Univ．，（2）AGU
（3）Georgia Tech．，（4）Univ．of Tokyo，IPMU

Introduction

Low-mass Population III Stars

- Study the initial mass function (IMF) of PopIII stars.
- Top-heavy PopIII IMF has been predicted, while some might have <1 M.
- Low-mass PopIII stars $<0.8 \mathrm{M}_{\odot}$ are still in Main-sequence phase, if they exist. Machida+13

Can we find low-mass PopIII stars as metal free star in our Galactic halo?

Origin of Metal Poor Stars

1. Second generation stars?

\uparrow metal poor

Study of scenario 2 predicts [$\mathrm{Fe} / \mathrm{H}]$ ~ -2 in an extreme case.

Contamination for study of low-mass PopIII stars.
2. Chemically enriched PopIII stars?

Accretion or Wind?

Bondi-Hoyle-Lyttleton accretion

Formation of astrosphere

Case of our Sun: interstellar particles are picked up by the solar wind!!

Can interstellar heavy elements accrete onto low-mass PopIII stars against their wind?

Model

Stellar Wind \& ISM

The parameters of stellar wind are set to the Solar values.

Conditions for astrosphere formation around low-mass star?
Neutrals in the ISM behave different from ionized ones!!

Stellar Model

Stellar parameters (effective temperature, radius of lowmass PopIII stars

$$
\frac{r_{\mathrm{g}, \mathrm{FeII}}\left(R_{\star}\right)}{R_{\star}} \approx 10^{-5}\left(\frac{B_{\mathrm{sw} \star}}{1 \mathrm{G}}\right)^{-1}\left(\frac{\Omega_{\mathrm{K} \star}}{10^{-3} \mathrm{rad} \mathrm{~s}^{-1}}\right),
$$

B-field of << Gauss at surface is enough to trap ionized Fe.

For photoionization, SED is taken from the Sun.

Rate Equation

What fraction of Neutral ISM attains to stellar surface before photoionized?

$$
v(r) \frac{d n_{i}(r)}{d r}=-\beta_{\mathrm{ph}, i}(r) n_{i}(r)+\alpha_{\mathrm{rec}, i \mathrm{D}_{\mathrm{e}} \pi_{i}^{(r)}}
$$

Recombination processes can be neglected.

$$
v(r)=-\sqrt{v_{\mathrm{rel}}^{2}+\frac{2 G M_{\star}}{r}}
$$ gravitation field

$$
\oiiint \beta_{\mathrm{ph}, i} \propto r^{-2}
$$

$$
\frac{n_{i}(r)}{n_{\mathrm{ISM}, i}}=\exp \left[-\frac{\sqrt{2} \beta_{\mathrm{ph} \star, i}}{\Omega_{\mathrm{K} \star}}\left(\sqrt{\frac{v_{\mathrm{rel}}^{2}}{v_{\mathrm{esc} \star}^{2}}+\frac{R_{\star}}{r}}-\frac{v_{\mathrm{rel}}}{v_{\mathrm{esc} \star}}\right)\right]
$$

Results

Formation of Magnetosphere

Pressure balance between accretion and wind flows.
$n_{\mathrm{SW} \star} v_{\mathrm{sw} \star}^{2}\left(\frac{R_{\star}}{R_{\mathrm{TS}}}\right)^{2} \approx n_{\mathrm{ISM}}\left(v_{\mathrm{rel}}^{2}+v_{\mathrm{esc} \star}^{2} \frac{R_{\star}}{R_{\mathrm{TS}}}\right)$.
For $\left(R_{\star}<\right) \xi_{\mathrm{BHL}}<R_{\mathrm{TS}}$

$$
\begin{aligned}
\xi_{\mathrm{BHL}} & =\frac{2 G M_{\star}}{v_{\mathrm{rel}}^{2}} \\
& =R_{\star} \frac{v_{\text {esc }}^{2}}{v_{\text {rel }}^{2}}
\end{aligned}
$$

$$
n_{\mathrm{crit}} \equiv \frac{n_{\mathrm{sw} \star}}{2} \frac{v_{\mathrm{sw} \star}^{2} v_{\mathrm{rel}}^{2}}{v_{\mathrm{esc} \star}^{4}}=R_{\star} \frac{v_{\mathrm{esc}}^{2}}{v_{\mathrm{rel}}^{2}}
$$

$$
\approx 10^{4} \mathrm{~cm}^{-3}\left(\frac{n_{\mathrm{SW} \star}}{7.0 \times 10^{5} \mathrm{~cm}^{-3}}\right)\left(\frac{v_{\mathrm{SW} \star}}{400 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{2}\left(\frac{v_{\mathrm{rel}}}{200 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{2}\left(\frac{v_{\mathrm{esc} \star}}{680 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{-4}
$$

$$
\dot{M}_{\mathrm{BHL}}=\frac{2 \pi G^{2} M_{\star}^{2} \rho_{\mathrm{ISM}}}{\left(c_{\mathrm{s}}^{2}+v_{\mathrm{rel}}^{2}\right)^{3 / 2}} \quad \text { Solar wind value } \quad \begin{array}{ll}
\text { Average of halo stars } & \begin{array}{l}
\text { e.g, Chiba\&Beersoo } \\
\text { PopII star }
\end{array} \\
\begin{array}{l}
\text { Pop }
\end{array}
\end{array}
$$

Volume fraction of $n_{\text {ISM }}>n_{\text {crit }}$ is very small even at Gal. disk. => Magnetosphere is sustained!!

Survival Probability

Neutral fraction at given radius.

$$
\frac{n_{i}(r)}{n_{\mathrm{ISM}, i}}=\exp \left[-\frac{\sqrt{2} \beta_{\mathrm{ph} \star, i}}{\Omega_{\mathrm{K} \star}}\left(\sqrt{\frac{v_{\mathrm{rel}}^{2}}{v_{\mathrm{esc} \star}^{2}}+\frac{R_{\star}}{r}}-\frac{v_{\mathrm{rel}}}{v_{\mathrm{esc} \star}}\right)\right]
$$

Distance from stellar center $\left[r / R_{\star}\right]$

Distance from stellar center $\left[\mathrm{r} / \mathrm{R}_{\star}\right]$

Iron hardly attains stellar surface

Discussion \& Conclusions

Accretion from $n>n_{\text {crit }}$

Density probability distribution $P(n, t)$ and metallicity distribution $Z(n, t)$

$$
M_{Z, \mathrm{acc}}=\int d t \int_{n_{\mathrm{crit}}(t)}^{\infty} d n P(n, t) Z(n, t) \dot{M}_{\mathrm{BHL}}(n, t)
$$

Accretion @ high-z is dominant because $\dot{M}_{\text {BHL }} \propto\left(v_{\text {rel }}\right)^{-3}$

Shen+17
redshift

Shen+16 set $n_{\text {crit }}=0$, i.e., no wind and always $\mathrm{n}<\mathrm{O}^{2} \mathrm{cc}^{-1}$! (difficult to resolve $\mathrm{n}>$ $1 \mathrm{O}^{2} \mathrm{cc}^{-1}$ numerically.)

Johnson \& Khochfar11 estimated that the probability of encounter of a star and a cloud at high-z is less than 0.1.
[$\mathrm{Fe} / \mathrm{H}] \sim-6$ for one encounter.

Conclusions \& Further Studies

Conclusions

- $[\mathrm{Fe} / \mathrm{H}]$ is reduced by photoionization $([\mathrm{Fe} / \mathrm{H}]<-14$ even for extreme case).
- Currently observed metal poor stars are not low-mass PopIII stars.
- Low-mass PopIII stars will be found as metal free stars or current observations have already constrained PopIII IMF.
- Metal poor stars preserve their initial metallicity.

Further Studies

- Metal accretion in dust phase (however, Johnson2015).
- Binary case.
- Stellar wind from low-mass PopIII stars (Suzuki17)
- Bondi-Hoyle-Lyttleton accretion with stellar wind
- Used $n_{\text {crit }}$ may be over-simplified because we consider 1D trajectory.

