

Condition for low-mass star formation in shock-compressed metal-poor clouds

D. Nakauchi, K. Omukai (Tohoku TAP) R. Schneider SAPIENZA

Contents

1. Introduction

- Star formation in shock-compressed clouds

2. Methods

- Basic equations
- Fragmentation conditions

3. Results

- Thermal evolution
- Fragment mass

4. Summary & Discussion

1. Introduction

Transition in star formation mode

 $\cdot\,\text{Pop III}:$ typically massive, 10-1000 $\,\,M_\odot$

· Pop I, II:

low mass ($\lesssim M_{\odot}$) stars are broadly observed in the solar neighborhood, Galactic halo, and globular cluster etc.

- *Naively, cooling by **metal lines** and **dust emission** may play a role.
- *Especially, dust is indispensable for low mass star formation.

Broom&Loeb 2003 Schneider et al. Omukai et al.

Star formation in shock-compressed clouds

*One zone calculation of shocked clouds in early galaxy formation.

Safranek-Shrader et al. 2010

- Initial density & temperature:
 - $n_{\rm H,1} = 4 \times 10^3 \text{ cm}^{-3} T_1 = 1.1 \times 10^4 \text{ K}$
- · If $Z/Z_{\odot} \sim 10^{-2.5}$, ~ solar mass fragments are formed by metal line cooling alone.

Safranek-Shrader et al. 2014

•BUT,

- ${\rm H_2O}$, dust cooling and ${\rm H_2}$ formation heating were missed.
- Evolution after fragmentation was not studied.
- Shock-compression may be frequent stellar wind, SN, and galaxy merger, etc…

Our study

*Thermal evolution of shock-compressed clouds is studied

- by treating detailed chemical processes.
- by calculating the clump evolution after fragmentation.
- under various conditions.
 - · Initial density: 4 cm⁻³ $\leq n_{\rm H,1} \leq 4 \times 10^4$ cm⁻³
 - · Initial temperature: $T_1 = 1.2 \times 10^4$ K ($v_s = 20$ km s⁻¹).
 - Metallicity: $0 < Z/Z_{\odot} \le 10^{-2}$
 - \cdot External UV radiation: $0 \leq J_{21} \leq 10^4$ $(J_{21} \sim 20, \text{ in solar neighborhood})$

Condition for low-mass star formation is examined.

2. Methods

Basic equations Fragmentation conditions

Evolution in shocked layers

gas inflow shock front $\rho_1 T_1$

 $\begin{array}{l} \text{efficient cooling} \\ t_{\text{cool}} < t_{\mathrm{ff}} \end{array}$

shock front

- ★ Shocked layers are assumed to be plane parallel and steady.
 - EoM: $\rho_1 v_1^2 + P_1 = \rho v^2 + P$,
 - Continuity: $\rho_1 v_1 = \rho v$,
 - Energy: $\frac{de}{dt} = -P\frac{d}{dt}\left(\frac{1}{\rho}\right) \Lambda_{\text{net}},$

$$\Lambda_{\text{net}} = \Lambda_{\text{line}} + \Lambda_{\text{chem}} + \Lambda_{\text{grain}}$$

- $\Lambda_{\text{line:}}$ line cooling by Omukai 2012 etc. H, H₂, HD, H₂O, CII, OI, etc.
- $\Lambda_{chem} : \begin{array}{l} H_2 \mbox{ formation heating by} \\ \mbox{ 3-body \& grain surface reactions,} \\ \mbox{ etc.} \end{array}$

Fragmentation condition

 $) t_{\rm cool} > t_{\rm ff} \quad t_{\rm cool} \equiv e/\Lambda_{\rm net}$

density perturbations grow in the layer.

② $t_{\text{sound}} > t_{\text{ff}}$ $t_{\text{sound}} = H_{\rho}/c_{\text{s}}$ $H_{\rho} = \rho/(d\rho/dr)$: density scale height

 \Rightarrow fragment contracts by self-gravity.

Both ① & ② should be satisfied for the formation of self-gravitating clumps.

*Fragment mass:

 $M_{\rm J}(\rho_{\rm frag},T_{\rm frag})\sim \rho_{\rm frag}\lambda_{\rm J}^3(\rho_{\rm frag},T_{\rm frag})$

 $\lambda_{\rm J} = (\pi k_{\rm B} T/G \mu m_{\rm H} \rho)^{1/2}$: Jeans length

Fragmentation condition

 $) t_{\rm cool} > t_{\rm ff} \quad t_{\rm cool} \equiv e/\Lambda_{\rm net}$

density perturbations grow in the layer.

② $t_{\text{sound}} > t_{\text{ff}}$ $t_{\text{sound}} = H_{\rho}/c_{\text{s}}$ $H_{\rho} = \rho/(d\rho/dr)$: density scale height

 \Rightarrow fragment contracts by self-gravity.

Both ① & ② should be satisfied for the formation of self-gravitating clumps.

*Fragment mass:

 $M_{\rm J}(\rho_{\rm frag},T_{\rm frag})\sim \rho_{\rm frag}\lambda_{\rm J}^3(\rho_{\rm frag},T_{\rm frag})$

 $\lambda_{\rm J} = (\pi k_{\rm B} T/G \mu m_{\rm H} \rho)^{1/2}$: Jeans length

Fragmentation condition

(1) $t_{cool} > t_{ff}$ $t_{cool} \equiv e/\Lambda_{net}$

density perturbations grow in the layer.

② $t_{\text{sound}} > t_{\text{ff}}$ $t_{\text{sound}} = H_{\rho}/c_{\text{s}}$ $H_{\rho} = \rho/(d\rho/dr)$: density scale height

fragment contracts by self-gravity.

Both ① & ② should be satisfied for the formation of self-gravitating clumps.

*Fragment mass: $M_{\text{frag, shock}}$ $M_{\text{J}}(\rho_{\text{frag}}, T_{\text{frag}}) \sim \rho_{\text{frag}} \lambda_{\text{J}}^{3}(\rho_{\text{frag}}, T_{\text{frag}})$ $\lambda_{\text{J}} = (\pi k_{\text{B}}T/G\mu m_{\text{H}}\rho)^{1/2}$: Jeans length

Contraction by self-gravity

Omukai 2000, 2012 Omukai et al. 2005, 2010

- ★ Evolution in the cloud center is followed.
- Dynamics: $\frac{d\rho}{dt} = \frac{\rho}{t_{\rm ff}}$, • Energy: $\frac{de}{dt} = -P\frac{d}{dt}\left(\frac{1}{\rho}\right) - \Lambda_{\rm net}$,

$$\Lambda_{\text{net}} = \Lambda_{\text{line}} + \Lambda_{\text{chem}} + \Lambda_{\text{grain}}$$

Below, we present the results for shocked clouds with $n_{\rm H,1} = \frac{4 \text{ cm}^{-3} \text{ supernova remnant (SN)}}{4 \times 10^3 \text{ cm}^{-3} \text{ galaxy formation (GF)}}$

3. Results

Thermal evolution without/with dust with UV radiation

Fragment mass

Thermal evolution without dust

Thermal evolution without dust

Thermal evolution with dust

Before fragmentation, dust has little effect.

After fragmentation, thermal track is altered dramatically.

Dust cooling leads to rapid T drop & re-fragmentation.

Sub-solar mass fragments are formed. $(M_{\rm frag, dust} \sim 0.01-1 \, {\rm M}_{\odot})$

*This is not true for 10^{-2} Z $_{\odot}$ in galaxy formation.

Thermal evolution with dust

Before fragmentation, dust has little effect.

After fragmentation, thermal track is altered dramatically.

Dust cooling leads to rapid T drop & re-fragmentation.

Sub-solar mass fragments are formed. $(M_{\rm frag, dust} \sim 0.01-1 \, {\rm M}_{\odot})$

*This is not true for 10^{-2} Z_{\odot} in galaxy formation.

Thermal evolution with UV radiation

UV effect is explicit in SN.

By ${\rm H_2}$ photodissociation, gas can not cool below 8000K.

For 10^{-2} Z_{\odot}, re-fragmentation occurs multiple times by metal/dust cooling.

In galaxy formation, little effect is seen.

Photoelectrons emitted from grains heat gas at 10^{5} - 10^{6} cm⁻³.

Condition for low mass star for mation

Summary

*Thermal evolution of a shock-compressed cloud is studied.

*Isobaric contract \longrightarrow fragmentation \longrightarrow gravitational contract. -In GF, $M_{\text{frag, shock}} > 10^5 \text{ M}_{\odot}$ $\sim 10 \text{ M}_{\odot}$ at 10^{-4} - $10^{-3} \text{ Z}_{\odot}$. -In SN, $M_{\text{frag, shock}} \sim 100 \text{ M}_{\odot}$ for all metallicities.

*Dust cooling drives rapid T drop & re-fragmentation. \Rightarrow Sub-solar mass fragment is formed for $\gtrsim 10^{-5} Z_{\odot}$.

*UV hardly changes these trends.

*Dust is indispensable for low-mass star formation in shock-compressed clouds.