"Evolution of magnetic fields in collapsing star-forming clouds under different environments"

accepted by MNRAS (arXiv:1801.02869)

Star formation during collapsing phase in low metallicity environments

<u>Koki Higuchi A</u>

Masahiro Machida ^A Hajime Susa ^B

A : Kyushu Univ. B : Konan Univ.

Various star-forming environments

The transition of star formation

This transition
$$Z_{cri}$$
 is $10^{-6} - 10^{-3} Z_{sun}$?

(e.g., Bromm+ 01; Bromm & Loeb 03; Omukai+ 05, 10; Santoro & Shull 06; Frebel+ 07; Dopcke+ 11; Schneider+ 06, 12)

Outflow during star formation

present-day, Our galaxy

Observation examples
 (Wu+2004; Zhang+2005)
 -> Theoretical study
 -> Outflow contributes to
 the star formation

Models

 INITIAL CONDITIONS 28 clouds have each critical Bonner- Ebert density profiles 	BASIC EQUATIONS $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$ $\frac{\partial v}{\partial t} = 0$			
$\begin{bmatrix} \text{Ionization parameter} \\ \mathbf{X} \\ \end{bmatrix} C_{\zeta} = 0, \ 0.01, \ 1, \ 10 \end{bmatrix}$	$\rho \frac{\partial \mathbf{B}}{\partial t} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla \mathbf{P} - \frac{\partial \mathbf{B}}{\partial t} \mathbf{B} \times (\nabla \times \mathbf{B}) - \rho \nabla \phi$ $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left[\mathbf{v} \times \mathbf{B} + \frac{\eta_{\mathrm{AD}}}{ B ^2} [(\nabla \times \mathbf{B}) \times \mathbf{B}] \times \mathbf{B} - \eta_{\mathrm{OD}} \nabla \times \mathbf{B} \right]$			
$Z/Z_{0} = 0 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-1}$	$\nabla^2 \phi = 4\pi G \rho$ $P = P(\rho)$			
• Magnetic field strength B_0 (B is adjusted such that $\mu_0 = 3$) • rotation $\omega (\equiv \Omega_0 t_{\rm ff}) = 10^{-1}$ Ω_0 : initial angular velocity	P = P(p) Cloud y x B x y			
$t_{ m ff}$: free-fall time				

Ionization rate $\zeta \qquad \zeta = \zeta_{CR} + \zeta_{RE,short} + \zeta_{RE,long}$

Radioactivity

- Short-lived REs
- Long-lived REs
- Cosmic rays (CR)

$$\zeta_{\rm RE,short} = 7.6 \times 10^{-19} \, {\rm s}^{-1} {\rm C}_{\zeta}$$
$$\zeta_{\rm RE,long} = 1.4 \times 10^{-22} \, {\rm s}^{-1} \left(\frac{{\rm Z}}{{\rm Z}_{\rm sun}}\right)$$
$$\zeta_{\rm CR} = C_{\zeta} \zeta_{\rm CR,0} \exp\left(-\frac{\rho {\rm R}_{\rm J}}{\lambda}\right)$$

 R_{I} : Jeans length

\mathbf{C}_{ζ}	Environments						
0	Purely primordial environment, no ionization source is included						
0.01	Low-metallicity environment, weak ionization sources exist						
1	Nearby star-forming environment, the ionization intensity is the same as in nearby star-forming regions (ζ $_{CR,0}$ =1 x $10^{-17}~s^{-1}$)						
10	Starburst galaxy environment: many (or strong) ionization sources exist						
	λ : attenuation length (λ = 96 g cm ⁻						

 $| G\mu m_{\rm p} \rho |$

Initial parameters

	Model	C_{ζ}	$Z/Z_{ m sun}$	μ_0	$B_0(\mu{ m G})$	$\Omega_0({ m s}^{-1})$	$M_{ m cl}(M_{\odot})$	$T_{\rm cl}({ m K})$	$r_{ m cl}(m AU)$
1	I0ZPM3		0		34.1	1.31×10^{-14}	1.08×10^{4}	198	4.91×10^{5}
2	I0Z5M3		10^{-5}		33.8	1.31×10^{-14}	1.05×10^4	194	4.87×10^{5}
3	I0Z4M3		10^{-4}		31.9	1.31×10^{-14}	8.75×10^{3}	172	4.59×10^{5}
4	I0Z3M3	0	10^{-3}	3	24.6	1.31×10^{-14}	3.98×10^3	103	3.52×10^5
5	I0Z2M3		10^{-2}		9.83	$1.35 imes 10^{-14}$	$2.27 imes 10^2$	16.4	1.33×10^5
6	I0Z1M3		10^{-1}		10.3	$1.62 imes 10^{-14}$	$1.26 imes 10^2$	18.1	$9.67 imes 10^4$
7	I0Z0M3		1		5.76	1.78×10^{-14}	15.2	5.65	4.49×10^4
8	I001ZPM3		0		28.4	$1.31 imes 10^{-14}$	$6.20 imes 10^3$	140	4.09×10^5
9	I001Z5M3		10^{-5}		25.1	$1.31 imes10^{-14}$	$6.03 imes10^3$	136	$4.05 imes 10^5$
10	I001Z4M3		10^{-4}		26.2	$1.31 imes10^{-14}$	$4.88 imes 10^3$	117	$3.77 imes 10^5$
11	I001Z3M3	0.01	10^{-3}	3	20.0	$1.31 imes10^{-14}$	$2.15 imes 10^3$	68.0	$2.87 imes 10^5$
12	I001Z2M3		10^{-2}		9.85	$1.35 imes10^{-14}$	$2.30 imes10^2$	16.5	$1.34 imes 10^5$
13	I001Z1M3		10^{-1}		10.4	$1.62 imes 10^{-14}$	$1.28 imes 10^2$	18.2	$9.72 imes 10^4$
14	I001Z0M3		1		5.76	1.78×10^{-14}	15.2	5.64	4.49×10^{4}
15	I1ZPM3		0		12.1	1.31×10^{-14}	$4.79 imes 10^2$	24.9	1.74×10^5
16	I1Z5M3		10^{-5}		12.1	$1.31 imes10^{-14}$	$4.82 imes 10^2$	25.1	1.74×10^5
17	I1Z4M3		10^{-4}		12.4	$1.31 imes10^{-14}$	$5.09 imes10^2$	26.0	1.77×10^5
18	I1Z3M3	1	10^{-3}	3	12.7	$1.31 imes 10^{-14}$	$5.43 imes 10^2$	27.3	1.81×10^5
19	I1Z2M3		10^{-2}		12.1	$1.34 imes10^{-14}$	$4.39 imes 10^2$	25.0	$1.66 imes 10^5$
20	I1Z1M3		10^{-1}		10.9	$1.59 imes 10^{-14}$	$1.58 imes 10^2$	20.1	$1.06 imes 10^5$
21	I1Z0M3		1		6.11	1.78×10^{-14}	18.0	6.34	4.75×10^{4}
22	I10ZPM3		0		13.5	1.31×10^{-14}	6.56×10^2	31.0	1.93×10^5
23	I10Z5M3		10^{-5}		13.6	$1.31 imes10^{-14}$	$6.64 imes10^2$	31.2	$1.94 imes 10^5$
24	I10Z4M3		10^{-4}		14.0	1.32×10^{-14}	$7.25 imes 10^2$	33.1	1.99×10^{5}
25	I10Z3M3	10	10^{-3}	3	15.3	1.32×10^{-14}	$9.39 imes 10^2$	39.6	$2.17 imes 10^5$
26	I10Z2M3		10^{-2}		15.3	1.34×10^{-14}	$8.67 imes 10^2$	39.6	$2.09 imes 10^5$
27	I10Z1M3		10^{-1}		12.6	1.55×10^{-14}	$2.74 imes 10^2$	26.8	1.29×10^{5}
28	I10Z0M3		1		8.03	$1.78 imes 10^{-14}$	40.1	11.0	$6.24 imes 10^4$

 $\omega_0 = 10^{-1}$

 $\alpha_0 \left(\equiv \frac{E_t}{E_g} \right) = 0.47 \quad \beta_0 \left(\equiv \frac{E_{rot}}{E_g} \right) = 1.84 \times 10^{-2}$

Mass-to-flux ratio evolution: Comparison of metallicities

Mass-to-flux ratio evolution: Comparison of metallicities

Driving or not outflow in different environments

Magnetic field evolution on the n_c – B plane

Magnetic field evolution on the n_c – B plane

Angular momentum transfer

Summary

• In the present conditions($\mu_0 = 3$, $\omega_0 = 10^{-1}$), outflow does not drive in the metallicity range $Z/Z_{sun} < 10^{-3}$ expect $C_{\zeta} = 1, 10$

• For the case in which $C_{\zeta} = 0$ and lower metallicities, star formation process is quite different.

• The transition of star formation exist at $Z^{-4}-10^{-3}$ Z_{sun} .

