Present status of the formation theory of First stars

Hajime Susa (Konan University)

Cooling Diagram

Cosmological simulation

Yoshida et al. (2003)

Final mass

$$\dot{M} \sim 30 \frac{c_s^3}{G}$$

1000K, for primordial gas, Very high mass accretion rate (c.f. 10K for interstellar gas)

$$\dot{M} \approx 10^{-2} M_{\rm sun} {\rm yr}^{-1} \longrightarrow$$

$$\dot{M} \times 10^5 \,\mathrm{yr} \approx 10^3 M_{\mathrm{sun}}$$

If the accretion is spherical and is not quenched, POPIII stars are Very Massive.

Radius of the accretion disk

Definition of j of Kepler rot.

Balance between the gravity and the centrifugal force with given **j**

Specific ang.mom. of Run-away collapsing core

$$\frac{j_{Kep}^{2}}{r_{c}^{3}} = \frac{GM}{r_{c}^{2}} \qquad \frac{j^{2}}{r_{d}^{3}} = \frac{GM}{r_{d}^{2}} \qquad j$$

$$j = f j_{Kep}$$

$$r_d = f^2 r_c$$

f= 0.5 \rightarrow disk radius is 25% of core radius

Formation of rotationally supported disk is inevitable.

Rad.Feedback by protostar

Potential depth at the disk

$$\frac{GM}{r_{disk}} > f^{-2} \frac{GM_J}{r_J} = f^{-2} \frac{G\frac{4\pi}{3}r_J^3\rho}{r_J} = \frac{\pi^2 \gamma f^{-2}}{3\mu_{env}m_p} kT_{env}$$

If the temperature exceed the following by some heating mechanisms, gas evaporate from the disk.

$$kT > \frac{GMm_p}{r_{disk}} = \frac{\pi^2 \gamma f^{-2}}{3\mu_{env}} kT_{env} > 9.2kT_{env} \Longrightarrow 9200K \left(\frac{T_{env}}{10^3 K}\right)$$

Photoheating heats the gas \sim a few x 10⁴ K if fully ionized.

Numerical Studies of Accretion Phase

- ∼1000AU•"star cluster"(t>1000yrs)
- Stacy+2009 cosmological•nmax=1e12•racc=50AU
- Clark+2010 turbulent•nmax=1e13•racc=20AU
- Smith+2011 cosmological nmax=1e15 racc=20AU
- Hosokawa+2011 cosmological (2D) Mesh racc=10AU + UV
- Hosokawa+2012 cosmological.POP3.2(2D) Mesh racc=10AU + UV
- Stacy+2012 cosmological nmax=1e12 racc=50AU + UV
- Stacy+2013 cosmological n_{max}=1e13 r_{acc}=20AU 10 halos
- Susa 2013 BE sphere n_{max}=3e13 r_{acc}=30AU + UV
- Hirano+2014,2015 cosmological (2D) Mesh racc=10AU + UV 100 halos
- Susa+2014 cosmological n_{max}=3e13 r_{acc}=30AU + UV 60 halos
- Hosokawa+2015 Cosmological(3D) + UV

∼100AU•"inner disk fragmentation"(t < 1000yrs)

- Clark+2011 cosmological nmax=1e17 racc=1.5AU
- Greif+2011 cosmological n_{max}~1e17 (Arepo) r_{acc}=0.46AU(=100Rsun)
- Machida+2013 BE sphere change EOS nmax ~1e18-1e20 + MHD
- Stacy+2016 cosmological nmax=1e16 racc=1AU + UV
- Hirano+2017 cosmological(3D)
- ~10AU•" resolve protostellar radius "(t~10yrs)
- Greif+2012 cosmological Arepo No sinks racc=0.05Rsun

Numerical studies in space-time

Merge or survive?

Clark+ 2011 O(10) sinks

Greif+ 2011 O(10) sinks ATT 1 t-+ 1000 log n_H [cm⁻³] 12

Smith+ 2011 O(10) sinks

Ó

(a) t = 1.16e+3 yrs M. = 45.4M_@

Hirano & Bromm 2017 (adiabatic core)

Figure 5. Cross-sectional view of the gas number density around the collapse centre of clouds. Left, middle, and right panels shows results in the low-resolution run at 0, 30000, and 65000 yr, medium-resolution run at 4500, 5000, and 5500 yr, and high-resolution run at 164, 170, and 176 yr, respectively. The box sizes are 0.3 pc, 2000, and 100 au, respectively. Labels indicate the corresponding fragment (Table 1).

100-200 times the free-fall time

But multiple stars survive

Number of fragments gradually increases as the threshold density rise.

Stiff EOS v.s. Sinks – number of "stars" –

c.f. Stacy+2016: nsink=1x10¹⁶/cc r_{sink} =1AU

Summary

- Run-away phase : OK
- Accretion phase
 - high resolution to resolve the protostar (< 5kyr)
 - fragments merge or survive ? Some merge and Some survive
 - How many? Several
 - dependence on methodology Consistent
 - low resolution but longer time integration by RHD(~ 500kyr)
 - final mass & separation & multiplicity? wide spectrum

B-FIELD

Magnetic field on Star Formation

- Important ingredient of present-day SF
 - $-E_{B} \sim E_{kin} \sim E_{grav}$
 - Jet/Outflow launching, A-mom transport
 - suppress fragmentation of disk
- Could be important for first star formation
 - Very weak seed field ($\sim 10^{-19}$ G) but,
 - Strong coupling B and Gas
 - turbulence \rightarrow small scale dynamo \rightarrow equipartition?

B - Gas Coupling

 MHD effects such as Magnetic Breaking, Jet/Outflow Launching occurs if B and Gas are coupled.

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times \left(\boldsymbol{v} \times \boldsymbol{B} \right) + \kappa \nabla^2 \boldsymbol{B} \qquad t_{diff} \approx \frac{L^2}{\kappa}$$

In case we consider cloud collapse of SF,

Magnetic field well couples to the primordial gas

Effects of magnetic field

Ideal MHD Machida+2008 (primordial)

Seed B-field in the early universe

- Cosmological processes of seed field generation
 - Coupling of EM-field with other fields $(10^{-9}-10^{-35}G)$
 - second-order fluctuation while recombination era(Ichiki+ 2006 10^{-24} - 10^{-20} G)
- Astrophysical Processes
 - Biermann Battery
 - Structure formaton Kulsrud+1997 10⁻²¹ -10⁻²⁰G, @comoving
 - Galaxy formation Davis & Widrow 2000; 10⁻¹⁷G @galactic center
 - Minihalo formation Xu+2008 10⁻⁹G@10¹⁰cm⁻³
 - Reionization Gnedin+ 2000 10⁻²⁰-10⁻¹⁸G
 - Radiation force
 - Drag : Balbus 1993, Chuzhoy 2004, Silk & Langer 2006
 - Shadow: Langer+2003,2005 Ando+2010, Doi & HS 2011, Shiromoto+2014

Radiation / Biermann Battery

Ando, Doi, HS 2010, Doi, HS+2011, Shiromoto, HS+2014

Most of normal processes predict < 10⁻¹⁸G

Small scale dynamo: Turbulence in Minihalos

Accretion flows inject kinetic energy into minihalos

Cascade to smaller scales down to the viscus scale, below which the motion dissipates by viscosity.

large scale: long eddy time

Kolmogorov turbulence requires

$$v_k \propto k^{-\frac{1}{3}} = l^{1/3}$$

Hence,

$$t=\frac{l}{v_k}\propto l^{2/3}$$

eddy time scale is shorter for smaller scales.

Magnetic field is twisted at very short time scale. \rightarrow rapid amplification.

Viscous scale of the collapsing Minihalos

Mochizuki 2017 master thesis

Too small to be resolved by numerical simulations \rightarrow Semi-analytic method

2-point correlation function of turbulent velocity field/B-field

$$\langle v_i(x,t)v_j(y,s)\rangle = T_{ij}(r)\delta(t-s)$$

$$T_{ij}(r) = \left(\delta_{ij} - \frac{r_i r_j}{r^2}\right) T_N(r) + \frac{r_i r_j}{r^2} T_L(r) + \varepsilon_{ijk} r_k F(r)$$

Consider 2 points x and y separated by r_1 .

Longitudinal correlation $\langle v_1(x)v_1(x+r) \rangle = T_{11}(r) = T_L(r)$

Normal correlation

$$\langle v_2(x)v_2(x+r)\rangle = T_{22}(r) = T_N(r)$$

Helical correlation

$$\langle v_2(x)v_3(x+r)\rangle = T_{23}(r) = rF(r)$$

$$\langle B_i(x,t)B_j(y,t)\rangle = M_{ij}(r,t)$$

$$M_{ij} = \left(\delta_{ij} - \frac{r_i r_j}{r^2}\right) M_N(r,t) + \frac{r_i r_j}{r^2} M_L(r,t) + \varepsilon_{ijk} r_k C(r,t)$$

Derive evolutionary equiation of M_{ij} from the induction equation

$$\nabla \cdot B = 0 \to M_N = M_L + \frac{r}{2}M'_L$$

 \rightarrow Solve equation for M_L & C.

Derive evolution equation of M_{ij}

Turbulent velocity field is related to B-field by induction equation. $\frac{\partial B}{\partial t} = \nabla \times (U \times B) - \eta \nabla \times (\nabla \times B)$

substitute the following identity by induction equation and integrate formally from 0 to $\delta t.$

$$\frac{\partial B_i B_j}{\partial t} = \frac{\partial B_i}{\partial t} B_j + B_i \frac{\partial B_j}{\partial t}$$

We have

$$B_{ij} = B_{ij}^{0} + \int_{0}^{\delta t} dt \Big[R_{ipq}^{x} U_{p} B_{qj} + R_{jpq}^{y} U_{p} B_{iq} \Big] + \delta t \Big[\eta \big(\nabla_{x}^{2} B_{ij} + \nabla_{y}^{2} B_{ij} \big) \Big]$$

here $B_{ij} \equiv B_{i} B_{j}$ and B_{ij}^{0} denotes the initial value at $t = 0$.
and $R_{ipq}^{x} \equiv \varepsilon_{ilm} \varepsilon_{mpq} \left(\frac{\partial}{\partial x_{l}} \right)$

 $U = \overline{U} + v$ \overline{U} bulk velocity v turbulent motion

Kazantsev equation

$$\begin{aligned} \frac{\partial M_L}{\partial t} &= \left[\frac{2}{r^4} \frac{\partial}{\partial r} \left[r^4 \eta_T \frac{\partial M_L}{\partial r} \right] + G M_L \right] \\ \eta_T &= \eta + T_L(0) - T_L \\ G &= -2 \left(T_L^{\prime\prime\prime} + 4 \frac{T_L^{\prime\prime}}{r} \right) \\ T_L^{\prime\prime} &< 0, T_L^{\prime\prime\prime} &< 0 \rightarrow G > 0 \end{aligned}$$

Brandenburg, Subramanian 2005

Behavior of the solution

Magnetic field grow at the smallest scale, then inversely cascade to larger scales.

Time scales

L: viscose scale l_J: Jeans scale
c_s: sound velocity (turbulent velocity at Jeans scale)

Simulations

Turk+2012 Sur+2010, 2012 Federrath+2011

Unable to resolve viscous scale

ightarrow cannot reach the equipartition level

- The smaller scale resolved, the larger amplitude obtained.
- Faster growth than free-fall observed

B-field summary

- Very weak seed field
- tight coupling with gas \simeq ideal MHD
- If B-field exists close to the level of equipartition, various MHD effects are expected.
- If the minihalo is highly turbulent, the weak seed field will be amplified to the level of equipartition.