初代星・初代銀河研究会 @ 呉 2018年 2月 10日(土)

銀河間潮汐相互作用が誘発する 大質量星形成 1: 大小マゼラン雲

柘植紀節, 佐野栄俊, 山本宏昭, 田村陽一, 立原研悟, 井上剛志, 福井康雄 (名古屋大学), 戸次賢治 (ICRAR/西オーストラリア大学)

<u>大質量星</u> (質量 20 M_☉ 以上の星)

大質量星は星風・紫外線放射・超新星爆発などを通して星間物質に 大きな影響を与える

> 銀河の物質進化・宇宙の形成史の理解 において非常に重要である.

<u>大質量星形成メカニズムが未解明</u>

短時間に非常に多くのガスを集める必要がある

~ 10^{-4} – $10^{-3} M_{\odot}$ /yr > (Wolfire & Cassinelli 1987)

太陽質量程度の星の場合は~10⁻⁶ M_☉/yr (自己重力による)

効率の良い機構が必要

可能性の1つとして、ガスの超音速衝突によるガスの強い圧縮 とそれに伴う磁場の増幅や乱流の励起が考えられている. (井上 福井 2013) ガス雲同士の衝突による大質量星形成の可能性

例) 天の川銀河のスーパースタークラスター: Westerlund 2

巨大星団は分子ガス雲 同士の衝突よって形成 されることが観測的に 理解されつつある.

観測例

- Westelund2
- RCW38
- NGC 3603

Furukawa et al. 2009

3

2 速度成分のガス雲が相補的な空間分布を示す

ガス雲同士の衝突による大質量星形成の可能性

例) 天の川銀河のスーパースタークラスター: Westerlund 2

巨大星団は分子ガス雲 同士の衝突よって形成 されることが観測的に 理解されつつある.

観測例

- Westelund2
- RCW38
- NGC 3603

Furukawa et al. 2009

ガス雲同士の衝突による大質量星形成の可能性

列) 天の川銀河のスーパースタークラスター: Westerlund 2

Blue shifted cloud

しかしながら、宇宙には 10⁵ M₀ を超える 巨大星団が多く存在している (e.g., **球状星団**).

本研究の目的 10⁵ M_☉を超える巨大星団の形成機構の解明

Red shifted cloud

2 速度成分のガス雲が相補的な空間分布を示す

大マゼラン雲 (LMC)

距離: ~ 50 kpc 高空間分解能での観測が可能

大マゼラン雲 (LMC)

距離: ~ 50 kpc 高空間分解能での観測が可能

3

RMC 136 (R136) スーパースタークラスター

年齢が若い: -1.5 Myr
局部銀河群で最大の星団: -10⁵ M。
超大質量の星が存在
265 M。, 195 M。, 175 M。, 135 M。の星が存在 (Crowther et al. 2010)

RMC 136 (R136) スーパースタークラスター

年齢が若い: -1.5 Myr
局部銀河群で最大の星団: -10⁵ M。
超大質量の星が存在
265 M。, 195 M。, 175 M。, 135 M。 の星が存在 (Crowther et al. 2010)

銀河間潮汐相互作用による巨大星団形成の可能性

銀河間潮汐相互作用による巨大星団形成の可能性

数値計算の観測的検証は行われていなかった.

11

先行研究: 2 つの速度成分の存在 (Luks & Rohlfs 1992)

- Parkes 望遠鏡による空間分解能 ~230 pc の HI 21cm の解析
 Disk 成分の他に、低速度の HI ガスが存在

L-component

D-component

先行研究: 2 つの速度成分の存在 (Luks & Rohlfs 1992)

- ・Parkes 望遠鏡による空間分解能~230 pc の HI 21 cm の解析
- ・Disk 成分の他に、低速度の HI ガスが存在

L-component

D-component

LMC と SMC の潮汐相互作用によるガスの 攪乱・流入・衝突が R136 の形成と関係して いることを観測的に検証する.

- LMC の水素ガスの空間分布, 速度構造を解明
 <u>ガス衝突の有無を調べる</u>
 - -2 つの速度成分の分離
 - それらの空間分布の比較
- ・ 潮汐相互作用によるSMC からのガス流入の有無を検証
 - SMC の重元素量は LMC の 1/5 程度
 - ガス流入があった場合、観測的にも 重元素量の違いが見えることが期待される

使用したアーカイブデータ

観測対象	¹² CO(<i>J</i>	=1-0)	HI 21cm	Ηα	τ_{353}, T_{d}
望遠鏡	NANTEN 2	Mopra	ATCA& Parkes	61 cm Curtis Schmidt	Planck/IRAS
角度 分解能	2.'6	45″	1.′0	~ 3''- 4''	5'
空間 分解能	40 pc	10 pc	15 pc	0.7-1.0 pc	70 pc
速度 分解能	0.65 km s ⁻¹	0.53 km s ⁻¹	1.649 km s ⁻¹		
論文	Fukui et al. 1999	Wong et al. 2011	Kim et al. 2003	MCEL; Smith & MCELS Team 1999	Planck Collaboration et al. 2014

結果: L-, D-components の空間分布

- L-component は南東に集中. 西部にも淡い成分が広がっている

結果: L-, D-components の空間分布

R136 が位置する南東部の HI Ridge 領域に着目した.

結果: L-, D-components の空間分布 (500pc scale)

L と D が相補的な空 間分布を示している.

結果: L-, D-components の空間分布 (500pc scale)

L と D が相補的な空 間分布を示している.

結果: L-, D-components の空間分布 (500pc scale)

L と D が相補的な空 間分布を示している.

結果: L-, D-components の空間分布 (100pc scale)

21

結果: 速度構造

結果: 速度構造

最も明るい HII 領域の1つである N44 領域 についても R136 周辺と同様に HI ガス同士 の衝突が起きていると考えられる.

ダストを用いた重元素量の比較

重元素の半分はダスト (固体微粒子) として存在

ガス/ダスト比 = 重元素量の指標

[仮定] 水素ガスとダストが一様に混ざっている

中性水素ガスの電波強度とダストの光学的厚みの相関をとる

Fukui et al. 2015 で太陽系近傍でのガス/ダスト比を定量化

ダストを用いた重元素量の比較

	Stellar bar	N44	HI Ridge
傾き [10 ⁸ K km/s]	$\boldsymbol{0.75\pm0.24}$	1.0 ± 0.2	1.5 ± 0.3

Stellar bar < N44 < HI Ridge

議論:SMC からのガス流入 (HI ガス衝突の起源)

Stellar bar のダスト/ガス比の値を1として領域間の比較を行った.

	領域	ダスト/ガス比 (重元素量)	SMC と LMC のガス質量比	L と D の 質量比
非衝突	Stellar bar (LMC)	1		
衝突	N44	0.8	3:7	~ 3:7
	HI Ridge	0.5	1:1	~1:1
-	SMC = 1/5 LMC	0.2		

 R_{SMC} : SMC のガスの割合 R_{LMC} : LMC のガスの割合 $R_{SMC} + R_{LMC} = 1$ $R_{SMC} \times 0.2 + R_{LMC} \times 1 = 0.8$ or 0.5

積分範囲 L: -100 to -10 km/s D: -10 to +10 km/s

=> L-component は SMC から流入してきたガスを多く含む

HI ガスの衝突は銀河間潮汐相互作用 によって引き起こされたことを示唆

まとめ

■ LMC の水素ガスの空間分布, 速度構造

- 銀河全面に渡って L と D の 2 速度成分の分離を行なった
- HI Ridge, N44 領域で HI ガスの衝突の観測的証拠を見つけた
- HI ガスの衝突による巨大星団形成を示唆

■ ガス/ダスト比を指標とした領域間での重元素量の違い

- 領域間の重元素量の違いを明らかにした Stellar bar > N44 > HI Ridge (R136)
- 衝突領域への SMC からのガス流入
- 潮汐相互作用による HI ガスの衝突を示唆

R136 をはじめとするLMC の巨大星団形成が SMC との銀河間潮汐相互作用によって 誘発されたことを観測的に示した.

LMC · SMC

- 全面に渡り HI ガス衝突による大質量星形成を検証
- ダスト/ガス比の詳細な空間分布を解明
- 数値計算との詳細な比較

■ 他の相互作用・衝突銀河に拡張 ・ アンテナ銀河, M33, M51, M82...

