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The first SMBHs?

A number (~10) of very bright QSOs have been found
beyond redshift 6

+ Mgy ~2 x10° M, @ z=7.085
(Mortlock et al. 2011, Nature)

{ <—+ My,~1.2 x 101° M, @ z=6.3
: (Wu et al. 2015, Nature):

Age of the universe@z~7: 0.77Gyr. Get them quickly before this

If a Pop Il remnant BH (~100M) grows via Eddington accretion...

109 M
terow = 0.05log (102 Mz) ~ 0.8Gyr

But 100% of the duty cycle is needed (feedback prohibits this)




Supermassive (~10°M,) Stars?

temperature T(K)

Direct Collapse (DC):

a special case of Pop lll star formation
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Key Questions

+ Is this really possible in a full cosmological context?

> People normally study the DC scenario with artificial setting:
put a strong UV radiation field by hand with an arbitrary
H atomic-cooling halo...

BUT nobody knows if such situations are realized or not.
Environments which allows the DC should not be normal...

+ What kind of star(s) emerge after the evolution considering
such environmental effects?

Answer the above with direct cosmological simulations



Look for potential sites of DC

3 necessary conditions for the direct collapse

+ Nearby strong UV source to destroy H2 molecules
+ Halo is massive enough to turn on H atomic cooling
+ Zero (or very low) metallicity

Locate DC candidate clouds
in cosmological simulations;

N-body
_|_

star/galaxy formation
semi-analytic models

\

~50 potential sites of DC




DC prevented by tidal effect

DM density

Follow the evolution of each cloud
with N-body+SPH simulations
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Density actually turns to decrease
at some point in 40/42 cases.

Because of the strong tidal field
created by nearby massive halos that
have UV-emitting galaxies
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Collapse aided by halo mergers

DM densit gas density[/cc]

But collapse does occur for 2/42 cases,
where the density continues to increase.
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The rapid halo mergers carry a large
mount of gas toward the cloud center,
which accelerates the collapse.




Collapse with 2 different clouds

Different strength of the tidal field results in different cloud morphology
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- Sink radius = 20 AU

- |nitial Condition

Follow next accretion stage

S1
- Gadget3 (SPH + N-body)

* Primordial chemistry
- Multiple sink w/ mergers

(created atn > 10'% cm™3)

- UV feedback from sinks (Susa, 2006)

* Luminosity of the sink
- fitting of Hosokawa+2012

* Optically thin Lya cooling

—> taken from cosmological simulation



Multiples w/ filamentary cloud

— :
1000 AU 10000 AU

The filamentary cloud easily fragments via gravitational instability,
which produce multiple star-disk systems = cluster of very massive stars
( w/ some binaries)




“Filamentary”
Cloud

Multiple, large
Star-disk system

V.S.
“Spherical”
Cloud

Single, compact
Star-disk system




Mass Evolution, and Binarities

Binary in the simulation
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But in both cases, the minimum binary separation is ~100AU
>& we assume that the stars merge with the smaller separation because...



“Supergiant Protostar”
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+ This is the reason why the UV feedback does not stop the stellar
mass growth until the stellar mass exceeds 1000M,
+ “common-envelope”-like evolution may occur in the protostellar phase...
& future studies needed



Summary

Formation of supermassive stars and their binaries
in a full cosmological context, with direct numerical simulations

+ Environmental effects (e.g., tidal field) are obviously important
Strong tidal force stretches the cloud to make it filamentary,

causing the gravitational fragmentation

+ a number of massive binaries
Regarding tightest massive binaries, the protostellar evolution
becomes critical;, “common-envelope”-like evolution ?



Additional pages



Time evolution of the density
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Gravitational collapse proceeds, but the cloud is largely stretched
by the strong tidal force



~10 stars with ~1000M, from in 3 x 10* years,
and some of them are in binary systems
(minimum separation ~ 100 AU)



Emergence of HIl regions

t = 37660 yr

HIl region



