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I. Introduction

[0 The higher order perturbation theory in general relativity
has very wide physical motivation.

- Cosmological perturbation theory
e Expansion law of universe : “"Back-reaction?”
(ACDM ?, inhomogeneous cosmology ?, or modified gravity ?)
¢ Non-Gaussianity in CMB (beyond Planck)
e Hubble tension, cg-tension, ...

- Gravitational-wave physics
e Black hole perturbations
- Radiation reaction effects due to the gravitational wave emission.
» GW from SgA* EMRI. --> LISA target.
e Binary coalescence through the post-Minkowski expansion
- LIGO-Virgo detected GW from BH-BH binary coalescence !!!

- Perturbation of a star (Neutron star)
¢ Rotation - pulsation coupling (Kojima 1997)

Gravitational physics is now toward a precise science.

There are many physical situations to which higher order
perturbation theory should be applied.
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However, general relativistic perturbation theory
requires very delicate treatments of “gauges”.

It is worthwhile to formulate the
higher-order gauge-invariant perturbation
theory from general point of view.

e According to this motivation, from 2003, we have been formulating a
general-relativistic higher- -order perturbatlon theory in a gauge-invariant
manner.

- General formulation :
gfgeral framework of higher-order gauge-invariant perturbation theory : K.N. PTP110 (2003),723; ibid. 113 (2005),

Construction of gauge-invariant variables for the linear-order metric perturbation and the proposal of the “zero-mode
problem” : K.N. CQG28 (2011),122001; PTEP2013 (2013),043E02; IJMPD21 (2012), 1242004.

The nth-order extension of the definitions of gauge-invariant variables : K.N. CQG 31 (2014), 135013.

= Appllcatlon to cosmological perturbation theory :
Einstein equations : K.N. PRD74 (2006), 101301R; PTP117 (2007), 17.
Equations of motion for matter fields : K.N. PRD80 (2009), 124021.
Consistency of the 2" order Einstein equations : K.N. PTP121 (2009), 1321.
Summary of current status of this formulation : K.N. Adv. in Astron. 2010 (2010), 576273.
Comparison with a different formulation : A.J. Christopherson, et al., CQG28 (2011), 225024.
Summary of current status updated 2019 : K.N. Book "Theory and Applications of Physical Science Vol.3”, Chapter I,
(2020); arXiv:1912.1280v2 [gr-qc].
- Appllcat|on to Black Hole perturbation theory :

Proposal of a %auge invariant treatment of 1=0,1-mode perturbations on Schwarzschild background spacetime: K.N.
CQG 38 (2021), 145010. [arXiv:2102. 00830v3[gr qc] 1.

Formal solutions of the any-order mass, angular-momentum, dipole perturbations on the Schwarzschild background
spacetime: K.N., LHEP 2021 (2021), 215. [arXiv:2102.10650v3[gr-qc] 1.

Full Paper-Series of these short papers:

Part I : --- Formulation and odd-mode perturbation --- K.N., arXiv:2110.13508v6 [gr-qc];
Part II : --- Even-mode perturbations --- K.N., arXiv:2110.13512v4 [gr-qc];
Part III : --- Realization of exact solutions -- K.N. arXiv:2110.13519v4 [gr-qc].

Our general formulations for the higher-order gauge-invariant perturbation
theory is based on the following conjecture:

— Conjecture (Decomposition conjecture):

If the gauge-transformation rule for a tensor field A, is given by ahy, — 2°hgp =
£58ap» With the background metric g5, then, there exist a tensor field .%,;, and a vector
field Y such that h,, is decomposed as hy, = Fu + £ygap, Where #,;, and Y are
transformed as %%, — 9 Fup = 0, 2 Y — Y = 6% under the gauge-transformation
&, = 2.1 0%, respectively.

In [K.N.(2011); K.N.(2013).], a proof of this conjecture was discussed, but the existence of
Green functions for some elliptic differential operators was assumed. For this reason, the kernel modes
(zero modes) of these elliptic differential operators were ignored (zero-mode problem).

In the perturbations on the Schwarzschild background spacetime,
I=0,1 modes correspond to these kernel modes!!

We proposed a gauge-invariant treatments of 1=0,1 modes
[K.N. CQG vol.38 (2021), 145010.] and develop a higher-order
gauge-invariant perturbation theory on the Schwarzschild
background spacetime [K.N. LHEP vol.2021 (2021), 215.].




In this poster, ....

I briefly explain our proposal of a gauge-invariant treatment of
|=0,1-mode perturbations on the Schwarzschild background

spacetime.

K.N., CQG38 (2021), 145010; [arXiv:2102.00830v3 [gr-qc] ];
K.N., arXiv:2110.13508v6 [gr-qc] (Full Paper Part I);
K.N., arXiv:2110.13512v4 [gr-qc] (Full Paper Part II).

I mainly show that our derived linear solutions realize two linearized
exact solutions, the Lemaitre-Tolman-Bondi solution, non-rotating C-
metric.

K.N., arXiv:2110.13519v4 [gr-qc] (Full Paper Part III).

I1. “"Gauge” in general relativity

(R.K. Sachs (1964).)

O] There are two kinds of “gauge” in general relativity.

- The concepts of these two “gauges” are closely related to the
general covariance.

— “General covariance” :
There is no preferred coordinate system in nature.

O The first kind “gauge” is a coordinate system on a
single spacetime manifold.

O The second kind “gauge” appears in the perturbation
theory.

This is a point identification between the physical
spacetime and the background spacetime.

— To explain this second kind gauge, we have to remind what
we are doing in perturbation theories.

- Our gauge-invariant formulation exclude this second
kind “gauge”. 6




III. Construction of gauge-invariant variables

[] gap : metricon PS, gap : metric on BGS.

n

I
_ .= €

metric expansion : 2°8ab = Z¢ 8ab = 3, l—,(l)gab +o(e"), gy = gap.
i=o -

Our general framework of the higher-order gauge invariant
perturbation theory is based on a single assumption.

O linear order (decomposition conjecture) : ., = Vg,

If there is a symmetric tensor field %ap of the second rank, whose gauge-
transformation rule is @haw — 2hay = £5846, then there exist a tensor field
Za and a vector field Y? such that #Ag is decomposed as
hgp = <9Zab+£Ygab
where %, and Y“ are transformed as

o Fap— 2 Fab =0, oY= oY =0"
under the gauge-transformation &, = 3&”6_1 0% , respectively.

This conjecture is almost proved but is still a conjecture due to the
“zero-mode problem” !!

K.N. CQG28 (2011), 122001; PTEP 2013 (2013), 043E02; IJMPD21 (2012), 1242004. 7

[] Proposal to solve this |1=0,1-mode problem

- To resolve the problem of 1=0,1-mode perturbations, we use the
decomposition of the perturbations by S—=3S5 instead of by S=Y},.

Yim for [>2;
Ss = { k@ ioum for I=1 kaiom € Han={fe FE)|[A+2] f=0}. - (1)
kay for [=0. k; e #, ={feF(*)Ar=0}.
hap = ZhABS_& hap=rDp Y hie1yaSs + ’SquqZh(al)Aﬁ,
Iim Lm 1 Lm - (1)
hpg = §qu’2§ﬁ(e0)§ +r (ﬁpbq - EYP‘IA) ,):m il(fZ)S_éJr r228,(p qu) ﬁrgnﬁ(az)s_&

- This decomposition is invertible if we choose

1-z2

1. I+z 1 1
Kasom=0 = Z{l +£(flnl_—z B E) } v Kagymerr = (1 -2 {1 +ﬁ(§ ln1_—z T2
- When § =0, we have kg o< Yo0, Kz 2, % Yim
- These functions are singular except for the case 4 =0.

— Proposal :

We decompose perturbations /., on a spherically symmetric background space-
time through Egs. (I), (I), and (III). Then, the decomposition (II) becomes invertible
including / = 0, 1 modes. After deriving the field equations such as linearized Einstein
equations by using the harmonic function Sg, we choose 6 = 0 when we solve these
field equations as regularity of solutions.

Owing to this proposal, we can show the decomposition conjecture

(l)gab = (1)yab +£(1)Ygab
for the perturbations on the Schwarzschild background spacetime 8
including I1=0,1 modes.




IV. The solution to Linearized Einstein equations.

The solutions are “gauge invariant” in the sense of “the second kind”.

[] 1=1 mode solution (we concentrate only on m=0 mode):

167 5 / - /
a(t,r) = ——=——r dtT 1), +a =~ ar T +a
1(67) 3M ! (ol)r T 410 "% Kerr parameter perturbation

2Fap(dx) (o (dXP)p) = <6Mr2 / dr‘“Tf’r)) sin® 0(dt) (o (d9)p) & £v,,, 8ab

| Vion)a := (B()+ W (t,r)) r2sin®0(d¢)a, B(r) : arbitrary function of t.
[[] I=0 even mode solution:

2 2 |
Fp= = <M1 +an / dr {—T,,]) ((dt) @)+ 2 (dr)a(dr)b) +2 {47" / dt <?T,,+ fT,,)] (d1) (a(dr) )

where V,: <ﬂ+ rfo, Y +y(r ))( )+ —a, (dr)a, Y(r f/dr[ r(r) #/drUfo)C(r) f%]
[] 1=1 even mode solution:
Fp = _lenr?f? [1+fT +7f0 T — Te0) — 4T (1 }cos()(dt) (d1)p+ 167 [T —LQT]COSQ(dI) (dr)
ab = (1 f) ) e0) — T (el)r a b tr 3f(1—f) (7 (a b)
201 _ 4
+87;r2((11_;)f) [ (lz”;f)a T,,] cos 8(dr),(dr), %Tncose}'ab

£V, 8abs

where Vi), = —rd®)cos0(dt)s+ (P — rd,Py,)) cos O(dr)g — rd(,) sin6(d6),.

These terms are regarded as “the first kind gauge”. 9

V. Realizations of exact solutions

5-1. Realization of Lemaitre-Tolman-Bondi (LTB) solution (1)

[] Energy-momentum tensor : T, = pugup, u, = —(d7),.
[[] Exact LTB solution : g, = —(dt).(d7), + l(i’}r();) (dR)4(dR)y + r* Y, r=r(T,R),
Einstein egs. : (3,r)? = F(R) +f(R), 8mp= IRF(R)
r (Ogr)r?
[ = ZFJ‘((RR)) (coshn—1), ©nR) —7= % (sinhn—n), f(R)>0.
~ g o). wlR) — = S (1 —sinm).f(R) <0
1/3
= () - sw o

[[] Vacuumcase: p=0 — F(R)=0. Wechoose %(R)=R, f(R)=

(dr)e = (g)l/z[(dR)a —(dD)d],  (d)a = (dT)a— (1 - 5)1 (5)1/2 (dr)a.

r r

- F 2M
8ap = —f(d1)a(d)y + 7 (dP)aldr)p +Ppup, [ =1—— =1 ==
( Schwarzschild spacetime ) 10



5-1. Realization of LTB solution (2)

[ Linear perturbations with the Schwarzschild background :

F(R) = 2M+e2mi(R)+O0(e%), (T,R) = r;(T,R) +&r(1,R) + O(£?).
R) = 0+4&fi(R)+0(g?), 13

f(R) efi(R)+0(¢) rs(T,R):(%) / Rt o2

©(R) = R+et(R)+0(). 2 P,
@2 = "0 m, (1= 2@+ B Ry =0
rp = AO®) T g 2l

2w = (a0t - R (dR) + P

+ f(R)
= —(d7)a(d7)p+ (9rr)*(dR)a(dR)p + r*Yar Background
+&[(2(drr1) — (9rr) f1) (Orr)(dR) 4 (dR)p, +2rr1Yup| Linear perturbation
+0(&?)
=:| 9+ e phult 0(e?).

Gauge choice 2 : {t.R,0,¢} € Mp, — {T,R,0,0} € M

[] Linear metric perturbation :

2hap = (2(9rr1) — (Ik7) f1) (AR)a(dR)p + 2771 Yab- ahap = ahap +£e8ap- | 11

5-1. Realization of LTB solution (3)

[] Our linearized 1=0 solution : [2hw = Fap + £ ,v8ab]

=2 (mvan [ar[ 1] ) (@@utann+ s anutans) +2 [sar far (31 )| @0ty +6 0

Traceless in the tangent space {(@)a:(@)a}  Tha term 74 is included in this term. Eﬂ'
Viawi= ( 30+ 3T ) @0+ T @, 10)i=1 [ar| )= 3z [ar1=3nE0)+ 5.

[[] Linearized LTB solution : ahay = (2(9rr1) — (9rr) f1) (AR)a(dR)p + 2771 Yub.

(@R = (@t 0= e 7 =12 Vg |-+ )| @0,

2—f ml(R)
L

2m(R)

z(dt)(a (dr)b) + '£V(LTB) 8ab

%hab =

(dt), (dt)b+f (dr)q(dr)p| +

[[] Realization from our I=0 solution :
e We consider the case M; =0, because we can always add this term with an
appropriate term of £ygup .

47r/dr{ ]},}_4n/dr[ pl} /d [ 9%1;;%1)/2} /drarml(R):m1(R)-

47tr/dt (?T,HLfT,r) = 1 f 1/2 /dtBle 1 f)l/2 /dtafml )1/2 ,



5-2. Realization of non-rotating C-metric (1)

[[] To compare with the Schwarzschild metric, we consider the C-metric:
1

8ab = (1+ arcos 6)2

[—Q(dt)a(dt)b + é(dr)a(dr)b + ; {(d8)4(d8), + P>C*sin® 8(d¢)a(de)s } | -

P=142amcos®, Q= (1—oa??) (1_2_m>'

r

We consider the situation m is finite and the acceleration parameter a and the
deficit/excess angle C —1 is infinitesimally small.

[] Perturbative expansion of C-metric : gu(M,&,C;%) = 2.y (M, &,C; %) (dx*)o(d5"),
e We regard the metric &a» on the physical spacetime .#¢ is obtained by the
replacement m—M, a—a, C—C, * —3x inthe above metric.

o As the gauge choice Z: of the second kind, we identify the point {x"} = {¢,,6,¢}
on the background spacetime .# and the point {¥*} = {f,7,6,¢} on the physical
spacetime Mg : %, : {7} = {x*} .

e We consider the parameter expansion
M= M+eM +0(e?), a=a+eo+0(e?), C=:C+eC +O0(&?).
Then, the linear perturbation 2% in the gauge choice Z; is given by
l2hap = M1Iygar(M, 0 = 0,C = 1;x) + 01 9g8ap(M, ¢ = 0,C = 1;x) + C10cgar(M, 0. = 0,C = 1;x)|
e Of course, we may a different gauge choice & : % : {#} = {x*} , ¥ =x*+e&# +0(e?)
In this gauge, the linear perturbation #haw is given by
I?]/hab =M IyGapy(M,a=0,C=1,x)+ 19q8up(M,a =0,C =1,x) +C19dcgup(M,at = 0,C = 1,x) +£§gabl

We may always have such term
due to the different choice of the
second-kind gauge. 13

5-2. Realization of non-rotating C-metric (2)

|:| Straightforward calculations leads to the linear perturbation 2w as
2
2M0 (dt)alde)y + 12 (dr)aldr)s)

+20 [—rcos 0ga, +Mr (—(d6).(d6), +sin” 0(d9)a(d9)s)]
+2C1 2 5in” 0(do) . (do),.

Z hay, =

|:| Components of the linearized C-metric :
e The (t-r)-part of hgp is given by
2M
hap = Tl [(d)a(dt)p+ f*(dr)a(dr)s] —20urcos O [—f(dt)a(dt)p+ " (dr)a(dr)s]
e The hap components are absent.
e The hp,; components :
Bpg = 204 [—1rcos 072y, +Mr* cos @ (—(d),(d8),+sin® 0(d),(d9),)] +2Cir*sin® 8(d9).(d9)s
1
Trace part : —y"h,; = —40yrcos 0 +2C;.
r

1 11 .
Traceless part :  —5hpg = 5¥pa 51 s = (200Mcos 6 +Ci) (—(d6),(d6)y+sin” 6(d9),(d9),) -

14



5-2. Realization of non-rotating C-metric (3)

|:| Summary of the mode decomposition of the C-metric perturbation with he
Schwarzschild background :

R0y = 2C1,
gauge-variant part :

e =0 mode : {

gauge-invariant part :

- 2M
hag = T] {(dl)a

(dt)p+ f72(dr)a(dr)p},  herya = ho1ya =0,

il(ez) = ;1(02> =0.
Fr =0,

F=2C1, Fap= 20 ((dn)a(dr)y + 1 2(dr)a(dr)y)

o [=1mode : | hup=-201r{—f(dt)ald)s+f"(dr)ald)s}, hiera=lio1a=0
Ry = —4aur, Ry =hn) =0.
gauge-variant part :  [2Y, =0
gauge-invariant part : FA =0,
=—dayr, Fap= 2017 (—f(dt)a(dt),+ f~ ' (dr)a(dr)p)
e 1>2 mode : hag=0,, herya =ho1a =0,
gy = — 22D [(+2a M+Cp)+ (—20uM +C )(71)’] Rez) = Pipz) =0
(e0) (l—l)l(l+1)(l+2) 1 1 1 1 3 (e2) (02) .
gauge-variant part : 7, =y, 270 =0,
B 2(21+1) !
2Y(e) = NEED D) {(+2¢X1M+Cl)+(—2051M+C1)(_1) ]
gauge-invariant part : =0, Fap=0
N 2020 +1) ,
F=———""[(F200M+Cy)+ (—200M +C;)(—1
ey (oM e Qe
5-2. Realization of non-rotating C-metric (4)
[[] Realization of 1>2 mode perturbations :
e [ >2mode gauge-invariant metric perturbatlons
Fi=0, EFp=0 EP =0, Fap:=Fap— ~yapF:C =0.
po_ 22ED [(+2a M+Cy)+ (—204M +C )(31) } = const
(—1)(+2) B e -
e Linearized Einstein eq. | |
- Constraints : £°= *167WZT(K2)7 DDH}AD*EDAF: l6m [VT(el)A*EYZDAT(ez)} V(eQ) = 07 (e)A = Ol
- Evolution equation (1) :
[7DDDD7%(DDF)DD+E(DDD r)+l(l+ ):|]FAB+ (DDr) A]FB)ng(D(Ar)DB) —167IS( F)AB S(F)AB — O
SEas = TAB—%}’ABTCC 2( (rT(el)B)__yABD (rTier D))+2<(DA")DB)_%YAB(DD’)DD) (rTe))
47 (Dada= 23?00 (T +2 ((0ar)(Bar) = 1yaa(B0)Der)) T + 2aa(BF e ~ o DnDecy
. 1 . > - -
Tap — 5yasTc € =0 =0, T.+f7.=0
- Evolution equation (2) :
(DDDD+3(DDr)D _=DE+2)) 4 ”(’”)) 2 (Ber)(BorF = 1675 s, ~ 321 2 -
F=—— = const
Sry = Te €+ 4(Dpr) L)) = 2r(Dpr)DP T ) — (11 +1) +2) T2 ([ _ 1)([+2) f

e Linearized divergence of
an 2
DB 4 = (DD VT8 ——1(1+1)

DT, +—(D 1z
(enc T2 ’”) el)C+2 (e0) —

the energy momentum tensor:

(el) __(DBr) L’O

Trivial!

(l = 1)(l+2)T82 =0,

e Summary of energy-momentum tensor for / >2 modes :

—
(Tacl 2 2) =t = yap Y WP,
=2

2
(cosB), 16mA; = 167rr7f}, =

—2U+1) [(+2a1M+C1)+(—2a1M+C1)(—1)l] :

16



5-2. Realization of non-rotating C-metric (5)

[[] Realization of /=0 mode perturbations :

=0 mode (gauge-invariant) metric perturbations :
(1 = 0) = 22 (dr)a(ar )y + 12 dr)a(dr)y) + PCr
Since the vector- and tensor-harmonics vanish for |I=0 modes, we may choose
lT(eZ) =0, (T(OZ) =0, T(ol)A = OH
From the component of the divergence of the energy-momentum tensor

T(e])A = 07

1.1, -
27 Ly + 2 T(e2) =0, ) =0

_ 3 - -
DTierc + ;(DC’)T(el)c 5

Since the mass parameter perturbation M; is always introduced through the addition
of the appropriate £vg. term, we choose M; =0, here :

hap (I =0) = P2C1 Y = 3

1
fC] {(dt)a(dt)b +f*2(dr)a(dr)b} +£V(c,)gab7 V(C])a = EftCl (dt)a + éCL (dr)a.

Our derived |=0 solutions to the linearized Einstein eq. :

Ful1=0) =2 (w447 [ ar [ér]) ((natann-+ stantanns) +2 [snr [ ar (30417, ) | @natan + & o
2 5 _ B B 2 N 1 N N
47r/dr BTn _ %ra, 47rr/dt (%T,,JrfTrr) —o. %Tn =, Tt PT=0

From the component of the divergence of the energy-momentum tensor, we may

choose {

N = (+Nf =
o 2 .. T+ 2o, T+ —L2LT, =0 .
DCTB + Z(DPrT,E =0, o . ' r "3 7 T, = const.
g adu+ S It oz, B0 g, 2o
Summary of the energy-momentum tensor for I=0 modes:

2rf

V70l =0) =~ pyahics, ho=—b, 16k = 16871, =~ 1) (12000 + € + (2eam +C)(-1)] |17
5-2. Realization of non-rotating C-metric (6)
[[] Realization of 1=1 mode perturbations :
e |=1 mode (gauge-invariant) metric perturbations : ﬁab(l =1)=—204rcos0gy.
e Inspecting the [ >2 and |=0 cases, we assume
Me2) =0, Tepa=0, (To)=0, To1)4=0)]
From the component of the divergence of the energy-momentum tensor
. 3, ¢ 1. -
DT+ ;(Dcr)T(el)c + 5. T(e0) =0,
2
Furthermore, we assume [f;, =0, T, + f?T,, =0, A_;:= %Tﬂ = const
— D ip) -0, T, =0, .
Then, DT2+=(D°nTy® =0, ' ) B are trivial.
’ (Tt 2Ty~ Lo (T8 )+ L= (3,1 21 =0
r 1 rr }“2 ¥ f 1 2rf 23 rr) — Y-
e Owing to these assumptions, our derived I=1 solutions to the linearized Einstein
equations is given by
Zul1=1) = by~ o | DL (a3 anutans + P coss
— gt~ el [ s+ S anutans + P ] + S0P cos 0
= £v(,:l)gab+%cosegab, Vi=1)a = Vivac)a+Wa,  Wa ::7166(7:?:][';0059(#),,7 12(”1}1:};2 sinB(dO),
o If 16nM=-12a1M, %cosﬂgab:~2a1r0059g0b. This coincides with the above hg(I=1) .
e Summary of the energy-momentum tensor for I=1 modes:
2
‘>%c(1=1)=:—r%yabx,:1, 16741 = —1204M, 167A; := 167tr7f,,=—(21+1)[(+2a1M+C1)+(—2a1M+C|)(—1)’]. 18




5-3. Source term of realized of non-rotating C-metric

|:| Summary of the realized energy-momentum tensor for linearized C-metric :

= 7
(DT, = —r—2yabZ?LlP,(cose), 161, == 167cr7T,, =—(2+1) [(+2a1M+C1)+ (—2a1M+C1)(—1)’]
1=0

e §-function on S2: D = = . 20+1
$Om-n)=Y ¥ Yum¥,m), ¥ Yu®¥,m) =" nn),
1=0m=—1 m=—1

Gegenbauer polynomial
n and n’ are the position vectors which point to the points on S2 in embedded in R? respectively.

e The orthogonal coordinate system (x,y,z) in R3.
Any point on S2 is described by (x,y,z) = (sin@cos ¢,sin @ sin g, cos 0),
South pole on S2 : (x,y,z) =(0,0,—1) , North pole on S2 : (x,5,2) =(0,0,+1),

n-Npoyp = €086,  N-Nyoup = —Cos 6,

N o) (o) = %c}“@ose) - 21:1121(“,59), 8P (n—nporn) = Z (214 1)Py(cos ),

m=—1 1=0

m=l oo

Y Vi ()Y (hgourn) %c;ﬂ(_me): 2+ P,(—cosﬂ)—i( 1) Py(cos 0) 6@ (n—ngoun) = Z (214 1)(=1)'Pi(cos B)
=1 =0

0 ~ = 21+1 ]
Toe = ZYabZ (20 M +C1) + (—200M +Cy)(—1)'| ¢ Pi(cos6)

oo oo

1 1 ;
(+2a1M+C1)EI;)(21+ 1)P(cos 0) + (—2a1M+cl)El§)(2l+ 1)(=1)P(cos 0)

1
m}’ab

1 1 1
= _r_z.Vab [uns(z)(n - nnorth) +.us6(2) (n_nsouth)] ;  Mpi= _Z(2a1M+C])7 Hs = _Z(za]M_Cl)

e cf. H. Kodama, PTP 120 (2008), 371.

Treatments of I=1 modes are essentially different from this work.
19

VI. Summary

e We proposed a gauge-invariant treatment of the [=0,1 mode perturbations on
the ﬁshn\:voanri:chll(g background spacetime. TN () prp— (111)
- r ICS.

Yin for 1>2; A o ko =<{1+5 (- 1)1,
S5=1 K@iom for [=1; kauom€Ham ={feFI[A+2]r=0}.
ki) for 1=0. kg€ ={feF(s)Ar=0}. Kasymes1 = (lfzz)m{lﬂs( ln?*l Zz )}ew.
(1II)
B = Y hagSs, hap=rDpY he1)aSs+r€pgD?Y h(o1)aSs,
. Im— m o — Im —
- Decomposition: 1 3 o B} A
g = §7ﬂq'22h(e0)56 +r (DPDq - 57”4A> Y ien)Ss +1°28,,D D" Y i) S
Im  — Im — Im =

Proposal :

‘We decompose perturbations %,, on a spherically symmetric background space-
time through Eqgs. (I), (II), and (III). Then, the decomposition (II) becomes invertible
including / = 0, 1 modes. After deriving the field equations such as linearized Einstein
equations by using the harmonic function Sg, we choose 6 = 0 when we solve these
field equations as regularity of solutions.

- Following our proposal, we derive the 1=0,1 mode perturbation solution to the linearized Einstein
equation with a generic linearized energy-momentum tensor for the matter field.

— Our derived solutions realize the linearized LTB solution and linearized C-metric.

- In these realizations, the terms of the Lie derivative of the background metric play
essential roles.

— Our proposal is reasonable!l!!

e |Thus, we have resolved the zero-mode problem in the perturbations on the Schwarzschild
background spacetime.

e |Then, we can apply our general formulation of higher-order perturbation theory to this
background spacetime and developed it to the any-order perturbations.

20
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Generalization of
Riemannian Penrose inequality

in weak gravity region
A <4m(2Gm)?
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with
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Plans of talk

- Basics of Black hole physics (Theoretical)
- Area inequality for horizon

- Motivation of generalization of inequality
- Area inequality for “Photon Sphere”

- Area inequality for a surface
in weak gravity region
- Summary
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Spherically symmetric static solutions

General Relativity:
gravitational force is described by geometry

Gravitational potential of sun Compact but the same mass
(Geometry around sun)

Spherically symmetric static solutions

General Relativity:
gravitational force is described by geometry

- ) Further compact
Gravitational potential of sun (but the same mass)
(Geometry around sun)

Black hole.



Schwarzschild solution

Spherically symmetric solution s

ds* = — ( - ﬂ4) dt? + (1 — @) “dr? + r%mg

(3 : Newton constant

M : Parameter of solution (mass)
For 1 —2GM _
T

this metric is singular
but not physical singularity
but causal structure becomes ‘

(Karl Schwarzschild, picture from Wikipedia)

Schwarzschild solution

Spherically symmetric solution s

ds? = — (1= 220) ar? + (1 = 2) a2 4 120}

2GM

(3 : Newton constant

M : Parameter of solution (mass)
FOI’ 1 _ 2GM — O
T
this metric is singular
but not physical singularity
but causal structure becomes ‘ .

singularity

Black hole

(Karl Schwarzschild, picture from Wikipedia)

2GM




—Singularity Theorem —

Is a black hole a real 0D et

Does singularity occurs | el PIOCESSY

Maybe due to the symmetry??

L ——

Pen rose: Iftrapped surface is formed, singularity exists in its future.

f (Penrose, 1965)

Strong gravity region

Trapped surface
Wave fronts on flat space time
(weak gravity)

time
A




Trapped surface

Wave fronts on flat space time

Wave fronts in strong gravity (weak gravity)
time time
4 A

Area of outgoing photon wave front decreases

m) Trapped region | Boundary - Trapped surface

—Singularity Theorem —

Is a black hole a real 0D Tt

Does singularity occurs | ' Process”

Maybe due to the symmetry??

- e

Pen rose: Iftrapped surface is formed, singularity exists in its future.

f (Penrose, 1965)

Strong gravity region time Singularity
A

Outermost trapped surface

is called
Trapped

Apparent horizon surface




Event horizon

Any photons emitted in trapped region tAime
would not escape to infinity

A region from which
no photon reaches to infinity

B) Black hole ~__
Boundary of black hole:

Event Horizon

Ap orizon

Cosmic Censorship Conjecture

If the intuition of left figure is true ®
All singularities are hidden by Event horizon

This is called

Cosmic Censorship Conjecture e 15
Any singularity created dynamically is hidden by Event horizon.

(no naked (no visible) singularity)

- - Apparent horizon is hidden
by Event horizon

(Hawking Ellis, 1973)

. Area of Event horizon increase with time APPargnt horizon

Area increasing law of Black hole Event Horizon

(Hawking, 1971)



BH thermodynamics

(Bekenstein, 1973)

: Hawking temperature

(Hawking, 1974)

T =
S =

»N:b N’lz

: Bekenstein entropy

(Bekenstein, 1973)
- 1st law

dM = TdS + QdJ + ®dQ

- 2nd law

dsS dA
ar = 0 dt =0
Plans of talk

- Area inequality for horizon

A : Area of BH

M : Mass of BH

K :surface gravity
on event horizon

- Motivation of generalization of inequality

- Area inequality for “Photon Sphere”

- Area inequality for a surface

in weak gravity region

- Summary



Riemannian

Penrose Inequality (conjecture) @ reres

Inequality
Under Cosmic Censorship Conjecture (Theorem)

Area increasing law of Event horizon (Hawking, 1971)
- Area of event horizon is non-decreasing function of time

- Schwarzschild or Kerr BH is final state.

2
Its area is equal to or less than 47T(2Gm)
(Area of Sch. BH)

Area -
% Area of event horizon Under Cosmu_: )
Apre < 47T(2Gm)2 Censorship Conjecture
FH >
47T(2Gm)2 Apparent horizon is hidden
by Event horizon.
Area of //_ It's area would be smaller (Hawking Ell, 1975)
Fvent Horizon . than event horizon’s.
Time AAH S AEH S 477(2Gm)2
Riemannian
" . Penrose
Penrose Inequality (conjecture) @ rerese
Evidence for Cosmic Censorship Conjecture (Theorem)
- Why apparent horizon, not event horizon?
Event horizon (Black hole) Apparent horizon

(Trapped region)

A region which is not causally related to future null infinity.

A region where area of wave front

Time - - of outgoing null is increasing
Before solving time

evolution of spacetime
we don’t know the fate of light ray

a
Fixed by metric and its derivative
on time constant hypersurface

Don’t need to solve
. time evolution
ime constant hypersurface




Riemannian

Penrose Inequality (conjecture) (@ reos

Inequality
(Theorem)
Area inequality for apparent horizon

Asymptotically flat spacetime with ADM mass m

Dominant energy condition + General relativity

- Area of apparent horizon : AAH g 47‘(‘(2Gm)2

Penrose inequality would imply upper bound of Entropy.

But Penrose inequality is still a conjecture.

Riemannian Penrose Inequality

time
Penrose inequality (Lorentzian or pseudo-Riemannian) [conjecture]

Asymptotically flat spacetime with ADM mass m I

space . .
P On time-symmetric surface

Dominant energy condition + GR
Non-negative Ricci scalar GIR >0

- Area of apparent horizon A S 47‘(‘(2Gm)2

outermost minimal surface

Riemannian Penrose inequality (Euclidian) [theorem]

Asymptotically flat space . D)
Non-remsiine Xed sealkr # Area of outermost minimal surface A S 47‘(‘(2Gm)

Jang & Wald (1977) under assumption of existence of inverse mean curvature flow (IMCF)
Huisken & limanen (2001) resolving the singularity of IMCF
Bray (2001) using Conformal flow



Riemannian Penrose Inequality

Riemannian Penrose inequality (Euclidian) [theorem]

Asymptotically flat space . 2
Non-negative Ricci scalar ‘ Area of outermost minimal surface A < 47r(2Gm)

This theorem is applicable to any asympt. flat solution in GR
in following sense.

- Asymptotically flat spacetime with ADM mass m » We can always take maximal slice
Dominant energy condition + GR as a time constant hypersurface

Non-negative Ricci scalar (3)R >0 A

- outermost minimal surface AMS < 47r(2Gm)2

Apparent horizon /@ /

time

Plans of talk

- Motivation of generalization of inequality
- Area inequality for “Photon Sphere”

- Area inequality for a surface
in weak gravity region

- Summary



Observation VS Theory in BH physics

Observation Theory
GW from BH collision

_ _ Uniqueness theorem
Direct observation of BH shadow

Riemannian Penrose Inequality

It’'s a good time |
to explore BH physics!! Solid but ......

Horizon is assumed,
which can never be observed

Theorem not relied on Horizon is required!!

BH evaporation Event horizon (Black hole)

‘ A region which is not causally related to future null infinity.
Time evolution problem
Twne Before solving time
We don’t know evolution of spacetime
geometry in future we don’t know the fate of light ray

) 77
Unable to know where is e
event horizon
Time constant hypersurface

$

How about apparent horizon? Apparent horizon can exist far from event horizon.

Event horizon does not have any characteristic property in terms of t-const. surface.
If “event horizon” is important, we need a theorem based on general surfaces.



Form Strong gravity to weak gravity

Controlled by tuning parameters.

Strong grawty Weak gravity
String Condensation of £ Scattgrmg
closed strings 9 amplitude
theory of closed string

General Black hole

Newtonian
relativity physics ® )

approximation

Try to understand this relation

Plans of talk

- Area inequality for “Photon Sphere”

- Area inequality for a surface

in weak gravity region
- Summary



Photon sphere as Strong-gravity region
®

Photon sphere as Strong-gravity region
&

Photon Sphere:
circular orbit of Photon
r =3Gm



Area bound for a surface
in a strong gravity region
T. Shiromizu, Y. Tomikawa, K. I., H. Yoshino (2017)

Strong gravity region but outside of event horizon?

Learn from Sch BH. Photon sphere

ds® = — f(r)dt* + fL(r)dr® +r2dQ2 f(r) =1 — 242 B - = 3Gm

r

B—  minimal surface
Take spatial (time-constant) slice ¥ $Sch BH\ Flat space (apparent horizon)

r=2Gm

Take r=const. foliation
on the spatial slice.

k :mean curvature on r= const.

Gm 3Gm
minimal surface Photon sphere
(apparent horizon)

Area bound for a surface
in a strong gravity region

T. Shiromizu, Y. Tomikawa, K. I., H. Yoshino (2017)

Strong gravity region but outside of event horizon?

Loosely trapped surface

generalization k>0 & n'Dyk >0 Photon sphere
(n® :outward unit normal ) r=3Gm
~— minimal surface
Take spatial (time-constant) slice & $Sch BH \ Flat space (apparent horizon)
r=2Gm

Take r=const. foliation
on the spatial slice.

k :mean curvature on r= cony
Gm 3Gm

dk r
— > O minimal surface Photon sphere
dr — (apparent horizon)

v




Area bound for Loosely trapped surface

loosely trapped surface(LTS): R Asymptotically flat
Shiromizu, Tomikawa, K.I., Yoshino (2017) 3-dim space with @R >0
k>0, rD,k >0
Loosely
2
\_ ALTS S 47T(3Gm) Y, trapped
surface
/Riemannian Penrose Inequality \ ~
minimal surface (MS):
—
k=0

minimal surface
(apparent horizon)

\_ AMS S 47r(2Gm)2j

Plans of talk

- Area inequality for a surface

in weak gravity region
- Summary



Area bound for a surface

in a waek gravity region

K. I., Y. Tomikawa, T. Shiromizu, H. Yoshino (2021)

Strong gravity region but outside of event horizon? dk/k’2
Learn from Sch BH. dr A Sch BH
ds* = — f(r)dt* + {7 (r)dr? +1%dQ2 f(r) =1 — 20
Take spatial (time-constant) slice
Take r=const. foliation
on the spatial slice. minimal surface
k :mean curvature on r= const. (apparent horizon)
Attractive gravity probe surface (AGPS) Nocm u
(raDak)/k2 > ¢ [« :constant parameter __ 1

[}

k>0 a> -3

Flat

Applicability in weak gravity region

LTS a =10

0>
r*D,k > ak?
k>0

X — 00 N minimal surface (x — 00



Fu rther gene ral ization K.l., Tomikawa, Shiromizu, Yoshino (2021)

minimal surface (MS):
—
R am o — oo

loosely trapped surface(LTS):

Shiromizu, Tomikawa, K.I., Yoshino (2017) - o = O
k>0, D,k >0

o —

Spatial infinity (77 — 00) - o — —

Generalise them with a non-dimensional parameter «
r*D,k > ak? k>0

Ou r th eo rem K.l., Tomikawa, Shiromizu, Yoshino (2021)

3-dim space: Y

AGPS Za
« Asymptotically flat with ADM mass 710 Q_T
+-R>0 ( R :3-dim Ricci scalar)

.~ minimal surface

Riemanninan Penrose Inequality

Area of minimal surface: Area of attractive gravity probe surface
L—0 (AGPS):

k>0, r'"Dyk > ak® (a>-1)

(k :Tr. of extrinsic curvature) o —> 00

2
Ays < 4m(2Gm)? Aagps < 4w G’EZGm)

Generalization of RPI




Ou r th eo rem K.l., Tomikawa, Shiromizu, Yoshino (2021)

Area of loosely trapped surface(LTS):
Shiromizu, Tomikawa, K.I., Yoshino (2017)

3-dim space: Y]

. Asymptotically flat with ADM mass 170 k > O, ’I“aDak > ()

-R>0 ( R : 3-dim Ricci scalar) ALTS S 47T(3Gm)2
Riemanninan Penrose Inequality & = O
Area of minimal surface: Area of attractive gravity probe surface

k>0, "Dk > ak® (a>-))

(k :Tr. of extrinsic curvature) < Y —> 00

2
Ays < 4m(2Gm)? Asgps < 4m G’EZGm)

Generalization of RPI

R e C e n t p ro g re S S (K., Tomikawa, Shiromizu, Yoshino, arXiv:2209.14124)

- Higher dimension 3 <d < 8

- refine conditions
attractive gravity probe surface (AGPS):

ﬂ k>0, rDk>cak?® (a>-2)

Refined AGPS
k>0, R4 2D = (204 75) B (0> -1

d—1
- A< wy [me] i Wd—1 :Area of (d-1)-dim

1+{d=1)a unit sphere



Summary

- Theorem of BH is required to be extended without assumption of horizon.
- Properties of surface are important in gravitational physics.

We generalise Riemannian Penrose inequality
applicable in weak gravity region.

- Theorem is also mathematically interesting.

Riemannian Penrose inequality Our theorem
Area of minimal surface: Area of attractive gravity probe surface
(AGPS):
k=0

k>0, rD,k > ak® (a> —3)

(k :Tr. of extrinsic curvature) O —> 00

2
3+4
AMS < 47T(2G77’l\2 AAGPS < 47‘(’(1123(;7%)
Generalization of RPI

Other plans

Higher dimension
done (appeal’ on aI’XIV yesterdayl) (K.l., Tomikawa, Shiromizu, Yoshino, arXiv:2209.14124)

Including electric charge and angular momentum

Partial Iy done (Lee, Shiromizu, K.I. Phys.Rev.D 105 (2022) 4, 044037),
(Lee, Shiromizu, K., Yoshino, Tomikawa Phys.Rev.D 106 (2022) 6, 064028)

AdS/CFT

(Fischetti, Wiseman, Class.Quant.Grav. 34 (2017) 12, 125005)

Meaning in Newtonian limit

Work in progress



P03 The Einstein-Vlasov system with an RxSU(2)xU(1) symmetry

o Hiroki Asami, Chulmoon Yoo, Ryo Kitaku and Keiya Uemichi
QG lab, Nagoya University

ABSTRACT

The Einstein-Vlasov (EV) system is a collisionless many-particle system in general relativity. For the static and
spherically symmetric case, the existence and stability of the solutions are well-known. However, for the
stationary rotating case, these properties have not been fully revealed due to the less symmetry. In this talk, we
investigate the rotating EV system by considering the five-dimensional spacetime with a RxSU(2)xU(1) symmetry.

Introduction Results

What is the EV system? Confinement by the AdS potential ~SP" ™ Casesz&fz (():)E )

Normalization:
Distribution function determines the system

f(z,p)

Energy density —— Komar mass

f dep. with L=1

Lower B

High temp.

Higher temperature. | .

f dependence —

High temp.
G’w v Aglw - Sﬂ'T’W More relativistic | ™ 2 © o=

Rotating EV system

L dep. with p=1

Large L

Less symmetry } Can we keep the high symmetry

Hard to solve (PDE in general) with a finite angular momentum?

The wall is bigger

System size is bigger |

— L dependence —

Self-gravitating systems in AdS

» Asymptotic structure of AdS
Particles are confined by the potential Frame dragging and squashing functions
=» Thermal equilibrium states can exist

Radius

Co-rotating frame at infinity s(r) Squashing function w(r) Dragging function

» Macroscopic model of matter in AdS

p Zh) 2 i 2 2 a’h 2ah
(e T A edr2y T 1 2 1440 3 "
o= (- ) ae e+ o) + (o) 41+ S (0 |2

Turbulent instability may causes collapses

=» What is the conditions for the collapse? 3 . q
Vlasov particles squash S’ Squashing function

= Ingeneral, s(r)# 1 atinfinity
=P Asymp. AdS sol. are realized by tuning
2 2
5@ = :7(7/) —p s(r) =1

Dragging function

= General final state?

Set-up

Metric Ansatz Free functions  /4(T),

2 . . K 2
g = a4 0 i 1+ T [(0Y) + (67" + (09)7] +h(r) (dt - #03)

Killing vectors: o

&, = —sindy + csc b cos1pdy — cot 6 cos 1Py, Rading —eAd I

= —cos 10y — cscOsinPdy + cot @ sin Py, Angular momentum (AM) Q gsge£g:2$?n?;g;Tsity

aw.
SU(2)s breaksinto U(1)s oo

— R, X SU(2)e X U(1),

AM density
Komar AM

Distribution Function Ansatz

f(& ]”) = exp [a _ ﬁ(& o Q]O‘)] Isttﬁzngisr trg t:he(eraI equilibrium

Conserved quantities

{ € = —pP - 1N Energy of the particle

Jo =P 03 Angular momentum Summary

Vlasov equation
—) p”V#f — (0 is automatically satisfied

Rotating Einstein-Vlasov system with R; X SU(2)¢ X U(1),

Confinement by the AdS potential

Einstein equations i . . -
4 NumeiEElly Selive Solutions with a finite angular momentum

G — = 81T, The system contains three Squashing function becomes non-trivial due to the Vlasov matter

parameters: (B, 97 L)

6
ﬁg;m
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Gravitational Wave from Axion-SU(2) Gauge
Fields in Kinetically Driven Inflation

Yuki Watanabe (NIT, Gunma College)

Collaborator : E. Komatsu (MPA, Kavli IPMU)
Based mainly on 2004.04350 [hep-th]

The 13th RESCEU International Symposium
JGRG31 Workshop

é‘\\&
5?

o o Techno/o!y a
"%,

Koshiba Hall, The University of Tokyo, Tokyo (Hybrid style)
Oct. 24-28, 2022

Inflation: Quantum fluctuations => Seeds
Comoving Scales

A

horizon re-entry Comoving

horizon exit
\ / i / Horizon

density fluctuation
Gravitational
waves

Hot Big Bang

Quantum
fluctuation

Inflation

a dt?

d (|H™! d?

—( )<O—>—a>0—>p—|—3p<0
=

Time [log(a)]
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Natural inflation: Axion as Inflaton

In natural inflation, the field ¢ is a pseudo-Nambu-Goldstone Boson with decay
constant f and periodicity 27f [Freese et al 1990].

r— M3 1 a8 i 7 v 1 of
=v—8|5R-3g Do @03 — me f¢(1+’75)¢—¢p¢—§TrFaﬁF :

m where 1) is a fermion charged under the (non-abelian) gauge field with field
strength Fo3, P = 7*D, is the gauge invariant derivative and m ~ f is the
fermion mass scale after spontaneous symmetry breaking.

m The action is invariant under the chiral (global) symmetry
1 — e75%/24) where « is a constant.

m This symmetry is related to the invariance under
shift symmetry of ¢, i.e. ¢ — ¢ —a f.

Natural inflation: Axion as Inflaton

m Suppose the chiral symmetry is broken at energies f >TeV (like in the
QCD axion case) [chiral anomaly induces (¢/f)FF]

m a potential of pNGB ¢ is produced by the instanton effect:
V(¢) ~ A* [1 + cos %]

which is protected from QG UV corrections by the restoration of
global shift symmetry ¢ — ¢ + cas A/M, — 0

m If A ~ 10! GeV (GUT scale), inflation is produced with

M?2
ns —1(xe) ~—g%

msons—1~-0.04— 1> M,
= The potential may not be protected from QG UV corrections.



Chromo-Natural Inflaton
[Maleknejad, Sheikh-Jabbari 2011; Adshead, Wyman 2012; Papageorgiou, Peloso, Unal 2018]
11 ) 1 oo A
— _R—= — — ZTr[F?|- = OTr[FAF].
L= R5(00) ~V(®) 5 Te[F}- 7 OTH{FAF]
1000 @ A g/fi* = 1%10*

0500 W A g/fi® =14%10" ;
kA g/t =2+10 Linear /\Total
0.100 - o *

+, 0050 Red:A=2000
'Green:A=1000 g

m
0.010 - Blue:A=500
0.005 |
[ @
'@
ooot1 b
0.90 0.92 0.94 0.96 0.98

EFT of Axion below the PQ scale f_a
[Georgi, Kaplan, Randall 1986]

e Assuming , , the most general Lagrangian for the axion
¢ is (up to higher derivative terms):

1 2
L, = —5(3@
—lTr(F’“’F ) — ingr(FWF )
2 2], o
+ deriv. coupled SM + or BSM

e Invariant under ¢ — ¢ + const.



EFT of Axion below the PQ scale f_a
[Georgi, Kaplan, Randall 1986]

e Assuming , , the most general Lagrangian for the axion
@ is (up to higher derivative terms):

Lo
X =3 (96)
C2 C3 C4 v
Ea — ClX —|— —4X2 —|— —3X|:|¢ ‘l— —2G'u 5’H¢({9,/q5

1 ) A -
—5Tr(F*F) = S ¢Te(F* )

+ deriv. coupled SM + or BSM

¢ Invariant under ¢ — ¢ + const.

¢ Field eqgs. contain derivatives only up to 2nd order, i.e. no
Ostrogradski ghost. [Deffayet et al 2011; Kobayashi et al 2011]

EFT of Axion below the PQ scale f_a
[Georgi, Kaplan, Randall 1986]

e Assuming , , the most general Lagrangian for the axion
@ is (up to higher derivative terms):

s

C3

Einstein tensor
C Cq v
Lo=c1X +—X2+ 2 XOo + ~ 75 G 0ud0,0
—~Tr(F"E,,) — ——¢Tr(F"F,,)

M4 M3
SU(2)
9 2f Gauge fields

1 A
+ deriv. coupled SM + or BSM

¢ Invariant under ¢ — ¢ + const.

¢ Field egs. contain derivatives only up to 2nd order, i.e. no
Ostrogradski ghost. [Deffayet et al 2011; Kobayashi et al 2011]



Kinetically driven Axion Inflation

¢ In an FLRW background, EoM for axion ¢ & SU(2) gauge field A
are given by [Maleknejad, Sheikh-Jabbari 2011]

A =0, A =6la(t)Q(1)
Gauge

. . A\
field @+ 3HQ + (H + 2H2)Q +2¢%Q° = ga

1 12
f¢Q

Kinetically driven Axion Inflation

¢ In an FLRW background, EoM for axion ¢ & SU(2) gauge field A
are given by

Ag =0,  AF =07a()Q(1)

Gau . . A
feid QT 3HQ+ (H +2H%)Q +24°Q° = 97¢Q2
Axion J+3HJ = —%QQ(Q‘FHQ)
2
D= 0(t)  T=ad il el

M3 M?

¢ In the absence of non-trivial gauge VEV, an attractor solution:
J~a’(-3) = Owith | H = const,

& = const ~ M?}  (e; <0,c9 > 0)
p+3p~—M*




Kinetically driven Axion Inflation

¢ In an FLRW background, EoM for axion ¢ & SU(2) gauge field A
are given by

A2 =0, A?=0%(t)Q(t) | ¢ = const
9A
f

Gauge

fied Q+3HQ+ (H +2H)Q +25°Q° = Z-4Q°

Kinetically driven Axion Inflation

¢ In an FLRW background, EoM for axion ¢ & SU(2) gauge field A
are given by

A2 =0, A =6%at)Q(t) |¢ — const
gﬁ-.

Gauge

fied Q+3HQ+ (H +2H)Q +24°Q° = 70’
22, L ona gA g
Vet (Q) = H°Q +29Q 3f¢Q

Condition:

>4H

\ -
\ﬁ

‘ ’ 'gA ‘ E
J*:__ 3 -2 -1




Scale dependence? How to end inflation?

¢ Invoke a shift symmetry breaking term in potential as in tilted
ghost inflation [Arkani-Hamed et al 2004; Senatore 2005]

¢ |Invoke a shift symmetry breaking term in the kinetic sector as in

k-Inflation, Galileon Inflation [Armendaritz-Picon et al 1999;
Kobayashi et al 2010; Burrage et al 2010]

e Back-reaction from particle production may become important.
[Anber, Sorbo 2009; Barnaby, Peloso 2011; Maleknejad, Komatsu 2018;
Domcke, Ema, Mukaida, Sato 2018; Domcke, Sander 2019;

Lozanov, Maleknejad, Komatsu 2018; Mirzagholi, Maleknejad, Lozanov 2019]

¢ Invoke a shift symmetry breaking term in potential as in tilted
ghost inflation [Arkani-Hamed et al 2004; Senatore 2005]

A |4 C
_g_Q3__’¢_|_

J ~ —

f 3H a3
20X Q2 OV  azXd 22X Q* 2QQ
L- 2 5 )&= "o T e st et 2
M2 2D 6H3M? ~ H2MZ HMZ ' HM2 ' HM?

¢ |Invoke a shift symmetry breaking term in the kinetic sector as in

k-Inflation, Galileon Inflation [Armendaritz-Picon et al 1999;
Kobayashi et al 2010; Burrage et al 2010]

010}
C1 ~ —(1-10502/M2)
0.05. ce=1/2,¢c3=0
’ ca=0

50 100 150 200 250

-0.05-




Cosmological perturbations

e With SU(2) gauge field, one chirality of tensor modes grows

large due to tachyonic instability. [Adshead et al 2012;
Dimastrogiovanni, Peloso 2012; Dimastrogiovanni, Fasiello, Fujita 2016; Domcke,
Sander 2019]

0* 2k k
ﬁ+k2+75+2<%+;> %] tr = O(hg)

Sorwemrm s

_ A9
€:2f—H

o become interesting!
[Agrawal, Fujita, Komatsu 2018]

¢ [nstabilities in scalar modes? If Q < 2H/g, there is an instability
in scalar modes with canonical kinetic term.

e Higher derivative terms induce ghost or gradient instabilities?
They can be avoided by choosing parameters, c_|.

Cosmological perturbations

Scalar perturbations in the unitary gauge (8¢ = 0 at all orders)
are given by (after using Gauss, Hamiltonian, momentum
constraints and assuming heavy mass of SU(2) field)

. 2
Se2 = / d>zdt a>G [4“2 — %(@g)ﬂ :

Cb : 2a3Xq5 8a4X
= —— — HX +4a, X 1 —
QS 2H2 [J 6&3 + a9 gb( HMI% + Mg >]
A2 . . 9.0 .
cgz pe ) 65:6_(;_;)])\(4?+£]\§22 ) 55)\—?_]7
G 2Tz 2f
k3 H? dlnP
Pe=o |G~ o p— 1= SR ~ 9% — g — 36
¢ 27r2K | 8m2Gsc3 s dink |, _om €™ % 5
gs = Fs 5y = G

- HG, ' He,



e Tensor perturbations are from both metric and gauge fields, and they
are gauge-invariant (under both coordinate and SU(2) gauge
transformations) at linear order.

S = [ dzdt 3% h?—ﬁan-?
h?2 = rat a ] iJ az(klj) ’

;t (M2 +2a4X) |

Spr = / d3zdt a3HQhU ( v+ —e““l@k ) ,

Gy = —2a4X c%

1 H ..
Sp2 = / dzdt a® 5 [T?. — —2(5),{:%)2 — 2moHT + 2(£ + mQ)Ze”kTM@-Tﬂ]

_gaQ >\¢
mo =" $=2m Only +2 helicity mode is amplified:

mo =~ & Chiral GW S|gnal
gs Cs 1+ Q26ﬂ(£+mQ)|G+|2 ~46 % 10-3 ( €s )3/2 14 H?m W(HmQ G+ |2
g 202 1 10-2 29 AM2

for Gg ~ 12M1§7 cs ~ \/€s/12, Gy ~ M2, and ¢, ~ 1. Note that |G1|? = |G4+(£4, &) > S O(1073).

f]iqu ~ 1/68
€s = 0.01

0.050

0.020

0.010}

Tensor-to-Scalar ratio, r

0.005|
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| h (RR* + FF*) |

Effects of gravitational Chern-Simons term $RR*

e The impact of gCS term on GWs can be as large as 50%
enhancement for non-sourced

(left) helicity modes.

1.0004 [
=|  1.0002] _
ol — £y =4.5x107°
L[
. | &£ 1.0000]
gl<
2| 09998
Right
0.9996 [ Left
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-kt
147
1.2} 4 1 -2
= 62 =4.5x 10
gl (P
+ |
s
Zl=
=|— o8l
Right
0.6} Left
104 0001 0010  0.100 1 10
-kt

Summary [Yw, Komatsu 2004.04350]

The axion without potential can drive inflation with the non-

A non-trivial VEV of SU(2) gauge field can be acquired during

r ~5 x 103 or greater, partially chiral and non-Gaussian

A

< = < 0.56

§

‘ \/;u«mef
10°) Vakiken|
-------- NPT
100 H mame = - PN |
\/;“( 4 | .“..-..:. i ':‘.J_-’,-“"
011 J' H ii,‘l‘}'
e £
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-kt
121
M gy =45x%x1073
1.0F
09}
Right
0.8 Left
10‘*4 0.601 0.610 0.1‘00 'I 1‘0
-kt
[ ]
canonical kinetic structure.
[ ]
inflation.
[}
gravitational waves can be obtained.
3/4
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L1 x 107 (5225)
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Inclusion of gravitational CS term can affect the tensor
spectrum. [Mirzagholi, Komatsu, Lozanov, YW 2003.05931]
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Mode conversion phenomena of the Einstein-Maxwell system in the
cylindrically symmetric spacetime by full nonlinearity
T. Mishima (Nihon Univ.)
S. Tomizawa (Toyota Tech. Inst.)

e Previously we gave a simple and convenient harmonic method to construct cylindrically
symmetric wave solutions of the Einstein-Maxwell system, and using the solution obtained,
pointed out the possibility that the conversion phenomena occur between the gravitational
and electromagnetic waves even without any background field.

e This place, as a subsequent, we examine in more detail how and to what extent the
conversion phenomena occur. In particular, we show how the conversion between
gravitational and electromagnetic modes changes with time.

e This contribution is mainly based on the previous work(arXiv: 2202.12060 [gr-qc]) and
the subsequent work newly being prepared for publication elsewhere.

117

L. Purpose

Construction of exact solutions of Einstein-Maxwell system with full modes(4 modes)

s

Full nonlinear analysis of conversion between gravitational and electro-magnetic modes
without any background field

Gravit-elemag conversion in the background electromagnetic field: perturbative approaches (many)
cf. Gerlach[1974], Olson & Unruh[1974], ..., Saito, Soda & Yoshino[2021], Hadj & Dolan[2022]
< Assumptions and features >
e Cylindrical symmetry
No conical singularity on the axis

[ J

z
e Locally asymptotic flatness
[ J

f U T
Following Einstein-Maxwell equations (G=c=1) y 3 72, N / 0B/
1 - R e 1 p 1 /L ) .
RN// o 5(”1115) = 8nl lll/‘, 1 /” N Tﬂ’ (F/ ,F]/P a EO/I/FMF/M>
V., Ff, =0

2017
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II. Summary of settings and solution-generating method

I1.1 Settings and basic equations

<Kompaneets - Jordan - Ehlers metric and elemag. gauge field > *** (f = e w, A, A.)

ds? = f(d= _L'(]O)Q + f7p2do? + eV (—dt? + dp?), [f — 20 ]
0y
A = éﬁ,d(;’) +AZ(12 ( gauge field )

< Two kinds of Ernst eq. as harmonic map equations (from Einstein-Maxwell eq.) >

(R[E] — |[F|*)V2F = (VE — 2FVF) . VF znd{ (€€ +nij — 1) V2 = 2(EVE +7V) - V¢
1st , ) B < > B ' . -
(R[E] — |F|)V°E = (VE — 2FVF) - VE (E€E+n— 1)V = 2(EVE+7Vn) -V

[Ernst *68] [Kinnersley 1973], [Mazur 1981]
( Ernst potentials) (A,) (w)

— — 1+¢ 7
(2)[F:—A:+7X E::fﬂFz—@‘T ) [E—ﬁ F_I—E]

B Base space: M'2 = target space / potential space: H?, (Ball model) [Parker’03]

3/17

11.2 Simple solutions to the Ernst eq. / harmonic map eq.

® Harmonic map from the base to a totally ::>

: ] desired harmonic map [ Eells & Sampson ’63 |
geodesic surface embedded in the target
< Application to 2" Ernst equation >

Embedding map of Hé,in H% E:::j fu(ﬁ. /)) harmonic map from M2 to Hé

(Sol. of vacuum Ernst eq. )

@ | (&) = (cos20&,,sin20&,)

M!2

417



< Final form of the solutions >

5) [(5, 0) = (cos20 £,(t, p),sin 20 £, (t. p) )]

@ Halilsoy[1989], Griffith[*91]

Once given &.(7. p), reversing the above steps gives the metric and the electromagnetic field !

4 )
3) [E:]+E F:L] =) @[F=A+ix E:=[+[F—i0]

!

A= A,do +i:(/: _J

5/17

< Specific solutions easy to handle >

&u(t, p) : Reuse of the vacuum solutions considered before [MT 2017, 2022]

1—e 2T +iA , 7. seed function
“Tyer—ia  VT=Y

als

(6) & ( geodesics in Hé )

wave function on M1:2

(WWB’s wave packet solution)

7 7 - ; . S 1/2
c | VA2 + (a2 + p2 — 22 +a® + p* — t? /

0 ) = V2 l 4a2t? + (a2 + p? — 12)2
(a :width, c/a : height)

[Weber-Wheeler °57], [Bonnor *57]

= = T =
eg. £ TR et
(a, ¢)=(1/3, 8/5) N ‘ !
=  S—— L=

/! ——
02468101214p 0 2 4 6 8 10 12 14

6/17



111. Nonlinear phenomena of Einstein-Maxwell system (mode conversion)

II1.1 metric, electromagnetic potential derived form the method mentioned above

1 . .

2y A 2T 21

[(_‘ . ‘ A ——. b = —Ae”" cos 20 e,
A2e27 cost ) 4+ =27 (cos2 6 + 27 sin? 6)2

[A%e* cos? O + (e727 — 1)(cos® O + ¢*7 sin? 6)] sin 26 €2V

N | =

Ae* sin260e?, A, = —

—
|
N | =

(t.p)
@ < w = —4A cos' @ / p( O,7dt + OyTdp) I::> same as vacuum solution treated in [TM 2017]

(t,p)
Ay = / [(/)r—z“' IpX — w O A, )dt + (pe Oy — u'é)p‘{;)(l/)]

(t,p)
N = / p{ [(0i7)? + (0,7)°|dp +20,70,7dt }  EE) same as vacuum solution treated in [TM 2017]

Space-time regularity may be considered the same as the vacuum solution|TM 2017].

0 = mixing degree of the electromagnetic modes

m Parameters:
7117

A = turn on/off the gravitational + mode

I11.2 Preparation: useful quantities related to C-energy ¥  Thorne[1965] Piran, Safier and Stark [1985]

(Amplitudes) (+, x) ( ) A B

The waves split into gravitational modes and elemag. modes; also ingoing waves and outgoing waves

A+ =2 (')x-’r'- A>< = ;(’-‘ ()1'“' =ec 7 [(),.(I) +2(‘4‘; ()l'\ — X ()1‘71?)}' A: = 2e7Y ﬁ),«A;- A(j} = —e* (UL'AO + “‘(')L':L‘;) =2e7" 01' X
/)

o 1 W« 2T - P . . . 2 . - ) e
By = 2 0y, By = ;(z, Oyw = —e= [()U(I) +2(A. dux — X (,)“:1:)}. B. = 2e7Y0,A,, By:=—e" (0,45 + w0, A.) = —=2e"Y 0, x
: P

1 1
20— — . z
{1172(1‘ r) and 21f+’)]

@ >

(Generalized C-energy density)

Each mode contribution

- P a2 2 2 o 2 2 2 2
Oy = —(AL+BI+A, +B+ A+ B+ A, + B) S _
S £ = %(A;)Jrl%f)

Pl

(gravitational part) (electromagnetic part) (I =g, em, +, X, z, 9)

3 i
( ) & = g(/ i—|— 5(7}1

m These quantities are useful to analyze mode conversion.
8/17



<Demonstration of temporal behavior of each mode part of C energy density >

Each mode contribution
P o4 2
e.g. (4,0,a,c)=(1/6,n/10,1/3, 8/5) Er = g(Ai) + Bj)

(I =g, em. +. X, z. O)

t
/5’10 t/5, 10
0
10 0 10

A AM 5 || In‘lll‘lf\l.‘AA 5

o

— {

Ex
&y
B The initially dominant gravit. + mode quickly |:> Introduction of convenient

converts to other modes and bounces back a bit. physical quantities for analysis

next slide 917

111.3 Introduction of occupancy ratios from a clearer perspective

e Evaluation of local contribution of each mode to C-energy density by the seed function 7(z, p)
[MT 2022]

RI — 51/8 [5:/)[(()17)2—0—((),,7)2]]
< Expression of occupancy> , . . ,
P pancy [ D = A%" cost 0 + (cos? § + e sin? #)? ]

[ R, = D_l[:lz(’J‘T cost 6 + (('os2 0 — ¢ sin? 9)2} . R, =Dt HillZ(ZH) } gravity/elemag.

Ry = D7?[(A%" —1)cos* 0+ ¢ sin'0]*, Ry :=4A’D?e" cos®

@ <

Ry = 4A*D7?e% (cos® 6 + ¢ sin® 0)* cos™ 0 sin?(26) detail

\ R, = D_:B(’Q"[A{Q(—*4" cos*h — ((‘os2 0 + ¢*7 sin? 9)2 ]2 s1112(29)

® The occupancy gives a rough estimate of mode conversion from the behavior of 7.

e.g. When 7 becomes enough large, gravitational + mode becomes overwhelmingly dominant.
1017



e Demonstration of the occupancy: e.g. (4, 6, a, ¢c) = (1/6, /10, 1/3, 8/5)

(detail ) < Behavior of each mode part of C energy density >

: t/5’10
""" - T — =] o
! -
——— RatioPlus ] — &
——— RatioCross ™ = = = "}\" 1I' /‘ }‘
—_— Rat|0A¢ : - (A| ; 1 7 T = -
——— RatioAz :
- 1 VX ; AN
-6 -4 -2 0 2 4 6 0 5 p 10 15
t
Position of -peak —» infinity <———  axis /5’ 10
0
( seed function T) e 10
= 5(‘9
6 o
i L AN s
: S
RV B\
b =~ \
A\
1 . — )
p = p 0 5 10 15°
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 P 1N7
1I1.4 Evaluation of electromagnetic-gravitational mode conversion
(em-modes) (g-modes) [MT 2022]
e Time evolution of the ratio of electromagnetic modes to C energy
p
Tom(t) 1= Yem (t, p = 00) ~ Yem(t, p = 1000) (",". (t, /)) = / g.(t, r) dr)
= St p = o) (c/20)? 0
I
(¢/2a) (Integral numerically evaluated)

<Example of large conversion: g-modes = em-modes>
eg. (4,0,a,c)=(0,n/4,1/20,1/4)

Deficit angle

Yt p=00)=5 —> A¢/2r ~ 99%
Ap=2r(1—-¢77)

m The large conversion may be expected.

T initial peak

@ Peak reaches infinity 1217



Tem(=0) = 0.1023, Tem(t=200)=0.9990  (numerically evaluated)

LT

Tem(t=200) / Tem(t=0) = 9.8

Tem

Tem(t=200) = 0.9990 —» 1.0
0.8 g'm0des .........................
06"
04"
| em-modes
0.2
Tem(t=0) = 0.1023 —p 11 |

0.0 0.5 1.0 1.5 2.0

® About 10 times amplification of em-modes

13/17

e Time evolution of the ratio of gravitational modes to C energy

Ye(t,p=00) _ 7(t, p=1000)

Ty(t) := ~(t, p = 00) - (c/2a)?

<Example of large conversion: em-modes = g-modes>
e.g. (4,0, a,c)=(1/6,11n/25, 1/18, -2/15)

Occupancy

Y(t,p=00) =144 —> A¢/2m ~ 76%
Ap=2r(1—e")

® The large conversion may be expected.

initial peak

I
Peak reaches infinity

14/17



To(t=0) = 0.2537, T4(t=200)=0.8608 (numerically evaluated)

LT

To(t=200) / To(t=0) = 3.4

Tem
1.0
To(1=0) = 0.2537 —08.
06! '. g-modes

0.4f I

Tg(t=200)  0.8608 _’02 ﬁ ......................

em-modes
Lot

00 02 04 06 08 1.

® About 10 times amplification of g-modes

15/17

II1.5 On the treatment of elongated finite energy objects [mT 2022

e Combine the following two formulas of deficit angle: u is the line energy density A e
(Ad) % "

81 c A
[Vielenkin 1985, — A@ =27 (1 —¢e" ! [MT 2017]
Got 111 1985] ¢ A p E'}I ( )
@ A Arbitrary mass scale : M ]
A N T2
c R 1 Mec R
T Tl C 2]]7!/
7 2
_ M= (1 B 6’77) ( Ry = 2GM /2 ) ‘ﬁ Gravitational radius ] o2
2R, ' ' F-1
! QR!,I Mc?
From several examples such as the above cases, large conversions seem to require E- '.f cut off part
2n-deficit angle: Me | 2nR,
‘ Mc?  nMc? T (MR
Ap=2r +—>» ~y21 — = = Mc? (nMc)
Hoop conjecture ~ 2R, 2nR, E_=
Mé?
m  Elongated finite energy distributions of the above u may collapse into a BH, if so - ==

Lp—

the large conversions can be prevented by the BH formation, or not ?

16/17



V. Summary

®  We introduced simple but useful exact solutions for the analysis of the conversion phenomenoa
between gravitational waves and electromagnetic waves, and also observed the temporal

behavior of the mode conversion phenomena.

B We found that, depending on the parameters, large conversions between electromagnetic

and gravitational modes occur.

m It can be said that the conversion phenomena exhibited by these solutions are caused by the

nonlinear interaction between the wave modes without the need for an external field.

m We discussed the possibility of black hole formation to prevent the occurrence of large conversions

in the case of Elongated finite energy distributions, according to “the Hoop Conjecture”.

1717
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Threshold of Primordial Black Hole

Formation against Velocity Dispersion
in Matter-Dominated Era

Chulmoon Yoo (Nagoya Univ.)

with Tomohiro Harada, Kazunori Kohri, Misao Sasaki, Takahiro Terada

formation in early MD
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in MD
©Early MD era (e.g., oscillation of inflation soon after the inflation ~ effectively no pressure)

© formation would be easier than radiation dominated era

©What does prevent formation?
Ellipticity [1609.01588, Harada, CY+]
Angular momentum [1707.03595, Harada, CY+]

Effect of inhomogeneity [1810.03490, Kokubu+]
Velocity dispersion

©Smaller scale inhomogeneities = velocity dispersion = prevent formation?

JGRG31 Chulmoon Yoo

Summary of Previous Works

©Effect of ellipticity [1609.01588, Harada, CY+]

> Zel'dovich approximation

> Doroshkevich’s probability distribution (Gaussian random field) for the initial profile
> Hoop conjecture for BH formation criterion

> production probability

,3 ~ 0.05560° o: standard deviation of density fluctuation

©Effect of angular momentum [1707.03595, Harada, CY+]

> Newtonian perturbation theory

> 2nd order(1st?) contribution to angular momentum [Peebles (1969)]

> 1st order contribution assuming elliptic collapsing region [Catelan, Theuns (1996)]
> formation criterion: the spin parameter a < 1

Sy, = 3;2 > 1st i B ~ oexp[—o?] 1st

Son = (27)7°6%3 2nd PS(Cars)formua B~ o'/*exp[~o~*/°] 2nd

JGRG31 Chulmoon Yoo




Summary of the previous results

OEffect of ellipticity
B ~ 0.05560°

©Effect of angular momentum

B ~ oexp|—o?] 1st
B ~ o'/3 exp[—c~%/%] 2nd

©Effect of velocity dispersion?

JGRG31

10~% 10% 109 10* 10~ 1

[ rrrmm 11T 'I'T'I[ﬁjf‘ "I‘T—fT"“‘Iﬂf’ T TTTTI0
| 4

—20

i TARWRRITIIRY (T INRRTITT A (WY ST llmj —-30
10-% 104 108 102 10! 1

Oy

Effect of velocity dispersion
against collapse

Chulmoon Yoo




Velocity. dispersion shared.in a collapsing sphere

©Adiabatic evolution of the velocity dispersion o,
> Fiducial time t,, density p(t), radius R(t)
1/3 .
ao(t) = 0u(t.) (L) = ult.) Rt
©Crossing time scale
teross ~ R(t)/o"u (t) ~ =)

2
eeri) <’

. _ time scale
©Gravitational free fall time scale A ter

R 3/2
tep ~ Glp(t) ~t, (R((t?)) x R3/? bounceback

R (t.
©) ter = teross < Rpait o? (t*) {ta)

2
Rent

©Collapse halts if Rpait > Rsch = 2GM = Rent
= non-formation condition : \oy(t:) R(¢.) > 2GM

Rent collapse

> R

JGRG31 Chulmoon Yoo

Generation of Velocity Dispersion @

©Two scales 1/kppm and 1/k < 1/kppn

©Hereafter quantities with “~” are those for the smaller scale (1/l~c) otherwise for the scale

©Characteristic times

> Horizon entry time: tent; lent

>  Collapsing time: Ecolls tool ' @

> Virialization time: foie > teon 07 @@
©Case I tvir < tcoll o
©Case “: Zvir > tCOll 1. smaller scale collapses 2. smaller scale virializes 3. max expansion for k, ,

No time for virialization

6 and v (velocity perturbation) grow
become non-linear

velocity dispersion released and
shared in the scale

4. halos dissolves 5. contraction halts (or BH) 6. bounceback (if no BH)

JGRG31 Chulmoon Yoo




Derivation.of hon- formation condition
©Closed FLRW collapsing model: Rmax = Rent == ~ Rent Flnt

Qent

2
kent

@Case I Evir < tcoll <~ Sent > 5ent7

> of o M 20 R
Rmax Rent Rma.x

~ 3 - % p(t)\ Y3 _ R(Eeat) _ Run Gene _ Rem Kb Kign Ren
> P(t) = Puir = 8deniPony & 2deny = (ﬁ. . ) - R(ta; ~ R —— R(t.) l,-;" < R(t.) ~ %—t

= 6ent

‘sent

= 4
non-formation condition for case |: o, (t.)R(t.) > 2GM < |0ent < ('“"%)

- = k2
@Case “ tvir > tcoll <~ aent < aent’.:;;t

— (1-— cos(mn)):—zzgco + \/fsin(\/fn)digco —8Kde =0
> No time for virialization el 0

~ . _ ~ ~—2 2

> 4 and ¥ (velocity perturbation) grow & = —(A + 3K) ™! %Jco ~k di,”(sco
_li .8 _ ~ ~—1

> become non-linear: d.(t.) =1 o, ~k~k

non-formation condition for case Il: o, (t.)R(t.) > 2GM c# Sons > £ 852

kppy ent

JGRG31 Chulmoon Yoo

Summary.of inequalities

©For simplicity, we ignore O(1) factors

©We consider §.,; ~ oent (k) (standard deviation) and introduce k := e E_ S Komin > 1
PBH
©Threshold dividing the two cases

g k%’BH ]
tvir = teoll < Tent = ’.é_z(sent i 6entK/

Condition for no formation: -

©Case |l [ Tent < Oentk >

Condition for no formation: Gent > Razl/j

©If the spectral line passes through the shaded region,
there exist perturbations halt the collapse

JGRG31 Chulmoon Yoo




Threshold for log-normal spectrum

Threshold for.a log-normal spectrum
©Log-normal spectrum

PBH non-f
2 PBH non-f¢
Inoey (k) = —p(lnk)? +1Inoy ;

e N\
OFor Inoen (Kmin) > —41In Kpyin

formation if 6., > exp [—%(2 +J/3F ulna'g)]
J
@FOF Inoent (Kmin) < —41n Kmin h

formation if (g > exp[_%“(lnnmin)z]( o )2/5

Kmin

too small
to be effective

JGRG31

Chulmoon Yoo




production probability

OEffect of ellipticity

= p=1, Inkyin

= p=1, [Inkpjy =

B ~ 0.05560°

= p=1, Inknin

©Effect of angular momentum Tetssn

3.22 2 2nd spin
(sth = 5—$q 1st == RD

Onh = (%I)2/30'2/3 2nd

B ~ oexp[—o?] 1st
B ~ o'/? exp[—c~%/3] 2nd

©Effect of velocity dispersion? non sph.

1st spin
2/5 2nd spin

(sth ~ O )

B~ o3/5 exp[—a_6/5]

JGRG31 Chulmoon Yoo

Summary

©Effects of velocity dispersion on formation is discussed

©It may give a comparable contribution to the spin effect

non sph.

1st spin

2nd spin
- RD

non sph.

1st spin

2nd spin
-~ RD

JGRG31 Chulmoon Yoo
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Soft Graviton Theory and Infrared Triangle
‘ Hideo Furugori (Nagoya University) (In preparation)

Abstract

IR triangle relations appear in many places, Yang-Mills, Gravity, SUSY,---. | review the IR triangle in four-dim asymptotic-
flat spacetime. The soft theorem shows that soft particles play an important role in QFT, but the theorem is not enough
to confirm unitarity. | explain a soft graviton theory in the dressed state formalism proposed before (PRD 104.125004).
LI show that the IR relations vividly appear in the formalism, and discuss the role of soft gravitons.

@ AYd Y

Introduction Dressed State Formalism

Infrared Triangle Relation AS Actually, ST cannot resolve the IR div problem itself
IR triangle relation connects three corners Conventional §—matrlx 1S _NOT v‘{e_"_'def'ned .
We should consider alternative definition of S-matrix

Basic Concepts of Dressed States

IR div. tells us the breakdown of the particle picture
We should incorporate interaction to the asymptotic states
Asymptotic interaction |/,

2 Asymptotic Symmetry
2 Memory Effect
B Soft Theorem

e

ME ST
Strominger et.al. (2015)
It may give us a clue to understand quantum aspect of gravity

Asymptotic Symmetry (BMS)

gauge conditions

asymptotic conditions

Four-dimensional asym-flat spacetime possesses BMS symmetry
£, = ady, — %6%@; + %5’4514&8“& = g&aif_‘_), ztes?

Functional d.o.f.

Dressed state Dressed state

Vs))

AS is transformation preserving

Our Dressed State Formalism
Fix the frame by defining the time scale T of scat problem

Supertranslation D Translation .
P ' and define softness by T: Wsoft < 1/7T

Angular depend transf,
— Can infinite many charges exist?
Idea of the soft hair

J-k

then we derive asymptotic states dressed by soft particles

[Ws(T)))Z (00, T) | )

Z(*T, 790% S'(T‘7 —T)
(Gravitational) Memory Effect D Vi) L/ V() L‘/ V(1)

ME is permanent displacement due to a radiation T : } : >

| - o) e " T (D)) t

v oA {i || Geodesicdeviation S-matrix: S§5,(T) = (W5 (T)|S(T, ~T)| U0 (~T)))

00! /\ Av Vo “ F‘x — With 1
AUt memory Soft Graviton Theory
Sl S W N A B R No memory . _ ]

9 \\/’ \ f \J 1{ ; ] Consider adding gravitons to a theory

How to add gravitons: ref. Weinberg

Two geodesics

L "
3500 3550 3600

i M
Fig. from Favata 2010 Fig. from Strominger’s note

Soft (Graviton) Theorem

with soft gravitons

ST is relation bet. transition amplitudes . .
without soft graviton

6 + graviton with helicity h, momentum k, \E| = w :small

I 1
=%}

K v 1
B ihﬂl’qu; + %Newton

65 Non-covariant term
cancelling a non-cov.
propagator effect

I: Lorentz sym is broken due to graviton energy-momentum
Soft gravitons in Our Formalism

Consider adding only soft gravitons to ¢4 theory

2) Ty (x)

3 soft
/ d>xhiy (z

Th (z

(Z—pt/Ep)

/d" p'p”

(1) = Tesp |1 [~ arvin)] o)

S-matrix in 925

6 . as _ qdt
—|—O(w0) S-matrix  S50,(T) = S5a(1/T) ith IR cut-off \ — 1/T
Gauge sym S5 (T) — AE™, &™) S5, S5, e = cbu
— X Fﬁa (k7 h) Asymptotic symr(netry condltlon 0 otherwise
soft factor Lorentz transf. causes gauge transf. 5in = &?A = &Tgut
o O(w_l) Asymptotic symmetry recovers Lorentz symmetry!

ST is essential for dealing with the IR div problem in QFT || SUPeT-selection sectors of different frames 7 = (D 7,

EA

We can calculate the memory Well-known

0y (1)) 1= (s (1)) 5, — (B D)) |5 formms
More predictable memory: § (h,.,(Z))

Discussion and future works
| will speak orally in person !

We cannot get a unitary time evolution
Soft factor is proportional to displacement memory above
— Can soft gravitons carry information on a process?
Some hint on the information loss paradox?
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Baryon Asymmetry of the Universe (BAU)

There exists a net excess of baryons over anti-baryons
in the universe.

—— Baryon asymmetry of the Universe (BAU)

"B — (.92 x 1010

< p—

[Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003)]
TR : Baryon number density, S : Entropy density

< Sakharov’s three conditions > [Sakharov, JETP Lett. 5, 24 (1967)]

(1) Baryon number nonconservation
(2) C' and C'P violation

(3) A departure from thermal equilibrium
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Models Reviews of the BAU: [Dolgov Phys. Rep. 222, 309 (1992)]

[Dine and Kusenko, Rev. Mod. Phys. 76, 1 (2004)]
(1) GUT baryogenesis Decay of heavy particles

[Yoshimura, Phys. Rev. Lett. 41, 281 (1978); 42, 746E (1978)] (Mgut ~ 101%GeV)
@Electro Weak (EW) baryogenesis AN(B+ L) = N(#0)
[Kuzmin, Rubakov, and Shaposhnikov, Phys. Lett. 155B, A( B — L) =0

36 (1985)] Anomalous process (Sphaleron process)
(3) Leptogenesis T A(B - L) =N (7&0) B : Baryon number

[Fukugita and Yanagida, Phys. Lett. B 174, 45 (1986)] L : Lepton number

(4) Affleck-Dine baryogenesis «—— Coherent motion of scalar fields in

) supersymmetric theory

[Affleck and Dine, Nucl. Phys. B249, 361 (1985)]

(5) Spontaneous baryogenesis L~ ( o 9) Jg

[Cohen and Kaplan, Phys. Lett. B 199, 251 (1987); H

Nucl. Phys. B308, 913 (1988)] @ : Scalar field (the resultant Goldstone

boson)

(6) Black hole evaporation

[Zel’dovich, Pis’ma Zh. Eksp. Teor. Fiz. 24, 29 (1976)]
[Dolgov, Zh. Eksp. Teor. Fiz. 79, 337 (1980); Phys. Rev. D 24, 1042 (1981)]

J B - Baryon current

Background of this study

* The hypermagnetic helicity, which is the volume integration of the
inner product between a magnetic field and a vector potential, is
regarded as the Chern-Simons number stored in the hypercharge
electromagnetic fields.

 If the hypermagnetic fileds with their hypermagnetic helicity
are generatd from inflation before the electroweak phase
transition (EWPT), the hypermagnetic helicity (i.e., the Chern-
Simons number) is converted into fermions (baryon number)
at the EWPT owing to the Abelian anomaly.

[Giovannini & Shaposhnikov, PRL 80, 22 (1998); PRD 57, 2186 (1998)]

Cf. [Brustein & Oaknin, PRL 82, 2628 (1999); PRD 60, 023508 (1999)]
[Giovannini, PRD 61, 063004 (2000); PRD 61, 063502 (2000)]



Purpose of this study

*  We explore the generation of magnetic fields from inflation due to the
breaking of the conformal invariance of electromagnetic fields for the
case that the electromagnetic fields couple with the Ricci scalar and the

Gauss-Bonnet invariant. [KB, Elizalde, Odintsov, Paul, JCAP 04 (2021) 009]

* When the magnetic fields originated from the quantum fluctuations of
the electromagnetic fields during inflation have their magnetic helicity,
the baryon number can be generated due to the quantum anomaly.

Cf. [KB, PRD 74, 123504 (2006)]
[Fujita and Kamada, PRD 93, 083520 (2016)]

* We discuss that the magnetic fields at the galactic scale with enough
strength can lead to the resultant value of the ratio of the baryonic
number density to the entropy density consistent with the
observational data. Cf. [Kamada, Uchida and Yokoyama, JCAP 04 (2021) 034]

II. Model
Action: S =5,,,, + nggm + Scn

(1) Syrav = /d4x\/—_g[% — %GMCID(?VCI) —V(®) — £(P)G

G = R?> 4R, R" + R,,apsRM5  V(®):Potential of the inflaton §
. Gauss-Bonnet invariant £(®P) : Coupling term between P and G

R : Ricci scalar N
FHy — E;LuaﬁFaﬁ

GNVQ’B — _1

7= [nraf]

em

. 1 . )
(2) glecan) _ / d*zy/=g[ - ZFWFW} : Action of electromagnetism

1— Coupling constant

_ S IR
(3) Non-minimSCB a / /=g /(1.G) [AFM oA } E> Breaking of the conformal

coupling between invariance of
electromagneti.c f( R, Q) _ 20 ( RY 4 G4 /2) electromagnetic fields (CB)
fields and gravity

: Levi-Civita tensor ~ [0123] = 1

g : Model parameter (constant) 6




* Flat FLRW metric a(n) : Scale factor

ds* = a*(n) [ —dn* + dfz] 7 :Conformal time

(dt = a(n)dn )

* Field eqution
0o [V=919" 9" Fu, = SAf(R.G) 70, A, }] =0 9 A" =0
Coulomb gauge Ay = 0
—— AV, &) = 0,0'A; — 8N/ (R,G) €ij10; AL =0
s : L . N = ["aH dn
* Quasi de Sitter Inflation 7o : Initial time of inflation
B+1 : e-folding number
—n H/ /
CL(U)=<%> BZ—Q—CZ—B—f—ﬁ € = —37 +1
_d ) : Slow-roll parameter
I =a H = % : Conformal Hubble parameter
2 [68(8+1)]" + [ — 243 + 1)%]"* } <_,]>zeq
— frg = - rm 7

II1. Spectrum of electric and magnetic fields and magnetic helicity

[vvpo]

* Energy-momentum tensor of electromagnetic fields
: antisymmetric permutation

2 6 1 |

Tog = ——— — |\V/=g{ ==F,F" + X\ f(R,G)e"*PF,, F.

’ \/——goff“l g{ F AT A AT QL ’H
(Sf(Rg)>

1 LV LV 2)\
—1 {gm;«vauF‘ — 4g" FpaFlle‘ﬁ} + \/—_—g [/”//)U] FA”/F/)G < 5gu;j

I:> Energy density of electric and magnetic fields and the interaction between these fields
2eq
»)

1 2\ 2\ 374/-
F,’jF,'j + A eiijA;FjL' (,> {[()”3(’3 4+ 1)](1 + [—2—1(3 + 1)3] 1/2} ( )
0

1 2
0_ Loz L
o= 2a* (47) 4a* a* Mo
(B) = - (4))? B=-tprF
P ot i) p( )__F ij i

o 9) . 2 7 , .y . 2eq
pint(E,B) = _4(1 €iji AL Fj (’_> {[65(6 + D)7+ [-24(8 +1)7] 1/2} (_U)
a ]’]U 7]0

OX non-minimal coupling parameter \




< Quantization of U(1) gauge fields >

—

. A - ' dk L ik.Z | 7 (I A* —ik.%
* Mode expansion 4;(n,7) = / oE > e [br(k)AT(k,n)e"'“+bj(k)AT(k,n)e k.
: =1,2

[BP(E)7 IA);"(];’)] = 5p¢5(E _ ]Z’) k - Comoving wave number

€ri: Polarization vector

b, ( E) : Annihilation operator b, (E ) : Creation operator

* Energy density  3Initial condition: Bunch-Davies vacuum

K dk Kk 2
A (k) = Y [on Sl
2 44 | al
r—1,2 27 “ ’ r=1,2
{pint(E, B)) = —4Aq | — 2q{[es"(5’+1)]"+[—24(3+1)3]Q/2} —n o Z / kI | A, (k.n) AL (k)|
Pint 3 q 0 ML / o e 2,-—2 4 } ]
Energy density of mangnetic helicity ) X ' ) 1 '
Ak k3 5 5 &r:ﬁ(l.z.O)7 € =7 (1,-i,0)
D= [ o5 o AU = A= ()}
E> <,01> / 272 a? {| + ])| | ( 7)| : Polarization vectors 9
* Power spectrum
) — 2(E) K e 2 5 9(p(B)) ook 2
P(E) = Olnk e g!Ar(/‘-'l)} , P(B) = olnk = zﬁ at Ar(]\"’])‘

0</)h,> B k

Pr = Olnk 272 a3

{|A+ k,n) | |A (k, 7})| }

* Equations of motion of U(1) gauge fields

L\ 24 ‘
Al (k.n) + (/\‘ F B—]A> Ay (k,m) =0, B = (16eq) <,;—U> {[63(3 + )]+ [- 2408 + 1)3]q/2}

<Solutions>
A (k) = €™ (—kn) {01 U <1 + 17 2, —21714’17) +Cs 1F1 (1 + 77 2, —Qikn)} C; (i=1,2,3,4) : integration constants

Ul(a,b, z) : confluent hypergeometric function

A_(k,n) = €™ (=kn) {03 U (1 — % 2, —21L1]> +Cy 1F1 (1 - %2 —2ik7)>} 1F1(a,b,2):

Kummer confluent hypergeometric function

10



- Super-horizon mode: || <1

dp E 2H cosh (7B/2) , 2 2
01(11 k) - 5 » /2 (—km)* | (v +In(=kn) +n2) + -
0 |F(IB/2)|

—

dp(B)  Hjcosh(wB/2)
» Ok om2|T(144iB/2)]

) (—’f"l)4

Opin INEVAYEARE q a2 (=0T (B cosh (rB)2) .
Olnk B (27{‘2> <770> {[6 B+ + [ =245+ 1)7] } B (=kn)” [In (—kn)]

10 [I'(iB/2)
MHpn) 1 (k> sinh (73/2)
Olnk 272 \ a3 IC(1+iB/2) |2

X Energy density of electromagnetic fields during inflation (77 = 7).)

pem(nc) ~ Hé Hy = 10_5MPZ : Energy scale of inflation

——— pem K M3, H? [> Back reaction at the inflationary stage
can be neblected.

N[

( af ) ’ H2 (—kn;)? 11 ¢ : Final time of inflation

a

1 cosh (mB/2)
P=F Urasmp?
| ( T / ) ’ % Subscription ”’0” means the present time.

1 [ay 3 sinh (7 B/2) ; 3
= 2(—> : 5 | Ho (=kny)
0 ™ \ao ’F(1+1B/2)|

B = (16eq)) (,—)2' { [68(3+1)]" + [ —24(8 + 1)%] ‘1/2}
[> Present magnetic strength for the case of

010 h
Ok

instantaneous reheating kevp =~ 10740GeV ~ 0.02Mpe ™!
B 10-51C q=05, A~1

0 ~ 2 - ----- — — —20 2

CMB Nf o8 s 1G=1.95x 10 GeV

Hf =51x10"8Mp,

%Observation: 10722G < By < 1071°G 1/2
2~ 10°0(Hy /107" Mpy)

a

Electric fields are screened because the value of the electric
conductivity becomes very large instantaneously. &



I'V. Present magnetic strength for the case of the
reheating phase with a non-zero e-folding number

% Growth of magnetic strength at the reheating stage: [Kobayashi and Sloth, Phys.Rev.D 100, 023524 (2019))]

[Dai, Kamionkowski and Wang, Phys. Rev. Lett 133, 041302 (2014)]
[Cook, Dimastrogiovanni, Easson and Krauss, JCAP 04(2015), 047]

e-folds number at the
reheating stage
4 1 45 1. (11gsre k (3HFMB)'/*
i) a5 (am) () v
> exp | — (Ny + Ne)] : Reheating temperature

(1 3uweg) 2gre

re

Js,re = Jre = 100

43 \7 [aoT,
Tre:Ho( ) ( 0
1195 re k

: Present temperature of

aﬁo ~ O.OQMpC_1

To = 2.725K the cosmic microwave
background (CMB)
radiation Q( : Present value of @
% the suffix 're’ denotes the end instance of reheating 13

Weff : Effective equation of state

AT (k)
= Equations of motion of U(1) gauge fields . Mode function of U(1)
AL (e m) + 12AL (k) = 0 gauge fields at the
reheating stage
e GO () = 1)1 [C L e—ik) g, ¢iknny)
' 5 AL AL () k Y
Cy = D) i(\ '/j)‘f’ﬁ £ :I:(‘ l]f)’ d:i: = 5A:i:(]f-’]f)_ﬁA:I:(l"-llf)

¢ Connection condition at the end of inflation
AT kng) = Al (k.ny)

Agc)(l{. nf)=AxL(k,ny5) :



% The vacuum of the electromagnetic
fields change from the Bunch-Davies

- Bogoliubov coefficients vacuum owing to the particle
at the reheating stage creation at the reheating stage.
ax(k,n) = @ AL (k) + ﬁ AL (k) o () = ey e—ikG=17)
By (k,n) = % AV (k) — \/#27 A (k) B (k,n) = dg ™01711)
—— Solution: A (k, ) = 12k a(kynp) e 4 By (k,np) e

(k. B B
N 362’”7” {QCQ 1F1 (1 + 17 2, —Qil\'f]j') —Cq kny (2i — B) 1F1 (2 + 17 3, —‘Zi/l‘l]f>

+ 204 [U (%0 —‘Ziknj) -U (? 1, —Qilmf)] }
[k ‘B B
. = _%\Gelkﬂf{gq 1F1 (1 -2, —‘zik,;f) — Cy kg (2i+ B) 1F1 (2 - 17 3, —‘ziknf>
B B
+ 204 [( (_17.0. —Q;A-;;f> —U (—12 .1.—21/;;;f)] }

i |k iB iB
d, = %\/;ezknf {202 1F1 (1 + %, 2, —2'1'1{17]«) +Cy kng(2i+ B) 1F1 <1 + 273 —Qiknf)

iB
— 20, U (’7,1,—27'1;77]@) }

. ; .
d_ = i\/;e”‘”f{ZCél 1F1 (1 — % —2ik77f> +Cy kng(2i — B) 1F1 (1 — %.3. —2iknf>

2
iB ,
— 204 U(—T,L—szf)} o 215B2 G (T (14iB/2)\ _rp) L R T
1= T \ra-iBj2)) ¢ b= e T+ iB/2)e
1+iB/2 ; 1+iB/2 ;
oy = 2 24 (T'(1—-iB/2) oB/4 Cy = 2 ll"(l—iB/Q)e*”B“
V2k  \I'(1+iB/2) Ve

16



- Spectrum of magnetic fields and magnetic helicity at the reheating stage

) 3weff+1 2
Op(B) 2 1 k Hy '\ 5ees
B, (k, -1
) 2 15kl Bwer +1 \aypHy Hre

1 ( k4
. - 2 4
re l Ure r—t—

3 3werf+1 2
1 I\' 2 2 4 A Hf Sweff+3
= — (Z) (18, (k) = |B_ (k. ) —1
| =5 () (e = 15t {B%ﬁl(afo) [(H) ”

* Spectrum of magnetic fields and magnetic helicity at the present time

V2 (kN 4 ke H, \ oot
By = - By (ko) ? + 18- (k.ng)? L)y & -
" n <0> Visstennl 13- s (afo) (H)
i Sweprt+1 2
dpn 2 (k3 . B 1 k Hy '\ 3@eri+3
p = — — | =3 )sinh | — : —1
Olnk|, w2 \ aj 2 Bwet +1 \ayHy H,.
2 . : 2
B B B
X {[ﬁ, +1In (=2kns))* + (7> — ‘F (%) r (1 + %) }
Ipn_| _ (are>3 Ipn op(B) _ (e * op(B) (9p(§) lBQ
Omkly \ao /) Olnk|, s k|, \a /) olk]|, OInk 270 .
0 ¢




ng
R Cf. np=——Ancs. ne =3
* Baryon number density 2 ‘ '

.2 kg /a g’2 t
e dpn, Ancs = — / E.B dt
nB = —3 / dInk ( Ph ) nes = Ty
A,

A o Olnk

n¢ is the number of fermionic generations

g/ (47) = apn

Swesft1

[> ng = 762 ko ’ sinh B 4 ko Hy | Foerts -1
B o34 ao 2 Bwe +1 \arHy H,.

X [20 In (—konf)( —2+ 10y +51n (—4ko77f)>]

7Y : Euler’s constant ~ 0.577216

19

Present magnetic strength T.c [GeV] Ho = 1075 Mp,
Hy =5x1078M
336.30 1.63 0.014 ! o
Bo(Gauss) . ; - e=0.1
10712} 1 Ny =58

Magnetic fields with the strength
consistent with the observations

10714}
can be generated.

BBN

10-16} X Observation : i
constraints |

10-22G < By < 1071°G

10—18_

1 0—20 B

1 0—22 B il

0.286 0.288 0.290 0.292 0.294 0.296 0.298 0.300
—1 -
a5 = 0.02Mpc Weff 0.286 < weg < 0.2975




Baryon asymmetry at the present time (Baryon number density/
entropy density)

Baryon asymmetry compatible with the observations

can be generated.
Current magnetic field: B2* [Gauss]|np/so (Dimensionless)
3.27 < 10~ 13 6.09 x 10~ 10
3.26 < 10~ 13 6.05 < 10— 1°
3.28 < 10" 6.12 < 10~ '°
3.29 x 107 6.14 < 107
T 3
so = 2.97 x 103 (2'750[1‘,]> cm ™3 : Entropy density at the present time

V. Conclusions

* We have investigated the generation of magnetic fields from
inflation for the case that the electromagnetic fields couple with the
Ricci scalar and the Gauss-Bonnet invariant.

* We have analyzed the evolution of the quantum fluctuations of
the electromagnetic fields during inflation due to the breaking of
the conformal invariance of the electromagnetic fields.

*  When the magnetic fields originated from the quantum fluctuations
of the electromagnetic fields during inflation have their magnetic
helicity, we estimated the baryon number density generated due to
the quantum anomaly

* It has been shown that the magnetic fields at the galactic scale with
strength about 10~ '3 G can lead to the resultant value of the ratio
of the baryonic number density to the entropy density as large
as ~ 10719 , which is consistent with the observational data.

22



Cf. Recent important related work

“Baryon isocurvature constraints on the primordial hypermagnetic fields”
[K. Kamada, F. Uchida and J. Yokoyama, JCAP 04 (2021) 034]

Abstract. It has been pointed out that hypermagnetic helicity decay at the electroweak sym-
metry breaking may have produced the observed baryon asymmetry of the Universe through
the chiral anomaly in the standard model of particle physics. Although fully helical magnetic
field that can adequately produce the observed baryon asymmetry is not strong enough to
explain the origin of the intergalactic magnetic field inferred by the Fermi satellite, the mix-

ture of helical and nonhelical primordial magnetic fields may explain both baryogenesis and
the intergalactic magnetic fields simultaneously. We first show that such a scenario is ruled
out by the constraint on the amplitude of baryon isocurvature perturbations produced by the
primordial magnetic fields to avoid overproduction of deuterium at the big bang nucleosyn-
thesis. Then we show that any attempt to explain the origin of intergalactic magnetic field
by primordial magnetogenesis before the electroweak symmetry breaking does not work due
to the above constraint irrespective of the helicity and baryogenesis mechanism.

23
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Overview

Cartan F(R) gravity
4 MP12
S= [ d°ze TF(R)—l—Em

Torsion

@/ Flat
with Vierbein € @‘\ curved

2

1
Tkij = —(5kj€i)\ — (Skiej)‘)(%\ In F/(R(E))

R — R?

2
5= / e (MPI Ry — %amaw - V(¢>)

2

...Derive scalar-tensor theory

R — RLog(R +1

kkkkkkkkkkkkkkkkkkkkkkkkkkk

] TR >
10 0.10 9~ N
\\
] 0.05 4
‘rt
0.00 T T
0.95 0.9¢

6 0.97 0.98 0.99 1.00
n

Explain Inflation!

(We think...) Cartan F(R) gravity is a new theory of F(R) modified theory!!

Overview

Cartan F(R)

" Easy h

M 2
V(¢) =— ;1 F(B) p=pg)
One Frame

From Torsion
We are in Jordan Frame

Much work remains
Fresh Theory

\Please join us /

VS

Potential V(¢)

Scalar-tensor theory

Future work

Usual F(R)

ﬂ little complicated \

Mp? AF — F
= 2 F/2

V(¢)

A=A(d)

Jordan vs Einstein Frame

From Conformal transformation
We are in Jordan or Einstein ?

Much work was done

Famous Theory
Elite joined it
4




Overview

Introduction ©

Cartan F(R) gravity

Cartan F(R) model and Inflation

Introduction

JrHorizon problem

CMB  cH;' ~10%m, Tp=2.715K, [§T/To| ~ 1077
T Planck 2018 results. |. Overview and the cosmological legacy of Planck

Causality I
H

Decelerating expansion

a(t) = a;t? (0 <p < 1) a(t)scale factor
1

L ar

A=

)\p ¢ Decelerating

Expansion

Ly ..Hubble radius (Region of Causality)
Ap ...Physical wavelength

JFlatness Problem

Density parameter for spatial curvature K

K|c? K|c? 5_
Qx| = L2I|{2 = |a~2|p2 2072 . Increasing with time

Beyond causality?

|Q§g)| < 0.003 — Must be 0 with high accuracy in the past



Inflation

Accelerating expansion with p » 1in the early universe=Inflation!

s'cHorizon problem 4 I
a(t) = a;t? Inflation
L »
“H 2T ¢
Ap @ > —>
« Ap
In causality
JFlatness problem Y

Density parameter for spatial curvature K

‘K|C2 |K|C2 2(1— -2
Qx| = 575 = Wt (=P) v 7% vEqualized” during inflation

Inflation can solve these problems! ;

Inflation

The origin of Inflation?

| Scalar-Tensor theory |

4 MP12 1 A 4 MP12
S= [ dz/—g 5 R— 58,@8 o—V(p) | ~ [ d*x\/—g 5 R — At — V(¢) >~ Ains
Friedmann Eq ( e-folding number = the scale of expansion
To solve...
3H2 ~ V(¢) = Ains _ arg Horizon problem
a 2 N=1In CL_7 Flatness problem} N ~50—-65 — 660 ~ 1026
(a) - Ainf 7 /

Ain
a(t) oc eV gt

Exponential accelerating expansion

a; ay
t Cell(10pm) M31: The Andromeda Galaxy(10%2'm) 8

-36 —-34 s N
107°%s 1077%*s Credit:n o3 &% Image Credit & Copyright: Robert Gendler



Inflation

Ains (@)
OSlow-roll parameter
“slow-roll”
3[—_[2:1'2 1% 2 <V M <1
2¢ + ((b)a P <K (¢) V(®) behaves constant, Aj¢

. Mp2 <E>2 - Mp12V¢¢ During inflation ¢,7 « 1 '
2 V)’ Vv Finish inflation e,n ~ 1 a1
OFluctuation %)f b

p+6¢p = V(p) = SN =N—Ny=TR(ty)

Curvature fluctuation

8¢ = ¢t
- Spectrum index
R(ty) = Hot = —d¢ e 1= nPr — 6eray @
¢ dnk |,y 5

Power spectrum Scalar-tensor ratio

Pr expressed by €,7 9
What potential is good?
f=3
s S ' ' v TT,TE,EE+lowE-+lensing
& \ TT,TE,EE+lowE+lensing
2 4/3 2/3 r \ | K14
V(¢)OC¢), ¢/a ¢7 QS/ \ +BK14 .
- Q’o \ - TT,TE,EE-+lowE+lensing
w2 RN \ +BK14+BAO
. . 2 | \ “|[ ™ Natural inflation
Natural inflation ¢ § \ Hilltop quartic model
~ \ « attractors
V(¢) X (1 — COs ! —E I)) % \\ — - Power-law inflation
s S L \ . R? inflation
. . . 3 \ — V¢
Hilltop inflation 3 \ /3
g2 T \ = V¢
¢) § \ = Vx¢
V(¢) XX 1 - )\ - ﬁ g | \\ = VO(¢2/3
v s \ == Low scale SB SUSY
\ ® N.=50
. . . \ N,=60
R?(Starobinsky) inflation \ e
S . — N
< 0.94 0.96 0.98 1.00

V(p) (1 - e_\/g¢)2

Primordial tilt (ns)

Planck 2018 results. X. Constraints on inflation

T Most consistent with observation = What is the origin?
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F(R) modified gravity

2
R — F(R) In Einstein-Hilbert action, § = /d4m1/_gM;1 R

v
Starobinsky model a a strobinsky (1979) F(R)
R2
F(R) =R + m
Conformal transformation Equivalent scalar-tensor theory

9 = F'g — S = / d'z/—g (MPI R— —awa% V<¢))

b= \/gMPl In F'(A) F'(A) = Vit A= M2 < Vs _ 1)

_> )
Mp\* AF" —

2 F/Z

Vi(¢) =

2 2 2
T = I (1 VEY)

A=A(¢) 8

A=A(d)

Starobinsky potential

11
F(R) modified gravity
R — F(R)
Conformal tl’anSformation = Local scale transformation s.noir.s. odintsov, and v. oikonomou, Phys. Rept. 692, 1 2017).
Jordan Frame Einstein Frame
/ /
g,u,y \ Conformal trans v = F guy
|
F(R) R(Tensor) +Scalar field
/_Ml Mp? 1
S = /d4x p ( ) S:/d4$\/ —g/( 51 R— §8A¢8/\¢—V(¢)> @z\/nglnF’(A)
AF — F
A=A(9)

w Vel =
1S Fr2

Are the two frames equivalent?

Some studies discussed... r.catena, M. Pietroni, and L. Scarabel (2007)
C. F. Steinwachs and A. Y. Kamens (2011)
A. Y. Kamenshchik and C. F. Steinw (2015)
Yuta Hamada, Hikaru Kawai, Yukari Nakanishi, and Kin-ya Oda (2017)

12



e Qverview
 Introduction
 Cartan F(R) gravity

e Cartan F(R) model and Inflation

13

Cartan formalism

Cartan formalism 9, — €iu D— Flat(local Lorentz frame)

E. Cartan (1923) e
@\ Curved(general coordinate frame)

Vierbein: a "bridge" between curved and flat space-time

Gravity = Quantum filed

A A A
T =10 =17, .
Geometric image

Connection : I'”),, = e,”D,e”,,
Covariant Derivative
for local Lorentz trans
Dyeku =0,e", + wkl,,elu
1 spin connection
14




Cartan F(R) gravity

Action

M 2
S:/d‘lxe( ;’1 F(R)+£m>

e= det[eiu] =+/—g

OModified Einstein Eq« Varying with respect to e’
1 .
FUW“—EBQPKR):Aﬁgﬂzm
— R(X

Torsion is related to F(R) modification

OCartan Eq « Varying with respect to e’, @ i 1
_ k. A kA !
¥ L, does not depend on matter >T iy = 5(5 i€ — o i€j )8)\ InF (R(Z))

(Tﬂkl —e*Ty, + ek“Tl)F’(R) + (ekael“ — ek“el“)aaF’(R) =0

1 _ ko _
— Tkij - 5(5kjei>\ - 6ki€j>\)a)\ 1HF’<R) >< F(R) =R—->T ij — 0

15

Cartan F(R) gravity

Extract Torsion effect

A R Y A A
— — 1
[ = (Uk) A 2 (T o + L™+ Loy > Levi-Civita connection : ()", = 59”(3#9,/;) + 0u9pu = OpGyw)
1
Wik = Wo, +— (Tij + Tiki + This 1
ik Oijk 2 ( 1k gkt kﬂ) Wo ik = §(Akz‘j = Ay + Ajir), Arij = (ei'e;” —ej'ei”)dvery
Non-torsion Torsion
Ricci scalar

R =e"e;"RY,,(w,0w), RY,, =0,w"”, — 0w, +wi,w, —wpw,

—_= RE —|—T— 2VE'LLTM

T T,

1 1 I
T = T Ty — 7T Ty — 7T,

P

3
= RE — 58)\ In F’(R)(?’\ In F/(R) — 30 1In F/(R) — Tkij — 1(5]6]‘62‘)\ _ 5161,83/\)@ In F'(R(%))

2

16



Cartan F(R) gravity

Ty, = (FE)/\ +

pv (T)\;w + TMV)\ + T'/#A)

— R = R — gaA In F'(R)0 In F'(R) — 301n F'(R)

[

Wijk =Woy T3 (Tijk + Tjki + Trji)

Apply F(R)= R+ f(R) efine the scalar field
3
2 = —\/jMpl th/(R)
S = [ d'act P (R4 1(R) -
2
_ /d4:1;e <M§1 Ry — %awbaw - V(¢)>
Vi) — Mpy? R Derive scalar-tensor theory from Torsion
() = ==~ J(B)lr=res) =Without Conformal transformation

X Jordan vs Einstein

Cartan F(R) gravity:--A new form of F(R) gravity
17

e Qverview
 Introduction
« Cartan F(R) gravity

« Cartan F(R) model and Inflation @

18



R?% model

An Example of Cartan F(R) model

R? R?
a2 T =3

F(R) = R—

3
o= —\/;Mpl In F'(R) From scalar definition

F'(R) = e V3¢

Potential V(¢)

STEP.1
M2 vz 6 8 10
_ M (1 _ V%0
R(¢) = = (1 e )
Mp?
STEP.2 V(g) =~ 2 f<R)‘R=R(¢) From potential definition
T lmem ey
2 M2 R=R(4) N Starobinsky potential again! y
Logarithmic model
F(R)zR(l—ln R£+1 ), f(R)=—RIn R£+1
© c Potential V(¢)
Inspired by quantum correction 05 ——— 7 .
0.4;
3 , i
#(R) = — §Mp1 In F'(R) 2 030 1
) 2 02 T A
Mp,
00 2 4 6 s 10

Plotting the potential with R as a parameter

Logarithmic model

R? model

20



Root model

F(R):%Q( _R)

2
2 M Potential V(¢)
R* 2R® 5R* o4r ' ' '
DA VERANS VZ RS VO
03f
The form of R+ f(R) =
% 0.2
9 =
Mp, i
V(¢) =— 2 f(R)|R:R(¢) o1
M?Mp,” 242 00of .
- g (1 —eVd ) ~10 8 6 4 2 0
¢
Left-right symmetrical Starobinsky potential
21
Others
. R?
f(R)=1— cosh R f(R) = —Rsinh R f(R)=1—¢"/

06k 0.5

05F 1 0.4
- The potential is easy,
= I Mp®

SN O | N Easy to find models

22



Observation

0.25

Translation to F(R) gravity

0204

2

f//FIQ
- -3

" 2

fIF/ FIFI//
+ F// 1 - F//2
0.00

Set the e-folding number N ~ 60
Calculation of observables such as ng,r

0.05 -

Planck TT,TE,EE+lowE
Planck TT,TE,EE+lowE+lensing
% +BK14+BAO

ESA and the Planck Collaboration

Model e-folding N N r(x1073)  as(x1073)

—R? 60.3 0.96797 2.94 -0.519

—RIn(R+1) 60.2 0.96758 3.04 -0.529

1 —cosh R 60.3 0.96825 2.86 -0.512

Observation - 0.9625(48) <66 2+10

Summary
Cartan F(R) gravity
Derive scalar-tensor theory by torsion
2 2
M 1
S = /d4xe (M; F(R) + £m> >S = /d4xe ( ;’1 Rp — 58@6% — V() + £m>
Torsion
Tk = 1(5@5} — §%ie;M)0x In F'(R(X))

2
x Conformal transformation

Thank you for taking the time to look at the last slide!

We will study
- Model exploration
- Reheating (Matter interaction) etc.

We would appreciate your advice.

Please check our paper

O
[=]

1.00

23
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Black hole perturbations in
modified gravity with two
tensorial degrees of freedom

Rikkyo University Jin Saito
Collaborator: Tsutomu Kobayashi
Work in progress

2021 10/24-10/28 JGRG31 in Tokyo University

Outline

I. Introduction

II. Modified gravity
with two tensorial degrees of freedom

II1. Static and spherically symmetric black hole solution

IV. Black hole perturbations
+0Odd mode (=>2)

+Even mode (1 =0)

* Our work

+Even mode (1 =1) J

V. Summary and future work


P10


Introduction

* General relativity (GR) is standard theory of gravity

e This is consistent with observations such as
deflection of light, Mercury’s perihelion shift.

Why modified gravity?

* |_ate time accelerated expansion of the Universe
> ACDM or modified gravity?

* \erification of gravitational theory

< To what extent is GR correct?

Modified gravity with two tensorial DoFs

Gravitational theories which have two tensorial DoFs are
not limited on GR!

- : Extrinsic curvature
* Spatially covariant theory aE
1o W Y Lore i4Vg — L44iV5

3-dim induced metric /
. S
S = [ dtdz°N/L(N,Vij, Kij, Rij, Di, t)
=
lapse function 3-dim covariant derivative
3-dim (intrinsic)curvature

*\Written in terms of ADM variables, which are
geometrical quantity of 3-dim space-like hypersurface.

*|n general, this theory has 3 DoFs (2 tensors and 1 scalar).

* This is equivalent to scalar-tensor theory under unitary gauge.



Modified gravity with two tensorial DoFs

(Gao, Yao 2020)
Hamiltonian analysis yields the conditions for a theory to have

only two tensorial DoFs,

1 BoN - ﬂ0< 2N N ) :
S == [ dtd®zN KoK= £ K
2/ - ﬁlﬂz-l-N 7 30 EN 0 N

+ a1 + o R+ %(O&g = 014R):| Qg,Ba = aa(t)7 ﬁa(t)

+ 500 = as =1,a; = Const, 81 = ag = oy = 0 =y GR
+ /5 = By~ Extended cuscuton

Evading solar-system test and propagation speed of GWs,

s R o K ol
S 2/dtdac Nﬁ[K]K 3(ﬂ+N+1) +R +a1+N

If ignoring @1, @z as contributing only cosmological scale,
the difference between two theories is only one parameter 3.

Static and spherically symmetric BH solution

i I , Kobayashi 2021
*xMetric ansatz (Iyonaga, Kobayashi 2021)

ds? = —(N2 - B2)dt2 + 2BFdtdr + F2dr? + r2d0Q?
N = N(r), N;dz® = B(r)F(r)dr, %-jdxidxj = F2(r)dr? + r2d9?
* Particular solution

N - N/ fln) F= L , B= N°2b°
V() L
i po | b3 Neh
Rl o, No, bo:Constants
1t 1

If we diagonalized this metric by introducing Stuckerberg scalar,

o iy Ho
e — 1 e
e + r4d9 h(r) =

i i e s i
= Ny <T+/ h(r)\/h(r) +bg/r4d )

This is a stealth Schwarzschild solution.

dsé— Rl dat




Black hole perturbations

* Remark:

+Background metric:
4 e BT L oBRdde " Ed

+Action:

_.1 3 KU 1. 2N 2 (3)
5= [atas® Nyl - (G2 1)K RO+ )6+ R

S——

Ignoring those terms

By analyzing phenomena at black hole, we would
like to know whether this theory is distinguishable
from GR or not.

Odd parity sector(l > 2)

)

V. :Covariant derivative of o
oapdz®dz® = d6? + sin® Hd?

* Perturbations
N —N

Na = Na o Z h(()lm) (ty T)Ebaﬁbmm(ea gb)

fab :Levi-Civita tensor (egg = sin 6

Y

T ey e G )

1 m G @
Yab = Yab + 5 215" (6, ) (€ Ve Vs + 6°VeVa)Yim (6, 6)

lm

* Gauge transformation

Under 0 o= T + Zebaabylm(e’ (b) / hélm) oy hélm) i 2£(lm)

l,m

— \We can always eliminate r5™.
We consider only a{™, n{"™.




Odd parity sector (! > 2)

{Cz e 1)<z+2§
; hohirhe o B
*2nd-order Lagrangian:

o 1Pl o F o Ll o e BT
Loaa =3|2rn + 27w |l — 3 rrw (Pol®) = peToall
Cl 1l(l ) 1 ‘ ’ 4 e
2 2Nh1h0 9 9 FN hl hO +7‘h0h1 4+ c.c.

~— 3 -dependence disappears in 2ol

Master equation is identical to Regge-Wheeler equation in GR.

With odd parity sector, we can’t distinguish between this theory
and GR.

VA
| 0gpdz?dz® = d6? + sin? 0d?

Even parity sector(/ = 0) [ - ]

* Perturbations

H(OO)(t 7’) H(OO)( )
N N+NY 022 N SN, +Z—
- Var E= vVar

bl o
VA

K (00) ()
V2 Ys

N(L_>N(Z7 77“7"_>77"7“+Z

l,m

Yra = Vras Sab o ab o 7”2 Z Oab

l,m
* Gauge transformation
£(00)

Var’
— \Ne can always eliminate k(.

Under r —r+ KO s K(00) — 2¢(00

We consider only ;" 1" 1"




Even parity sector(/ = 0)

* 2nd-order Lagrangian: (Ho, H1, Hy = HL? H 1)

He 9Nb o 2

2

2 i M ol _@ e

Hi=0 = BNy (B + Nov) [ﬁ el Hl)] oty — Nor fHolts — g Hatt
~ 1 ~ Nob
H01:H0+§H2,H11:\/?H1— OO(Ho—l—Hg)

Solve the equations forH,,H;,H, and rewrite the solutions
in terms of Ho,Hi, Ha,

Ho =

e € dr ¢ e boC / g o= 2bhC

Nordf — N_g r2f3/2’ b= r2f1/2 ~ p6§3/2  Nordfi/2z | p2f3/2° 27 Trf T Nordf

where éu is constant and C is function depending time.

Even parity sector(/ = 0)

* oy~ Shift of the black hole mass 1o — po + ou

* C ——P Change the configuration of Stuckerberg scalar
without changing geometrical structures

If considering the coordinate transformation

~ C dr
eGP e s /
/47TN0 ()3/2!

we obtain the metric and scalar field

ds® = —h(r)dT? + ( ) +r2d92

e - C bo/?”
¢_T \/EN()/?"QJC(?" 3/2 / +b0/7”4dr
=T




Even parity sector(! = 1)

* Perturbations
N N+NY HI™(E,rVimd,¢) , No— No+ > HI™ (1) ¥im(8, ¢)

Yor = Yor + F2 S HE™ (6,1 Y1 (8,6) » No = Na+ > b0™ (2,18, Yi,(8,6)
Yra = Yra + 3 20™ (£, 7)8:Yim (6, 8)
Gab = Jab e T2 Z R(lm)o—abyvlrn(ev ¢) (R(lm) = K(lm) (t7 T) 7 G(lm) (ta 7’))

*Gauge transformation
[ H(lm) i H(lm) = Eg(lm) P = 1P ar Zf(lm) taT)lem(97 ¢)

n r m (@
l Rm) _, gam) _ 5(1m)+2£(1m) unde [ +Z§(1 (t, 1) VeY1m (6, §)
17

~ \We can always eliminate H{'™, K™,
We consider only H{"™, H{™ attm pm)

Even parity sector(! = 1)

*2nd-order Lagrangian(m = 0);

2
ﬁl( )lm 0 5

. 2,
57“ H2 2 o / Nobo , ~ 6(ﬁ+N0\/_) S
12No (B + Nov/T) [ﬁ ) T b>]

9 o / = 2 .
+;T0[a—r(gb> —N0b0r<‘/—375> —Tt'/l_] B\ﬁ/_<H1—b)2+6—bOH15

3b0H b+N0f~2——{f—|—(rf) }aH2+£(rf) H3

T Nobo ind b N()b() b a
Hl.:\/?Hl—r—QHQ, b.:W—T—Ba, a.:;

After very long calculation, we obtain
L2, o = a1(N)(02X)% + a5(r) (9:3)% + as(r)x?

where x = x(t.7)is master variable making fromHi,H,,b,3 .



Even parity sector(! = 1)

2 mo = a1 (1)(02X)* + a2(r) (0rx)? + a3 (1)
Derive the equation of motion for master variablex(t,7),

b1 (r)0ix + ba(r)02x + b3(r)02x + ba(r)drx + bs(r)x = 0

+This is the 4th-order differential equation involving only
spatial derivatives.

+Coefficients b:(r), (i=1,2,3,4,5) is very complicated.

Even parity sector(/ = 1)

b1(r) 8 x + ba(r) 87 x + ba(r)8;x + ba(r)0rx + bs(r)x = 0
Assume the asymptotic behavior the solutions as,

. dlit) . di(;f)

x(t,r) = |co(t) + Clit) + Cigt) Tl ] Ae lnrldo(t)

where only 4 parameters is independent; the others
is written by these parameters.

Impose the boundary condition H;,Hs,a,b - 0 as r — oo

Only one parameteres(¢) = Const is allowed.

As far as we investigate the asymptotic behavior atr -« , we

find the solution that distorts black hole geometry is allowed.



Summary and future work

*(dd parity sector is identical to GR.

* From the analysis of monopole perturbations of even parity
sector, the solution which changes the configuration of scalar
field without changing the geometrical structure exists.

*\We will calculate the even parity GWs ({ > 2)
and analyze QNMs (Quasi-Normal Modes) of BH.
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Time-domain reconstruction
of pulsar GW polarizations

Gravitational Wave
Physics and Astronomy

encdcd

Hideki Asada (Hirosaki University)
Kuwahara and HA arXiv:2202.00171 (PRD 106, 024051, 2022), %5 (2021 4EEEEL-#0)

We prove that waveforms for each polarization can be uniquely reconstructed
in a time domain for a given set of the strain outputs at a single detector

1 Introduction

A strain output at a GW interferometer
S(t) =F5()hs(t) + FV (H)hv(t) + F (t)hw (¢)
+ FT(t)hy (t) + F*(t)hx (t) + n(t)

= > Fthi(t)+n(t),

I=S,V,W,+,x

for a general class of metric theory of gravity.

Antenna pattern changes with Earth rotation:

F ’(Q(t) cb(t) (1))

w 0.00

-0.50

-0.75

-1.00

0 3 6 9 12 15 18 21 24
time(h)

Daily varition: LIGO-H and Crab pulsar

2 Basic Formulation

Periodic GW: hi(t) = hr(t+nTp)

1(t)

n(t),

S5a(t)

(t+Tp)hi(t+Tp) +n(t+Tp),

5(t)
2.1
S(t+Tp)
>
7
Sn(t) =8(t+ (N —1)Tp)
=" F(t+ (N = 1)Tp)hy(t + (N = 1)Tp)

I
+n(t+ (N =1Tp).

2
A(t) = (Sl(t) - ZF{(t)hz(t)>
I
2
ot (Sw(t) - ZFﬁv(t)hrf(t)>
=3 (8u(t) = Fl)h( f))

N
a=1

Least square

The minimizer provides the basic equation as

My (8)Hn () = L (1)

60

Mock data
for one period

Reconstruction
in time-domain

= 0055

8
time(ms)

4 Summary

Time-domain GW reconstruction is formulated.

This reconstruction will allow us to test speed
of extra polarizations.

Pulsar spin modulation, LOD (Length-of-Day) modulation
are also addressed.

Estimation of computational costs:
A core-day of a high-performance PC for 12 year data
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High-Precision Simulations for
Collisional Self-Gravitating
Systems Incorporating Relativistic
Effects

Takayuki Tatekawa (NIT, Kochi college; RISE, Waseda Univ.)
e-mail: tatekawa@akane.waseda.jp

Tohru Tashiro (Aichi Univ. Tech.; Nihon Univ.)

Introduction

* Observations have
confirmed the existence of
SMBHSs in M87, the center
of the Milky Way galaxy.

* The relationship between
SMBHs and velocity
dispersion is also known for
other galaxies, indirectly
suggesting the existence of
SMBHs.

* How did these objects
evolve?

Shadow of SMBH in M87
(by EHT Collaboration)
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Scenarios for formation of SMBH

GAS tor DENSE STAR _ yruar . CLUSTEROF
* Rees (1984) cmu\); > formation > //(,L;JSTER +mmzsmmooMfTARs
Many scenarios for %/ | N
formation of SMBH were N\ g ausTare
proposed. \ / OBeAck oces”
SUPERMASSIVE
STAR
e Our study focuses on the we /]
. . rin /{ \
red box on the right figure. s )\
In addition, we analyze the SN g%:%
evolution of the clusters 7 / \ |
around SMBH. B B
i |

massive black hole

Effect of general relativity

e Consider a scenario in which SMBHs and galaxies evolved
together.

* In this model, the gravity between the central heavy object
and the surrounding stars plays an important role.

* In particular, the gravity imposed by the SMBH is so strong
that the effects of general relativity must be taken into
account.

* Therefore, we consider the evolution of a self-gravitating
system with a correction for the general relativistic effects.



Basic Equations

* We consider many-body gravitating system.
To incorporate relativistic effects, 1PN correction is applied
to the Newton gravity.

* The equation is known as Einstein-Infeld-Hoffman (EIH)
equation (Einstein, Infeld, Hoffmann 1938).

* The acceleration is described as follows:
Gm;x;;
a; = —Z$
gAY

G G G G
S DL o
T " T gz oy

1 Gmk 3 9
3 2 =5 (@i - @) = of +4(vi-v5) = 207 + 22 (v - i)
k#i,5 J

Gm; Gmkzjk GmJ
Yy b5 Y Dl (v~ 30;) vy
it ki i i i

Conserved guantities

* In 1PN-order approximation, the total energy and the total
momentum are conserved. (Because emission of
gravitational wave is derived by 2.5PN-order
approximation.)

1 Gm; (v; - i) (v, - x5)
_ZZ 7‘~-] <7vi'vj + JT.Q. : : ’

1)

P St gy T (- £ ) - SR 0
i “ i < gE T



Time evolution

For Hamiltonian system, symplectic integrator is known as
accuracy formula about conservation of total energy.

However, if Hamiltonian cannot be separated to kinetic terms and
potential terms, the integrator is described by implicit form.

(H(p, a) = K(p)+V(q) (separatable))

Explicit Form:
To obtain present quantities, past quantities are required.

Implicit Form:
To obtain present quantities, past and present quantities are
required.

Implicit Form is known to have a smaller error, but it is difficult to
compute.

Hermite Integrator described below is considered to partially
incorporate Implicit Form.

Collisionless and collisional system

Collisionless system

The two-body relaxation time is sufficiently long compared
to the evolutionary time scale of the system that the effect
of the two-body relaxation is negligible.

Collisional system
A system in which the effect of a two-body relaxation on the
evolution of the system is significant.

For a system consisting of N particles, the two-body

relaxation time can be estimated as
N

trelax = —tcross
. . ln N- . . .
From the virial theorem, for each individual particle mass m

and radius R of the object, t..oss IS given by
R3
Leross = .
GNm




Collisionless and collisional system (cont.)

« Age of Universe: typiy = 1.38 X 101°[yr]

 Typical value of two-body relaxation time.
Galaxy (N = 10"): teross = 10°[yr], trerax = 10*[yr]
-> Collisionless system (t ejax > tuniv)
Globular Cluster (N = 10°): teross = 10°[yr], trerax = 10°[yr]
-> Collisional system (tre1ax< tuniv)

* Even if we consider the evolution of galaxy, the density near the
center is so high that it must be considered collisional system.

* Numerical methods with high accuracy are required for the
evolution of collisional systems. Therefore, Hermite integrator
is applied.

Hermite integrator

* For accuracy formula, we apply Hermite integrator (Makino
1991), which is one of predictor-corrector method.

* For 4th-order Hermite integrator, the formula requires time
derivative of accelerations.

* Here subscripts mean time, predictor, or corrector.

predictor
At)? At)3
:sza?()-l—’voAt—l— ( 2) ag + ( 6) ag ,
At)?
’Up:’v()—l-a()At—l— 2) ao,
corrector
(A1) (o) (AD)° (3
T, =xp + 21 ag))-l-ma(())a
At)3 At)d
vem vyt B0 g (B0 o



Hermite formula (cont.)

—6((1,() — al) — At(4a0 + 2(1,1)

42
0 (At)? ’

HON 12(ap — ay) + 6At(ap + aq)
o (At)3 '

* a;and d, is calculated using predictor x,, and v,,.

* To apply Hermite method, the time derivative of
acceleration is derived from EIH equation.

Example for Hermite formula

* Here we suppose harmonic oscillator.
& =—xz,2(0) = z0,v(0) = vg,

1. Predictor is derived. ) .
zp = 20 + VoAl — 7"(&)2 - g(m)%

vy = vy — oAt — %(At)2 :

2. Correction terms are calculated.

apg = —Xp,a1 = —Ip,
C.LO :_UOadl = —Up,
(2) _ (3) _

3. Corrector is derived. Then corrector is considered as the
position and velocity at the next time.

NN
Te=Tp T o PO T o 0
(At)? (At)*

o -

ve =t gm0t oy



Time differential of EIH equation (1)

da; 3Gm; Gm;

i & i
16G2 4G2m§ 20G?*m;m; 5G%m;m;
- E (Tij - vij) Tij + — Vi — 5 (@ij - vij) Tij + ——— vy
o Py o T &7 5
3G2m m G?*m;m, G?*m.m
o TG Mk JMi
+> (@ij - vij) Tij — — 53— (Tjk - Vi) Tij + — 5 i
k#i,j z] ij' gk ij' gk
12G mjmk 4G2m]m;C 4G2mjmk
+ —a . (@i vig) ey — —5 5 (T vik) T+ —5 i
T T’ T3 T3 T3 T
ki ik ij! ik ij! ik
3G2m.m 3G%m;imy,
O Ty J
D0 o (@i vig) (i xe) @i + 53,5 (Eik - Vjk) (Tij - Tjk) T
279y 2y
ki ij'j ij"j
G2 m.my, G*mymy,
J J
—ra,a (Vi @) + (@i - o)) @ij — <35 (@i - @jk) 035
i7" jk ¥ ]k

Continue to next page

Time differential of EIH equation (2)

3Gm; 2Gm; Gm;
0] (@ - vig) @iy — — (Vi @) @y — — 5ol
12Gm; 4Gm; 4Gm;
——— (@ij - vij) (Vi vg) @i+ —5 (@i v)) + (vi - ay)) @ij + —5 (vi - ;) vij
Y T T
6Gm; 4Gm; 2Gm;
e Lo? (@ - vig) iy — — (v - @) Ty — —gLvPvy
T T T
15Gm 5 3Gm;
—— 7 (@i vig) (v @) @i+ =5 (@ - i) + (v vig)) (V5 - @ig) @i
Tij Tij
3Gm 2
27-%] (vj - @ij)” vij

ki j w Jk 20451

3Gm,;
5 (@i vy) (i - (dvi = 3vy)) vy
ij
ij
+—g ((vij - (4vi = 3v;)) + (@35 - (da; — 3a;))) vi;
ij

7G?*m;m, 21G%*mmy, TG%m;my,
+ { g (@i Vi) @k + ot (@ Vjk) Tk — —jk"’jk}

Gm;
T3 L (- (4v; — 3%‘))02‘]‘] ~

ij




Implementation in Code

e We are developing C-language code that applies the EIH
equation to Hermite integrator.
The time increments are not independent.

* The code is parallelized using OpenMP for fast execution on
shared-memory computers.

* The evolution of the system by this code is under testing,
and we will analyze the long-time evolution of a realistic
system in the future.

Summary

* We are analyzing the co-evolution of SMBH and a galaxy,
with emphasis on self-gravity.

* In the interaction by SMBHs, the effect of general relativity
cannot be negligible.

* Therefore, we focus on the EIH equation, which is the
equation of the N-body problem with 1PN relativistic
correction, and develop a code using the H-integral method
that can perform the calculation with high accuracy.

* The code is almost developed, and we are in the process of
analyzing a realistic model in the future.



Future work

In general, 1PN approximation (EIH equation) for N-body
system requires O(N3) computation.

 When we consider the system with one SMBH and (main-
sequence) stars, the interaction between stars can be
calculated in Newtonian gravity, which is expected to reduce
the computation (Will 2014). (O(N3) - O(N?))

* On the case of reduced calculations for collisionless system,
we developed simulation code (Tatekawa 2019).

* We will develop simulation code for collisional system on
the case of reduced calculations.
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Hawking radiation of scalar particles from
4D Einstein-Gauss-Bonnet black holes based
on a generalized uncertainty principle

Ken Matsuno
( Osaka Metropolitan University )

Introduction

Hawking radiation is interesting phenomenon where both of general
relativity and quantum theory play a role.

» During its final stages, semiclassical approach would be expected
to break down due to dominance of quantum gravity effects.

v’ Some quantum gravity models suggest that there exists a minimal
measurable length which would be of order Planck length.
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Introduction

Hawking radiation is interesting phenomenon where both of general
relativity and quantum theory play a role.

» During its final stages, semiclassical approach would be expected
to break down due to dominance of quantum gravity effects.

v'Some quantum gravity models suggest that there exists a minimal
measurable length which would be of order Planck length.

v From string theories, such minimal length would be obtained by
generalized uncertainty principle, which is quantum gravity
inspired modification to Heisenberg uncertainty principle.

v'Some generalized uncertainty principles, derived from thought
experiments, have been applied to some different systems and
played an important role to consider its corrections by supposed
guantum theories of gravity.

Introduction

* Hawking radiation emitted by black holes may contain
several kinds of particles.

v Choice of emitted particles is based on prediction that
Hawking radiation would favor lower spin, lighter particles
and it would be expected to be dominated by scalar particles.



Introduction

* Hawking radiation emitted by black holes may contain
several kinds of particles.

v Choice of emitted particles is based on prediction that
Hawking radiation would favor lower spin, lighter particles
and it would be expected to be dominated by scalar particles.

»We consider Hawking radiation from four-dimensional
charged Einstein-Gauss-Bonnet black holes by tunneling
of charged scalar particles, including quantum gravity
effects predicted by quadratic generalized uncertainty
principle with minimal measurable length.

»We investigate evaporation process of 4D EGB BHs with
guantum gravity effects by tunneling of scalar particles.

Black holes in 4D Einstein-Gauss-Bonnet gravity

* D-dim. Einstein-MaxweII-Gauss-Bonnet theory with cosmological constant A:
/ dPz\/=g (R 2N + -
167r

RZg = R? — 4R,y R" + Ry pe R*VP° : Gauss-Bonnet term

4R%B - F;wFW>

v" Rescaling coupling constant as a—>a/(D-4) and then taking limit D—>4 in
D-dim. solutions, one obtains 4D charged (A)dS black holes [Fernandes]:

ds® = — fdt® + f + r? (62 + sin?0d¢?), Audat = Qg
T

2 2 :
r 2M AN M : BH mass
f=14— 1+ 4a ( 3—Q—4+—>

2a r r 3 Q : BH charge
» We restrict ourselves to solutions with minus signs as one recovers

general relativity solutions in appropriate limit:

2 2
f—1—%+Q Ar2+o( Y, r=1-2 4L 220

(v +4aA/3 =1+ 2aR/3, (I1,02) = 3(M,Q3)/(3 + 2(,/\)) 6

A




4D charged Einstein-Gauss-Bonnet black holes

dr?

7 + 72 (d02 + sin? 9d¢2)

r2 2M Q2 A

ds® = —fdt? +

v Hawking temperature associated with o T-QF —a—-Q%-Arf
surface gravity k of BH horizon r, : t T o T 4rry (T_Q*_ + 2a)

* A=0limit: Asymptotically flat black holes

v" Quter and inner horizons:

re=M+\/M2-Q2—a

v' Parameter ranges:

[ 2 N2 _Q 3
a_<a< M Q (OSAI<\/2)
i 13 Q
a_ < a< oy (2<M<\/§)

00 02 04 06 08 10 12 14 a:t=Q2—41\I2:{:2]\[ /4]\[2_2@2
oM L 7

Heisenberg Uncertainty Principle
* Foroperator A, AA=A—(A), (AA)?= <A2> — (A)?

> Robertson inequality: (AA)2 (AB)? > %|<[A, B))|?

v Canonical commutation relation:  [z,p] = ih

h
» Heisenberg uncertainty relation: AxAp > —

= Ax can be made arbitrarily small by letting Ap grow correspondingly.

v'Resolution of small distances requires test particles of short
wavelengths and thus of high energies.

» At such small scales, gravitational effects by high energies of

test particles would significantly disturb spacetime structure
which was tried.



Generalized Uncertainty Principle (GUP)

[Kempf, Mangano, Mann]

v'Some quantum gravity theories, including string theory and loop
guantum gravity, suggest that there would exist a finite limit to
possible resolution of distances, which would be of order Planck
length and obtained by modified Heisenberg uncertainty principle.

» Modified commutation relation with correction term:
g = ‘;3011% = [ / 771]2).

l, = VhGy, m, = \/h/G4

» Modified uncertainty relation from Robertson inequality:

[z,p) = ih (1 + Bp?)

h . ¢
AxAp > 5(1 + ‘Jg(Ap)z + ‘3<p>2)

Generalized Uncertainty Principle (GUP)

[Kempf, Mangano, Mann]

Ap

h o 9
AzAp > _)1(1 + B(Ap)” + B(p)°)

v/ Minimal position uncertainty:

Azmin((p)) = hV/BV1 + B(p)?

» Absolutely smallest uncertainty
in position with mirror symmetry

<p>=0: Ary = ﬁ\/_)’

Ax Ax

» Generalized uncertainty principle with minimal measurable length:

A B
Azlp> - (1+8(8p)%), B=Poly=
Mp
( By : deformation parameter )

10



Generalized Uncertainty Principle (GUP)

[Kempf, Mangano, Mann]
1 i
AxAp > 5 [1 + 3 (A]))Q] ( B, : deformation parameter )

"8 = 93012 = 30 /771‘]2). lp Y, hC7Y4’ 772‘1_, = 1/ h/G4

v" Minimal measurable length : Azg = 1,/

» Modified commutation relation : [xi,pj] =1 (1 + nglpkpl> di;

11

Generalized Uncertainty Principle (GUP)

[Kempf, Mangano, Mann]

AxrAp > % [1 + /3 (A]))Q] ( B, : deformation parameter )

3= Bol2 = fo/m2. 1, =+hGy, m, = \/h/Gy

v" Minimal measurable length : Az = 1,\/Po
> Modified commutation relation : [xz',pj] =1 (1 + nglpkpl> 0ij
» Modified position and momentum operators :

zi = x0;i, pi =poi (1+ B9’ pojpok) . |woipos| = 0

= p? = gpip; = —9"9,0; (1 — 28g"0,0,) + O (8?)

> Using energy mass shell condition E?=p2?+m? ( m : particle mass ),
modified energy operator up to first orderin B :

E=E(1-pm?-Bgpip;), E=1i(0/0t)
12



Equation of motion for scalar particles
» Klein-Gordon eq. with Maxwell field up to first order in B [Feng et al.]:
(9" (hdy + ieAyr) (hdp + ieAy)
+ (97 (hd; + ieA;) (hd; + ieAj) — m?) (1 — 28m? + 28r2gH8,0))| w = 0

v Wave function of Klein-Gordon equation: W = exp (;I (:c“‘))
1

» WKB approximation to 1 (041 + eAt)2 +0(2B80—-1)=0
leading order in A in ! 1 1 5
4D EGB BH geometry: o=m?+ f(0r1)° + > (9p1)° + Ban?g (9s7)

13

Equation of motion for scalar particles
» Klein-Gordon eq. with Maxwell field up to first order in B [Feng et al.]:
[gt“ (hdy + ieAy) (hdy + ieA,,)
+ (97 (hd; + ieA;) (hd; + ieAj) — m?) (1 — 28m? + 28r2gH8,0))| w = 0

v Wave function of Klein-Gordon equation: W = exp (;I (:c“‘))
]

» WKB approximation to 1 (041 + eAt)2 +0(2B0—-1)=0
leading order in A in f

1 1 2
2 2 2
4D EGB BH geometry: o=m*+ f(Or])" + 2 (0g)* + B2y (8¢I)

v" According to Killing vector fields, the action ansatz: I = —wt + W (r,0) + J¢
( w, J : scalar particle energy and angular momentum )

» Since tunneling is a quantum effect arising within Planck length near horizon
region, we restrict ourselves to s-wave particles with 6 =const, J=0.

» Equation of motion for charged scalar particles:
2 2y 1 2 2\ (OW)? 2 (OWN* _
m? (1 —2pm )—?(w—eAt) +f(1-48m )(W) — 2B3f (W) =0
» Function W can be writtenas W (r,0) = R(r) + ©(6)
14



Tunneling of scalar particles

» Action for outgoing and ingoing modes for classically forbidden trajectory:
i T4 (r?*_ + 2a) (w — eA_|_)

J— — = 2
ImRoyt = —IMRiy = R (1+482)+0(8?)
_ m?2 3eAy (7-2+- + 2(1) (w B 8A+) 2Q? (w B 8A+)2 (a (20 + QQ) + 2ar3_ + QTi(l + a/\))
J :=7+ 2 _Q—QQ—/\'IA - 2 2
7 4 (3 +20) (13 — o — Q2 — Ard)

B 2 (w — eA+)2 (a3 - 6(127'3_ -+ 3(17"1(1 — 2al) — 7'3_(1 + 6aA) + a:/\27'§_)
(7‘3_ + 20) (7‘_2'_ —a—Q2— /\rj_)2

» Tunneling probability amplitude of charged s-wave scalar particles:

(_4m~+ (r} +20) (1 +55) oo A+))

r?i_—a—Q2—/\ri

_exp(=2ImRoyt) _ exp
 exp(=2ImR;,)

» Comparing tunneling probability amplitude with Boltzmann factor
[=exp(—(w—ecAy)/T) at temperature T, we obtain modified
Hawking temperature of Einstein-Gauss-Bonnet black hole:

T =Ty (1-8Z)+0 (8% .

Modified Hawking temperature
T =T, (1-8=)+0(p?)

v Hawking temperature depends upon energy w, mass m and charge e of
emitted scalar particle, and is modified by black hole geometry,
Maxwell field and generalized uncertainty principle through parameters
a, \, Q and B.

v Taking limits, we obtain some known quantum-corrected Hawking
temperatures of four-dimensional black holes:

a=0: 4D Reissner-Nordstrom-(A)dS black hole
a=0, A\=0: 4D Reissner-Nordstrom black hole
a=0, \=0, Q=0: 4D Schwarzschild black hole

16



Modified Hawking temperature
T=T+(1—BE)+O(52)

v Hawking temperature depends upon energy w, mass m and charge e of
emitted scalar particle, and is modified by black hole geometry,
Maxwell field and generalized uncertainty principle through parameters
a, \, Q and B.

v/ Taking limits, we obtain some known quantum-corrected Hawking
temperatures of four-dimensional black holes:

a=0: 4D Reissner-Nordstrom-(A)dS black hole
=0, \=0: 4D Reissner-Nordstrom black hole
=0, N\=0, Q=0: 4D Schwarzschild black hole

» We consider evaporation process of asymptotically flat Einstein-Gauss-
Bonnet black hole by tunneling of scalar particles as one of quantum
gravity effects in Hawking radiation, i.e., A=0.

v Since all particles emitted by Hawking radiation near horizon region are
effectively massless, mass of emitted scalar particle is not taken into
account in the following discussion, i.e., m=0.

Evaporation of black holes
T =Ty (1-62)+0(p?%)
* Mass of Einstein-Gauss-Bonnet BH would decrease due to radiation.

» When black hole mass approaches order of Planck mass, quantum
gravity effect could be considered and we may discuss the value of
correctionZin T:

« ==0: Effects related to energy of scalar particle, black hole geometry
and Maxwell field are canceled.
= Hawking temperature without correction T, appears.

* =<0: Temperature T is higher than temperature T, and black hole
accelerates evaporation.

* =>0: Combination of effects related to energy of scalar particle, black
hole geometry, Maxwell field and generalized uncertainty
principle slows down increase of temperature due to radiation.
= Evaporation may cease at particular mass of BH and BH may
be in a stable balanced state, leading to remnant mass.

17
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Parameter regions of correction =

00 02 04 06 08 10 12 14

O/M
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Parameter regions of correction =

e g LOP
0 o NN 40
08t — o\
0.6f=====-u._ T\
5 20
= S5 N
0.4
e; cl‘ A O .
= - == 5 N
S -4 3 02 I\ 0
0.0
=>0
=8 -02 -20
i\
~0.4
8 ’ - n - A
00 02 04 06 08 10 12 14 00 02 04 06 08 10 12
o/M O/M

v Positive = region increases with increasing e/w.

v'Black holes with large a and small Q would favor negative =
and accelerate evaporation.

v'Black holes with small a and large Q would favor positive = and
turn into remnants at the final stage of evaporation.
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Parameter regions of correction =

T —— I’O'-\fﬂx\\_\
g igs ‘1_ N .40
| F <0 e
P6f-F--nal e\
| ) \ \ 20
w1 = 0
= == o
} IOZ I X N\ 0
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1
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IOO' I _ “\
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| W\
o2t |1 \ -20
I %
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v Positive = region increases with increasing e/w.

v'Black holes with large a and small Q would favor negative =
and accelerate evaporation.

v'Black holes with small a and large Q would favor positive = and
turn into remnants at the final stage of evaporation.
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Modified thermodynamics

v We consider uncharged scalar particle radiation from uncharged EGB BH, i.e., Q=0.

> Using lower bound on emitted particle energy w > 1/Axz and
uncertainty in position x for events near black hole horizon Az ~ 2r,
Hawking temperature and entropy with quantum corrections: (,u = M/mp, &= a/lf,)

T (2u24a)\u2-a-2p(p?-a) a3 420522 — 16au* — 326 + 8y (22 + 5)2 p2—a
— — — 1- 8o — - —
mp 27d (8;;2 -+ a) 8a2 (,u2 - a) (8;12 + a)

- (a-i’ — 242 (42 + &) + 241 (442 + 5&) 2 — a)

)3/2

S ~ 2mpu (2,L Y a) + 8o

> Heat capacity with quantum correction: C = T (9S/dT)

46 (p2 - a

22



Modified thermodynamics

v We consider uncharged scalar particle radiation from uncharged EGB BH, i.e., Q=0.

> Using lower bound on emitted particle energy w > 1/Az and
uncertainty in position x for events near black hole horizon Az ~ 27,
Hawking temperature and entropy with quantum corrections: (p, = M/mp, &= a/l;‘,’)

- T (2#,2 +a)\/u?—a-—2p (;12 - @) . &3 4208242 — 16au* — 328 + 84 (2#.2 + a)Q p2 — &
mp 2ra (842 + &) - 8a2 (12 - &) (812 + @)

mp

—— T (5-2 —2p2 (4p2 + &) + 2p (4p? + 5&) \/p? — a)
S~ 2w <2u - \/;L - 5) + 8o )3/2

4 (;1.2 —a

> Heat capacity with quantum correction: C = T (9S/dT)

2 /2 =05

200l v Final value of entropy S after BH evaporation

Lsol increases with increasing B, for fixed a/I 2.
S

100} » Black hole evaporation modified by GUP:

50} quantum gravity effect in Hawking radiation

0.|

M/m, 23

Modified evaporation process of black hole

0.04} ' g 400} T T ]
Y a/l2=0.5 gn—15 i i i a/l2=05
_,30 - 0. o = 0 200 +~0 ! ! :
- \/ =30
0 A ————
C _z00}
)
—400}
[}
~600} !
1
1 2 3 4 5 6 1
M/m,

v" As black hole mass decreases, temperature with a#0 reaches local maximum
value and then decreases to zero at minimum value of mass M, ...

v' At local maximum temperature, the system undergoes transition from
unstable negative heat capacity phase to stable positive heat capacity cooling
down towards cold extremal configuration with mass M.

v At minimum mass M., since both Hawking temperature and heat capacity
vanish, BH may not exchange its energy with surrounding environment.

» Generalized uncertainty principle prevents Einstein-Gauss-Bonnet black hole
to completely evaporate and results in thermodynamic stable remnant. 24



Modified evaporation process of black hole

a/l2=05] 40 :

200} ' B

C 200}
—400}
~600}

400f
200} |
0
C 200}
—400}
—600}
1 2 3 4 5 6 1 2 3 4
M/m, M[m,

v’ There also exists black hole remnant in a<0, B,20 case.

Einstein-Gauss-Bonnet black hole remnant

0.025F

200f
0.020f 100}

0
C -100}

—200}

T 0.015F
My 0.010f

0005 [ —300F

—400}

0.000}

Mim,

v"Mass of black hole remnant M, increases with increasing B, for fixed
a/l2, while it decreases with increasing a/l,? for fixed B,,.

v If deformation parameter is B,=1 and Gauss-Bonnet coupling constant
is oz'=.—/p2 m2, mass of black hole remnant is M, ,=1078 kg, which is of
order Planck mass like black hole remnants in minimally geometric
deformation model, quadratic gravity and asymptotically safe gravity.

v Since such a Planck mass remnant would be a ground state mass of black
hole, Einstein-Gauss-Bonnet black hole remnant would have no hair.
= This would be a desirable property as dark matter.

25
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Summary

We study Hawking radiation from 4D charged Einstein-Gauss-
Bonnet black hole by tunneling of charged scalar particles.

* We consider phenomenological quantum gravity effects predicted
by quadratic generalized uncertainty principle with minimal
measurable length.

v'"We derive corrections of Hawking temperature to general
relativity, which are related to energy of emitted particle, Gauss-
Bonnet coupling constant, charge of black hole and existence of
minimal length in the black hole geometry.

v"We obtain some known Hawking temperatures in 4D black hole
spacetimes by taking limits in modified temperature.

v"We show that generalized uncertainty principle may slow down
the increase of Hawking temperature due to radiation, which may
lead to thermodynamic stable remnant of the order of Planck

mass after evaporation of 4D Einstein-Gauss-Bonnet black hole.
27

Discussion (1)

v'Since a Planck mass remnant would be a ground state mass of
black hole, Einstein-Gauss-Bonnet black hole remnant would
have no hair. This would be a desirable property as dark matter.

» If Einstein-Gauss-Bonnet metric would describe geometry
around a primordial black hole and generalized uncertainty
principle considered in this work would play an important role
in the quantum nature of black hole, Einstein-Gauss-Bonnet
black hole remnants would be a dark matter candidate.

v'Since black hole remnant would not radiate and its
gravitational interaction would be very weak, it would be
difficult to observe remnants in our Universe directly.

» It would be expected that one possible indirect signature of
black hole remnant might be associated with cosmic

gravitational wave background.
28



Discussion (2)

* We consider Hawking radiation with quantum gravity effects
inspired from modification on commutation relation of matter field
in fixed Einstein-Gauss-Bonnet background geometry.

» When black hole mass approaches the order of Planck mass due to
radiation, it would be expected that some quantum gravity effects
would lead to some quantum fluctuations in background metric.

v'Such background geometries would be given by some
noncommutative black holes and asymptotically safe gravity black
holes. Since these black holes are analogous to Reissner-
Nordstrom solution, quantum corrections in these frameworks
affect things in the same way as black hole charge.

» If there would exist a correspondence between charged EGB black
holes and some quantum-corrected black holes, black hole charge
in EGB spacetime might have something to do with the very
structure of spacetime manifold and result in some quantum
fluctuations in background geometry as a quantum gravity effect.

Appendix

29
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Linear and quadratic generalized uncertainty principle
[Ali, Das, Vagenas]

» Modified commutation relation : o = ay/Mp;c = aylp/h
PiPj

1%

[xi Pl = fh<5i_j - a(l)5ij + ) + a?(p?;; + 31’i1’j))

» Modified uncertainty relation :

AxAngl:l +<

= + 4a-)Ap' + da-(p)” — 2« (p*)]

v/ Minimum measurable length & maximum measurable momentum :

Mp]C'
Ax = (Ax)min = aplp, Ap = (Ap)nax =

o)

» Modified position and momentum operators :

X; = xo» pi = poill — apg+ 2a*pj), [Xo po;) = ihd;

31

Derivation of Hawking radiation on the basis
of tunneling mechanism [Srinivasan, Padmanabhan]

* Forming of a particle-antiparticle pair close to horizon
inside black hole

Black hole our Universe
Horizon

ingoing mode: trapped inside horizon

outgoing mode: escape from black hole by tunneling effect

< radiation from black hole
32



Derivation of Hawking temperature (parikh, wilczek]
WKB tunneling probability amplitude of outgoing particle

escapes from black hole for classically forbidden trajectory

2 ( 2ﬂw>
~exp|——=
K

M= |g? =~ |

( w : energy of particle, «: surface gravity on black hole horizon)

* Comparing I' with Boltzmann factor in thermal equilibrium
state at temperature T :

w
[ = eX (——)
P T

K
T = — :Hawking temperature

- 2n

* Using the method, we evaluate backreaction of radiation .

Classical limit of minimal length uncertainty relation

(Benczik et al.)
v'Generalized uncertainty principle in D dimensions:

[xz',Pj] = ih (1 + Bp2) dij
[pz',pj] =0, [-’Bi, -’L“j] = 2ihp3 (pz'xj - iji)

1
» In classical limit: T[A,B]:{A,b’}
n

1 apj}:( 1 +,3P2) 5:1/
i >pj}: 0, {x; axj}:zﬂ (Piv',/—iji)

» Deformed Hamilton’s equations:

oH

. . JH
X:=13X: =3X. T X LX;
X {Y17 } {\Iap_/} (7p1 {\l’\j} (7xj‘
. dH
pi:{pi 9H}: _{xi ’p/} ox :
]/ I
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Hawking radiation as tunneling process

Tunneling mechanism: guantum effect near black hole horizon
= derivation of Hawking radiation as tunneling process
by using technique of dimensional reduction is justified

To describe across-horizon phenomena, defining Painlevé-like coordinate:

> 2D effective metric as background metric near black hole horizon

2 2 2
pc—2Mp+ Q< , 5 K—-1 2M Q@ >
dsar, = — dt2 + 2 - dtpdp + d
outgoing radial null geodesic
. _dp __ |K-1 2M Q?
P=at, ~ \ K ' pK p?K
35

 We canignore mass of matter field near black hole horizon
by discussion of dimensional reduction
= derivation of Hawking radiation by using null geodesic is justified

* Restricting ourselves to uncharged radiations from BH and
taking into account backreaction of radiation

( € : energy of particle escapes from BH by tunneling mechanism )

Before radiation After radiation
" T~
7 N
/ \
/ \
M . Me !
\ /
N /
~ - 7
pn=py=M+VM2-Q2  pour=M—E+\/(M—£)?-@Q
£ =E(1+ BE?
( ’ ) 36



WKB Tunneling probability amplitude
for classically forbidden trajectory: Fr~exp(-2Iml/)

* Imaginary part of action for outgoing positive energy particle from p,, to p,
by using deformed Hamilton's equation ¢ = {p, H} = {p,pp} dH/dp)|,
in classical limit of commutation relation {p,pp} =1+ ﬂpf,, pp =&

p pout [P
Iml=Im [ ppdp=1m [ /0 ’ dpl,dp

Pin Pin
H N2 M—€ N2
— Im Pout/ 1+,3(5) dH'dp = Im /Poutl-{-ﬁ-(é’) dpdH'
Pin 0 P ) M Pin P
E rp 1 !
—Im / / out t8(E) : dp (—de)
Jo Join 4 _ \/K—l 4 2WM-g) @2
K pK p°K
I 2
e 2p4\/p+ (A4 +po) (1+8(E)?) ,
= Im/ —i — — (—dt‘:)
0 P+ — P—
(F& =M-¢&+ \/(M — &)’ - QQ)
37

WKB Tunneling probability amplitude
for classically forbidden trajectory: Fr~exp(-2Iml/)

> +
B a lad Gl (1 +Zm) + 0 (E)
Pt — p—

_ 2p4 (P+ - 3/)—) + ro (/J+ - 5/)—)
B 2(p+ +po) (p+ —p—)2
5y = P (P2 — 14p4p— —35p2 ) — 45;;01/)3 - 12/;+p—po (p++7p-)

6 (p+ + po) (p+ - p—)

(10502 p3 — 1899492 p3(2p— + p0) + 2% (4p— + p0) (p0 — 20p-)

4
Em = —51E - 52E2 + §‘3E2 - 53E3 - 2,351E3, 51

1
~ 8(p4 +p0)3(p4 — p-)0
~9p3.p—Po (48/)3 + 58p—po + 3p8) + 03 (pg —160p> — 49602 pg — 62/)—98)]

93

» WKB tunneling probability amplitude of outgoing particle

ATpy\/p+ (p+ + po) (1+=m)
M~exp(—2ImI) ~exp | — E
[
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Modified temperature and black hole evaporation

» Comparing ' with Boltzmann factor, we obtain BH temperature with corrections

P+ — p—

T=Tkx (1 —=n)+0 <E4> ,  Tkk =
ampyy/py (p+ + ro)

0.04

ol

S

el
—

~

o

-

[\
T

S

S

[
™
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Modified temperature and black hole evaporation

» Comparing ' with Boltzmann factor, we obtain BH temperature with corrections

P+ — P—
4mp4 \/ P+ (p+ + po)

T=Tkx (1 —=m)+ 0 <E4> ,  Tkk =

» Modified temperature T may become lower than original
Hawking temperature T, , which implies that quantum gravity
effect may slow down increase of black hole temperature and
stop black hole from completely evaporating

= Black hole remnant would be left at the end of evaporation
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P,=0, B =0 limit
« 2D effective metric near black hole horizon

p? —2Mp+Q? , p?
2 dt= + 2 ' 2
P pc—2Mp+Q

ds%D = — dp2

* WKB tunneling probability amplitude

2 2
M~ exp [7" (Pout - Pin)]
= exp [—47rw (M — %) 4 27 (M — w) (M — w)2 — Q2 — 27 M\ M2 — Q2

1t order in w : Hawking temperature of 4D Reissner-Nordstrom BH

= 2 (M + /M2 — Q2)2

2" order in w : correction by backreaction of radiation
( coincides with that by Parikh, Wilczek )
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5D vacuum black rings

5 F(y) l+y 2 R? G(y) , dy? dx*  Gk)
2 L _ ~ Fixy | =22 gy2 = & dp’
ds F(x) (d’ “REG d‘/’) METSE (‘)[ Fo Y Temtom T Fo 4’]

[+ X
F(£) = 1 + AE G(E) = (1 —EY(1 +vE) C:\/)\()\—v)]ik

-1 <x <1, —o0o<y<—1 D<v<<i<l

!
/
/

/
S = const
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5D vacuum black rings

R F(y) R’ G(y) ., dy? dx?  G) .,
Is* = — - - d s - » + d 2
ds F(x) (d F( ) (x —y)? Fx) [ F(y) v G(y) " G(x) F(x) i’ ]

1+ A
F(&)=1+AE G(S):(l—éz)(l+v§) Cz\/)\()k—p)l_}h

— I <x <, —oo <y < —1 D<v<i<l

x —> —1,y > —1:asymptotically flat

y=-1/v : horizon with S2 X S* topology

» mass M, angular momentum J, Hawking temperature T, :

_37R* A ;_ TR VA —v)(T+X)

4G 1 —v 2G (1 —v)?

; 1 1T+v [1—A
bor = 47R SV 1+
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Dimensional reduction near black ring horizon
S[e] =/dSX(wam/—gg"jajsH\/—gVim(so))
» Partial wave decomposition:

i | . .
_ (kD) N Wik il
w—E 27T90 (t,x,y)e e
k.l

. cn : PHI X PII X
oDty =) oM ) Py() / dx (; ) )( ) = ()
n -1 o B

» 2D effective field near black ring horizon

CR(l F(y) \2 J=FO ]
Sle] = /drd\ ZV‘“”’ y |: a+y) ( +'1L) —(')),—4(_'\?)0(.\‘)2))- @M (e, y)

kin V—F()G(y) CR(1+y) CR(1 +) ]
I F(y)
ds? = — f(y) dr? + o d A(y) = — D)
] ) f ) ’ [ ) CR(1+y)
v —F(y)
) G(v
fy) = CRI+) (y)




WKB tunneling probability amplitude

To describe across-horizon phenomena, defining Painlevé-like coordinate:
CR(1+vy)

I —t— — G(y)dy
V—F()G(y)
»_ _VZFOGW) CR(I+y)
ds” = — +2y1—G(y)drdy + dy?
CR(1+y) V—F(y)
v—F
“Radial” null geodesics: y = —(\(:I:l VI—G(y))

CR(l1+y)

» WKB tunneling probability amplitude of outgoing particle

M~ exp (—2ImI) ~ exp (— anht \/)‘V(l +A) (14 =) E)
14v 1-—

[ _ 4 5 (1-v)3
= = —01E — 6oE%2 + —BE2 — 63E3 — ZB51E3, 6, = :
br 1 2 +3[3 3 SPOLE”, 01 3R (L + 0

5 — 2(1 —v)*(1 4+ 10v + v2) 5a (1 —v)>(1 4+ 8v + 4602 4+ 8v3 4+ 1v4)
27 T 2Tm2RMA22(1+1)2 T BT 2773ROA313(1 + 1)3
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Modified temperature and black ring evaporation

» Comparing I with Boltzmann factor, we obtain modified temperature

' 4
T="T, (1 + 815 + 022 — ZBE2 + 63E° + 2551E3)

' oL Tey [1—X

T 4x R i V 1+
» modified temperature T may become lower than original
Hawking temperature T,., which would imply that quantum

gravity effect may slow down increase of black ring
temperature and stop black ring from completely evaporating

= Black ring remnant would be left at the end of evaporation
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Summary

* We study Hawking radiation from 5D squashed Kaluza-
Klein black holes and 5D vacuum black rings by tunneling
of massless scalar particles, including quantum gravity
effects predicted by quadratic generalized uncertainty
principle with minimal measurable length

* We consider evaporation process of 5D black holes with
guantum gravity effects by tunneling of particles

Future plans:

v'Other particle tunneling with other uncertainty relations
v'Sparisity of Hawking radiation

v/ Statistical correlations between Hawking modes emitted
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Cosmological evolution of
gravitational leptogenesis
with right-handed
neutrinos

TAIRA KEISUKE
FACULTY OF SYMBIOTIC SYSTEMS SCI. FUKUSHIMA UNIV.

COLLABORATOR : BAMBA KAZUHARU

Background

The mechanism that causes the asymmetry between particles and
antiparticles is called baryogenesis.

Variation of baryon and lepton numbers
B — L is saved but B + L is not saved.
It is essential that B — L doesn’t become 0 to get B.
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Model of leptogenesis

Leptogenesis

In this theory, we use right-handed Majorana neutrinos.
N—)ZL+¢, N—>lL+¢

By violating of CP, a difference occurs in the decay rate and lepton
number is generated.

The popular theory is gravitational leptogenesis.
1, :light left-handed neutrino
¢:Higgs field

Feynman diagrams

Feynman diagrams for the lepton number violating reactions v; H <
v{H and v, v, < HH, modified by the ‘charge violating’ vy

X
propagator Sg. . n N
. N 7z
H:Higgs boson . s 7 ox
v, vi e — =
H vy
vy H VL H
______ ) 7
N e
AN
S SX N7
@ /N
e
7 AN
______ N
VL H VL H

[Jamie I. McDonald and Graham M. Shore, Dynamical Evolution of Gravitational Leptogenesis , arXiv:2006.09425v2 [hep-ph] 2020 ]



Model of RIGL

Radiatively-induced gravitational leptogenesis (RIGL)

By tidal gravitational effects, an asymmetry of lepton and anti-lepton is
generated.

This theory has the potential to explain the presently observed baryon-to-
photon ration =~ 6.0 x 10719,

n = 0.02|N,|

IN,| = 1078

N, :lepton-to-photon ratio

[Jamie I. McDonald and Graham M. Shore, Dynamical Evolution of Gravitational Leptogenesis , arXiv:2006.09425v2 [hep-ph] 2020 ]

Derivation of equation(1)

By operators of CP even and CP odd, a Boltzmann equation is
derived.

The following graph is represented by the equation.

a,c, d:CP even operator

b:CP odd operator

b=la+c+>d
2 4

[Jamie I. McDonald and Graham M. Shore, Dynamical Evolution of Gravitational Leptogenesis , arXiv:2006.09425v2 [hep-ph] 2020 ]



Derivation of equation(2)

Graph showing inverse of time and lepton-to-photon ratio derived
from the Boltzmann equation,

~ Evolution of Ny (z)

NL(2)

[Jamie I. McDonald and Graham M. Shore, Dynamical Evolution of Gravitational Leptogenesis , arXiv:2006.09425v2 [hep-ph] 2020 ]

Derivation of equation(3)

z=M/T, N, =n,/n,,

d ~
L= W) (N, - N @) - W(DN,,

_T W—-— _2h(1 — 3w &L
W=—, W=-3(1+w)|2a—2b(1 - 3w)] e

W :ratio of the reaction rate to the expansion rate of
the universe

W :newly introduced evolution term



|dentification of N;

Graph showing the corresponding absolute values of the lepton
asymmetry induced by the out-of-equilibrium decay of v,

M; = 5.0 x 101°[GeV], K =5, & = 107°.
107
M :the lightest sterile neutrino mass

K :ratio of the zero-temperature decay rate 107

[Nz
1

to the Hubble parameter at T = M, o-el
&1:CP violating decay parameter controlling

1070+
the contribution to the lepton asymmetry

107"

from the out-of-equilibrium v} decays

0.001

0.010

0.100

Z

1

10

[Jamie I. McDonald and Graham M. Shore, Dynamical Evolution of Gravitational Leptogenesis , arXiv:2006.09425v2 [hep-ph] 2020 ]

Result(1)

100

From the fact that a new evolution term induces the dependence of the lepton
asymmetry N; ~ 1/z2 in the ultra-high temperature region and moderates the

sharp rise of the equilibrium value N/~ 1/2z5,

L= —W(N, - N{") = WN, = =WN, + WN;T = WN, = —
W=2 W=3 [ e

109

10° 10t

102

W/z*>+W/z5—-W/z?,

1

0



Result(2)

In the Boltzmann equation,

Wzt <ﬂ)_1i NET2t (ﬂfi Tz? (ﬂ)zi

Mp z2’ Mp 75’ Mp 257
-1 -1 3 2
ANp _ [ ga(Mi) L 4 (M) 1 g4 (M) T [42(Mi) L
dz (ll (Mp) 22> NL+A (Mp) zZX/l (Mp> z5 </‘l (Mp) 25> NL’
A1 =0.02,
Mp =2.4 %1018,
M, = 1011,

Result(3)

10~ e S
- 10
10-8 -4
10 .
10~ : . o
V. 10 9%
10 1015]1“U ~—
10711 ' i
10
10743 - ¥ —12] -
1071 10° z 10! 102 19 g 10° 2z 10! 102
computation width:211 computation width: 21°



Result(4)

Since a suitable M, value is given as 5.0 x 101°[GeV],

10«1 e '+ ath order Runge Kutta . e + ath order Runge kutta
10 w5 . 10 ~5
118&7 . ¥ N 10_‘67 ‘ ¥
109 10™7
10711 10711
10—t 10° z 10% 102 10-1 10° zZ 10t 10%
computation width: 211 computation width: 21°

Future work

The final N; leading to 1 in this case is close to the paper, but there are
differences in the maximum values of the graphs.

The goal is to derive the Yukawa coupling constant A and computational width to
derive approximate graphs.

In addition, there are papers in which the mass of the right-handed Majorana
neutrinos that causes baryogenesis is expressed as 101[GeV], so | aim to
confirm the consistently of the theory in that case.
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Spectrum of gravitational waves
due to the axion-gravity
Chern-Simons coupling

Presenter: Yuta Murakoshi (Fukushima University)

r Collaborator: Kazuharu Bamba (Fukushima University)

Introduction

Gravitational waves were discovered in 2015 and active research has begun.

Gravitational waves can be used to further develop fundamental physics.
If there is an axion, it is allowed to be coupled with the gravitational

Chern-Simon term as a pseudoscalar.

We explore spectrum of gravitational waves propagating in axion.
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Introduction

The parametric resonantly amplification of the amplitude of the gravitational
waves propagating the axion dark matter filed can occur if the gravitational

wave frequency matches with that of the coherent oscillation of the axion.

Model

Action: S = SEH + SCS + Sq)

The Einstein-Hilbertaction: Spy = Kfv dx*\/=gR k = (16mG)~1
1 ~
The Chern-Simon terms: S-¢ = N fv dx*\/~g®RR R:ricci scalar
The Pontryagin density:
5p — A VO pl ~ay6_1 S a . .
RR=R,;"R s, Ry = Eey POR  he &:axion field
K

The coupling constant:a = |=£2

NIE

The action of the axion field @: S5 = —% fv dx* /[=g[g*’ (V,®)(V° D) — IV (P)]

Daisuke Yoshida, Jiro Soda, Int.J.Mod.Phys.D 27 (2018) 09



1
The potential of the axion field:V (®) = > m2d2 m :axion mass

We solve the equations of motion in the homogeneous background spacetime:
ds? = guvdxtdx? = a’(n)(—dn? + 6;dx‘dx’)

The modified Klein-Gordon equation
/

a
O + ZECDI +a’m?d =0
® = O, cos(mn)
J2p 1071%vVv p
by =+—=21x10"eV X
T m eV x( m ) 0.3 GeV/cm3

Daisuke Yoshida, Jiro Soda, Int.J.Mod.Phys.D 27 (2018) 09

The diagonalized gravitational wave equation:

€40 cos(m
py a0 costmm) e kzn, = 0
1+ EAE5 sin(mn) k: wave number

The dimensionless parameter §: § = %mZCI)O
The €4 is determined by each parity state. ¢, = {1 ﬁ = f

We solve the differential equation for this Fourier transformed

gravitational wave.
Daisuke Yoshida, Jiro Soda, Int.J.Mod.Phys.D27 (2018) 09



Previous study

logsg(amplitude of hg)

=

5.05x10-"
5.x10°""
klev]  4.95x10°"

10.0

75

5.0

25

This is a plot of the gravitational waves
formed by intense astronomical events
as they pass through our galaxy, and
how they are modified by the coherent
oscillations of the axion.

In previous study, the figure shows that
there is a distinct narrow peak.

Daisuke Yoshida, Jiro Soda, Int.J.Mod.Phys.D 27 (2018) 09

Results and discussion

Amplitude of hy + he

m=10"10 eV

£ =108 km

hgo = cos(mmn)
hgo = —sin(mn,)

We plotted our numerical results.

We could not find a narrow peak of
gravitational wave resonance.

Small waves were found in four separate
areas.

Gravitational wave amplitudes for later
times could not be plotted in the figure
because they would overflow.



Results and discussion

50 This figure is amplitude of gravitational
wave by frequency at a specific time.
15
(] . . . . .
g Gravitational waves propagating in axion
3 1.0 is a very common waveform.
&
0.5 The calculation method may need to be
reviewed for further accurate numerical
0.0 ' . . , , calculations.
2 4 6 8 10
Frequency

We did not find any noticeable peaks in the gravitational waves

propagating in the axion like previous study showed.

Small waves were found in four separate areas, and the
calculated gravity waves were not different from those of a
typical gravity wave.



Future work

The calculation method may need to be reviewed for further

accurate numerical calculations.

We will investigate how gravitational waves by making
arrangements such as changing the potential of the axion field

(ex.Vo[1 + cos ?]).



- General relativistic rotating stars
with arbitraryditferential rotation

Kotaro Fujisawa (U. of Tokyo)
« Collaborators *

Hirotada Okawa (Waseda), Misa Ogata (Waseda),
Shoichi Yamada (Waseda), Nobutoshi Yasutake (CIT)

A massive neutron star with differential rotation

* A massive neutron star formed after the
neutron star merger has a differential
rotation 4

» Many previous works obtained a NS with
differential rotation in GR, but the types of
differential rotation are limited

-
ShibgR otk We have developed a new numerical
method.to calculate rotating stars with
arbitrary differential rotation in GR
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Basic equations for General relativistic rotating star

Komatsu, Eriguchi, Hachisu (1989)(KEH)
ds? = —eV P2 4 ¢2(dr? 4 r2dp?) Energy-momentum tensor

Metric
+ €7 Pr2sin? §(dyp — wdt)?,
T = (e + p)uru” + pg"”,

Euler eq. (r component)

1 9p 0 (y+p\ v (’)v+ [79)
E+p[)r or 2 1—v20r ]67

Proper velocity v =(Q —w)rsinfe "

Euler eq. (6 component) Angular momentum

1 10p 10 (y+p\ v 181,+
ctprod  roo 2 1—v27r00

. a0 A
+ Einstein's equat|0n ‘
. , = 2ot r) ~ (L= (A, 4 - (1
1+u P P 2
S +73) = (= 1)+ 22l + (1

2 2 o smin(e )
V2[pe?? = S,(r, ), A e wherse (w4 1
1 2
i) e e 3 ) )
<V2 4 ,ar — fa > [ve/?] = 5. (r, ), . ) 3l B = 1] = (1= )+ ) (4 7) = r
’ » = B 1) 1) + 30 = 1+ 7,
2 —

1 N 2 2
+ 4(' =17l (0 +7,0)* = (1= 1) (P +7)°]
1

2 2/1. -
—2p)/2 -
( + 20, = 0, ) [wel 0] = S, (r, ), ) ) e ; 1
r g )—rn *]VQ[!“*/Iz)w%,‘vaJ['*/VI)"ryw'yw',l”r‘z — Pl = (1= ),

Fl rSt I ntegra | Of th e Eu |e r eq u atl O n Komatsu, Eriguchi, Hachisu (1989)(KEH)

Cook, Shapiro, Teukolsky(1992) .

If a star is stationary, there is a first.integral of the Euler equation as

Euler eq. First integral

1 87) v OU OQ
s+p<’)1 OT T1-? 01 J or

1 l(r)p 10 T+p v 1(91+ 10Q
c+prod o0 2 “i1ovroe Vrae

Rotation Iav”e.g. Komatsu. et al. 1989)

. s § . 1. )
j(@) = 420, - ), [l [i@ae =340 -0

Integrability condition; barotropic p = p(g) (or s(p)) & rotation law j = j(Q) (or Q=Q(j))




Komatsu, Eriguchi, Hachisu (1989)

Rotation law in GR star aw ctalis s

losif & Stergioulas(ZOZl)
1. In general, we cannot set the

angular velocity profile Q(R)
directly

4. After we get a solution, we obtain

2. Instead, Yve sgt t'he rotation R - angular velocity profile Q(R)
law (Q = Q(j) orj=j(Q) )

o

o

J(Q) = A%(Q. - Q), 3. Calculate the first integral
L+ (/520 & Einstein's eq. iteratively

1+ (j/A20,)717 @®

Q>j;p, A, B) = Q. [1+ (4)1] (1 - L) 9) . ‘ %

Q/IQ¢ plpc

Q(jip,q, A, B) =¢

o
o

o

@)
o

B2Q.

Ny
o

o

5. But, the physical meaning of the rotation law is unclear

=
o

Top Demo Docs W4 methOd

Okawa, Fujisawa et al. Applied Numerical
. Mathematics, 183, 157 (2023)"
Nonlinear Solver Lab Fujisawa, Okawa et al. ApJ. (2019)

Okawa, Fujisawa et al. arXiv:2204.09943, 2204.09941
Demonstration of the W4SV method

We use the W4 method to converge the iteration

A new method for solving nonlinear eqgs.

Newton-Raphson w4

" =g+, @ 2" =2+ L e,

1 0 00 U] U1 U3 Uq
- {5y 1 00 0 wugp Uz Uy

l31040 1 0
€41 L4243 1

0 0 U33 U34q

0 0 0 g




Comparison with the previous method (KEH)

M/R~0.12 New method (GR Virial GRV2, GRV3 ~ 10*)
Energy density Q(R) Rotation law

Previous method (KEH)
Rotation law

0.125
0.100
0.075
0.050
0.025

0.000

Our new method reproduces well results of the previous method !

Summary

Developed a new numerical method for obtaining differential
. rotating NS in GR

Calculated rotating star with arbitrary rotation using the new
method

* Obtained new solutions
Future works:

Calculate solution sequences of hot & masswe NS or proto NSs by
using the new numerical method .




Hokkai-Gakuen
University

Criteria for energy conditions
Hideki Maeda
(Hokkai-Gakuen University, Japan)

This talk is based on
HM and T. Harada, Class. Quant. Grav. 39 (2022) 19, 195002
e-Print:2205.12993 [gr-qc]

Role of Energy Conditions (ECs) in GR

¢ Einstein equations G,,,=T,,

© For a given matter field (T,,), one can solve the Einstein equations
¢ Fundamental properties of gravity should be derived independent of the form of T,
& In GR, important theorems have been proven under certain energy conditions

¢ Black-hole area theorem (Hawking '72)

& Positive mass theorem (Schoen-Yau 79, Nester ‘81, Witten *81)

¢ Black-hole positive mass theorem (Gibbons-Hawking-Horowitz-Perry *83)
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Standard energy conditions (ECs)

¢ Null (NEO): T, k*k"20 for any null k*
¢ Weak (WEC):T,,,v*v20 for any timelike v*

} Non-negative energy density is observed

¢ Dominant (DEC): WEC + J J'<0 for any timelike v*, where J*:=-T,, v¥

¢ Energy flux does not propagates faster than the speed of light
& Strong (SEC): (T,,-Tg,,/2)v*v'20 for any timelike v*

¢ Gravity is attractive: Violation of SEC is not so pathological (ex. Inflationary Universe)
¢ Relations: DEC ¢ WEC c NEC and SEC ¢ NEC

¢ NEC violation — All energy conditions are violated

¢ DEC holds - WEC & NEC are respected as well (SEC is independent)

To check these conditions for a given matter field is important to exclude unphysical ones
But how? Answer: To compute components of TMV in a frame with orthonormal basis vectors

Hawking-Ellis type of T,

¢ Hawking-Ellis classification: Depending on the signature of eigenvectors n* of T,

& Eigenvalue equations . a)( , ,
& ! T(”)(Mn(b) — /\r/(")(b)rz(;,) S TP=Xg" s,

. \ 1 b
& Components in an orthonormal frame  [fpCOIC) REN——g Y72 EHU) ,() )

¢ Basis vectors in an orthonormal frame B — (B
(a) — \7H(0)

E;l . .F“

1) ° ‘111—1l)

El' Ewyu = Mayp) = diag(—1,1,--- ,1)

(a)

& Any T®®) can be classified into 4 types in n dimensions (Hawking & Ellis for n=4)

igenvectors
1 timelike, n — 1
1 null (doubly degenerated), n — 2 spacelike
1 null (triply degenerated), n — 3 spacelike
2 complex, n — 2 spacelike




Hawking-Ellis type I and ECs

& The simplest form of T, can be found for each type by local Lorentz transformations
& Equivalent expressions to ECs for each HE type are available (HM & Martinez ‘20)
¢ Type I: Ex. Perfect fluid, Cosmological constant (Maxwell & Scalar field can be of type I)

e NEC: p+p; > 0.

e WEC: p+p; > 0and p > 0.
SEC: p+p; >0 and (n —3)p+ Z;:ll pi > 0.
FEC: p? > p?.

Canonical form of type I DEC: p 2 |pi| and p 2 0.

Equivalent expressions to ECs

Hawking-Ellis type II and ECs

¢ Type II: Ex. Null dust (Maxwell & Scalar field can be of type II)

- e NEC: v >0 and p+p; > 0.
—p+v 0 e WEC: v >0, p+p; >0, and p > 0.
0
'I‘w)(hb _

e SEC:v>0,p;+p>0,and (n—4)p+ Z;l:__)l pj > 0.

FEC: pv > 0 and p? > p?.
DEC: v >0, p > |pi|, and p > 0.

Canonical form of type II
Equivalent expressions to ECs




Hawking-Ellis type III & IV and ECs

¢ Type III:

Ex. Gyraton (Null dust with angular momentum)
7‘( a)(b) _

Canonical form of type I1T ‘

¢ TypelV:
Ex. Quantum vacuum expectation value <T, > can be of type IV

Canonical form of type IV

Our main result: Set up

& To find basis vectors to give a canonical form of T®®) is not easy in general

& We often encounter this form: — TO©©) TO)1)

o If TOM=Q, it is of type I: Easy to check ECs il sl
¢ What about if TOM=x(0? T(@®) —
¢ Lemma 1: Hawking-Ellis type is
(TO0) 4 7OAN2Z 5 4TON2 = Typel,
(TO0 L 7WY2 — 4TO1D)2 =  Type II,
(TOO 4 TN « 4(TOW)2 =  Type IV.

& Our main result = Energy-condition criteria for this T@®)

0

0




Main result: Energy-condition criteria

@ Proposition 1: Equivalent expressions to the energy conditions are

TO©) L 7M1) > () e (T0)0) 4 T(1)(1))2 >4(T“’”1))2

. T((PHO) _ THI(II + 21)1 + v (TI())[('} 4 T‘II‘H‘IJ)‘Z — _l(Tl())lli)'l Z 0
for i=2,3,--- ,n—1,

- 70)0) _ (1)) + \/(T(mm) U 8 Tll)ll))'l = 4(]“(1'1(1))2 >0
in addition to NEC,

. T(UHIH S T(l){l) . .21)' 0 \//(T((n(ﬂ) g T(l)(l))‘l _ _I(T.;m.‘lJ )2 2 0

for i=2,3,---,n—=1 and T —TOW >0 in addition to WEC,
n—1

: (n— 4)(]-‘(()){111 ~u Tll‘ul)) _2ZI)J
j=2

+(n — 2)\/(T”’:‘“” + T2 _4(TOM))2 > 0 in addition to NEC.

Application 1: Symmetric spacetime

& Consider a spacetime M, xE?2 VL U VRS (A DB EINENEEN 122 (n-2)-dim Einstein space
with T,,dzdz” =Tup(y)dy*dy® + pl(g/)]?(y)")ju(:)(1:’(1:1.
¢ In diagonal coordinates: 3 i i wie 3 5
ds? = —e2®t0)ds? 4 202 dz? 4 R(t, x)2v5(2)dz'd27,
¢ Equivalent expressions: . .
e Ty —e T,y +2p, + Dy >0,
e 22T, — e 2T, + /D, > 0 in addition to NEC,
: 1772.1)1‘[! - (‘72\1‘]‘.1‘.1' - 21)1 + \/ﬁ 2 0
and e 2T, — e 2YT,, > 0 in addition to WEC,
(n—4)(e Ty — e ' Ty) +2(n — 2)pe + (n — 2)/D1 2 0
in addition to NEC.

e Ty +e 2T, >0




Application 1: Symmetric spacetime

& Consider a spacetime M,xEn? [ESSSIAMEURUEEDIAMEMELENEN £ 2 (n-2)-dim Einstein space
with T, dz"dz" =Typ(y)dydy® + /)[(;/)R(!/)z‘;u( z)dz'd2d.

¢ In single-null coordinates: |FiENE — f(u, r)du? — 2ee~3@N dudr + R(u, )2y (2)c

¢ Equivalent expressions:

. G 1 2ee (’T;U' - f’ gl‘Trr + 2])1 + \/ﬁ Z 0,
]-nu - Ff’ "Tm" 7k (flf’/'i + l)l 2”7“” >0

: 2e€®Tyr — T, + \/ﬁ >0 in addition to NEC,
. 26’ Ty — fe¥Toe — 200 + \/F_w >0
and 2ee’T,, — fe*T,,. > 0 in addition to WEC,

: (n—4)(2e’T,, — fe*T,,) +2(n —2)p, + (n — 2)/Dy > 0
in addition to NEC.

= ’jjOTY'V'(_i]“”U = 4F4f(:07“l“' + _f.z(.—)’)TY'T )'

Application 1: Symmetric spacetime

& Consider a spacetime M, xE?2 VL U VRS (A DB EINENEEN 122 (n-2)-dim Einstein space

NG 7, Ao d2” =T p(y)dy*dy® + p,(y) R(y)*y,;(2)dz"d2.

¢ In double-null coordinates:  |FCHEEEY SRR, 0)%yi;(2)d=d

¢ Equivalent expressions: [iMSEIN - VI

and
NEC: T,,+pe ™l + /TouTy >0,
WEC: T, + /TwTyw =0 in addition to NEC,
DEC:T,,—pe ' +/TWT,, >0 and T,, >0 in addition to WEC,
SEC: (n—4)T,,+ (n—2)pe ™ + (n—2) V1T = 0 in addition to NEC.




Application 2: Generalized Kerr spacetime

& Gurses-Gursey spacetime (‘75): Kerr if M(r) is constant
2M(r)r 2 M (r)rsin®6
- \[(1)1)(“-_4(1\[(1)1 in

dtdo

Y(r,0) r.0)

iy
S 9 2 — 2 9 2 2 ZA‘[ )7 si 29 . 9 2
+ A(,( r))dr' + (7, 6)do* + (1“ +a° + %)sm' Odo~.

Y(r,0) :=r*+ a®cos? 6, A(r) :i=r2+a% - 2rM(r),
¢ This metric has been used to construct non-singular black-hole models

¢ Equivalent expressions to ECs in GR (T, = G,,)

NEC: 2M'(r? — a®cos?6) — rM"E > 0,

WEC: M' >0 in addition to NEC,

DEC: rM" 4+2M' > 0 in addition to WEC,

SEC: M"Y +2M'a?cos®’ 0 < 0 in addition to NEC.

Application 3 (without spacetime symmetry) :
Imperfect fluid without shear viscosity

¢ Imperfect fluid: [IEEITRINES T ST RIS I uu* = -1, h,, = g, +u,u,

& g"*= heat flux vector (spacelike) IRIENI Projection tensor

: N o - .
& Viscous shear tensor [ COhy, — 210, INUNSEN ) -— V,u*, Expansion scalar

& Coefficient of bulk viscosity {(=0 .
ty {(=0) O =V (uly) + gy — — lflhw,_ Shear tenspr
« Coefficient of shear viscosity 1(=0) (symmetric)

| — v I .
& Orthogonal to u*: USRIl A\ cceleration vector

¢ Equivalent expressions in the case of n=0: L » &
RN (0 +p — (0)* > 1Q° [Rllp +p — C0 > 0 EEISTE ()° = q,q"

& Others:

WEC: p—p+CO++/(p+p—(0)>—4Q* > 0,+ NEC
DEC: p—3(p—CO)+/(p+p—CO)2—-4Q2 >0
and p—p+CO >0 in addition to WEC,
SEC: (n—4)p+n(p—C0)+ (n— ‘2)\/(/) +p—(0)2—-4Q2% > 0.




Application 4 (without spacetime symmetry) :
Minimally coupled scalar field

& Lagrangian density: T = e(Vub)(Vod) — g (1
pr — SV ub 8% Ypv

2

& €= 1: Real scalar field, € = -1: Ghost scalar field
& Equivalent expressions to ECs :
¢ If V¢ =0: NEC holds, WECis V=0,DECis V=0,SECis V<0
¢ If V,0 # 0: with € = -1 : All ECs are violated
© If V¢ #0: withe = 1 : NEC holds, and others depend on signature of V¢ as

V,0(# 0) withe =1
Timelike
Spacelike

Null

o

IVIIVI[IV

All the ECs are satisfied if and only if the scalar field is real (¢ = 1) and massless (V=0)

Summary

Tm;.m) T(li)(l) 0
& Now we know how to identify TOQ) T

Hawking-Ellis type & Energy conditions for
Tlrm’b» —

& We have adopted our main results to 4 different systems as demonstrations
© We have obtained equivalent expressions to ECs without assuming any spacetime symmetry for
¢ Imperfect fluid without shear viscosity ]-/11' =pu,, + 1)],/”/ 1 (““(11/ + quty) + Ty,

 Minimally coupled scalar field

-
SE(V(,)) +1 (u)).
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Hunting dark energy with pressure-dependent photon-photon scattering
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2 Center for Theoretical Physics and College of Physics, Jilin University
3 Graduate School of Advanced Science and Engineering, Hiroshima University

Introduction

A variety of independent observations have confirmed accelerated
expansion of the Universe, which indicates dark energy (DE).
Modified gravity theory has been considered one of the solutions to
DE problem as an alternative to cosmological constant to GR.

It is known that a dilatonic scalar field shows up in modified gravity
for DE. A class of such a dilaton is called chameleon field.

Recently, it was suggest that a stimulated radar-collider concept may
be applicable to probe gravitationally coupled scalar field.

We demonstrate feasibility analysis for hunting chameleons as DE in
F(R) gravity with the stimulated photon-photon collider.

=

== “\

—_ -

—_— = | NS -

:: :§ ps(signal) - .

—_— = L N Fig.1 Concept of the stimulated
(pe)—(pa) ® Y; - resonant photon-photon scattering
:: - 41 M\‘ ",/‘. P4 in quasiparallel collision geometry
—_— = e m———

= ->\ =

= - [’

Methods

Chameleon mechanism and coupling to photon
Chameleon field ¢(x) in generic scalar-tensor theory:
M2

1
o Ra = 501 (042) (0u0) = V()

S:/d4.7:\/7g*

+/ da/=g L [g2, o, i

Chameleon mass m,, changes depending on other matters.

48i0

V;H(LP) = V 1 Ze g T“( ) 7’7« = V(‘Pmm)eﬂ o

Interaction to two-photons induced by trace anomaly:

- 180
Ly = 1€ Mor T ) Loy = 1 ,\}

(anomaly)

bem - Qtem
J P = B
F Y 2 Y

F(R) gravity and coupling constant

In F(R) gravity, bare potential is written in terms of F(R) function.

Mg R(9) Fr(R(9)) — F(R(#))
Y@= FR(R(7)

B: = 1/V/6 for all matters, thus 8, = 0(107%) and B,, = 0(1).

, 2V 1/60/Mp1 — Fr(R)

Expected sensitivity in mass-coupling domain

Because the coupling constants are independent of F(R) function,
F(R) gravity models are testable if they predict chameleon fields with
masses around m, = (0.1 — 1) [ueV].

10721 Collider
1074
Fig.2 Expected detection
107 ADMX D . sensitivity in proposed photon-
10-8} v photon scattering experiment
— GammeV-CHASE (blue) compared with constraints
L 1071r from GammeV-CHASE (green),
8 10-12 ADMX (orange), and collider
= Stimulated experiments (yellow)
= 10 Radar Collider ) '
> (Expected Sensitivity) Red horizontal line corresponds
L P Y, ~ )
10 to chameleon-photon coupling
10718} predicted in F(R) gravity.
10201 Phgt;” 80“9""9 Chameleon in F(R) gravity is
in F(R) Gravity hunted along the red line that
10722} \] overlaps with the detection
10-2¢ sensitivity domain.

10° 107® 1077 10°° 1075 10 1073 1072 107"
m, [eV]

Institute of Astrophysics, Central China Normal University &

Results

Chameleon mechanism

Two ambient sources: background photon and gas in chamber.
T = T'iipnoton) T Tigas)

The photon contribution is proportional to £, F*¥ = 2(B* — E?).

It turns out that square of field strength vanishes on focal plane in

case of circularly polarized beams. Therefore, we can ignore the

contribution from background photon density.

The gas contribution is approximated as EOS for the ideal gas.

P [Pa)
m o/m3] —
—(p—3P), T ) P kg/m”] = RT

Tige) =
Evaluation of chameleon mass
We consider an R? corrected DE model to which Hu-Sawicki and
Starobinsky models are reduced.

R\ 2
1—(—
(%)

F(R) =R~ AR, +aR®  },a,n are positive parameters

10-§ -,

1376 A=200, =

1078 Fig.3 Chameleon mass vs energy-

10710 momentum tensor forn = 1/2, 1,
2. 1072 2with A = 4.2 x 1079 [eV?].

10:16 As a referenced value, we choose

13,13 — n=1/2 a = 10* [eV2] to be consistent

10-20 n=1 with current constraint from fifth-

10722 — n=2 force experiment.

10724 L L L L

105 10% 10" 10" 10™ 10" 10%®

~Thlpn
Feasibility to extract chameleon character
We apply the model to a low pressure interval 1078 [Pa] < P <
1076 [Pa] within the reach of current vacuum technology.
In such an ultrahigh vacuum chamber, residual gas consists mainly
of hydrogen molecules, and for the hydrogen at T = 300 [K] gives

TH
1.4 x 1012 < 7p—“ <1.4x10M,) py ~ 25 x 1071 [V
A

For the range 1 = 2 — 200, n = 1 case predicts chameleon in
testable range. n = 1/2 case is also testable by raising gas pressure
or changing gas species, although larger A for n = 1/2 is testable
even in the current setup.

108

3

=4

£

E 102) Fig.4 Expected number of

@

§ 10} - L LV, Vo stimulated signal photons as a

o 102 function of gas pressure comprising
;‘ 104 hydrogen molecules at 300 [K] for
5 10 n = 1with 2 = 2,20,200 cases.

.g 10-8 — A=2 The dashed horizontal line shows
_“2 10-10 A=20 unity above which experiments can
E 1012 — A=200 test characteristic features of

S 10 . chameleon models.

£ 1078 1077 1076 1075

Pressure P [Pa]

LIRS RS

Conclusion
*  We found remarkable potential to probe chameleon particles in
the stimulated photon-photon scattering experiment.

* Proposed method can provide a unique opportunity to strictly
constrain viable F(R) gravity models for DE.

» This method will pave a way to directly unveil DE in completely
controlled manner with future developments on technologies.

Fapsns

R R T
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Black-Hole Accretion-Disk system
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Introduction
* Shadows of BHs (|M87 and Sgr A*) were
observed by EHT!!

* We will (hopefully) observe many BH

shadows near future. sr=Ton,
S0 pas = k
* Shadows of BH w/ and w/t Accretion Disk BH shadow of M87 and Sgr A*
(AD) contain much info. (credit: Event horizon Telescope)
* M: mass

* | = Ma: angular momentum (0 < % <1
* i:inclination angle
* 71,: distance between BH & observer

* Can we determine these parameters solely
by observing shadows?

BH w/ Accretion Disk

U. MIYAMOTO Determine Parameters of BH-AD system by Observing Shadow (crEd|t: NASA) 2
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Works so far & Question
* Many papers study BH shadow

R: radius of an approx. circle
D: size of dent

* Bare BHs (Synge ‘66, Bardeen 73, ...) S0 §:=D/R
* BHs with AD (Luminet ‘79, Falcke et al ‘00,
Takahashi ‘04, ...) Sl

« Determining (—, i) of Kerr BH from shadow S0 s (Hioki-Maeda “09)
(Hioki-Maeda %9) a[M]

* Most works assume 7, = +oo st et I
Info. of distance is lost. qf 87001— T
(Exceptions: Grenzenbach et al "14, 3 o
Abdolrahimi-Mann-Tzounis ‘15) = Presasm

* Question: If we allow 7, to be FINITE, can we U s
determine all parameters (e.g. M) from O o Tor o5 os 1
shadow? o
=>» Let’s consider Sch. BH with AD as 15 step. 3 1-to-1 corresp. between (%, i) and (R, 5)

Ml )
U. MIYAMOTO Determine Parameters of BH-AD system by Observing Shadow 3

Setup: 3 parameters of our system
(Schwarzschild BH + thin AD + observer)

observer

Y

accretion disk
(c=G=1)

bla‘:kh‘}i/j‘/ Mass: M € (0,+0)

' Inclination angle: i € [00, 900)
Emitter on AD: 7, € [6M, 20M|]
Observer: 1, € [20M, +0)

U. MIYAMOTO Determine Parameters of BH-AD system by Observing Shadow 4



Results: Apparent shape of Accretion Disk

Claco Far
L% L U jo ) ¥ N
1f 1 1 1 1
~ 0 / ( >\1l = 0 [/( )\) = 0 1/\> =~ 0 n()
| / NI \u
-1 \4/ -1 -1 -1
= -1 0 1 = -1 0 1 BRI 1 = -1 0 1
X X X X

(a) 7o/M =20, i = 30° (b) r,/M =30, i = 30° (c) ro/M =40, i = 30° (d) r,/M = 50, i = 30°

Cloca ) R | Ear
\o)

J .’.)(\.,ed - - - LI M |
N of : g !
R L7 NN P S’ SR P S S S

-1 “\ / -1 -1} -1
1 5 3 5 S

22 -1 0

X X X X

(e) ro/M =20, i =80° (f) ro/M =30, i =80° (g) ro/M =40, i = 80° (h) ro/M =50, i = 80°

HTAIVIUITU

Determine (TMO, () from BH’s Apparent Shape

0.4 T T T 90 l T T | |
80 | | A
0.2} ] 00 i
LN g
~ 0.0r 1 %0 281 i
D T30 &
-0.2r T 20 L .
o- -
_04 L | " O | | | L 1
204 -02 00 02 04 20 25 30 35 40 45 50
X ’”()/M

Apparent shape of BH

Contoursof R& 6
Red: R=const.
: d=const.

3 1-to-1 corresp. between
R: radius of an approx. circle T_o .
(M ,1) and (R, )

D: size of dent
6:=D/R

U. MIYAMOTO Determine Parameters of BH-AD system by Observing Shadow



Determine (M, 1,, i) from flux & accretion rate

M
* Energy flux on AD F,(x,y) can be _ ,
estimated ( ) FO(:B, y> \M2 Fo- (.CI:‘, y)
. . y Unknown Known function of (x,y)
* Assuming that we know M, we A factor

can estimate M by observing
F,(x,y) and comparing it with

F.(x,y). Fo2)
v \/ 1y Foul,9)

Fo(z,y)

Conclusion & Prospects

* We considered system of (Sch. BH) + acerton dis N\
(thin AD) + (Observer) w/ 3 P
parameters (M, 1,,1). g‘ 4 |
. (TMO, i) can be determined by (R, 6) -0} J
(size & shape of shadow). 044202 00 02 04

X

* (M, 1,,1) can be determined by
(R,8,F,) and M.

* Future works
* Kerr BH w/ and w/t AD

* Determining BH parameters from
shadow’s movie

BH w/ Accretion Disk
(credit: NASA)



Appendix

U. MIYAMOTO Determine Parameters of BH-AD system by Observing Shadow 9

How to draw 2d image:
Stereographic projectiononto (x,y) plane

U. MIYAMOTO Determine Parameters of BH-AD system by Observing Shadow 10



P21 Perspectives of a stimulated GHz-photon collider

for probing gravitationally weak coupling scalar fields
Kensuke Homma, Hiroshima University

Very light field Interactions Chiral Gauge symmetry
in the context of dark via QED (+QCD)  symmetry Electroweak int.
energy / matter QCD int.

ik’ e <ﬁ

LX)
W
Undiscovered ! Notverified! ___pseudoscalar ___ scalar
Below 1eV Below 1 MeV 135 MeV 126 GeV

Photon-photon center of mass energy

Scattering amplitude for two-body interactions
in stimulated resonant scattering
i2
S ’?/,/‘.,»I/ d*yT[Fu (x) " o(x) Fpo () FP7 (y)(y))
N[F, () F* (2)Fop (y) F7 () (0| T [p(2) ()] |0)]

(o9 (l; (L- a ll
Coherent state
IN)) = exp (~N/2) Z

(NINY =

f\vo )= f( )" 0

((r\\(am) [N =N aN) =VNIN)), and ((Nla' = VN(N|

Transition amplitude: 1+1 —3+4
KN | & Ny K 13|SPIN, > [N, » 0>
o K N | K Ny| « 13|a;a;u; a; [Ny > [Ny >0 >

o< [N /Ny Ny & Ny [N, 3> Ny [N, >>< 0]0 >

Cubic dependence is essential

proton-proton collisions Combination
...(1011)2
101 e 10"
100 Wlight bulb  visible light 100J ~10?° photons

(100J/s) GHz microwave 100J ~10%5 photons

102

102
Combination

(1025)3
Inducing

Possible to observe scattering via gravitational coupling strength

Preparation at SPring-8 o

10°

-7

g/M [1/GeV]

Repetition rate  : 50 Hz too long !

—f >

Two wave mixing
Pulse compress (helically corrugated waveguide)
+ 3 n

Single GHz photon
detection

Phased Radar Array

K. H. and Y. Kirita
Stimulated radar collider for probing gravitationally weak
coupling pseudo Nambu-Goldstone bosons , JHEP 95 (2020)

Quasw Parallel
collision Sy>lem Center of Mass System

A 9
w
s X Wons
Lorentz boost
2] z

Wems 9\- Wems
o
6 9 " Wems
Ecns = 200cns
m High mass search

Inclusion of a pole is essential

)
- rem
IMP ~ (4m)? o (£ )
’ 2+u2 = Tex \m
2
22 o m/2
=o' -0} wf=—""—
a O e ]
45 x> a- |M[?xa?«c M~
Eems w = w, > |M|? x (41)*

e.g. y—y Higgs factory
X+ = Ena with n > 1

1 e
TME = [ wrax
X+ — X=Jy

(4)
2na

2atan™' () = @)% tan Tl ()

<€ -> PIRE ] 3 a .
~ (4m)2 E:Sn Gain by 1?

Collision in QPS within |x!
momentum-energy uncertainty

Fourier transform limit is essential
Broad band = Short time duration

outof outof outof Irradiance vs. time

phase phase phase
Random Light
phases bulb
Time =+ Abheas, auidd
it newportcominlpulsad-tasar-mothods
outof in  outof
phase phase! phase Locked
phases
Time =+ Time ——s-
DHelmscopes
D Haloscopes

%,
2

" ABRACADA

:‘: K.H. et al. Universe 7 (2021) 12, 479

-
uo

NIR s”eérch

gravitational/coupling

Yasunori Fujii and K. H.
ProgTheor.Phys. 126 (2011) 531-553

| . .
p!
off-shell part for a pNGB (¢) exchange

Extension to asymmetric-incident and
non-coaxial collisions in quasi-parallel collisions

AN

Final|State

Searching system with lasers
at ICR, Kyoto Univ.

Transport Chamber

Interaction Chamber

Waveform from PMT

Background from residual atoms

T

107"

l| I| || || III

2

Npig  (pressure)?

T

yast
Toshiba E3712 (compressed) -~ Jongoing
----f design or concept
Cen(ra| frequency: 2856 GHZ 10725 AR 1 Hllll\l 1 IIIIIII| 1 IIIIIII‘ 1 HIHH' 1 IIIIIII| 1 IJIIIII‘ I/\Illl\l 1 IIHIIIl 1 IIIIHI|
Line width :~10"  too narrow ! 10°  10° _A4o7 10° 10° 10* 10° 102/ 107 1 10
Peak power 1100 MW (100 J / us) m, [ev]

High-intensity laser 10 PW at
Extreme-Light-Infrastructure (EL

K. H. et al. (SAPPHIRES)
NP) JHEP 12 (2021) 108

The number of photons N / shot

A. Nobuhiro et al., PTEP 2020 (2020) 7, 073C01
. . L L

10°

10
Pressure [Pa]

High-intensity laser 10 TW at Inst. for
Chem. Research in Kyoto Universit
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Testing the equivalence principle using a gravitationally bound quantum system:
with a short report of technological developments

International Center for Elementary Particle Physics,
The Univ. of Tokyo

Yoshio Kamiya

kamiya@icepp.s.u-tokyo.ac.jp
http://www.icepp.s.u-tokyo.ac.jp/~kamiya/

Special Things on Gravity

Gravity is the very common force experienced in everyday life, however
the most unusual from the view of particle physics. .

P PRy — Very attractive!
Extremely weak! compered to the other forces.

Gravity between protons is weaker than Coulomb force by 10-36 .

Electroweak scale ~ 0.1 TeV (Vacuum Expectation Value of the Higgs)

Gravitational Interaction scale ~ 10'¢ TeV (the Planck mass)

Question |

Is there any force with intermediate strength? — fifth force search experiment

Y. K., K. Itagaki, M. Tani et dl.,
PRL 14, 161101 (2015)


P22


Special Things on Gravity

Gravity is the very common force experienced in everyday life, however

the most unusual from the view of particle physics. > Very attractive!

: Geometry! as a result of the equivalence between inertial and gravitational mass

—» Weak Equivalence Principle (WEP)
—— General Relativity

The WEP have been experimentally confirmed by several tests.

Question 3

Is the weak equivalence principle OK in the — test of WEP in quantum regime
framework of quantum mechanics?

Question 2
Is there any observation of quantum signature ~ — test of quantum signature due to gravity
due to the gravitational field? G. Ichikawa, S. Komamiya,Y. K. et al.,
There were not so many. PRL 112071101 (2014)
Storyline
Question |
Is there any force with intermediate strength? — fifth force search experiment
Y. Kamiya, K. Itagaki, M.Tani et al,, PRL 114, 161101 (2015)
“Constraints on New Gravitylike Forces in the Nanometer Range”
QueStlon 2 « (Fifth force might violate the WEP at the microscopic range!)
Is there any observation of quantum signature — test of quantum signature due to gravity

due to the gravitational field?
There were not so many.

G. Ichikawa, S. Komamiya,Y. Kamiya et al., PRL 112,071101 (2014)

“Observation of the Spatial Distribution of Gravitationally Bound Quantum States of
Ultracold Neutrons and its Derivation using the Wigner Function”

We got new quantum probe for gravity at the micron range!

Question 3

Is the weak equivalence principle OK in — test of WEP in quantum regime

the framework of quantum mechanics?

Main topic of today’s talk




Bouncing neutron: How is UCN trapped in Gravity?

When you spill UCN on the floor, they bounce like a ball

because of their small kinetic energy.

Schrodinger equation for UCNs under the gravity

+V

(2)}¢hn(2) = Enthn(2).

where V(z) = {

2

mgz, z2>0
o0, z2<0

Dimensionless equation is written as a function of &, = z/z0 — E,/Ey

d2
(_2 - gn)wn(gn) =0 3
de2 i
where the system’s scales, :,Z’
20 = (i)l/?’ ~ 6 pm
2m?2g
2h2
By = (BLE)8 206 pev
1
Classical turning points %

Zn

V(z) = mgz

2 (calc)

= ZOEn/EO (fn

50 60
height z (microns)

Gravitationally Bound Quantum States of UCNs

Exp. Setup

I

Collimator

Neutron

detector

~10cm

Figure 2 Layout of the experiment. The limitation of the vertical velocity component
depends on the relative position of the absorber and mirror. To limit the horizontal velocity
component we use an additional entry collimator. The relative height and size of the entry
collimator can be adjusted.

0.

0.01 4

N (countss™)

30

Absorber height (um)
Figure 4 The neutron throughput versus the absorber height at low height values. The
data points are summed up in intervals of 2 wm. The dashed curve comesponds to a fit
using the quantum-mechanical calculation, in which all level populations and the height
resolution are fitted from the experimental data. The solid curve is again the full classical
freatment. The dotted line is a truncated fit in which it is assumed that only the lowest
quantum state—uwhich leads to the first step—exists

40

V. V. Nesvizhevsky et al., Nature 415,297 (2002)

Neutron transmission through this thin neutron guide
was measured as a function of the height.

Neutron Guide:

length = 10 cm

height = ~ several tens microns

The ceiling scatters neutrons with higher energy

(at higher energy states).

If neutron behave classically,

If the quantum states are formed in the guide,

When the height is equal to the spatial width of the lowest
quantum state, the transmission would increase sharply.

The data shows a sharp edge around |3 micron.

Scale of the wave function for
the first(grand) state.

It seems to be a quantum feature.

transmission would increase smoothly as N 91/2h3/2

( h: height of the guide )



Gravitationally Bound Quantum States of UCNs

UCNs: Ultra-cold neutrons are

Very very slow neutrons:

Velocity - ~ 10 m/s ——— Carl Lewis might catch them!

geseneese -. Wavelength - ~1000A —— UCN feels potentia|s from several TAAF World Championships @ Tokyo (1991)
atoms in materials simultaneously.
v

Kinetic energy : ~ 100 neV — pseudo fermi potentials

comparable to
Potential of usual materials : ~ 100 neV (Al: 54 neV, Ni 244 neV)

{ Gravitational potential : ~ 100 neV/m

s > UCN:s can be confined to a bottle or trapped in gravity.

Bouncing neutron: How is UCN trapped in Gravity?

When you spill UCN on the floor, they bounce like a ball =

because of their small kinetic energy. !

Schrodinger equation for UCNs under the gravity

K2 d2
{—%@ + V(2)}9n(2) = Entn(2),
"~, neutron mass where V(z) _ { ng7 j i 8

Dimensionless equation is written as a function of & = Z/Zo - En/EO

d2

(35 — En(6n) =0 T r
&n S e A
where the system’s scales, E’ | SN NN S
s Taa e S
zp = (2m2g) ~ 6 pm v o
2h2 2] '
Ey, = (Lg2 )1/3 ~ 0.6 peV - |
1= 3 3 | | ;
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e (eale)

i Classical turning points : 0 10, 20 , 3 40 50 60
: _ : : height z (microns)



Gravitationally Bound Quantum States of UCNs
V. V. Nesvizhevsky et al., Nature 415,297 (2002)

Exp. Setup

Neutron transmission through this thin neutron guide
was measured as a function of the height.

Neutron

detector Neutron Guide:

3

~10cm

Collimator

length = 10 cm

height = ~ several tens microns
Figure 2 Layout of the experiment. The limitation of the vertical velocity component

depends on the relative position of the absorber and mirror. To limit the horizontal velocity . . .
component we use an additional entry collimator. The relative height and size of the entry The cel | Ing scatters neutrons Wlth h lgher energy

collimator can be adjusted. (at higher energy states).
If the quantum states are formed in the guide,

When the height is equal to the spatial width of the lowest
quantum state, the transmission would increase sharply.

N (countss )

The data shows a sharp edge around |3 micron.

Scale of the wave function for
the first(grand) state.

Absorber height  (um)

It seems to be a quantum feature.
Figure 4 The neutron throughput versus the absorber height at low height values. The
data points are summed up in intervals of 2 wm. The dashed curve corresponds to a fit .
using the quantum-mechanical calculation, in which all level populations and the height If neutron behave CIaSSICa”y’ 1/2 3/2
resolution are fitted from the experimental data. The solid curve is again the full classical fect f
treatment. The dotted line is a truncated fit in which it is assumed that only the lowest transmission wou'd Increase SmOOth Iy as N X g h

quantum state—which leads to the first step—exists.

( h: height of the guide )

Gravitationally Bound Quantum States of UCNs
V. V. Nesvizhevsky et al., Nature 415,297 (2002)

Exp. Setup

Neutron transmission through this thin neutron guide
was measured as a function of the height.

Neutron

- 3

~10cm

Neutron Guide:

detector

Collimator

length = 10 cm

height = ~ several tens microns

Detector: \

Figure 2 Layout of the experiment. The limitation of the vertical velocity component
depends on the relative position of the absorber and mirror. To limit the horizontal velocity
component we use an additional entry collimator. The relative height and size of the entry Th
collimator can be adjusted.

(at
probably 3He gas filled proportional counter.
If £
~ W
@
u
£ q
[=]
S
2 TH
Absorber height (um) K /ze
Figure 4 The neutron throughput versus the absorber height at low height values. The
data points are summed up in intervals of 2 wm. The dashed curve comresponds to a fit .
using the quantum-mechanical calculation, in which all level populations and the height If neutron behave CIaSS|caI|Y’ 1/2 3/2
resolution are fitted from the experimental data. The solid curve is again the full classical feci H
freatment. The dotted line is a truncated fit in which it is assumed that only the lowest transmission would increase smooth |)' as N X g h

quantum state—which leads to the first step—exists

( h: height of the guide )



Gravitationally Bound Quantum States of UCNs
V. V. Nesvizhevsky et al., Nature 415,297 (2002)

Exp. Setup

Neutron distribution was directly measured using a position
sorber . e
. Neutron sensitive neutron detector.
i detector

~10cm
Figure 2 Layout of the experiment. The limitation of the vertical velocity component

depends on the relative position of the absorber and mirror. To limit the horizontal velocity Detector: 235 coated CR39 (Plastic)
component we use an additional entry collimator. The relative height and size of the entry
collimator can be adjusted.

Collimator Fixed height of the guide is to avoid uncertainties which come from

a modelling of the ceiling.

V.V. Nesvizhevsky et al., NIM A 440, 754 (2000)

dent due to the <Principle>
quantum effects i Daughter nuclei from nuclear fission are make defects
7 ‘on the CR39.
£ : The defects are enlarged by chemical etching.
3 200
2 i Measure the points using microscope.
_g :
< 100 Spatial resolution is reported to be about | micron.
o -,
0 10 20 30 40 50 60 70
Height in microns above the mirror
Gravitationally Bound Quantum States of UCNs
V. V. Nesvizhevsky et al., Nature 415,297 (2002)
Exp. Setup

Neutron distribution was directly measured using a position
sorber o s
. Neutron sensitive neutron detector.
d detector

~10cm

Collimator Fixed height of the guide is to avoid uncertainties which come from

a modelling of the ceiling.

Figure 2 Layout of the experiment. The limitation of the vertical velocity component
depends on the relative position of the absorber and mirror. To limit the horizontal velocity Detector: 235 coated CR39 (p|astic)
component we use an additional entry collimator. The relative height and size of the entry

collimator can be adjusted.

V.V. Nesvizhevsky et al., NIM A 440, 754 (2000)

< —
dent due to the Pr :
! quantum effects o
300
5 120 mm )
8 200 |
S A N
5 &
8 ]
s % /
100
UCN
neutrons
° / [ ] Prasic
Fission 977’
o, T T T T T T T y" ‘:’ Supermirror coating
0 0 20 30 40 50 60 70
Jranium-23:
Height in microns above the mirror l:l Uranium-235

,w:‘,..“ 05 um

Fig. 4. Position sensitive detector for ultra-cold neutrons.




Measurement of CCD-based Imaging Detector

Exp. Setup
@ Magnetic shield Incﬁr]orr‘et'er
Al window(100 pm) Vacuum chamber r_,— .
Helium

B |

Neutron shutter

Main components

Bottom mirror

Anti-vibration table
(b) Collimating guide  Pixelated detectorj ~25mm ‘ 4 o
! 200 mm| i7omm. ‘ z
z=100 pm ‘ 3?1"1
= S

G. Ichikawa, S. Komamiya,Y. K. et al,
PRL 112,071101 (2014)

‘. S. Kawasaki, G. Ishikawa, M. Hino,Y.K. et al.,
NIMA 615,42 (2010)

{Position meas.: 3 microns
i Timing meas.: ~ sec

Magnification Rod

i mmmmmmm .-

, magnify the neutron distribution using

g a glass rod by 17~40 times

M
45t
40t
35t
30t
25t
20t
15}

maghnification

(calc.)

Th0? (um)

height

Measurement of CCD-based Imaging Detector

G. Ichikawa, S. Komamiya,Y. K. et al,
PRL 112,071101 (2014)

Measurement  (a) expectations from quantum mechanics
(b) expectations from quantum mechanics (zoomed in)
(c) expectations from classical mechanics
consistent with quantum mechanics
@ ) Magnetic shield Inclinometer —
Al window(100 pm| Nacaum chamber ! : 200F X~ /NDF = 0.96
200 — {
I 100F
Neutron shutt E 150 ;
g L
© I 2
s L
2 L
(b)  Colimating guide ~ Pixelated deteglgr 'c™ 25 ™M, ! 8 100 [
I 79mm_ ) (@] [
> z=0pm: s :
)’”” v Zz=100 um ¥ 3mm =
m /2 iy . 50 —
) == HEESRRN r
I WY -
Bottom mirror x “ L
f . e SRR S = Lo
N O‘T"\*’Tﬂ‘\‘ﬂ’\\\ L
. 0.4 0.5 0.6
- e g
poonTEm e TTTnTTmTTTTTTTTommmmmmeetY . Position Z’ (mm)
1 Modulated distribution due to 4

Crosses :data / Histograms : model fittings

6 fitting parameters:

+ origin of ' position + signal to total event ratio
+ detector rotation
+ distance between rod to sensor  + Y:neutron loss on the ceiling

+ B: neutron loss on the floor



Measurement of CCD-based Imaging Detector

G. Ichikawa, S. Komamiya,Y. K. et al,
PRL 112,071101 (2014)

Measurement  (a) expectations from quantum mechanics
(b) expectations from quantum mechanics (zoomed in)
(c) expectations from classical mechanics
consistent with quantum mechanics
@ Magnetic shield Inclinomﬁier _
Al window(100 pmf Vacuum chamber l 200F X~ /NDF = 0.96
Helium [
. 200— L M
—— il | r-------------m-mm--me---eea L |
@ | 100F
Neutron shutt »g 150 ; 0 1\ . é
g L
3 - 200F
2 [
5
(b)  Colimating guide ~ Pixelated deteglpr ¢™25™M,! 3 100 100
v seomm|  79mm . o [ ¢
3 mm : 0 ¥
50 —
B LY [~
A -
X [% [
A
A
A

0.7
Position Z’ (mm)

Crosses :data / Histograms : model fittings

6 fitting parameters:
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o
>

Question |

Is there any force with intermediate strength?

Question 2

Is there any observation of quantum signature

+ origin of ' position + signal to total event ratio

+ detector rotation

+ distance between rod to sensor  + Y:neutron loss on the ceiling

+ : neutron loss on the floor

Storyline

— fifth force search experiment

Y. Kamiya, K. Itagaki, M.Tani et al, PRL 1 14, 61101 (2015)
“Constraints on New Gravitylike Forces in the Nanometer Range”

(Fifth force might violate the WEP at the microscopic range!)

— test of quantum signature due to gravity

due to the gravitational field?

Question 3

There were not so many.

G. Ichikawa, S. Komamiya,Y. Kamiya et al., PRL 112,071101 (2014)

“Observation of the Spatial Distribution of Gravitationally Bound Quantum States of
Ultracold Neutrons and its Derivation using the Wigner Function”

We got new quantum probe for gravity at the micron range!

<

Is the weak equivalence principle OK in
the framework of quantum mechanics?

— test of WEP in quantum regime

Main topic of today’s talk




Measurement of CCD-based Imaging Detector

G. Ichikawa, S. Komamiya,Y. K. et al,
PRL 112,071101 (2014)

Measurement  (a) expectations from quantum mechanics
(b) expectations from quantum mechanics (zoomed in)
(c) expectations from classical mechanics

Scales of the System consistent with quantum mechanics
: 52 )1/3 ] F 200 \/NDF = 0.96
Z = — ~ m [
0 9m2g K 200~ 1 (m
232 L 100F
mg“h
E, = (97)1/3 ~ 0.6 peV -
=150 —
s L
© ~ 2
> L
‘ € B
2 é 100
_ 1/3 -
20 = ( ) ~ 6 pm C
2mymgg C
2 232 —
m:g-h 50
Ey = (—2—)'3 ~0.6peV r
Zmi B
mg : gravitational mass -
m; : inertial mass 0 :

0.4
Position Z’ (mm)

m Crosses :data / Histograms : model fittings

We can evaluate the mass ratio 7 = qu by

T
measuring length and energy scales simultaneously!!

How to Measure the Two Scales Simultaneously?

oscillate here

UCN guide (ceiling) 15 microns step detector : Time-resolving imaging detector

- length scale is measured by seeing
S0 spacial distribution of neutrons directly
UCNs | || ] — S B O N
' : - energy scale is evaluated by measuring
,L"‘— oscillation frequencies between the states
chopper UCN guide (floor)
I [ . | | |feedthrough
collimator " anti-vibration table

The step rotates the eigenstates of this quantum system.

Then, the object starts oscillation between the new eigenstates.

energy scale

Y(z,4=0) = A101(2) T A2P2(2)

. e
Ve ? = [z i=0) > — 4a1asdy () da() sin® (€2

oscillating term



Tests of the WEP in the World

<Classical Regime>

Lunar Laser Ranging Tests:

Torsion Balance:

Atom Interferometer:

A Neutron Interferometer (COW):

<Quantum Regime>

10-13 level

10-13 level

101! level

10-3 level

PRL 93,261101 (2004)
PRL 100, 041101 (2008)

PRL 125, 191101 (2020)

PRA 21, 1419 (1980)

(Some bias in analysis was pointed out.)
Physica B151,22 (1988)

Our first target is 10-3 level

Time-resolving Imaging Detector for UCNs

Our previous detector : CCD based

i Position resolution : 3 microns
i Readout time : ~ sec

: Not enough :-(

Schematic

neutron: Secondary particles

) i conversion layer
(Ti 20 nm) i (10B 200 nm)

v

T jo;.g

(6]
(Al 200 nm) 33

c

[o]

e o

/ \charge diffusion -g

(2]

[| readout pads

charge cluster

/ New detector design : CMOS based

: Position resolution : a few microns (expected.)
i Readout time : ~ msec

A
: Sounds OK! :-)

Charge sharing?

n
L]
o
-
]
L]
L
]
"
n
n
n
"
l
n

A

Charge overflow?

10B Jayer is used as a neutron to charge particle converter

n+'B -

a(1.47MeV) +7 Li*(0.84 MeV)
7 Li(0.84 MeV) + ~(0.48 MeV)
a(1.78 MeV) +7 Li(1.01 MeV)

(93.9%)

(6.1%)



Development of 19B-INTPIX4

Y. K., T. Miyoshi, H. Iwase et al,
NIMA 979, 164400 (2020)

INTPIX4:

+ size : 512 x 832 pixels (17 um-square / 10.2 x 15.4 mm?2)
+ thickness : ~ 300 um
+ readout speed : 280 nsec/pixel (measured)

+gain: 13.1 uV/e (S. Mitsui, Y. Arai, T. Miyoshi, and A. Takeda, NIMA 953, 163106 (2019))

Forming '°B layer:
using Argon RF sputtering technology

+400(100) W RF Power for Ti/B (pre-sputtering) neutron: Secondary particles

+ Sputtering rate for Ti(B): ~ 1.5(0.3)/10 [nm/sec] conversion layer

(Ti 20 nm) (10B 200 nm)

¥

le———| ;38
0.0
23

(Al 200 nm) 3C
C
o
. . o
/ \charge diffusion .qé,
n

T readout pads

charge cluster

sputtering machine in the clean room (class 100)

Neutron Irradiation Test

Y. K., T. Miyoshi, H. lwase et al.,
NIMA 979, 164400 (2020)

t
+ KEK - Thermal Neutron Calibration Lab.
+ KURNS (Institute for Integrated Radiation and Nuclear Science, Kyoto Univ.) - E3 port
+ J-PARC, MLF - Beam Line 10 (BLI0)

Am-Be neutron source + carbon pile  Energy distribution at the surface of the pile

E EHH\H‘ T HHW‘ HHHVW T HH“ HHHVW T HH“ \HHHW T HH“ HHHVW T HH“ HHHVW T HH“ \\7
g r . . 3
s simulation
i 5
10‘3% é
\:\mm\ v ol ol ool coud vod cod o vood ool o m:
1073 1 103 100

Neutron Energy [eV]

Neutron intensity at the surface is well determined

to be 20 /cm”2 /s.
https://www.kek.jp/ja/Facility/ ARL/RSC/ThermalNeutron/ Detection efficiency is evaluated to be 1.5%

for the thermal-range neutrons.
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Event Shape

Y. K., T. Miyoshi, H. Iwase et al,
NIMA 979, 164400 (2020)

< |sotropic and concentrated cluster shape >

Made by heavy charged particle, a or Li, from 10B (n, )

neutron capture event.

Neutron Signal!

< somewhat moving cluster shape >

Made by running electron, which is scattered off y-rays.

Background!

Clustering

©

(b)
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Region B

|
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v
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entries

S

04
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cluster charge Q [MeV]

Y. K., T. Miyoshi, H. Iwase et al,
NIMA 979, 164400 (2020)

+ estimate pedestals of each pixel on each image by
averaging successive |0 images before and after the
image to be evaluated, and make the pedestal
corrections.

+ find the pixel which has higher charge than the
threshold level which corresponds to a 34 keV energy
deposit.

+ check the adjacent pixels inside 7 x 7 distance to find
a local maximum pixel, and define it as a seed of
cluster.

+ determine a 7 x 7 pixels frame centered on the seed.
Any structures inside the frame is treated as one
event/cluster.

+ if you find the only one pixel, which have charge
higher than 3.4 keV, in the frame, this event is due to
the noisy pixel, then reject it.
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Y. K., T. Miyoshi, H. Iwase et al,
NIMA 979, 164400 (2020)
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Neutron Irradiation Test

Y. K., T. Miyoshi, H. Iwase et al,
NIMA 979, 164400 (2020)

+ KEK - Thermal Neutron Calibration Lab.
+ KURNS (Institute for Integrated Radiation and Nuclear Science, Kyoto Univ.) - E3 port
+ J-PARC, MLF - Beam Line 10 (BL10)

shadow of the fine mask.

(@
MLF BL10 (NOBORU), J-PARC

Spatial resolution was measured by evaluating a neutron’s

slits 1
(L =7.050 m)

(L =12.755 m)

slits 2

neutron guide
(11.2 cm square)

neutron modelator

concrete shield

()
silicone rubber 10
with Gd B layer
neutrons
10
~20cm neutron mask  B-INTPIX4

neutron mask and sensor

leveling mount




Neutron Irradiation Test

Y. K., T. Miyoshi, H. Iwase et al,
NIMA 979, 164400 (2020)

+ KEK - Thermal Neutron Calibration Lab.
+ KURNS (Institute for Integrated Radiation and Nuclear Science, Kyoto Univ.) - E3 port
+ J-PARC, MLF - Beam Line 10 (BL10)

(b)

silicone rubber 10

with Gd B layer
neutrons
10
20 em \ Deutron mask ~ B-INTPIX4
}"—1
neutron mask Gd

0 o e A F %b %
100200 300 400 500 600 700" 800 t
2 a
,‘ -
] c

Si

concrete shield

1200

entries

800

400

Evaluation of the Position Resolution

Y. K., T. Miyoshi, H. Iwase et al,
NIMA 979, 164400 (2020)

LIFLOG B L I S L Y PR L LB

(b)

Upper bound of the spatial resolution (I sigma of a line spread function)
is measured to be 4.1 * 0.2 microns.




Sandwich Configuration

Two body decay

(1.47MeV) +7 Li*(0.84 MeV) (93.9%)
n+''B — 7 Li(0.84 MeV) + 7(0.48 MeV)
a(1.78 MeV) +7 Li(1.01 MeV) (6.1%)

...................... o T

single-side _.-*"

position resolution (microns)

Might begimproved! simulation

0 1 2 3 4
readout noise ( microns—equiv. )

Summary

We have performed a series of experiments for testing gravity.

(- searched for new gravity-like interactions at the nanometer range.)
- measured wave functions of gravitationally bound ultracold neutrons with sub-micron resolution.
- preparing the quantum probe to test the weak equivalence principle in the Quantum regime.

Live as if you were to die tomorrow.
Learn as if you were to live forever.
- Mahatma Gandhi



Turbulence of Nambu-Goto string : Non-linear perturbation analysis

Ryo Kitaku , Yoo Chul-Moon

:Graduate School of Science of Nagoya University

Abstract

In this talk, we analyze Nambu-Goto string in Global AdS spacetime by non-linear perturbation analysis.
In our setup, eigen functions at linear order can be obtained analytically. Then we can perform analysis of
higher order easily. Through this analysis, we see some similarity to AdS instability and get some

suggestion.

1.Introduction

AdS Instability

‘Energy distribution ‘

Previous works:[Bizon, Rostworowski 2011] etc.

Higher peak

dispersion | AdS bdy

BH formation

‘Reflected by AdS boundary ‘ ‘Reflected many times ‘

Essential factors Nambu-Goto string whose

endpoints are fixed on AdS bdy

AdS confinement | —————— |AdS confinement

Non linearlity
of Einstein equation

Non linearlity
of EoM of string

We can consider Nambu-Goto string as probe field
of AdS instability !

We examine energy cascade of Nambu-Goto string by Non-
Linear perturbation analysis.

Previous work:[Ishii,Murata 2015], :[Vegh 2018]
Direct energy cascade occur then cusp occur

2.0ur Setup

Non perturbed solution

o y Vs AdS bdy

x = ftan (0) non-perturbed
y=0 perturbed
£: AdS radius x

Perturbed solution

[s] « 1

y= y(l)(T'O-)S +.’V(2)(T'0)52 +e

We solve EoM order by order

3.Results

Linear order

0%y
a7?

(j = 0(mod 2))

aZ
— 2sec?(o)

=0,L=2—
do?

Lyay =
(j = 1(mod 2))

Solution: Yo = ). clucos(it +al)e;
=

Second order

Due to symmetry y — —y of EoM, y(;) satisfy the same equation as y 4,
Then we can renormalize y ) into Y1)

S = 0
Y@ ‘This is the same as AdS instability !

Third order
Y& = Z ety (e

j=2

'c'é) +j25(j3) = S{:tm’in AlA™Ancos(jt + a' + a™ + a™) + non resonant terms, ltmtn=j

{Lmn=20l,mnez}
o
= J .
y= Z c(t)e;
=2

3
. C NS
o =sAlcos(jt +al) + 3 c(lz)(t) +0(s*)

= salcos(jt + ') (+++) (++-)
+ 157] (tS] A A APsIN(jt + @t + a™ + @) + 1S, _ AAmATsIn(jt + al + a™ - a™)
{lLmn=2nl,m,ne”}
+tS)_ _ ALAmAsin(jt + ' + a™ + a™))
o (+—-)
+Non secular terms+0(s*), ltm+n=j

Colored term proportional to t, then these terms may excite
j-mode(energy cascade)

Note that red-colored terms whose phase is &/ can renormalized into
first order term by changing angular frequency (Poincaré Lindsted)

¢/ = s cos(jt + a’) + 5% tsin(jt + a’) ~ scos((j — sH)t + ;)
To analyze in general cases is difficult, so we analyze by putting

Y (1)specific form. As a consequence ,we find following possibilities:

Yoy =ZA,.(:) cos(jt + ) ¢
1.(+,+,+), (+,—, —) may not exist. =

2. If [, m,n are all odd or even ,then mode excitation may not occur

3.Direct(indirect) energy cascade may occur
4.Conclusion

We analyzed open Nambu-Goto string whose endpoint are fixed on AdS
bdy by non-linear perturbation analysis.

We found similarities to AdS instability and possibility of energy cascades.

5.Acknowledgement

We are grateful to Dr. T. Ishii and Dr. K. Murata for very useful
insight.
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Propagation of
tensor and scalar gravitational waves

in Horndeski theory

arXiv:2209.00795

Kei-ichiro Kubota

Collaborator : Shinji Mukhoyama, Shun Arai

JGRG 2022/10/26

Accelerated expansion
Image Credit: WMAP

Inflation

GR +inflaton ¢ :
Modified gravity ? GR + cosmological const. A

GR + scalar field ¢ ?
Modified gravity ?

Late-time accelerated expansion

— The origin of the accelerated expansion is an open question.

JGRG 31 Poster24 1/9
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Horndeski theory [Hornderki 1974, Kobayashi et. al. 2011]

®Most general theory with g,,, & ¢ and second-order differential EoMs in 4-D.

®|n this talk, we consider the subclass with luminal tensor modes.

""GW170817(NS-NS) and gamma-ray burst GW1700817A provide a constrain cy = cjignt.

1

L= 167Gy

®Even this subclass include major dark energy models
and not just the theories described by the scalar field.

(Gal@, X) + Ga(6, X)D + Ca(9)R) X 1=~ 39" V,09,0

( cosmological const. N ( Brans-Dicke theory ) f(R)
quintessence, k-essence 1
G =-2A or K(4,X), G2 =G [“%M . v<¢)] , £= Tonn’ )
Gs =0, ~ o1 _
Ga <1(GR), Gs =0, L 1670 [¢R-U(9)]
- 1 — G4 =Gn¢, where
” 167Gy [R-2A] 9£=%[¢R+ %2){4.‘/((}5)] U(8) = x(8)9 - f(x(¢))
" ¢=Fx(x)
L or 167Cn [R+K(¢,X)]/ L ) N x J

Modification of gravity in this subclass

®The term G,(¢)R imply a modification of gravity.
“Newton constant” is no longer constant and a function of ¢.

1
L= oae (G2, X) + Gs(g, X)0g

167G 167GN 167G eg(d)

This coupling is strongly motivated by higher-dimensional theories
like super string theory and Kaluza-Klein-like theory.

LEinstein-Hilbert =

oGW amplitude is modified by this modification, which is known as “Running Planck mass”.
Equation of motion for plus mode in background FLRW spacetime

O2hy + (205a/a + 0yG4/Gs)Ophy — k*hy =0

Friction term is modified

n: conformal time
a: scale factor
k: wave number

—GW can be a tool for this modification of gravity.



Running Planck mass

®“Running Planck mass” modify only friction term term of the GWs.
Gravitational wave 8%h+ +(20pa/a+ 0,G4/G4)0nhy — k*h, =0
Electromagnetic wave 872]E +(20,a/a)0,E - k*E =0
Because the amplitude gives the luminosity distance from the source to the detector,

“Running Planck mass” can be seen by measuring the luminosity distance with each of
the electromagnetic waves and the gravitational wave. [palang & Lombriser 2019 arxiv:1906.12333]

®However, the current time variation of “Newton constant” is measured
by the other experience, and tight constraints are placed.

e.g. Lunar Laser Ranging experiment off
[Williams et. al. 2004 arXiv:gr-qc/0411113] N

=(4+9) x1071 yr?

So, the contribution of the Planck mass run on the propagation of the gravitational waves
is expected to be small.

Knowledge of modified gravity given by GWs

v'GWs propagate at light speed [LiGo &Virgo 2017 ariv:1710.05834]
—3x10715 < ¢p — 1 < 7x10716

Vector  Scalar

v'Tensor mode is preferred

to the other scalar and vector mode
[LIGO & Virgo 2021 arXiv:2010.14529 and Takeda & Nishizawa 2020 arXiv:2105.00253] T,

2 2
F
o

lu;;“,Bl’ < (tensor vs non-tensor)

v'"No deviation from GR in PN approximation -
[LIGO & Virgo 2021 arXiv:2010.14529 ] = s = T B

—Binary motion of the inspiral is consistent with GR ="

<@
<o

v'GW propagation in cosmological distance is also consistent with ACDM
[Arai & Nishizawa 2018 arXiv:1711.03776]

—No deviation from standard cosmology (A\CDM)

Currently, no deviations from ACDM and GR have been seen by GW observations.



Propagation on FLRW + cosmological perturabtion

®The deviations from ACDM and GR are expected to be small.

®Many studies have examined the propagation assuming FLRW spacetime as background
spacetime.
However GWs propagate with a sense of the matter distribution.
The amplitude of the GWs is also affected by the matter distribution in addition to the
modification of the gravitational theory. [caroffolo et. al. 2021 arxiv:2007.13722]

@S0, we need the propagation equation of GWs taking into account both matter
distribution and the modification of gravitational theory.

Matter distribution | vs | Modification of gravitational theory

®In our study, we derive the EoMs for tensor and scalar modes
on general background spacetime.

Assumptions & Results

®Assumptions

- (amplitudes of GWs) << 1
—The back-reaction from the GWs to the background spacetime is small.
— This allows the second order of GWs to be negligible
and enables expansion with respect to the kinetic terms.

- (wave length) << (typical variation scale of background spacetime)
—This allow geometric optical approximations to be applied.

®Results

- In Generalized Brans-Dicke theory (G; = 0),
the EoMs for tensor and scalar modes are decoupled in leading and next-to-leading order.

- Adding the G; term,
the EoMs are decoupled in leading order, but are not decouple in next-to-leading order.

+ These results were consistent with similar study [Dalang et. al. 2021 arXiv:2009.11827].



®When we take into account G5, EoMs are too long and complicated to write here.
(We wrote this equation in arXiv:2209.00795)

®However, for Generalized Brans-Dicke theory,
we can rewritten the EoMs in the simple wave equations using the effective metric.

0 =nH (.Aew) + (higher order)

1 v . v e 1 .
=— [Qéﬁ) k’ukVA2 + zgéH)VL ) (k,,Az)]e % + (higher order)

A
Kt is nullin gt Conservation eq. of
number of particles
ab 1 ab (tensor)
=~ for h
9(E) G49 b
gétal;f) = (}’4\/szG4+2XG2XXG4+3qu5 v GZXG4+3G<21¢ » for §
€ (_” N ¥ GoxGar2XCGaxxGar3G2, | ) or 0¢
\/(GZXG4+3G?1¢) NSNS, -4
For k* being null ny = Vo/V2X

For conservation eq.

=n,n, +
— The effective metric for a tensor mode is the metric in Einstein frame. v ulty = G

Summary and Future direction

Summary
®\\We derive the EoMs for tensor and scalar modes.

®In Generalized Brans-Dicke theory, the EoMs for tensor and scalar modes are decoupled in
leading and next-to-leading order. We simplify the EoMs.

®Adding the G; term, the EoMs are decoupled in leading order, but are not decouple in
next-to-leading order.

Future work

® Using the derived equations, discuss which contribution is larger, matter distribution or
modified gravity, within the range of currently allowed gravitational theories.



