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Preface

Since the first direct detection of gravitational waves in September 2015, the LIGO and also
later Virgo detectors have observed 11 events until the end of 2018. These events correspond to
the mergers of binary black holes of tens of solar masses except for a single event correspond-
ing to the merger of binary neutron stars. The LIGO, Virgo and other detectors including KA-
GRA in Kamioka, Japan are expected to observe much more events with higher accuracy and
higher resolution in the near future so that we can study various aspects of sciences based on
improved statistical significance. Gravitational waves are now playing a crucial role not only
in astronomy and astrophysics but also in cosmology, gravitational theories and many other
fields of physics. In such an extremely stimulating and historical year, it is our great pleasure
to have hosted the 28th workshop on general relativity and gravitation in Japan (JGRG28). The
workshop was held at Tachikawa Memorial Hall on Ikebukuro campus of Rikkyo University
from the 5th to the 9th of November 2018.

Rikkyo University is a private university in Ikebukuro, Tokyo. It started as Rikkyo School
in 1874 in Tsukiji, Tokyo and has been located in Ikebukuro since 1918. It has 11 faculties and
20,000 undergraduate students and is a member of Tokyo 6 universities. Its College of Science
was founded in 1949 and has the longest history among those in private universities in Japan.

We invited outstanding lecturers, who are very active in the theoretical and observational
research fields, including Bernard J. Carr (Queen Mary University of London), Jonathan R. Gair
(University of Edinburgh), Mark B. Hindmarsh (University of Sussex), David F. Mota (Institute
for Theoretical Physics, University of Oslo), José M. M. Senovilla (University of Basque Coun-
try UPV/EHU), Alexei A. Starobinsky (Landau Institute for Theoretical Physics, Moscow), Hiro-
taka Takahashi (Nagaoka University of Technology), Jean-Philippe Uzan (Institut d’Astrophysique
de Paris), and Vincent Vennin (Paris U. VII, APC). Besides these 9 invited talks, 76 contribu-
tion talks and 54 poster presentations were given. The total number of participants was 220
including 25 participants from abroad.

The workshop was co-hosted by College of Science, Rikkyo University and Research Cen-
ter for Measurement in Advanced Science, Rikkyo University. The workshop was supported by
MEXT Grant-in-Aid for Scientific Research on Innovative Areas “New developments of grav-
ity theory research in gravitational wave physics”, JP17H06359, PI: Shinji Mukohyama, “Infla-
tionary Universe”, 1I5H05888, PI: Misao Sasaki, and MEXT-Supported Program for the Strate-
gic Research Foundation at Private Universities, 2014-2017 (S1411024), PI: Shunji Kitamoto.
The Local Orginizing Committee includes Tomohiro Harada (Rikkyo U.) [Chair], Takashi Hi-
ramatsu (Rikkyo U.), Takahisa Igata (Rikkyo U.), Tsutomu Kobayashi (Rikkyo U.), Takafumi
Kokubu (Rikkyo U.), Kazufumi Takahashi (Rikkyo U.), and Shuichiro Yokoyama (Rikkyo U.).

We would like to thank all the participants for their paticipation in and important contri-
butions to the JGRG28.

Tomohiro Harada (on behalf of the JGRG28 LOC)



Presentation Award

The JGRG presentation award program was established at the occasion of JGRG22 in 2012. This
year, we are pleased to announce the following six winners of the Outstanding Presentation
Award for their excellent presentations at JGRG28. The winners were selected by the selection
committee consisting of the JGRG28 SOC based on ballots of the participants.

Haruka Suzuki (Waseda University)
“The Effect of Kozai-Lidov Mechanism on the Period Shift of the Binary Neu-
tron Stars by Gravitational Waves” (Oral)

Keigo Shimada (Waseda University)
“Inflation in Metric-Affine Gravity” (Oral)

Masato Nozawa (YITP, Kyoto University
“On the uniqueness theorems of static black holes” (Oral)

Shi Pi (Kavli IPMU)

“Gravitational Waves Induced by non-Gaussian Scalar Perturbations” (Oral)

Priti Gupta (Waseda University)
“Gravitational Waves and Chaos” (Poster)

Takahisa Igata (Rikkyo University)
“Bright edge of a near extremal Kerr black hole shadow” (Poster)
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Monday 5th November
Invited lecture 10:15-11:00

[Chair: Takahiro Tanaka]

Hirotaka Takahashi
Nagaoka University of Technology

“Status of KAGRA and KAGRA data analysis (tentative)”
(40+10 min.)

[JGRG28 (2018) 110501]
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Status of KAGRA
and
KAGRA data analysis

Hirotaka Takahashi*
on behalf of the KAGRA collaboration
*Nagaoka University of Technology

KACRA
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KAGRA Project

3km laser interferometer
Underground site
Cryogenic mirror



KAGRA Collaboration KAGCRA

- Host Institute: ICRR, University of Tokyo
- Cooperative institutes: NAOJ, KEK, and many universities.
- Over 385 collaborators (June 2018)

KAGRA management structure 7=

Aug,2018

/'7 = .
KA/‘BRA F2F meeting @ OCU, May 2018 RERAH A

Nagaoka versity of Technology

Z

Brief history of KAGRA

- June 2010: KAGRA was funded by MEXT

- 2011: Tunnel excavation postponed for 1 year due to the
earthquake

- May 2012: Started the tunnel excavation
- March 2014: Finished the tunnel
- Nov. 2015: Laboratory area mostly done

NS e s

ag University of Technology



History and Roadmap of KAGRA

mma.mmmmmmmmmm

Project start
1

Tunnel excavation C———— :
iKAGRA E Spring 2019
operation [ | i —
bKAGRA Adv. vibration isolation, optics, ... [ L__/M
Cryogenic system L :
Commissioning & B I”
operation o ']
< Sapphire ¢
3 mirrors \ .
S (one cryo.) =
e - R, o
* & — > &
- /V - >
B (*) The configuration
IKAGRA bKAGRA in 2019 is still to be
decided referring the
milestones.
KAGRA master schedule:

- iIKAGRA (- Mar 2016): Room Temperature Michelson Interferometer
- bKAGRA phase-1 (- May 2018): Cryogenic Michelson Interferometer
- bKAGRA phase-2 (- 2019): Cryogenic FPM/RSE Interferometer

(full configuration)
-EKAGRA phase-3 (2019 - ): Commissioning and Observation run

KACRA  EBENE AL

aaaaaaa University of Technology

initial KAGRA (IKAGRA\) test run (1)

KAGRA Collaboration, PTEP 013F01-1-23 (2018). ,

- March 25 - 31 and April 12 - 25, 2016

Main purpose:
Demonstration of 3km interferometer operation

= ETMY

Configuration:
- 3 km Michelson at room temperature

- Low power laser
- Simplified suspension IMC
- At air pressure PR2

1064 nm

o 2W
KACRA GW Signal



IKAGRA test run (2)

KAGRA Collaboration, PTEP 013F01-1-23 (2018).

Sensitivity and duty cycle:
- Typical sensitivity: 3 x 10-15 Hz1/2 o

~6x 1016 HZ2 @ 100Hz {2 .
- Continuous operation with duty cycle : 85 — 90% **

5
FF

= SNE
Data transfer and data analysis:

- Stable online data transfer to permanent data storage site (ICRR-Kashiwa)
(K. Sakai et al., EFEHEISFRMEE B, Vol.J101-B No.9, pp.818-827 (2018).)

- Hardware signal injection test was performed 0

- CBC: Matched filter analysis (for 1-3 Msun) wr il

- Continuous wave: F-statistic analysis :ﬁ ik |
for 62 known pulars T f B

- Burst: Excess power analysis (all sky search, B Y vt e
targeted search for GRB events) paltieaha bttt
L — e.g. Analysis result of hardware injection signal

K A/GR A from Ueki-kun’s Master Thesis )\\ﬁ NE; Ejﬂ};ﬁ{,j*qﬁ %CZS.%

baseline KAGRA (bKAGRA)

Final goal : Operation of full configuration KAGRA with good
sensitivity

- bKAGRA phase-1 (- May 2018): Cryogenic Michelson Interferometer
- bKAGRA phase-2 (- 2019): Cryogenic FPM/RSE Interferometer

(full configuration)
- bKAGRA phase-3 (2019 - ): Commissioning and Observation run

mwzagmmmmmm:mm

Project start
Tunnel excavation C—

IKAGRA I Spring 2019
operation | |
bKAGRA Adv. vibration isolation, optics, ... | "P/— Fall 2019
Cryogenic system L .
Commissioning & il
« Sapphire <
i < mirrors )
- ¥ v
—

(*) The configuration

iIKAGRA bKAGRA  in 2019 is still to be

/
KAGRA decided referring the
B milestones.
il ’



bKAGRA phase-1 test run (1)

bKAGRA phase-1 test run: April 28 — May 6, 2018.
- Michelson IF with Cryogenic mirrors.
- One end mirror cooled down ~18 K.

- Many tests for the interferometer, calibration,
GW waveform injection, data transfer and

analysis pipeline etc. ey

- Analysis of the injection signal is going on.

DEVEN OLG  Type-A Type-A Noise  Noise WS""“’ Noise  cRy
(R[0T measure  Yend Xend injection injection & injection Extra EXP. Phase 2

iFZ0)] ments  TRF TRF  Center YEND '™ xgnp 1&2 !
NGl OLC TeeA L TeA o o sy O6 cay A i\ PD dark noise "\
QRged measure  Yend Xend oo &  measure Extra EXP. ot peey Yo S T R P 18
YO ments TR TeCtOn qpg  fniection injection woroee et a2 - | ) i \E
Parallel Data transfer, Pipeline tests, GIF e o P '°= h

| recuency 1
—

. P Fvs
KACRA EmBR 2 A%
= Nagaoka University of Technology

bKAGRA phase-1 test run (2)

100 ‘ .
all_locklist.txt ——
E 10 |]]
1S
9
0
K
0 10000 20000 30000 40000 50000

lock duration [s]

® The maximum of the lock duration was 40721 seconds ~ 11.3 hours.

-
KACRA | EERHREAL

University of Technology



Example of activity during bKAGRA phase-1 test run (1)

Hardware injection test
30 ¥107°

20
10
0
-10
-20

-30 w
30 X107

o0 E 30-30Msun waveformat 41.2 pc  Rinj(t)

10
0
-10
-20
-30

Timeseries data (> 40Hz ) (t) = hobs(t) + n(t)

amplitude

amplitude

%
§

X7/ ndt 1310/ 111

30 Matched filter output p(t) Constant 1626167
from GPS 1209498592 = o e

Sigma 0.8118 + 0.0065

20

SNR

10

0 tndetrstfhrivinthngissr ottt otr s gttt VL
6.4 6.6 68 time [s] 7.2 7.4

KACRA PN §: kA e waes

Example of activity during bKAGRA phase-1 test run (2)

Summary plots of the data transfer system
- to check status of data transfer system easily.

v the latency of data transfer

v amounts of received/sent data to/from a server and the remaining
space of disk

- Useful for checking the transfer system during the phase-|
operation.

-
KACRA | EARINEAS

iversity of Technology



Example of activity during bKAGRA phase-1 test run (3)

monitor example

sne R B

Monitor of Frame Data

- We prepared a monitor system of the latest T ‘
frame data on DMG data transfer. Al A r;"\U‘"-u;:-:
- The latest data will be displayed and updated - 1 time series
automatically. SRR
- This system is installed in Kamioka and OCU 5 PSD

server. It will be also installed in Kashiwa EE ey

server.

We are planning to provide the GUI application.

/

KACR

baseline KAGRA (bKAGRA)

Final goal : Operation of full configuration KAGRA with good
sensitivity
- bKAGRA phase-1 (- May 2018): Cryogenic Michelson Interferometer
- bKAGRA phase-2 (- 2019): Cryogenic FPM/RSE Interferometer

(full configuration)
- bKAGRA phase-3 (2019 - ): Commissioning and Observation run

mmagmmmmmmmmm

Project start
Tunnel excavation C—
iIKAGRA ] Spring 2019
operation |
bKAGRA Adbv. vibration isolation, optics; ... [ "P’/‘ Fall 2019
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v P R, o
" - =">
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~ International

Sapphire mirrors FLAE A

2018.8.21 oiBsaRRR (x

ry7 BE-BR EYRR v-syh Fo/0Y- ER-FIY7 RK-Y
@fza [Mu#H-57 G

BAREES "H<5) . DEBOSFEEAR KX
BEaHR
2018/8/21 12:53

All 4 sapphire mirrors are ready to
install.

3 of them have been installed.

These are suspended by Type-A
suspension and Cryo-Payload.

ORE OE BOR @ & ¥ f zot-
RRAETHERRARAG SRLORREESEBRTENREES 1<) ODRE
BEBBABRDATY 7 74 7 OHNTR, BRO 4BREDSRARF ¢/ (FER
i) TABRARS NI, H<SRMERIL (RERRET) ORTICHS, 1703
OO LFHORR/ M TRTL—f—HEEES ¢, ENRCLZEZROERICDY
HROHHEREREE TRET %,

FRROBENRERHIKRIC 3AH DD I <5 IEEE
HBEMEHFAL TS, FHEBBONL—F—HERS
SEBY 77 A7HR. BERCHPT LT BAOREIC
BEEORICLZRBENZ B,
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Two mirrors cooled down to 20K.

o
QoK

DS ERKOSEFDERTNIL, ENUBEOFAD g e
SERLTNE0N, &DEVRETRECRE LY
. ENBTTHERDRNEOFSBO—RORBIBEHFINT S, RATHEH

ORBERYRIE 'RFNIEREI0A b ERIFEBRRAICSMULIL EBELTVWS,
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The Nikkei (Japan Economical Newspaper)

Installation of Mirrors and Cryo-Payload

Type A suspension

Pre-isolator §

Cryo-Payload

2nd Floor

Filter1
Bore Hole

Filter2

Filter3
1st Floor
Cryo-payload

Bottom Filter
Payload ¢
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Calibration

Photon calibrator is preparing for
Phase-2 and after.

Periscope

Camera mirror

Receiver module

P

oo

AN /A

Y. Periscope}
, 2
3 &,

[Z

Data sharing with LIGO and Virgo

Bulk data sharing

hyades-01/02

- preparing LDR (LIGO Data Replicator) protocol. :

aldebaran

perseus-02

Low latency h(t) MJ
- 4sec frame is also preparing. |
- We achieved the shared memory J/ »
connection with LIGO/Virgo - \\
in June, 2018. Oy | =aEE

(Thanks for the support by LIGO/Virgo colleagues.) o wmipn

- KAGRA calibration group is now installing { \WL/J

low latency h(t) generator. R——

Technical items for the data sharing will be fully ready soon.
KACRA NG EBEmREAS
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LIGO/Virgo joint observation plan

/i E ” Living Rev Relativ (2018) 21:3
Scenarlo Paper https://doi.org/10.1007/s41114-018-0012-9

==Early ==Mid ==l ate  =smDesign
60-80  60-100 120-170 190
Mpc Mpc Mpc Mpc
LGOo & [ & .
/ .
| 25-30 65-85 65-115 125
Mpc Mpc Mpc Mpc
Virg oz & W
' 25-40 40-140 140
10-30 Mee (M i
wolk 1|1 -
1 1 1 1 1
2017 2018 | 2019 2020 2021 2022 2023
* “We try to catch up with 03"
today
/—w .
RE#EMRNPEAZE

Nagaoka University of Technology

JGRG28 @ Rikkyo University

2018/11/5

Installation and commissioning toward
phase-2 and phase-3

. Checkpoint at the end of September
feedback from PAB If either ITMY, high power laser or green lock system is not available at this point, go FPMI.
(e Ad el Checkpoint at the end of December
Committee). . . .
Thanks for PAB If any serious delay or troubles in X-arm commissioning would be found, go FPMI
members. | | Checkpoint at the end of March
DRFPMI will be selected if all the elements are available, otherwise ASC

' i A4 (alignr‘nent sensing contro!) of FPMI is ;rroceedred. ‘

2018
Aug Sep Oct Nov Dec Jan Feb Mar Apr ‘ May Jun | Jul Aug Sep Oct Nov Dec Jan
0, RGO Observatio
|
o Original Plan
- t
Yearm DRFPMI (RSE) pos DRFPMI (R
Xend com. ETMX com.
ETMY voarm | FPMI ‘
ITMY com. B3 0 Pla
Laser mode cleaner
post com. P
data analysis rehearsal Data Sharing AGRA 0 go

Steps toward O3. We have two plans: RSE or FPMI. We anyway will join the observation no later than October 2019.
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Data Analysis Activities

IR R

GWsearch  CBC (KAGALI) KAGALI  KAGALI Management
ipeline = Analysis of HW injection dat
= CBC (gstlal-inspiral) S e ectonde
Developme CBC-PE (BNS tidal)
Burst f
nto EOB waveforms
cw analysis QNM analysis
method, .
Radiomet i
v f\?:’::: of Auto Regressive model
CBC (GPU acceralation) R HHT
Cosmic string NHA
PE pipeline  CBC MCMC (KAGALI) Others Commissioning tools
CBC Nested Samping Sensitivity Threshold for 03
KACGRA EMEHLAY
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On the KAGRA's sensitivity threshold at O3

by Tagoshi-san, Haino-san, Narikawa-san and Morisaki-san

- Installation of KAGRA is ongoing

- We want to perform an observation run during the period of
LIGO/Virgo O3 run, and want to join the international network of
LIGO/Nirgo.

- How much improvement on the measurement accuracy of CBC
signals
- we would have for various possible sensitivities of KAGRA during
O3 period.

« In this talk:
v We show some results for source localization accuracy evaluated by Fisher matrix.
v We show the case when KAGRA's sensitivity is 10Mpc as BNS range.

(The possibility of 10Mpc sensitivity was first pointed out by Kipp Cannon.)

KACRA W ERRAREAS

gaoka University of Technology



Noise Curves

Enomoto-san and Michimura-san made 3 noise curves of KAGRA with
BNS range of 1.3Mpc, 9.6Mpc, and 42Mpc.

We interpolate these curves to obtain noise curves for other ranges.
For LIGO/Virgo, LIGO: 120Mpc, Virgo 60Mpc (taken from

arXiv:1304.0670v6) (Living Reviews in Relativity; 21:3; 2018)
Possible bKAQRA phase-2 noise curve

10—17

1Mpc
—5Mpc — ; . . . L
— 10Mpc " Various possibjlities of KAGRA's sensitivity

—20Mpc
—-=-aVirgo EarlyHighMidLow(60Mpc) | |
—alLIGO MidHighLateLow(120Mpc)

N
1078
210710
G
E 10-20 1 KAGRA(1Mpc)
= KAGRA(5Mpc)
*g 102! 4 KAGRA(10Mpc)
o3 KAGRA(20Mpc)
ﬂ;) 1022 ~1Virgo(60Mpc)
8 LIGO(120Mpc)
.23 |
210
Z
1024 ‘ ‘
G 10’ 102 108 : 4
KA/,/ F [Hz] %:@a%ﬁlﬁ%cﬁl?

Setup

Source
Binary Neutron stars at 40Mpc (like GW170817)
Uniform distribution for sky location, inclination, polarization
5000 realizations

Sensitivity
BNS range (average observable distance with SNR=8):
KAGRA: 10Mpc
LIGO: 120Mpc (MidHighLateLow)
Virgo: 60Mpc (EarlyHighMidLow)

Method
Fisher matrix

KACRA ( ERRHREAS
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Source localization accuracy (1)

LHV

1000 |

Direction error (1.4,1.4)Msolar

500

0

LHV]
'mean=33.2 medlan 125 deg

_IlIIIIIIIIIIIIIlI--___
0 1 2

3

1000

500t

0

——]
[LHVK
mean=21.8 medlan 10.5 deg

3

..
0 1 2

Log[AQ[deg?]]

KACRA

4 detectors BRI B2 A

oooooooooooooooooooooooooooo

Source localization accuracy (2)

All cases

Direction error (1.4,1.4)Msolar Direction error (1.4,1.4)Msolar

1000

Only pyagra > 2 cases

500

500 -

1000

LHV ‘ ‘ >
mean=33.2 median=12.5 deg

median=10.3 de
_I.IIIIIIIIIIIII..I- _____ | oL | lI.-—_
0 1 2

LHV ( only PKAGRA > 2 cases)

Log[AQ[deg ]]
500

LHVK

500 1

mean=21.8 medlan 10.5 deg

_-llIIIIIIIIIIIIIlII-__
0 1 2

Log[AQ[deg?]] LoglAQ[deg?]

LHVK (only pKAGRA >2 cases)

median=7.8 de
III-___

3

O

AQLHV . 10.5

=0.84

AQrpvi 125
KACRA

AQruv],>s 18
AQLHVK‘pZQ 10.3
RE M RZERE

.............................

= 0.76




Source localization accuracy (3)

3 detectors including KAGRA
3 detectors Only pyacra > 2 cases

Direction error (1.4,1.4)Msolar Direction error (1.4,1.4)Msolar (only pKAGRA >2)

1000 : 500
LHK
Im!ﬂ 73.8 median=85.7 deg? dSian-sa deg”
500 - - b
0 . _llIIIIIIIIIIIIlI- _____ ‘ - I.--__
0 1 2 3 0
1000 | 500
LVK LV
£00 7Im1|=145.3 median=54.4 deg? | PdSian-233 deg”
0 _--IlllllllllllI--___, -.III.- ‘
0 1 2 3 O 3
1000 [— 500 ﬁ ‘
500l mean=175.2 median=62.3 deg | median 233—deL
_--llIIIIIIIIIIlI- _____ III
0 = 0 -. .- ‘
0 1 2 3
Log[AQ[deg ]] LoglAQ[deg?]]
[y
KACRA GW170817 case: AQ ~ 30 deg” ) EMEMMEAS

Fraction of number of events with pxagra > 2

Source: BNS (1.4, 1.4) Msolar at 40Mpc

BNSRange | 20 15 10 & 8 7 6 5
[Mpc]

Fraction of

B me | 71.8% | 54.7% 28.5% | 21.0% 14.6% 94% 4% | 0.8%

source

Horizon
distance

with SNR=2 | 180 135 90 81 72 63 54 45

[Mpc]

KAGRA sensitivity : 10Mpc (for BNS range)

28.5 % are pkagra > 2

-
KACRA NG EBEmREAS
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On the KAGRA's sensitivity threshold at O3

* If BNS range of KAGRA is 10Mpc, for BNS sources at 40Mpc, the median of the
source localization accuracy for the LHVK case is about 10% better than that of
LHV.

* If BNS range of KAGRA is 10Mpc, about 28% of events can be detected by
KAGRA with SNR > 2. In these cases, the improvement of the localization
accuracy from LHV to LHVK becomes larger (about 24%).

* Above results are derived with Fisher matrix. We did not explain in this talk
Nested sampling code produces slightly different results quantitatively, but
overall feature is similar to that of Fisher matrix.

* For some limited number of specific cases, the results are confirmed by
LALInference.

* Based on these results, in the KAGRA's collaboration meeting, we agreed that
we want to realize the sensitivity of at least 10 Mpc for BNS range.

* If that sensitivity is realized, we would be able to contribute to the

improvement of localization accuracy slightly even if the improvement is not
very large.

KA/éRjA B RE A%

Nagaoka University of Technology

Data Analysis Activities

I S

GW search  CBC (KAGALI) KAGALI KAGALI Management
ipeline - Analysis of HW injection dat
PP CBC (gstlal-inspiral) Phase-1 e et

Developme CBC-PE (BNS tidal)

Burst f
nto EOB waveforms

tw analysis QNM analysis
method,

Radiomet i

L f\? 2';’:': o Auto Regressive model
CBC (GPU acceralation
( ) data,etc  HHT
Cosmic string NHA
PE pipeline  CBC MCMC (KAGALI) Others Commissioning tools
CBC Nested Samping Sensitivity Threshold for O3

iversity of Technology
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QNM Analysis

Mock data challenge for finding ringdown gravitational waves

Hiroyuki Nakano,'»* Tatsuya Narikawa,?  Ken’ichi Ohara,* ¥ Kazuki Sakai,® § Hisa-aki Shinkai,% ¥ Hirotaka
Takahashi,” 8 ** Takahiro Tanaka,® T Nami Uchikata,> % # Shun Yamamoto,® and Takahiro Yamamoto®: §§

. Standard Matched-filtering method

. Improved Matched-filtering method

. Hilbert-Huang transformation method

. Auto-Regressive method

. Neural network method

modified ringdown signals from GR
with LIGO detector’s noise

ga b W N =

A5 o
P S o5 2 P <
10 P P 1 e S — = -
Pl = = A
— Al e P p 0 iy
W o L ¥ ,,
o -,
= v{ ~ P 5 6 7 8 9 10 1 1213 1 15
-
S -
& P
v Iy -
o
Tz g4 s 6 7 8 9 b1l 23 WIS )
Ja—A& ® |mproved matched filter : \smpmlved mshtc:f;d"lrlter
x7 ¥ Simple matched filter iz o Simple Fratekied fili;
-os A Neural network A Neurs .
/ + Auto-regression 3 Gm regression
" HHT

FIG. 1: Real part for Set A FIG. 3: Imaginary part for Set A

KAGRA PA21:Tanaka-san’s poster .

& Nagaoka University of Technology
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Data Analysis Activities

I . CC—

GW search  CBC (KAGALI) KAGALI KAGALI Management
ipeline = Analysis of HW injection dat
pip CBC (gstlak-inspiral) Phase-1 nalysis o injection data
Developme CBC-PE (BNS tidal)
Bt nt of EOB waveforms
cw analysis QNM analysis
method, v
Radiomet i
a AnBysts ot Auto Regressive model
CBC (GPU acceralation) LV open
data, etc | HHT
Cosmic string NHA
PE pipeline CBCMCMC (KAGALI Others Commissioning tools
CBC Nested Samping Sensitivity Threshold for O3
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Analysis of GWSs from Core Collapse
Supernovae with Hilbert-Huang Transform

We consider gravitational waves from core collapse
supernovae obtained by 3D numerical simulation (T. Kuroda,
K. Kotake, and T. Takiwaki, ApdJ, 827, L14 (2016)).

This is one of the
waveform and its
time-frequency map
made with the short-
time Fourier transform.

A, [cm]

N.l:
I

~235 ~-23 ~225

-24

KACRA

Analysis of GWSs from Core Collapse
Supernovae with Hilbert-Huang Transform

There are mainly two components in the time-frequency map;

The high-frequency component (A) is originated from the g-mode
oscillation of the proto-neutron star.

The low-frequency one (B) is considered to be associated with
the standing accretion shock instability (SASI) activities.

.............................



Analysis of GWSs from Core Collapse
Supernovae with Hilbert-Huang Transform

1 - L le-20
=
0.5 ~0.5
=
>
= g le-21
[P
0.2 20.2
o'
(0]
0.1 Ho.1
I . YRR :T. : le-22
0 100 200 300 100 200 300
Too (ms)

Time [ms]

The detailed discussion can be found in Hiranuma-kun's poster (PA3) and
Watanabe-kun’s poster (PB5)

( EBEHNEAS
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Re-organize data analysis group in KAGRA

We reorganized the New organization structure of KAGRA

data analysis group “
KSC

in KAGRA.

. Exe:fl:ltive KSC board \
Data analysis group Sl

moves under the System |
KSC (KAGRA i e R e
Scientific Congress). (or Counci)

Working groups are
organized as
corresponding to
LV data analysis
groups for near
future cooperation.
KACRA | EREMmREAS
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Data analysis related talks

l Monday, November 5

11:00 - 12:15 Session 1A

[T1*] Nami Uchikata Niigata University

Analysis of echoes by a new template

[T2*] Takahiro Yamamoto Kyoto University

Analysis of Ringdown Gravitational Wave by Neural Network

[T3*] Hiroki Takeda University of Tokyo

Polarization test of gravitational waves from compact binary coalescences

[T4*] Haruka Suzuki  Waseda University

The Effect of Kozai-Lidov Mechanism on the Period Shift of the Binary Neutron Stars by Gravitational VWaves
[T5*] Asuka lto  Kobe University

A strategy for detecting the bispectrum of stochastic gravitational waves

I Wednesday, November 7
9:00 - 9:45 Invited Talk 5 (Chair: H. Tagoshi)

Jonathan Gair University of Edinburgh
Science with the Laser Interferometer Space Antenna )\\6 ?Iﬁgjuﬁﬁ‘ﬁ Sy =2

Summary

KAGRA achieved phase-1 test run in this April-May.
3km Michelson Interferometer with cryogenic mirrors.

KAGRA is under the installation and commissioning
for phase-2.
In 2019, KAGRA would like to join O3 with full configuration.

KAGRA master schedule:
- iIKAGRA (- Mar 2016): Room Temperature Michelson Interferometer
- bKAGRA phase-1 (- May 2018): Cryogenic Michelson Interferometer
- bKAGRA phase-2 (- 2019): Cryogenic FPM/RSE Interferometer

(full configuration)
- bKAGRA phase-3 (2019 - ): Commissioning and Observation run

{ ERRAHEAS

University of Technology

KACRA




Session S1A 11:00-12:15

[Chair: Takahiro Tanaka]

Nami Uchikata
Niigata University

“Analysis of echoes by a new template”
(10+5 min.)

[JGRG28 (2018) 110502]
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Analysis of echoes
by a new template

Nami Uchikata (Niigata Univ.)

Takahiro Tanaka (Kyoto Univ.),
Hiroyuki Nakano (Ryukoku Univ.), Tatsuya Narikawa (Kyoto Univ.),
Norichika Sago (Kyushu Univ.), and Hideyuki Tagoshi (ICRR)

Exotic Compact Objects

Five binary black hole merger events were detected by LIGO and Virgo.
These events are consistent with black holes but do not exclude

exotic compact objects.

4

Theoretical compact object models alternative to black holes

Ex) Boson stars, gravastars, wormholes

As compact as black holes, but do not possess the event horizon.

Cannot distinguish from black holes by electromagnetic observations.



How to distinguish ECOs from black holes?

» Gravitational waves

- Quadrupole moment (rotation Q, tidal force A)
Cardoso et al. (2016)

Black holes: Q = 1, A = 0 (dimensionless) 05T T T T T T T
N 0.10F
- Oscillation modes o
. "E ingoingat hoizon /'l T
Black holes: quasinormal modes DS
- "Echoes” after mergers 0105 ‘
£ 0.05E o0
(Cardoso et al . (2016)) o 'Wi’
015" \’ ——— 5
E ce ntrifugal barri star Ilke ECO
0.10F 3
* Tentative evidence of echoes from . \ _— / \\9°
0.00E =

: \ . -
LIGO events was reported by Abedi et al. (2017) 400 20 40" 0 o 1020 30 40 50

Gravitational wave echoes from binary black hole
mergers

Abedi et al. (2017) T \\o
* Reflection membrane near the event ] ed (Plecro

horizon produced by quantum effects. s :

,VA techo
: : I 50

* Merger-ringdown waveform will be - ;"x"\'c;xeo

iteratively reflected. . tmerger
* Observable as “echoes”. \ / ¢

Abedi et al. (2017)



Evidence of echoes?

Abedi et al. (2017)

* Tentative evidence 2.50 significance level. 32 seconds data were
used.

(GW150914, GW151226, LVT151012)

Westerweck et al. (2018) (AEI group)

* Re-analyse echo-signals using the same template as Abedi et al..
(GW150914, GW151226, LVT151012, GW170104)

* Using 4096 seconds of data for background estimation, the
significance level decreases.

Templates of echoes

Abedi et al. (2017) jo-tt

1 —
---- |- techo T Emierger -+ e

hur(t) = 0(to)himr(t)
~

seed waveform

N
- ! '
h(f) = z Vn_l(—l)nhMR(f) e—meAtechO(n—1)
n=1

Template with echoes
o

Parameters

0.‘0 OiZ 0i4 OiG 018 1.0
Cutoff parameter: t

Reflection rate: y <= Less physical?

Abedi et al. (2017
Interval of echoes: Atqcpo | )

(Can be determined theoretically.)



Modification of template

* Spacetime outside the membrane is exactly Kerr spacetime.

* Reflection rate can be obtained by solving linear perturbation of Kerr
spacetime. (Nakano et al. 2017)

* In this study, we reanalyze echo signals by new templates whose reflection
rate depends on frequency.

New echo templates

Nakano et al. (2017)
reflection rate

|

N
R = ) (Rr(@ MO 1) g (1) 2t
n=1

seed waveform

Parameters

(Cutoff parameter: ¢, )

Black hole spin and mass: (a, M)
Interval of echoes: At p,



Method of analysis 1

L Atoepo forx =1

le—22

Searching events
(Abedi et al. (2017), Westerweck et al. (2018))
* Analyze the data set around

each binary black hole event.

» Search the maximum

Template with echoes

signal-to-noise ratio (SNR)

in the interval of

Peak of the first echo |  |Peak of the binary black hole

t —t merger
0.99 < x = -scho—tmerger 4 9
techo

Method of analysis 2

Background estimation (Westerweck et al. (2018))
* Perform the same analysis as the above for the rest of 4096 second-data.

* Count the number of data set whose SNR is above that of the event data
set.

* p-value : number of data set that have higher SNR / number of total data
set

st | [ [ feveet | | | | | |

4096 [s] (more than 200 data set)



Results (Preliminary)

Template

* Black hole spin and mass is fixed. R¢(a, M, f) = R¢(f)

* Vary At,.noaround the theoretical values. (Abedi et al. (2017))
* Length : 16 seconds

Data

+ Of 4096 seconds LIGO open data for 3 events (GW150914, GW151226,
LVT151012) (https://www.gw-openscience.org/events/)

+ Sampling frequency: 4096Hz

SNR data] ltemplate
+ Matched filtering method p=(x,5)=4Re (/0 x(j;i(f)(f)df>

noise power spectrum 1

Results (Preliminary)

p-values
reflection rate | GW150914 |GW151226 |LVT151012 | Total
(Fisher's
method)
Westerweck  parameter 0.199 0.414 0.056
et al. (2018)
Our result Depends on 0.727 0.826 0.285 0.74
frequency

In general, critical p-value is 0.05 or 0.01.
Higher p-value = consistent with noise.

Excluding LVT151012 makes p-value much higher. =Detected echo signals are consistent
with the pure noise null hypothesis.(Westerweck et al. (2018))



Summary

* We have analyzed echo signals from LIGO open data.

* We use new templates whose reflection rate is obtained by solving black
hole perturbation.

* We find no evidence for echoes from our template. (LVT151012 gives the
lowest p-value.)

Future works

* Reflection rate and At,p, depend on black hole spin and mass (a, M).
* We should vary (a, M) .

* Analyze O2 events.



Takahiro Yamamoto
Kyoto University

“Analysis of Ringdown Gravitational Wave by Neural Network”
(10+5 min.)

[JGRG28 (2018) 110503]
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Analysis of
ringdown gravitational wave
by neural network

Takahiro Yamamoto, Takahiro Tanaka
(Kyoto Univ.)

Gravitational Wave
Physics and Astrcnomy

encdcd JGRG28

2018.11.05

Binary BH merger
™ &® %\"‘} //.)/
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insp’ml merger ”'"J‘*W“

° "
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Black hole ringdown

. Ringdown is emitted when black hole is perturbed.

. Occupied with BH quasi-normal modes (QNMs)

h(t) = Aexp[—27f;(t — tog)] cos[2m f,.(t — to) — o]
fry fi: QNM frequency
100 | In general relativity,
o | | QNM frequency is determined
I by BH mass and spin.

0.50

0.25

-0.25 ( | \‘
|| u‘ ’ ¢o = 0.0 ¢ In general, ringdown is the linear combination of

- “,' to = 0.0[sec] various modes. Usually, we focus on (I,m)=(2,2) mode

-001  0.00 o.o%ime[s?.oz 0.03 004 which has the longest damping time.

-0.50

Matched Filter(MF)

Calculate the correlation (SNR) between signal and templates.

The parameter maximizing SNR is the estimated value.

[ RADEf) + h(H)F(F)
SNR = 2/0 Sn(f) df

Ringdown have 5 parameters { A fr. f1, to, ¢o}

The amplitude A can be replaced by the value of SNR.

The phase @ can be optimized analytically.

Fixing the start time %o , search the QNM frequency {fR, f]}



e.g. GW150914

IMR: using inspiral-merger-ringdown waveform

If tgis around coalescence time,

estimation is biased by non-linearity.

If tois late time, detector noise dominate.

h(t) = Aexp[—2m f;(t — to)] cos[2m f;-(t — to) — o]
fry fi: QNM frequency

4= IMR (1=2,m=2,n=0)

12
-
g
<10}
g
= gl s, 00w,

%
g SO
8 6l Sl L%
ke Va & [RNRN
o ‘ ' M
. o
2 . BRI
, ’ -

(Zy S “30ms-- I
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0

200 220 40 260 280

frequency (Hz)
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T | |

300

LIGO Scientific Collaboration and Virgo Collaboration (2016)

Mock Data Challenge

. Investigate the optimal method for analysis of ringdown

- Mockdata is based on the GR template and modified only
ringdown part. We estimate QNM frequency of this

modified waveform.

- We prepare 2 types of modification (A, B).

- For each templates (A, B), generate 15 signals. b are SNR=60,

another 5 are SNR=30 and the last 5 are SNR=20. These 30

signals is used as mockdata.

ref) poster: Testing gravity theories using gravitational waves (T. Tanaka)



Mock Data Challenge

. Comparing b methods,

- Hilbert-Huang transformation (Oohara, Sakai, Takahashi)
- Auto-regressive model(Shinkai, Yamamoto)

- plain MF (Tanaka, Uchikata)

- improved MF (Tanaka)

- neural network

. Here, | will talk about neural network method, compare
with improved MF,

ref) poster: Testing gravity theories using gravitational waves (T. Tanaka)

Improved MF

Calculate the correlation (SNR) between signal and templates.

The parameter maximizing SNR is the estimated value.

[ RADEf) + h(H)F(F)
SNR = 2/0 Sn(f) df

Modification :
- Use the template with modification A including the inspiral part
- Filter the template using the window function before calculate SNR

1
1+ e—50(t—tc)wIGR

W (t) =




Neural Network (NN)

. Find the (highly-nonlinear) relation
between inputs and labels.

output = f(input; W)

input|

output

. Prepare the dataset ( the pairs of inputs and labels) f3r

training.

. Evaluate the error between labels and outputs for adjusting

the parameter W

J(label, output) = [label — output|?

Convolutional NN

Convolutional Layer

L H
/ l
2y =) > ik + bip

=1 p=1

Using “filter” to extract the local patterns
(L: size of input from previous layer. H: size of filter)

activation map

__—— 32x32x3 image
. 5x5x3 filter

28

convolve (slide) over all
spatial locations

site)
https://qiita.com/icoxfog417/items/5fd55fad152231d706¢c2

layer |dimension
Input | (256, 2)
Conv | (256, 64)
Pooling| (128, 64)
ReLU | (128, 64)
Conv |(128, 128)
Pooling| (64, 128)
ReLU | (64, 128)
Conv | (64, 256)
Pooling| (32, 256)
ReLU | (32, 256)
Conv | (32, 512)
ReLU | (32, 512)
Flatten| 32x512
Dense 256
ReLU 256
Dense 2
Output 2




Convolutional NN

Pooling Layer

/
k=1,....p

- Improve the validity against the small shift
- Suppress the computational cost

Single depth slice

* 11124
max pool with 2x2 filters
5|16 | 7|8 and stride 2 6 [ 8
3|12|1]0 3|4
1123 | 4
site: y

https://qiita.com/icoxfog417/items/5fd55fad152231d706c2

Convolutional NN

Dense layer

(=1

Affine transform a Z wf;)zﬁl—l) -+ ’w(l)

Nonlinear transformation

2 = n(al") = max(0,al"”) (ReLL)

layer |dimension
Input | (256, 2)
Conv | (256, 64)
Pooling| (128, 64)
ReLU | (128, 64)
Conv (128, 128)
Pooling| (64, 128)
ReLU | (64, 128)
Conv | (64, 256)
Pooling| (32, 256)
ReLU | (32, 256)
Conv | (32, 512)
ReLU | (32, 512)
Flatten| 32x512
Dense 256
ReLU 256
Dense 2
Output 2
layer |dimension
Input | (256, 2)
Conv | (256, 64)
Pooling| (128, 64)
ReLU | (128, 64)
Conv (128, 128)
Pooling| (64, 128)
ReLU | (64, 128)
Conv | (64, 256)
Pooling| (32, 256)
ReLU | (32, 256)
Conv | (32, 512)
ReLU | (32, 512)
Flatten| 32x512
Dense 256
ReLLU 256
Dense 2
Output 2




Dataset

. Training data consists of 441 templates A. They have various

QNM frequencies covering enough area.

- Adding noise to the templates, the total number of signal is

8820.

- The noise amplitudes are adjusted so that their SNR are same

as the testdata.

. Pick up 256 data points starting from the merger time.

. Use the plus and cross modes.

Detall

neural network and machine
- optimization algorithm: Adam

- library: Keras with TensorFlow backend

- GPU GeForce 1080 Ti

(@Nagaoka University of Technology)

Keras

QF“

Tensor

(X, y):

x is the size of input
y is the number of channels

layer

dimension

Input
Conv
Pooling
ReLU
Conv
Pooling
ReLU
Conv
Pooling
ReLU
Conv
ReLLU
Flatten
Dense
ReLU
Dense
Output

(256, 2)
256, 64

N TN N
—
[\}
[0¢)
(@)
.
N N N

32x512
256
256
2
2



Results for data A

relative error [%]

10.0 1

7.5

—2.51

—5.01

real part
[
SNR=60 ® SNR=20
[
L ,
@]
® ® ®
é SNR=30 ®
o
3 7 9 11 13 15
data

For real part, CNN can estimate less than 10% error.

Results for data A

relative error [%]

40 1

30 1

Imaginary part

SNR=60

SNR=30

SNR=20

7
data

9

11

13 15

The smaller SNR is, the larger the error of the imaginary part.



Results for data B

15

relative error [%]

-101
-151

=25

10

real part
Q
o
¢ ot SNR=20
[©]
@
°
O
° °
SNR=60 SNR=30 o
O
3 7 9 11 13 15
data

Error is about 20%, larger than for data A.

Results for data B

60

relative error [%]

imaginary part

40 1

20 1

()
SNR=20
SNR=60 SNR=30 s
Q
® (]
o]
o
S ,
o @ ® o
3 7 9 11 13 15
data

The errors become larger. For SNR~20, the error is ~60%.



Results

We evaluate the log error to suppress the variation of the error.

N .
1 estimate N estimate \ 2
510g Q = N Z (10g Qétrue > O(Q) = []if Z (10g C2Z)true > ]

dlogwr(%) | o(wr)(%)  dlogwr(%) | o(wr)(%)

NN 069 475 3.36 16.67
MF 128 358 220 31.76

NN 450 12.08 -13.48 29.34

B """""""""""""""""" I
iIMF -0.79 11.65 15.51 31.35

Conclusion

. For both of templates, CNN have the comparable
ability to the improved matched filtering.

. For now, NN can output the point value. We need to
Investigate the method how NN estimate the
prediction error.

- We will implement the hierarchical training* so that
NN can be applied to the signal having any SNR.
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Abstract

* Observation of gravitational waves(GW) from compact binary coalescences(CBC)

enabled some experimental studies to probe into the nature of space-time structure.

* Test of polarizations of GW i1s a powerful tool for pursuing the nature of gravity.

+ We study separablity of polarization modes for inspiral GW from CBC and

degeneracies among parameters with third-generation(3G) GW detectors.

* A single 3G detector could be used to test polarization of GW due to the effect of
the Earth’s rotation.



1. Polarization of Gravitational Wave

Polarization mode of GW [Generic metric theory allows 6 polarizations.

hap(2.Q) = hA(t)egb(Q)’ A=4+,X,x,y,b,1

Tensor
y y X
Plus 1. O . O —>
Cross i X f:. \/ —X z
Vector \ ,/
Vector x eg 5= éx ® é: + é: ® 63_\., (a) plus mode (c) breathing mode (e) vector-x mode
y o X ory y
Vectory [e), = é&; e, +e,®é :/_,_\\ s ey
Scalar [ ". L x | g z
. H - A A A A . s
breathlng eab — e.\' ® e.\' + e\' ® e_\“ \\ . / \_/
. . A A (b) cross mode (d) longitudinal mode () vector-y mode
longitudinal — ’ ’
g ey = V28, ® &, A. Nishizawa et al., Physical Review D 79, 082002 (2009).




Test of Gravity Theory with GW polarization

modes allowed in a theoretical model

Theory Plus Cross

General
Relativity

Vector x

vectory breathing longitudinal

Kaluza-Klein
theory

v

v

ve

Brans-Dicke
theory

v

f(R) theory

v

Bimetric theory

AN NA NE NN
ANANA NA NN

v

v

ANANAN

v

Search for polarization modes can be used to test theories of gravity.

Separate and Reconstruct polarization modes model independently from detector signal

GW interferometric signal

Detector Signal hi (t, Q) IFIA(Q)hA (t)

Antenna pattern functions

F (€)= diPel, (€).

detector response to GW

Detector Tensor

d; =

N | =

GW amplitude for polarization mode A

Plus

Vector y

(i @ ity — v @ ¥y), %

Vector X
_ Breathing Longitudinal
W=
= .

‘ Antisymmetric port: Polarization angle yp = 0 J




Reconstruction of GW polarization

In principle, (Num. of polarization modes) = (Num. of detectors)

h, = F{h, + Fhy + FPh,
h, = F;h, + F;h + FPh,
hy = F;h, + Fh, + FPh,
h, h, Ft FOFp

<h2> =F (hx> F=|F+ Ff F?

h, 9 h,
Reconstruction (hx ) =F <h2 )
(Inverse Problem) \h, h

GW Detector network expansion — More polarization modes can be probed.

¢.g. The number of detector =3,
modes = (+, X, b)

Polarization test with GW from CBC

Theory Data analysis Observation

Burst / PN x
Chirp A X A
Stochastic / / /
Continuous / / x

GW waveforms from CBC have source model parameters,
which determine the frequency evolution in time and are correlated each other.

How do waveforms of CBC affect separation of GW polarization mode?
[separability, correlations and degeneracies among parameters |



' PhysRevD.98.022008
Our previous work (arXiv:1806.02182)

In each polarization model, parameter estimation errors and correlations between
parameters for BBHs or BNSs with network of three or four detectors.

. 1.0 - - -

e.g. Tensor(+,x) scalar(dipole) model 5 ;o[ BBA-HIVK _=— |

model parameters in GR E 0.6 i ]

PRI C 0.4} g A BBH-HLV ]

N Q z z :
]’l] — {gT.] +AS .g;g].].}:l;lGB, g 02_ BNS-HLV‘
i 0.0 —== 0 1 2
. . . 10° 10° 10 10 10
polarization amplitude parameter AA
< 51

* Two conditions for separation of polarization modes;

(1) The same number of detectors as or more than number of polarization modes.
(i1) Significant SNR and the long duration of the signal.

2. Polarization test with third-generation
gravitational wave detector



Third-generation gravitational-wave detector (3G GW detector)

1072 — = | |Einstein Telescope (ET)

- — .| ((ET-B, ET-D)
_ * three V-shaped MM
E 10_22 ET_B ) ) B e e e A
= Michelson interferometer flow =1 Hz
£ 10-23] * ETD is better at sub-10 Hz band than ETB.
G ET-D

3 528 CE Cosmic Explorer (CE)

* single L-shaped
10—25
10° 10t 102 10° 10*  Michelson interferometer
frequency (Hz) * better above 8 Hz

Jfiow =5 Hz
3G detectors would have extended sensitivity at lower frequencies than 2G detectors.
11

Difference between 2G and 3G detector

Earth’s rotational effect need to be considered.

Waveforms of GW(stationary phase approximation)

B(f) = AF-T/0cI() {Zd(w)} e—ilon (LoD (L)

relationship between time to merger and GW frequency

_ NSNS(1.4-1.4), fiy, = 10 Hz - 0.28 hours
Y 5/3 8/3 s Jlow —
t(f) =t — 55 (M) (), fiow =1 Hz - 5.44 days

The duration of the signal in a detector band

An individual detector can be effectively treated as network ,, . Wen,
including a set of detectors along its trajectory. Phys. Rev. D 97, 064031, 2018

12



Parameter estimation including nontensorial GW polarizations

{setup

e L Onj(f) Ohi(f)
- Parameter estimation by Fisher matrix i = 4Re /fmin af ; <Sn, (f) oxt oM > ’

. Model TS1 polarization amplitude parameter
Tensor(+,%) scalar(dipole) hl — {g“ + ASI gSl ,I}hGR- (g
* Inspiral waveforms up to Newtonian order in amplitude & 3.5 PN in phase
............................................................. pricteserere
* 11 model parameters in GR (log M, logn, tc, dc,log dr, Xs; Xai Os, @s, COS L, Pp)
+ additional polarization parameter Ag , (fiducial values) =1 uniformly
AA > 1 & Inseparable, AA <1 < Separable random

* Sources (500) BNSs (equal mass 1.4M_ atz=0.1 )

* Single 3G detector such as ET-B, ET-D, CE(desgin sensitivity) and ideal detector

Result
Table 1: Medians of parameter estimation errors and their correlation coefficients.
parameter | BNS(ET-B) | BNS(ET-D) | BNS(CE) | BNS(Ideal)
SNR 57.8 50.7 104 170
Alnd;, 0.979 0.355 6.67 0.197
AQ,[deg?] 490 55.6 72105 7.56
ModelTS1 AAgy 1.30 0.459 12.9 0.322
C(Agsy,logdy) 0.982 0.985 0.911 0.994
C(As1,cost) -0.329 -0.217 -0.095 -0.370
ETB, CE: inseparable, 10 N
ETD. Ideal: separable = 82 : ]
2 0.6} Ideal :
(degeneracy broken) § 0.4l _
non-integer contribution £ 8% i , , S
to number of detectors 102 10! 10° 10! 102

by the Earth’s rotation " Y (-



Result

Table 2: Medians of parameter estimation errors and their correlation coefficients.

parameter BNS(ET-D) fmin=1Hz | BNS(ET-D) fmin=5Hz | BNS(ET-D) fmin=10Hz
SNR 50.7 49.8 41.6
Alndy, 0.355 0.910 2.31
AQ[deg?] 55.6 184 4308
ModelTS1 AAg 0.459 1.55 4.56
C(Asy.logdy) 0.985 0.992 0.965
C(Agy,cost) -0.217 -0.277 -0.173
Changing the lower-cutoff frequency e -
sub-5 Hz region is crucial L= Ideal
E 192
ET-like detector : . . £ 102 ET-B CE
antenna pattern changing — better resolution 7
10—24 ET‘D
CE-like detector : -2

better around 100 Hz — high SNR, detection rate

Conclusion and Outlook

10°

10! 102

frequency (Hz)

103 104

* We study separablity of polarization modes for inspiral GW from CBC and

degeneracies among binary parameters with 3G detectors.

* A single detector could be used to test polarization of GW due to the effect of

the Earth’s rotation . e.g. ET-D: AA = 0.46

* Sub-5 Hz region is crucial. ET-like — better resolution, CE-like — high SNR

* Developing the pipeline to reconstruct the polarization modes from CBC.




Thank you for your attention!
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Introduction

Hulse-Taylor binary

- binary Pulsar discovered in 1974

- orbit is shrinking by emission of GW
= first evidence of existence of GW

Russel Alan Hulse Joseph Hooton Taylor
The Nobel Prize in Physics 1993. NobelPrize.org. Nobel Media AB 2018. Fri. 2 Nov 2018.

40 L )
1975 1980 1985 1990 1995 2000 2005

Weisberg & Taylor 2005



Introduction

_IliI\IIIIIIIIIIII\II\IIIII

3rd Body

=20
General Relativity

—-25

Cumulative shift of periastron time (s)

=30

=35

l]lllllllll]llllllll]llllillllllllll 1

III]IIIIIIIII]IITIIITII[]II\llllllllll

_4_D~|!ILIIllIlJlltllIIl\JlLLJIllL
1975 1980 1985 1990 1995 2000 2005
Year

Kozai-Lidov Mechanism

hierarchical triple: binary + tertiary companion

‘. 0= /1 — e cos I = const.

~~~~

I large ein, small

/
\, /
. /
. 4 o .,
S e .
~ - ; 3
~ - B s
B : .0

“. 7 I :relative inclination

o I small ein large
S e . eccentricity



Kozai-Lidov Mechanism

hierarchical triple: binary + tertiary companion

" 0= /1 — e2 cos I = const.
———————————— "4

-
~~~~

6 e
7 0.8
50 0.6
~~~~~~~~~~~~~~ > 0 @
o g [V\/M\/V\/M\ |
40 04
0.2
. - . ' 305 year 100000
“ .« 7] :relative inclination
~.” e :eccentricity ~10%u | M1 o 3
tKL = 3/2 2 ( - eout)
15 a;’ Gmg
1

Antognini 2015

calculate calculate
m N — . . —
SRzt orbital evolution P and A,



Method

calculate calculate
m I ﬁ . . ﬁ .
SEL LIEEE orbital evolution P and a,

time = 0.0000[day]

o .mz - 1M®
I’ s 1
e 22”1 @iy = 0.01AU
————— } ”l’ -ihh"‘~ /
- N
m1 B 1M®‘t~l ______
/ ;
| /]
'\‘ ’l
A Il aout = 01AU
~ I'I 3 Q
\\\\\\\\\\\ PS
my = 1075 @

timescale P;, = 0.258 day
€in,0 = €out0 = 0 Pout = 3.334 day
Iy = 60°

tmerger ~ 10° yr

calculate calculate
m I — . . ﬁ .
set mode orbital evolution P and 4,

1st order post-Newtonian equation of motion
Einstein-Infeld-Hoffmann equation

dvk
e

m X, — X X, — X
x |1 = 462 n’ 1_( k n) ( n . n’) +U;%
[ — xn’l il |27 — x| 2]|x, — x|

(X —xp) v 2
4202 — 4y, v, — 22k An) " Un
G z{ o

-G Z my——= |x e |3 —x,) - Bv, — 4vy)

n*k
n My (Xn — Xp7)
_EG r;clxk_xnln’in |xn_xn’|
integrate with 6th order Implicit Runge-Kutta method
>no GW back reaction




Method

calculate calculate
m N — : _ —
S e orbital evolution P and A,

convert r, v into orbital elements (a, e, i, ...)

\
take average for inner orbit (a, e)

'

calculate period shift of binary P

p=—2121 ‘_E{G(ml +my)f Smame 1 S(1+ 22+ ek
5 c (1 )2 96
; Peters & Mathews 1963
get cumulative shift of periastron time A,
2
— 2
Ap = ﬁ t

Eccentricity, Inclinaion, and KL conserved value

0.8 ; : — — 62
I ) Relative Inclination
h 4 60
0.7
58
06 156 B
Fi 3
© o5 [ S T
> E=]
B 1562 8
B 0.4 =
3 15 £
8 s} 14 £
; F £
[}
02 | 1 46 @
4 44
01 |
4 42
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100
0 T
Ap
-0.0002 -

-0.0004 -

-0.0006 -

cummulative shift of periastron time([s]

-0.0008 -
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cummulative shift of periastron time[s]

cummulative shift of periastron time([s]
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cf.) same model but no Kozai case
(Io = 0)



Summary and Future Work

+ Kozai-Lidov effect can be seen in the time evolution
of the cumulative shift of periastron time

- The oscillation timescales of the cumulative shift of
periastron time correspond to the Kozai-Lidov
timescale and the period of the outer orbit

- Now we are doing parameter search (detectable range)
and analysis of the wave form

- calculating orbital evolution with back reaction is
future work
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A strategy for detecting the bispectrum of stochastic GWs

Asuka Ito (Kobe Univ. Japan)

with Tsuneto Makoto, Toshifumi Noumi, Jiro Soda
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JGRG2018
Talk plan
1. Introduction and motivation
- Stochastic GWs and its bispectra
2. A detection method for the bispectrum of stochastic GWs

with gravitational wave detectors

3. Application to pulsar timing arrays



Stochastic GWs

The stochastic GWs are going through us randomly;
from all directions, with all frequencies.

The main origin is the primordial GW.

The primordial GW is a remnant from the early universe.

- It carries the information about the early universe!

Stochastic GWs

Since the stochastic GW is “stochastic”, we must treat it statistically.

—} The observables are statistics: power spectra, bispectra, etc.

]

tell us the energy scale tell us the detail of the

of the inflation inflationary models;
such as interactions between
the graviton and other particles

Not only Observing the power spectrum, but also the bispectrum
is very important to distinguish the overflowing inflationary models!



The bispectrum

Expanding the GW in Fourier space:

hit,2) = /_ " df / dQ 2 (=0%) o (£, Qe ()

A

For the Fourier coefficient of the GW, the bispectrum is defined by

< half,Ohar(f's YV han (f", Q") >= Baaran(f, £, FO(fQ+ F/Q + Q)

\ 4

Forming the momentum triangle

fﬂy

f//Q//

The shape of the Bispectrum

The shape of the bispectrum depends on the inflationary model,
Equilateral, squeezed, folded, etc.

gl
1

|
10 ‘
equilarteral
7.0

345

Observing the shape of the bispectrum is
a key to distinguish the inflationary models!




Talk plan

1. Introduction and motivation

- Stochastic GWs and its bispectra

A detection method for the bispectrum of stochastic GWs
with gravitational wave detectors

3. Application to pulsar timing arrays

GW signal in detectors

In general, a GW signal can be described as

S(t) = hij (t, w)DZ]

hij isGWs: ds® = —dt? + (772'3' + hw)da:zdxj

Dij is called the detector tensor,
which contain the information about the detector

< 5(t)s(t) >=< hi;(t,)hp(t,x') > DY D

l Fourier transformation

power spectrum




Three point correlation

The three point correlation :

< s(t)s(t)s(t) >=

/ / / drdf’df"” / / / dQdY dQY’

x> < half, Qha (f, ) han(f7,Q7) > FAQFA () FA"(Q)

A A A

A

<F (@) = e Dy,

Substituting the definition of bispectra

< ha(f,Dhar (f,Y)Vhar (f7, Q") >= Baaar (f. f, fO(fQ+ FQ + f7Q)

< s(t)s(t)s(t) >

/ / / dfdf'df" / / / Q<Y a”

XY Bawar(f, [ IS+ FQY + [ FAQ)F
A A AY

Qo

~

YFA(Q)

The shape of the bispectrum is degenerate (integrated)
However the shape is very important to probe the inflationary models.

How to resolve the degeneracy?

Three point correlation

Let us try to correlate the three signals as below:

- T)2
S1es = /// dtidtadts s1(t1)sa(ta)ss(ts)Q(t1, ta, ts)

—T/2

where T is the observation time and Q(t1,12,13)

Now we take

Q(t1,t2,t3) = Q(aty + bty + ct3)

Moving on to the Fourier space,

is a filter function

')

xXe

Sizs — / / / :Zdtldtzdts / / / /_ :dfld.fzdfsdf 51(f)R(R)5()Q (f)

—2wifity C—?ﬂ‘ifgta e—27rif3t3 621Tif|:a,t1+bt2+ct3)




Three point correlation

Si23 = ///_Z/Z dt;dtodi; ///‘/_: df1df2dfsdf 51(f1)82(f2)85(f3)@ (f)

xC—Zﬂifltl e—27rif2tz e—27Tif3t3 627rif|:a,t1+bt2+ct3) .

. . . 1
Let us focus on frequencies which satisfy T < f ,
Then we can approximately take 7" — 0o

Doing the time integrations, we obtain

Blig = / [ / il A 51 RS RS QU = a3 = )3 s = <)

Finally we arrive at

Stz = 2 / " df 810 f)5a(b 1))

Three point correlation

Sizg = 2 / " 47 51 ()50 0)s(eNO)

Substituting the relation 3(f,Q) = —/dQZ ha(f,Q)FA(Q)
A

< Sig3 >= —2 / dQdY dQY” / df > <halaf,Qha(bf, Y )han(cf, Q) > FAQFY (Q)FA ()

T A,A A

<taking > = Baaar(af,bf,cf)o(afQ+bfQ +cfQ”)

ensemble average

A particular configuration of af
the momentum triangle is extracted!
cf




Three point correlation

® < si(ti)sa(tz)ss(ts) > =—  the shape is degenerate (integrated)

T/2
o 5123 = /// dtldtgdt3$1(tl)Sg(tQ)Sg(t:J,)Q(atl + btz + Ctg)

—T/2

af
We can extract a particular D
configuration of the momentum triangle cf

Talk plan

1. Introduction and motivation

- Stochastic GWs and its bispectra

2. A detection method for the bispectrum of stochastic GWs
with gravitational wave detectors

3. Application to pulsar timing arrays



Angular integration with three pulsars

There are about 100 millisecond pulsars which are being observed.
We can choose any three pulsars ideally.

Ref: “Gravitational wave astronomy: the current status,” arxiv: 1602.02872

Application to pulsar

< Stz >=

= / df Ban ar (af,bf,cf) / dQdY dY' 5(afQ + bfQY + cf V)Y FA (B, Q) FA (po, O )FA (ps, Q)
A,A A J * *

® depends on the inflationary model ® not depends on the inflationary model

® calculable to each
((I, b7 C, ﬁ17ﬁ27ﬁ37 A7 Al? A//)

The sensitivity depends on the shape of momentum triangle (a, b, c)
and the relative position of the pulsars (p1, p2, p3)

—} For instance, what is the configuration of three pulsars
to maximize the sensitivity of < Si93 >




Angular integration

co-aligned anti-aligned
(CL, b7 07151)]3171317 +7 +a +) (a’) b7 Caﬁla _ﬁh _ﬁla +7 +a +)
a
folded A
b c =
- -

a

sCIueezed/v
177
c :.

b
C
: 0.25
l [ 0.08 [
" 0.20

0.0/

0.00

The pure sensitivity for (+,+,+) mode can be increased by 3 times
in the anti-aligned configuration compared with the co-aligned case!

Summar
o The bispectrum of the stochastic GWs is a clue of the early universe
o We suggested a method to detect the bispectrum, where

a filter function Q(at1 + bty + ct3) enables us to extract a particular

configuration of the bispectrum af :bf
cf

o The method was applied to pulsar timing arrays
We carried out the angular integration which does not depend

on inflationary models
We found the configuration of pulsars which maximize

the pure sensitivity ex) (+,+,+) =P anti-aligned

Extension to the interferometer is also interesting and in preparation



The residual is written by

R

s(t) =

hij (t, :D)DZ]

where D;; =

Do =

1

+

4

2| %

~
1

P

p : the direction of a pulsar from the earth

() : the direction of a gravitational wave

Expanding the GW in Fourier space, the residual becomes

>

o . s gL B
s(t) :/ df/dQ > ha(£,Q) ef}iﬁ
oC A — .p




A relation

A —ikZ (A) 7
1=/ G, L B e i

hd) = 3 [ a7 [ aer 8 (g, (@)
A —0o0

B o e R 99/2.:3/2 R R R
< RO, B)RA 0, RV (0,8) >= s < ha(f QR WA, ) >

Signal to noise ratio

AT [ df 3 4 v an Ba,ar,av(af,bf, cf)Q(f)(4m) 2 TAYA (4, b, ¢, py, po, Ps)

SNR = 72
(f dfQ(f) 25(”(af)S”)(bf)SS')(cf))

Then the optimal filter function is

ZA,A’,A” BA,A’,A” (af, bf, Cf)FAAIA” (CL, b, C, ]31 5 ]32, ]53)
Si (af)Si? (b f) Sk (ef)

Qf) =




R and L basises

+ 45X + _
_eij+zeij e..—ie;

X

= R L +
hij = hRelj+hLe!J = h+eij+hxezj ’

hy —ihx hy = hy +ihy .

S 2
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GW150914 strain and frequency spectrum

Strain (10°2%)

Frequency (Hz)
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0.0
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0.5
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256
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— H1 observe:

T
i 8 1

= L1 observed
H1 observed (shifted, inverted)
T T

Reconstructed (wavelet)
W Reconstructed (template)
T T

n L

Numerical relativity
Reconstructed (wavelet)

W Reconstructed (template)
T T

,

1 1
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L 1L Il
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Time (s)

D
g
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Time (s)
Gravitational waves ... Mlark Hindmarsh
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Normalized amplitude



Detecting gravitational waves

test mass

* Compare distances between test X
masses in two directions with laser y =7
T o=
e Strain = Metric perturbation
Al 1
l 2 lest mass
* Sensitivity: h =~ 102! @ 102 Hz

interferometer
i U Storgpe
_(hZL’:E - hyy) stmass " e arm
Name | Location | Arm ength

beam

splitter photodetector

GEO Germany 600m
(a)LIGO USA (2) 4km
(a)VIRGO Italy 3km
KAGRA Japan 3km
LIGO-India  India 4km

* Future: Einstein Telescope

Gravitational waves ... Mark Hindmarsh

Gravitational wave astronomy

Binary Supermassive Black
Holes in galactic nuclei

(Vp) >
(O] N
o Compact Binaries in our
S Galaxy & beyond
o o ”
n Compact objects
captured by Rotating NS,
Supermassive Black Supernovae
Holes . ;
wave period age of
P universe years hours sec ms

log(frequency) -16  -14 -12 -10 -8 -6

—> —> <
Cosmic microwave Space Terrestrial
background Interferometers  interferometers

polarization

Detectors

Gravitational waves ... Mark Hindmarsh

light storage arm

LIGO

LIGO

NASA



Gravitational wave cosmology

* Gravitational waves are hard to observe
* Once made, not absorbed by intervening matter
 Complete history of the universe visible in GWs

Afterglow Light

Pattern  Dark Ages
380,000 yrs.

about 400 million yrs.

Big Bang Expansion

13.7 billion years

Gravitational waves ... Mark Hindmarsh

Space-based gravitational wave
detectors

* Approved:
— LISA (ESA L3 2034)
* LISA sensitivity

— Peak: 103 - 102 Hz T )
—/=10°m
— Al=10%2m AN S
— h=102% . /./ . . '\\\.\ .
* Proposed: \ oy
— DECIGO (Japan, ?) \ e =7
— Taiji (China, ?) T
— Big Bang Observer (USA, ?) See talk by J. Gair, Wed 9:00 am

Gravitational waves ... Mark Hindmarsh

LISA



Generating gravitational waves

. . . il
Gravitational wave: a propagating shear in i

space

gij = 0ijj + hij

‘%\‘
\ e fl
\\\» l’
\W

g o & §

Classical source of gravitational waves: shear
stress

Dh,’j = —(167TG)5/J'

Quantum production during inflation
— c.f. Hawking radiation by black holes
Gibbons, Hawking (1977), Starobinsky (1979)

Singu ___ Event horizon
Equilibrium thermal production negligible A W
Laine, Ghiglieri (2016) - —
ope . . N /\
Departure from equilibrium required a3 <§ s
— e.g. phase transition ﬂ B \y
Tlmely ka3 \
Space 1 Particle falling
Higgs Fizz ... Mark Hindmarsh x <~ 7 intoblackhole

Gravitational waves
from the early universe

Events at time t generate waves with minimum
frequency f = 1/t (Hubble rate)

Redshifted to a frequency now: f, = (a(t)/a(t,))f
Minimum frequencies (redshifted Hubble rates):

QCD phase transition 103 108
Higgs phase transition 1011 100 10
? 102 10° 100 LIGO
End of inflation > 1036 <10% <108

Inflation and topological defects: waves on all scales

Gravitational waves ... Mark Hindmarsh



Measures of gravitational waves

* Unit vectors along interferometer arms: [ m,

* Fourier transform of strain
1

(P =5 [ e — mmy)

* One-sided power spectrulm Si(f) (f>0)
(RO () = 55 (H)O(F = ')
— Characteristic strain (dimensionless) he(f) = fSu(f)
— Root power spectral density (v/ Hz 1) h(f) = /Sn(f)

— Energy density per logarithmic frequency interval:

dpgw _ T .3
dhif = Gf Su(f)

Measures of gravitational waves

* Unit vectors along interferometer arms: [, m,

e Fourier transform of strain

1

iL(f) = 5/ dt G_izﬂfthij(lilj — mimj)

* One-sided power spectrulm S.(f) (f>0)
(h(HOR(f1) = 5Sn(H)3(F = ')

— Characteristic strain (dimensionless) he(f) =/ fSh(f)

— Root power spectral density (v/ Hz 1) h(f) = /Sh(f)
— Fractional energy density per log fr%quency interval:
A g 1 dpew 81
== = a7 Lo Sk(f)
dIn f Ptot dIn f 3H




Cosmological gravitational waves

Fractional energy density in GWs

Jinf 342! Sn(F)
Hence 3 v .
— _ H~2x10""°s™

he(f) 872 Hgw ( f)

Higher frequency = smaller strain (given €,
he = 0.4+/Qqw x 1072° (f/100 Hz)™*

Big Bang Nucleosynthesis: Qg (tzen) < 107°

LIGO: Qquw(20 —86Hz) < 1.7 x 107" (95 % CL)

Gravitational waves ... Mark Hindmarsh

Gravitational wave spectrum

< Quantum fluctuations, topological defects >

Binary Supermassive Black
_ Holes in galactic nuclei

"
Q N .
o Compact Binaries in our
5 ) Q alaxy & beyond
o ("‘.; c © c
@ 2.8 com 5.9 s
o ¥ =
7} cal v G Rotating NS,
O c yperr B S jack
8 @’ Perr ap © Supernovae
I —
wave period age of - =
universe years hours sec ms

log(frequency) -16 -14 -12 -10 -8 6 -4 2 0  +2

—> —> <
Cosmic microwave Space Terrestrial
background Interferometers  interferometers

polarization

Detectors
NASA

Gravitational waves ... Mark Hindmarsh 12



Phase transitions in the early Universe

e At very high temperatures and
pressures, the state of matter in
the Universe changes

— Tc ~ 100 MeV quark-gluon plasma

— Tc ~ 100 GeV all Standard model
particles massless

— Tc>>100 GeV ???

* Departures from equilibrium pronsation
and homogeneity (shear stress)

— First order phase transition:

relativistic condensation or “fizz’
Steinhardt (1982)

Pressure

upercritica
fluid

— Formation of topological defects
Kibble (1976)

Abrikosov vortices

Gravitational waves ... Mark Hindmarsh 13

QCD phase transition

175 L Quark—gluon plasma

—_
a
o

* QCD: rich phase diagram
* Universe: ng/n, = 6.1 x 1010

* Behaviour at low chemical
potential well-established by 2

125
100

Hadron phase

Temperature [MeV]
o N
o (6}

lattice QCD  sorsanyietal (2016) 250 500 750 }ooo 1250 1500 1750 2000
Baryon chemical potential [MeV]
e Transition from QGP to 7
hadronic phase is a °
5 L
Cross-over Al
%

0(g®) Ny=3+1 ,=-3000
1 0(g®) Ni=3+1+1 q,=-3000 mmmmm |

2+1 +1 ﬂavor EoS from Iattlce

200 400 600 800 1000 1200 1400 1600 1800 2000
T [MeV]

Borsanyi et al 2016

Gravitational waves ... IViark HiIndmarsh



Higgs transition and beyond

Low temperature:

— Higgs phase

— Higgs field is “on”

— particles have mass
High temperature:

— symmetric phase

— Higgs field is “off”

— particles have no mass

Phase transition at T, = 10> K, t = 10 ps

Standard Model transition
— like a supercritical fluid
— no topological defects

Beyond the Standard Model
— may be first order
— e.g. 2 Higgs doublets
— Extra singlet

Gravitational waves ... Mark Hindmarsh

Kajantie et al (1996) -

"supercritical"
- 125 GeV =
- 75 GeV
§ Higgs phase
S
2N "condensation”
o
T
Symmetric phase

Temperature

15

First order phase transitions

1st order transition
proceeds by nucleation of
bubbles of Higgs phase

Expanding bubbles generate
pressure waves in hot fluid

Shear stresses - detectable
gravitational waves?

oesrlq oitemmye
92srlq 2ppiH O s2srlq 2ppiH sesriq 2ppiH

Gravitational waves ...

p(x,1)
T
et
SRS s n
S
(]
=
[
o
s
[
) O =
(]
I
=
=
[ o
— |3
O
— k<

\\
0000 05000 1.000 1.500 2,000
— —

Max: 2021
Min: 1.0838-92

Scalar field

Hindmarsh, Huber, Rummukainen, Weir (2013)
Scalar only: Child, Giblin (2012)

Mark Hindmarsh



GWs from first order phase transitions

Vw > Cs Vw > Cs
'VW<CS T 1

* Parametrise transition:
— o = (“Latent heat”)/(Thermal energy)
— B =transition rate parameter
— v,, = Bubble wall speed

— H, =Hubble rate at nucleation

* Derived parameters: [ | I
— R. = mean bubble separation (~v,,/B)0 "
— K = fluid kinetic energy fraction i

. / T~
(depends on a,, v,,) v T ~_

Steinhardt '84

_3 T e— =10

Espinosa et al 2010 107 / — 0, =03

* Aim: GW power spectrum N T

00 1 dpon g2 ; 10 — =003
= — f Sh(f)

dinf  potdlnf  3H? 02 04 06 08

Gravitational waves ... Mark Hindmarsh

—————————

Simulations of phase transitions

Preparatory: 1M hrs CSC, Finland

2015/6: 17M CPU-hours
Tier-0 (Hazel Hen, Stuttgart)
42003 lattice on 24k cores
Output: GW power spectrum
dQgw 1 dpgw 872
dinf  potdInf  3H?2

F2Su(f)

SUOMEN AKATEMIA
‘ FINLANDS AKADEMI
ACADEMY OF FINLAND

Hindmarsh, Huber, Rummukainen, W;ﬁ{igrgs 17\ rark Hindmarsh  Weir 2017

Fluid kinetic energy in slice (12003)



GW energy den5|ty

3000

1
2 e~ f—n()lTN988
PGW = 327G <h > & 2500|-| - n=0.15 T, N,=988
. U | . — i
Fluid sources GWs = M=02T,,N,=988

— 2000
continuously: TS

Ty = E+p)Viv;|"" -
GW energy density grows n

““ 1000
with time =

paw o t GLg[(€ + p)Uf)?

1500

gw v

(=1

Final GW energy density ok

depends on
— Lifetime of source 7
— Flow length scale L;~ R«

— Kinetic energy fraction
squared K?

500

- M=0.1T, N,=37

L |--- M=0.15T_, N, =37

-~ M=0.2T, N,=37

1000

GW power spectra: deflagration

Gravitational waves ...

Mark Hindmarsh

|
2000
-1
(.

1078
< 1000/T,
g
= w0 2000/,
= 3000/T,
S 4000/T,
1107 —— 5000/,
;:* — 6000/T,
T o] T 7000/,
= — &
— —— WG ansatz
—16
10 100 R 1(')1 1(')2
Transition strength: . f)eak at kR« ~ 10
a =0.0046 .
Wall speed: * Approx k* spectrum
vy = 0.44 at high k

Mean bubble separation:

R. = 1900/T,

Gravitational waves ...

Mark Hindmarsh

|
3000

400C



GW power spectra: near ¢,

1078
o 1000/,
o0
= 2000/T,
= 10710_
> 3000/
g 4000/
T 10712 —— 5000/
E — 6000/T.
= gl —— T000/T;
) — K
10 10° 10! 107
kR,
Transition strength: e Peak at kR« ~ 40
o = 0.0046 * Approx k spectrum at
Wall speed: lower k
Vy = 0.56 _ * Peak length scale from
Mean bubble separation: sound shell thickness
R. = 1900/T.

Gravitational waves ... Mark Hindmarsh

GW power spectra: detonation
1078 ‘
',fc 1079_ 1000/,11 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
= 2000/
S 107 3000,/ e o
g 0 4000/,
T 1072H — 5000/T,
§ B — B
—l'\/ 10*14, ,,,,,,,,,,, :
@i 10710
1071 100 101 102
kR.
Transition strength: e Peak at kR« ~ 10
a =0.0046 3
Wall speed: * Approx k> spectrum
V, = 0.92 at high k
Mean bubble separation:
R. = 1900/T.

Gravitational waves ... Mark Hindmarsh



Sound shell model

Velocity field model: linear
superposition of 1-bubble v(r)
convolved with size distribution

Many bubbles: Gaussian field

Peak power proportional to:

— Lifetime of source 7
— Flow length scale L;~ R.

— Kinetic energy fraction
squared K?

peak 3 x 107%(H, R, ) K?

gw,0 —

1 T,
cak =~ 2 T e a—— Hz,
Jpea 6<H*R*> (102GeV) HE

Gravitational waves ... Mark Hindmarsh

In Q.

Shocks and turbulence

Shocks develop after time 75 ~ R*/Uf
Shocks source vorticity and turbulence
Turbulence lifetime ~ autocorrelation time
(eddy turn-over time) Ty, ~ R./Us
Estimate GW power

Qi ~ (H R, /Up)*K? ~ (H.R,)’K
Non-linear behavior important if 74 < H*_1
Equivalentto K > (HnR*)2
Disagreement about turbulence spectrum:

— f°2/3 Caprini, Durrer, Servant 2009

— f9/2 Kamionkowsky, Kosowsky, Turner 1994;
Gogoberidze, Kahniashvili, Kosowsky 2007

No predictions for spectrum from shocks

Pen, Turok 2015

Gravitational waves ... Mark Hindmarsh



* Extreme supercooling: shear stress

Gravitational waves from a
vacuum phase transition

t/R. = 0.00391

dominated by scalar field 200 |
* Bubble walls accelerate: v, > 1
102 150 |
1073 =
SiE / 00 b
s N,=8
g0 Ny=64
-l - N, =512
& — N, = 4096
T || —— /M =0.0625, N, =8 50 |
10770 /M = 0.0625, N, = 57
——— p/M* =150 x 1077, N} = 64
 p/M* =150 x 1077, N, = 510
10-6 ‘ — L N
101 100 10" 102 10 0

. . . kR*
* Solid: simulations

O

* Dashed: Envelope Approximation

LISA p

107 -
_3 B - LISA standard sensitivy
TOTP Rt T — - LISA power law sensitivy [{
1079 777777777777777777777777777777777777777777777777777777777777777777777777 Galactic binaries 1
BH binaries
1071 MBH binaries .
=i — GNMSSM (A)
g, 10 — Higgs portal (A) E
G 10-12L — 2HDM (C) i
— SM + A% (A)
1078 i e 2 TR TR Y —  SM + dilaton (B) .
107 ME T T NG N U ]
—15 | j i : i
10 10-° 104 1073 1072 107!
f (Hz)

Gravitational waves ... Mark Hindmarsh

50 100
M

150

112 0.037

Higgs portal A 70.6 0.09

2HDM C 51.6 0.111

63 013
100 1

SM + dilaton B

Higgs Fizz ... Mark Hindmarsh

| Model| _T/GeV] ol B/H | _ v,

277 0.95
47.35 0.95
663 0.95
160 0.95
15 0.95

200

rospects for EW phase transition




Phase transitions: future challenges

600

Full characterization of GW spectrum
from phase transitions o -
— Shocks and turbulence [K > (H,R+)?] z': 400 g
— Magnetic field dynamo? F 200 IiI;, ’ =
Phase transition parameters from | g
underlying particle physics models 200,_ T
- <

— ; 200 300 400 500 600
Perturbative 4D o (GeV)

— DR & non-perturbative 3D - ﬁ

&)
Really 15t order? oos . S
Connection to collider (LHC ...) data ool <
5
e.g. 7\'hhh 003 b é
Distinguishing phase transitions from oz} | £
o '5 (4]
astrophysical GW foregrounds - 2

LISA Cosmology Working Group 0 N L~

Higgs Fizz ... Mark Hindmarsh Qaw (1e-13)

Summary

GWs probe of physics of early
universe at very high energy

LISA will probe physics of Higgs
phase transition from 2034

Aim: measure/constrain phase
transition parameters
= (Latent heat)/(Thermal energy)

— P = transition rate parameter

— v,, = Bubble wall speed

— H, =Hubble rate at nucleation

LISA will complement LHC in search o
for new physics at TeV scale L—

Lots of work to do
— only 16 years to go!

Gravitational waves ... Mark Hindmarsh
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Gravitational wave
from seesaw phase transition

Osamu Seto
(Hokkaido Univ.)

With: Nobuchika Okada (U. of Alabama)

Refs : Phys. Rev. D 98, 063532 (2018)

§ Introduction



The most penetrable

accelerated
expansion
Structure
formation

Cosmic Microwave
Background radiation

Accelerators is visible

t = Time (seconds, years)

E = Energy (GeV)

Phase transitions in the early Universe

Energy time

Transition ? EW QCD

20d order To be 15t order \

v V(p,T)




Nonvanishing neutrino mass

 Neutrino oscillation
— tiny (< 0.1 eV ) but massive neutrino

 No mass in the renormalizable SM

* Seesaw mechanism for Majorana neutrino
[Yanagida, Gell-Mann et al (1979)]

v ) = O™ )

M, in Cosmology: Baryogenesis

y A
1_

100~

| | N5

r 4

10? 10° 1013(GeV) M,

ey @




§ GW

GW from 1% order phase transitions

e Potential barrier and ¢ Bubble formation
Ist order phase
transition

Vio,T)

, * Bubble collision

 Sound waves 1n the fluid
e Turbulence in the fluid



GWs spectrum

At radiation dominated Universe

2
The energy density of radiation  p .4 = ng =7
The latent heat density
{Pnign T} {brow Tx} prad

Transition time
— Bubble nucleation rate  T'(T") = I'ye 57 ~ Tye5e(M/T

v dsS
o~ T
H, dT

d(Sg/T)

=T
dT

T

T

GWs spectrum

Bubble collision [Kosowsky and Turner (1993), Huber and
Konstandin (2008)]
f

* o] T, e \ 1/6
eak = 17 | = 2 - J* Hz.
Fpes <5> <H> (108Gev> (100) %

B2 Qaw (foeak) = 1.7 x 107°K*A BN _a Y ( G« )*1/3
) v ( foeak) = 1. < — - .
GW A peak H, 1+a/) \100 '

Sound waves [Hindmarsh et al (2014, 2015), Caprini et al (2016)]

- 1 ,’3 T, s 1/6
fpeak — 1971) (E) <108 GeV) (m) HZ,
h*Q eak) = 2.7 X 1070k BN (o N g\
Turbulence [Kamionkowski et al (1994), Caprini et al (2009)]
oL (B T, Gs \1/6
Foenkc = 2T (F> <108 Ge\/) (465) H

h*Q (freak) = 3.4 X 10~% ﬁ - Fturb@ o2 ( Y >_1/3
), GW peak) — 9- b H* 1 + - 100 .




§ GW from U(l)g breaking

U(1)g; gauge symmetry

* A simplest anomaly-free U(1) gauge theory
— Three generations of RH neutrino

— The origin of RH neutrino masses
Yy
M

Np = NG
 Higgs field with B-L charge “+2” @,
« L=yL®N+%Y,N®N
1042 -1
— One extra neutral gauge boson

U9

2 _ a2 2
Mz, = 495_,v;



Model: next to minimal

Content

SU(3), SU(2),,

Uy

v Yukawa interaction

| 3 2 1/6 1/3 5§ ! 5
up| 3 1 2/3 1/3 Lovigsina T — E E ¥y [‘iLH N3, — 5 E Yyedo N }’g, (\}} +Hec.
di| 3 1 —1/3] 1/3 =l g k=1

o1 2 —1/2] -1

(2}? 1 1 —1 —1

H| 1 2 —1/2 0

NE| 1 1 0 -1

byl 1 1 0 +1 . .

—_ T Higgs potential

1 1
V (D, Dy) :5/\1@1@1)2 + 5/\2(@2@;)2 + A3, Bl (D, 1)

+ M2 D01 — M2 Dydl — A(D,D, 0L + 0D D).

Higgs potential

1 1
:2)\1(@1@1)2 + 5)\2(@2@5)2 + Aa®1 @} (P2D3)

+ M2 DD — ME Dyd) — A(D,D,D) + D d,y).




GW spectrum

1041 aLIGO/
CE
1078¢
o - LISA —
z , \
i 7
Ay
BBO
10-16¢
10—20 1 l L | |
103 0.001 0.1 10 1000
f [Hz]

v(=v,=v,) =4, 10%, 104 10° TeV

§ Summary

* The scale of gauged B-LL symmetry could be
probed by GWs

— RH neutrino masses:
* maybe much higher than the EW scale

— B4 may be strong 1% order

— Sources of cosmological GWs from an intermediate
scale phase transition
e Thermal history of the Universe
e Implication to Baryogenesis
* Inaccessible high scale particle physics for colliders

» Caveat
— Gauge dependence problem [e.g., Chiang and Senaha (2017)]
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Limits on
Primordial Statistical Anisotropy
from Large-Scale Structure

Naonori Sugiyama

Collaborators: Maresuke Shiraishi and Teppei Okumura

*SKAVLI
I P M U INSTITUTE FOR THE PHYSICS AND
MATHEMATICS OF THE UNIVERSE

JGRG28 @ Rikkyo University (Nov. 5-9, 2018)

Inflation theory predicts

statistical properties
;‘ of observed fluctuations




The standard theory

(single-scalar slow-roll)
predicts:

-

 Small non-Gaussianity

* Nearly scale-free

* Adiabaticity

* Parity-symmetry

* Translational symmetry

 Rotational symmetry

w4 Rotational invariance:

—

g Pc(k)=P([|k])

Some kind of vector-field
| inflation theory can breaks
. the rotational invariance.




Quadrupolar anisotropy
Pc(k) =

The simplest model
breaking statistical isotropy
with preserving
party-symmetry and
translational invariance.

CMB experiments

Kim and Komatsu 2014:
g, =0.002 = 0.016 (GS%CL)




Large-scale structure

Why large-scale structure?
CMB (2D) vs. LSS (3D)

error o< 1/v/ Volume

«CMB ~ 7 (Gpc/h)~3

* Current galaxy data
' BOSS ~ 4 (Gpch)*3

* Future galaxy data
PFS ~ 10 (Gpc/h)»3

e

Tegmark\;nd rZ';I/c/i;xrriaga 2009 DESI ~ 45(GpC/ h)A3



Large-scale structure

ms'x QM‘

'! &ﬁj.--mn-n - - Tl

1) Hirata 2009
2) Pullen and Hirata 2010

—-0.4 < g, <0.39 (95%CL)
from

2D

AR MRS R e "%‘

Pullen and Hirata 201 O'Mﬂ '

There are several ways to use galaxy survey data to search for statistical anisotropy.
In principle, one could use a 3-dimensional redshift survey and search for anisotropy
in the power spectrum. This would however be very technically involved: redshift-
space distortions make the line of sight direction special. With sufficient sky coverage
one could break the distinction between redshift-space distortions and true statistical
anisotropy. However, in this paper we choose the technically simpler route of using
photometric galaxy catalogues, which can be studied using estimators analogous to
those for the CMB.

How can we d|st|ngu|sh between

RSDs and statistical anisotropy?




This talk:

1) presents an efficient way to
distinguish the preferred angular
dependence in the galaxy power
spectrum from RSDs

2) for the first time, constrains the
statistical anisotropy from
spectroscopic 3D galaxy data
(SDSS DR12 BOSS)

Galaxy power spectrum

Py(k, 7

Line-of-sight direction



Legendre decomposition

Under statistical ISOtropy assumption:

ng ) Lo ( k- n)

Angular momentum, ell:
ell > 0O means the esistence of RSDs.

Galaxy power spectrum

Pg(]gv ﬁvﬁ)

Preferred direction



Decomposition into
Bipolar spherical harmonics

A

Py(k, 1, p) = > > PEM(k,p) (Ye(k) ® Yo (7))Lt

LM ¢¢

Z (rfz nﬁl’ —IJ/\/[> Yfm(]%) Yﬁ’m’ (ﬁ/)

m,m’

Angular momentum-coupling yields
the total angular momentum, L

Decomposition into
Bipolar spherical harmonics

Pk, p) =Y Y PEM(k,p) (Ye(k) ® Yo (7)) L0

LM ¢¢'

Total angular momentum, L:
L = O reduces to the Legendre expansion
L > O means the existence of anisotropy.



Quadrupolar anisotropy




Survey geometry effect

Pobs(k) — Waniso X Piso

Window effect

Wiso X Paniso

Power spectrum ‘it
measurements g/
L=2
M=-2,-1,0,1,2

Power spectrum

| i
0.0 - :
0.2 i i i
002 004 006 008 010 012 014
k [hMpc']
g x10!
6}

T T T —%—F—

! ! : g
2 ! - =
B

Scale k [h/Mpc]



(L—2 M 2)
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43 gi { { M 2 (real) i
Q 0.6r ‘ i
8 0.4} s = | ,,,,,,, e * ,,,,,,, ]r ,,,,, |

2 0.2 @ el S R e i ...............
® 00 ‘ |

; —0.2 i i i I i I

o .

o 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Scale k [h/Mpc]
Shaded regions:
mocks without statistical anisotropic signal
Solid lines:
theory without statistical anisotropic signal
Data points:
observed data

3D spectroscomc data of BOSS
~—0.09 < g, <0.08 (95%CL)

2D photometrlc data of SDSS
-0.4 < g, <0.39 (95%CL)




Future galaxy survey

4x 1072
b 3,102
E Current BOSS result (this work)
a-, 2 % 1072 .

Future ground-based survey

g DESI (2021~)
,Q 1072
? Current Planck result
F

6 x 1073

0.05 0.10 0.15 0.20

Scale k [h/Mpc]

Summary

1) We proposed the bipolar spherical harmonic
decomposition formalism to distinguish between the
RSD effect and the primordial anisotropic signal.

2) We, for the first time, provided the constraint on
the statistical anisotropic signal from 3D galaxy data
(SDSS DR12).

3) While the current our constraint is weaker than the
CMB result, future galaxy surveys will provide the
strongest constraint.
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Flapping resonance instabilities and prospects
on gravitational wave forest

Hayato Fukunaga (Nagoya University)

collaboration w/

Yuko Urakawa (Nagoya U. , Bielefeld U.)
Naoya Kitajima (Nagoya U.)

Motlvation black solid line : %m2¢2

There are many kinds of instabilities depending on models.

Vi)

\ AUy
\ |/
\ \ /
5\ [/
\ I,
\\ [/
A 174
\\ V4

Narrow resonance Broad resonance Flapping resonance
Kitajima-f— (18)

What is a new parameter which distinguish resonance instability ?

Resultant spectrums are different ?



Flapping Resonance

Kitajima et al. (18)

- tachyonic instability Oscillation between
- growth rate depends on k/am Vigg <0 +— V. 53>0

V()
« _H .- k\> - e
Sy + 3—5¢h, + [(—) +V, (],4;] 6 =0 i i
m am ‘
— 2 1 1
= a)k ] 1
- tachy. inst.
if ®?<0 for modes &

k — 1 1
—< A / | V, ~~| 1 1

am " ‘7,(%<0 V,d;(/;>0 ‘7,(/;(;<0

-> grows exponentially wf<0 >0 w}<0
Parametric resonance Kofman et al. (o7) etc...

Periodic external force (eg. swing)

— Enhancing the amplitude exponentially

Narrow res. Broad res.

S + (A, — 2q cos(27))6, = 0 - >

Mathieu equation

44{\ Unstable

3|stable \\

g < 1 : Narrow resonance A 2
g > 1 : Broad resonance k 1<

<l
_ _ 1 StabNUnstable
Sustainable parametric res. for Hosc/m<<]1 2 1

0 0:5 -I 1.5 ? 2.5 3 35 4 4.5

q

N




Parametric resonance

Periodic external force (eg. swing)

— Enhancing the amplitude exponentially

We cannot apply parameter “q” to flapping resonance,

which take place in anharmonic potential

3|stable
Mathieu equation

q < 1 : Narrow resonance
0

g > 1 : Broad resonance

1l stable Unstable

«D
“0 0.5 1.5 2 2.5 3 35 4 4.5

q

. H - k2
Classification o T oht [<_> +V’$"§] =

- Mathieu eq. amp. of osc. term

dzf 2 2 . le only this
+ @) =0 w”=A —2(q)cos(22) applicable
d22 form

{ g < 1 : Narrow res.

g > 1 : Broad res.
include osc. term

k 2
= (E) f} i

-general osc. eq.




ClaSSIflcatlon ‘J’uﬁunaga et al. (in }arogress)

) <V.35>—<V.g5> applicable to
1= 2 anharmonic potential
Intermediate res. Narrow res. Broad res.
g~ 0() g1 g>1
/ Y I " B mmm oA

;H

AR
AN '\ + 0.1 | (\ f\ | Al
Rl /HHL e A !

u q - |5~¢k|

* Intermediate res. ; if potential has V, 33 <0 region, flapping res. occurs

SpeCtr um Fukunaga et al. (in }arogress)

g ~ O(1): Intermediate res.

g < 1 : Narrow res. g > 1 : Broad res.
k ak ~ k k 1
N A A ek o )L No peak
AoscM ¢ Ao M 2

Kitajima+ (1 8}

2NN ™

/ ‘ 114N
:“‘ 1‘,’

m ;‘{ ?:\;’
. (I
1 001 "k‘/o'.i [ | 10‘0.61" S .,mmlka_ld_.'ljo
K(am) am) Ki(am)
high-k->damp symmetry

*if H,/m<1,narrow and flapping res. can continue longer



U 1. ~
GrOWth rate Vi$) = Eqbz(l + ¢2)C Tuﬁunaga et al. (in JarogresS)

growth rate y : 5Ebk o e27 N

0.25 — 1
B = feoping res.

: 1 growth rate ~0.3

0.2

others : narrow res.

growth rate < 0.1

0.1 0.1

0 01 02 03 04 N5 06 07 08

k/(am)

Flapping res. leads to a rather efficient growth

Cosine potential

Vi) = 1 = cos(¢)

V.55 <0 region exist o Vg
'fv
-> flapping res. ?

-
.
e
-

Narrow res.

H_/mx — 1/log(¢)

Duration of flapping res. is short
even using tuned initial condition

cf) Mathieu eq. instability chart



Cosine potential  gpectrum

(fﬁl.:n'
b — 105 7 _ 10-10
n ¢, =10 ¢; =10
10
10°}
Q! Q 1o*
N/E ('\l//-i 107
‘T 9 N=10,30,50(end) | ‘= ,/N=10,50,100(end)
~ N~ |
103}
107

"0001 001 0.4 1 0.001 001 01 1

k/(am) k/(am)

Initial velocity small -> Duration of narrow res. slightly long.

GW prospect Future work

source term

Ty~ 00,5
l sufficient growth

new way for axion search

Some information about linear analysis
(spectrum shape, peak) can be propagated.

* We are planning to calculate GW spectrum
using lattice simulation in future work



Summary and future works

» Proposal of new parameter
g < 1 : Narrow res.

> 1 : Broad res.

=t

g ~ O(1) : Intermediate res.

- Applicable to anharmonic background

- Flapping resonance, which is an efficient mechanism of
GW emission takes place for § = 0(1)

» In axion context, using conventional cosine potential,
duration of flapping res. is short even using tuned initial condition.

Future works

Different resonance types lead to different non-linear dynamics
and GW spectrums?



back-up slides

Normalization

. scalar field

: decay const.

: Hubble parameter

: scale factor

. 1/2 (radiation dominate)

Klein-Gordon eq.
Background

0;p+3Hop+V,, =0

Fourier mode of linear perturbation

T O T —hga

2
0%(5¢hy) + 3HO(5¢,) + [(S) +V, ¢¢] 5, =0

Using dimension-less variables

i=mt & E? V(p) = m*)fV(p) ax (mi)P, H= ’%

Q)
L
‘S~
+
UJ
QJ
<
+
=t
S
Il



String Axiverse

back-up

Arvanitaki et al. (10)

Anthropically Constrained

Black Hole Super-radiance

|
3% 1018

2 x 109 3 x 107
; . > “D axion
Axion Mass in ¢V L &

Figure 1: Map of the Axiverse: The signatures of axions as a funetion of their mass, assuming
fa = Mgy and Higp ~ 10* eV, We also show the regions for which the axion initial angles are
anthropically constrained not to over-close the Universe, and axions diluted away by inflation,
For the same value of f, we give the QCD axion mass. The beginning of the anthropic mass
region (2 x 10 2 ¢V) as well as that of the region probed by deusity perturbations (4 x 10 28
eV) are blurred as they depend on the details of the axion cosmological evolution (see Section
Iﬁ) 3 % 10 ' eV is the ultimate reach of density perturbation measurements with 21 em line
observations. The lower reach from black hole super-radiance is also blurred as it depends on
the details of the axion instability evolution (see Section ,ﬁ) The region marked as “Decays”,
ontlines very roughly the mass range within which we expect bounds or signatures from axions
decaying to photons, if they couple to E-B. We will diseuss axion decays in detail i a companion
paper.

Neglect back-reaction on geometry
— Axion’s dynamics is independent of (m, f)

We can search axions with wide mass range !

172 172

back-up

GW forest Vo X H_ 10-12eV Kitajima et al. (18)

-18 L R A A — o
10 10® 10° 10* 102 10° 10
f [Hz]




back-up

Phases of instability

o~ (1)
V(¢) i
(1) Slowly rolling down in V, ;3 <0

piad I Tachyonic inst.

(2)

\ ] (2) Oscillation between

V,q;q;<0<—>V,d;d;>0

| Flapping res.
(3)* Oscillation in V. j5 >0 (3) Oscillation in V. ;>0
1=V, 551> 1 I11-V, 5501 <1
) o e Narrow res. S
\| “ |/ Broadres.
\ / v Flapping res. -> Narrow res.
N v
\// -> Broadres.
back-up

GW spectrum

d’p
hyj prm&d)(p)&ﬁ(k -p)

peak and shape of GW spectrum ~ spectrum of ¢,

eg) spectrum peak

em
kpeak/ Gem

kgfgk/ Ares

momentum flow

described in terms of “q”
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Oscillon formation Kitajima et al. (18)

back-up

Growth rate and Spectrum

Flapping res. / Narrow res.

: s _ Lo 1 ~~_l~2 N
Flapping res. V@ =7 <1 a +432/c)c> Narrow res. Vig) = 2¢ (I +¢°)

N=10 N=30 = N=30
2 0.2 a ) R=dd ar  -nan
-nh.a
: 0 7 s -
& 6 -2
0.2 wr i~
5 i)
A . 15 & -0
y, 015 o, ols v .15
n.zs
3 LB} 2 0. al
0.1s
- ooy 7 .05 L |
1 1 i 0.05
0 o * © 01020J0105060.70.609 1
0 01N2RI0ANS0ANTON0A | 0 0.102010.4D5060.70.80.0 1 CHEERENIRINSDA0T D0 D
kitam) kifam)

small ¢ -> Hosc/m small

-> sustainable
growth rate ~ 0.1

large ¢ -> Hosc/m small

-> sustainable
growth rate ~ 0.3

10
r'“\[l
5 (‘1
10 Y [r'
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......... 10
e
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Growth rate and Spectrum

back-up

Broad res.

1. _
Broad res. V() =5¢2(1 + )

N=10 _ N=30

?

1.8
1R
1.4
1.2

1

o
b
0.9
0.2

0
v 0.2z 0.1 oL 0.3 1 o 0n.? L% X3 ®n 1

kftam) k/{am)

growth rate is larger than flapping res.
but not sustainable

10°
A T\
£
10t RA'A N
= E\
¥ gt .
ik
. Il
10 Wl
0.01 0.1 1 10 100

kf{am)

* no self-interaction in|¢$| <« 1 -> broad res. cannot continue

Cosine potential

back-up

0.20
tuning initial velocity ‘Z|f,- ,
g 0.15
4 T 0.10
H, /m x — 1/log(¢;)
0.05

10-13 10-1 10-° 10~7 10-5 10-3 10-!

d¢/d(mt);



Cosine potential

back-up

During flapping res.

N=2

=10

initial velocity

=10
L £

initial velocity
=2

ULILOZUNAUS5060.70.80Y 1

{am)

< |
-
01

-
o-

0.01 0.1
k/(am)

«<[p psf|=

During narrow res.
N=8

U 010202040506 0.70.800 1

ki(am)

¢;=10""°
m: ‘%‘\\

——

10" i i l E

o : : ‘, :
w’, N=10,50,100(end)
wt R
10‘r !‘
=
10 0.001 o.;t)l oi.l lJ.

kftam)

initial velocity small -> duration of narrow res. slightly longer

Growth rate

Narrow res. , Broad res.

back-up
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Growth rate

N=100 N=t90
0.25

02

0.14
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back-up
Parametric resonance black dashed line : %mzdyz

"~ 1. 1 ~
V(p) = 5432 + Zﬂrﬁ“ + O(¢%)

9 g < 1 : Narrow resonance
p— (" 4 =
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SpeCtru m ‘J—“uﬁunaga et al. (in }arogress)
g ~ O(1): Intermediate res. g < 1 : Narrow res. g > 1 : Broad res.
k k —
peak & (plat) peak q
~ v, Pav) ~a = No peak
aOSCm d)d) aoscm 2

Kitajima+ (1 8)

- - 1. - - 1. -
eg) V) = 531 + B V@) = 531 + B
(-0.47<c<0) (0O<c)
r"§ ‘I‘\"l h
0.1 0. a.1 1 10‘ I‘ |‘100

Kki{gam) kftam)

“if H,/m<1,narrow and flapping res. can continue longer

osc

back-up
Intermediate resonance
V, ib < 0 j%ﬁ:
flapping resonance mild flapping resonance
IU'[ 100000
1 | | [ 1000 { q
ln‘\ 1 . . . . .
mGg — |5, ---- ||

both of two case G~ O(1) but,

growth rate of flapping res. is much larger than mild flapping res.



Model

pure natural inflation

back-up

1 1

Vg =—|1

2\ + oy

1.00 4
0.751
0.501
0.251
0.001
—-0.251

o
-
N
wA
E=
w

larger ¢ -> more plateau -> Hosc/m small

Model

back-up

power-law type potential

2.00
c= 0.200 A
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Narrow resonance

AN\ Repeat: Up & Down in a half of osc. period
/8

/ — Periodic ext. force
By " o ) — Enhancing the amplitude

¥4
Ql\if“@l at
T A

Narrow resonance instability

Sustainable narrow resonance for Hose/m<<1
Soda § urakawa (1)

) Redshift of modes in resonance band is inefficient.
2) Growth rate does not decrease over many oscillations.

. 9 =
S oc eI™ ex. First band Yot
Flapping resonance instability
@ , Kitajima, Soda & Y.U. (18)
1 mildly low-k
— low-k 1.5 —— ‘
[ ‘ ‘ ‘ ‘ ‘ I — k=01
100F  —i i — k=4 i
m F — k=01 1or i
- 100 ! : I .
T ’ | ] Vi 00f |
o e A NSNS

mt

. s - k ~
- For tachyonic instability — < /| )
— s

- To short | k
o shorten @ , larger heak I
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Difference value of q

flapping res. narrow res.
-> adiabatic condition is violated -> adi. condition is not violated

100 1

I ﬁfﬂ( ,0 Wwwwmw
A A L

0.1
0.01 0.001

=

41 001

q~0.25 g <0.1

0§ — |6¢,] —— adi. condition
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JGRG
Primordial black holes in
an axion-like curvaton

model

ICRR theory group M2
Hiromasa Nakatsuka (FH 15 E46)

Today’s talk
* Formation of primordial black holes in an axionlike curvaton model
Kenta Ando, Masahiro Kawasaki, and Hiromasa Nakatsuka
Phys. Rev. D 98, 083508

2018/11/05 Rikkyo University

Motivations of PBH stud

Black Holes of Known Mass

* Binary BHs in the LIGO-Virgo
* Relatively heavy mass?
M MPBH = BOMQ < T = 50MeV

* Binary formation in early universe
[M. Sasaki, et. al., Phys. Rev. Lett. 117, 061101 (2016)]

Q _
LIGO event rate < —PBH — 103

Qpm
Mass spectrum of PBH
 PBH as Dark Matter ! ‘
. SPBH _ 1
Q = MACHO/EROS
DM 12 0.100"P JOGLE
i MPBH =10 MQ
S T= 105GeV Subaru HSC
E 0.010% © 1
* PBHs on limited mass range rigw
. (®) (a)
< Curvature perturbation sonil / (PTA) s
with peak-like spectrum // distortio
DM-PBH LIGO-PBH
H. Niikura, M. Takada, N. Yasuda, R. H. Lupton, T. 10-4

| | | | | |
Sumi, S. More, A. More, M. Oguri, and M. Chiba, 10-13 10-9 10-° 0.1 1000.0
(2017),




Primordial black holes in an
axion-like curvaton model

* Motivations

/'« Perturbations Pr (k)
in our model

* PBH formation & 2" GW
e Statistical property of the perturbations
* Conclusion

The mechanism of our model

- Axion-like curvaton model + inflaton coupling

@ inflaton I = Inflation & CMB (1Mpc ~ 103Mpc)

@ complex scalar @ with Higgs-like potential and

1722

Vo = g 1202 + 5 (1012 - %) —:”36(‘1’ * q’)

= Small scale perturbation

Inflaton coupling

Higgs-like potential Vo]

Bias term W

‘.\” -vh'
rj/"’"ﬁw
+ To solve Cosmic string problem </
‘,/
e To avoid stochastic region Im[®]
Re




Perturbations

 Hubble perturbations

» Generated at horizon crossing

. (%)2 = P, = P5 = 2|®|2Py
2
0= (2 2

2|D(tx)|?

Perturbations of ®=

 Hubble friction
(07 + a=2k? + m2q;)6®; = 0
* At@, mgff > HZ,

» & oscillates and Hubble friction
decreases 6P

50 (K) o{gln (kp’; H)}

| CI) | Classical dynamics
1.0 ‘ ‘
DM-PBH
08F  —---- LIGO-PBH
-------- Minimum of potential
. 06} .
2 s
= -~
> //
0.4r t\,/
Ki
tppH |
02l PBH!
o
/
0.0 T T T
-50 -40 -30
a(t)
Iog( —
lend
60 Angular perturbation with damping fa
0.100
< 0.010
<

Comoving scale

1074 k|
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C £ / PBH scale
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»
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Time: Log(a)
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< 0.001

as

Fvaluation of PBH formation rate

Py (k): curvature power spectrum

0.100 r r r M
1 BBN DM-PBH f( ) Mass spectrum of PBH
1 Ir 1
0.0101 LIGO-PBH ]
u—Distortion
WD MACHO/EROS
¥ 0.001F ] 0.100L /OGLE
1074 3
Subaru HSC
= o0.010}
1075 . . . . = (c)
1 1000 108 109 1012
k[Mpe~!] ) (a)
0.001 1
{Colors)
Blue: top-hat ty!oe OM_PBI] LIGOPBH
Black: delta function type il LA ‘ ‘ ‘ ‘
. 10-1 10-9 10-5 0.1 1000.0
Red: Gaussian type |/’ sl
/ T - DM PBH - LIGO PBH
Qppy QppH
= [d(nM) f(M) =1 =1073
: 00 'QDM 'QDM

0.100

0.010

K. Ando, K. Inomata, and M.

1

Kawasaki, (2018), arXiv:1802.06393

Secondary gravitational waves

GWs are sourced by the scalar perturbation in 2" order,

hii + 2aHhj; — V2h;; = —4T" Sy, Sum = 0(3?)

P;: curvature power spectrum

BBN

u-Distortion

DM-PBH

LIGO-PBH

——

1000

108 109 1012
k[Mpe~1]

7

R. Saito and J.’i. Yokoyama, Phys. Rev. Lett. 102, 161101 (2009)

E. Bugaev and P. Klimai, , Phys. Rev. Lett. 102, 161101 (2009)

Power spectrum of secondary gravitational wave

f [Hz]
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The effect of non-Gaussianity

0.100

0.010F

w 0.001F

L : ! [ W L NI/R L .
1 1000 108 109 1012 1013

In our curvaton model: fy; (kpgy) ~ 2.7, (r =0.5)

For PBH formation

» With non-Gaussianity, PBH formation rate S (M) increases.
& We can achieve f(M) = 1073/1 by smaller P, (k).

(Dotted: assuming Gaussian,” Solid: including non-Gaussianity,

Power spectrum of secondary gravitational wave

Spectrum of curvature perturbation Pz (k)

f [Hz]

BBN [ DM-PBH 1077
o S EPTA/PPTA/
NANOGrav

!/ “\. LIGO-PBH
p—Distortion W\

k)h?

] < 10-10L SKA

Qg

10~ E

1012k

LISA

10-10 10=9 10% 107 10® 105 104 103 1072

eLISA

104 105 106 107

‘
108

102 1010 10" 1072 1013

* non-Gaussianity helps to avoid current constraints

Future GW constraints check both scenarios with/without NG

Results& Conclusion

* We have constructed the model to form enough

PBHs for BBHs in LIGO/VIRGO or DM.

* But, the results depend on the uncertainties of PBH

formation.

* The detailed analysis?
* | focus on non-Gaussianity. (Ongoing)




The mechanism of our model

 PBH formation

Mass spectrum of PBH

 Classical dynamics: @

5 MACHO/EROS
0.100 JOGLE
2 o010
0001
DM-PBH LIGO-PBH
104
HRRTEE 1079 107% 0.4

massiM]

o 2 GW

Power spectrum of secondary gravitational wave
f IHz]

10719 109 107® 107 10°% 10° 0% 10°° 1072
77 T :

* Perturbations P; (k)

0.100
DM-PBH .

0.010

u—Distortion

& 0.001
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k[Mpe!]
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The effect of non-Gaussianity
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Affleck-Dine baryogenesis
in
the SUSY DFSZ axion model without R-parity

Kensuke Akita (Tokyo Institute of Technology)

Based on
arXiv:1809.04361
with Hajime Otsuka (Waseda University)

@Rikkyo University “JGRG28”, Nov. 5, 2018
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Introduction
Problems of the Standard Model:
* the origin of the tiny neutrino masses
Previously proposed solutions: D S
hanjs A
* Seesaw mechanism introducing the heavy right-handed neutrinos
* Small R-parity (lepton number) violating terms in supersymmetric (SUSY) theories
NOT introducing the right-handed neutrinos
R-parity: R, = (—1)*t38+L S:Zpin ) 600
~ B : baryon number
R-parity violating term: £ D p;v; Hy + C.C 1. lepton number \&e,\oc,o

Neutrino mass terms

Requirement: explanation of the smallness of R-parity violation.

2/12

A
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Introduction

The SUSY DFSZ axion model achieves the small R-parity violation.

3
R-parity violating term: , 5 yi%yiﬁ[u +cc

P Sl V; Hu

— Ulpo | 1] -2 -1

Planck mass
Symmetry breaking of U(1)pq : (81 : PQ field)
3 ~
LD yi@mHu + c.c
M
__¥p

The effective coupling

The magnitude of R-parity violation: controlled and suppressed for (S1) < Mp

In addition the SUSY DFSZ axion model I The SUSY DESZ axion model

* solves strong CP problem
gLrp can solve several problems.
* includes the axion which is a candidate of dark matter

4/12

How about the baryon asymmetry?

B ~ 10710

S Our universe is baryon asymmetric
to explain BBN and CMB observation

Previously proposed solutions:

* Thermal leptogenesis
induced by the decay of heavy right-handed neutrinos.

* Affleck-Dine(AD) mechanism

induced by the scalar field in supersymmetric theory.

Can the SUSY DFSZ axion model explain the baryon asymmetry
via the AD mechanism without the right-handed neutrinos?
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Affleck-Dine baryogenesis

Affleck, Dine, Nucl. Phys. B249, 361 (1985)
Dine, Randall, Thomas, Nucl. Phys. B291, 458 (1996)

6/12

Affleck-Dine(AD) baryogenesis

In SUSY theory, scalar fields(squark, slepton) have baryon/lepton charge.

Scalar potential of MSSM include flat directions ¢ (AD field)

at renormalizable level and supersymmetric limit.

B/L number density: npg /1, i(¢* — ¢*d) = 2|6%0 (¢ = |¢|e®)

Dynamics of AD field

via B/L violating operator

» Generate B/L number

\\ " Flat direction

B/L violating operator
Conventional case:

This case:

"
W = 570" (n,m e N)

- n+m—3
MP
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Set-up
St L | H,
* L violating operator: UDlpg | 1| -2 -1
_ S{LH, = S}¢? 1 1 /0
v | () me ()

 The scalar potential for ¢, Sy :
P ¢’ 1 Assumption: Cg,C1 > 0

y2|51|6|€l5|2
M

V = (mj — csH?)|6* + (m§, — c1H?)|S1|* + +

yS?¢?
M3

Phase dependent terms: L,CP-violating terms

+ (ag H + ammsy2)

(mg ~mg, ~mgs)
Let us investigate the potential and dynamics of AD/PQ scalar fields

. . . . 8/12
Dynamics of ¢, S1 during inflation: H = Hi,e > mas»

2S 6 2
V:%_C¢H2)|¢’2+(%_01}[2)’51'2_'_y |]\14|4|¢| +
P

negative mass!

SS 2
—i—(aHH—kaMz)y]\}g +h.c. + ...
A minimum for ag > Cy, Cy: (Mg ~ms, ~mz/s)
([9l) = (|S1]) =~ (HME)'?
(20 + 305, + argag) =0 (¢ = |9le?, Sy = |S1]e?s1)

@, 51 will settle at the above minimum: ny = \¢|29 =0




9/12

Dynamics of ¢, 51 after inflation: i = % > Mgy

2S 6 2
V:%—%Hz)ldu@a{—clfﬂ)wuM+

Mp
53 2
+ (@Wgﬁ%. ¥ ..
P

— O (H X <I> = 0) The inflaton start to oscillate.

L3
\

inflaton (m¢ ~mg, = m3/2)

The minimum - a saddle point!

We can follow the trajectory of ¢, S1 numerically.

é — () because new phase-dependent potential is not produced.

ng =020 = 0| (¢ =1¢le?)

: 2
Dynamics of ¢, 51 at H = 5 <My 10/12
2 S 6 2
V= - RO, S+ LR

yST P
+ (a + AmM3 2)—
>€ 22

+h.c. .+ ..

My = Mg, =M
New phase-dependent term ( ¢ S1 3/2)

:the minimum of @ changes = 0#0

0.1

Qb start to rotate around (@) =0 . 00

% -0.1

= 9P0 A0 | (o= el =

-0.3

0.0 0.2 0.4 0.6

The lepton asymmetry is produced. Re¢



Baryon asymmetry

11/12
Using E.0.M of ¢
8nL
ot +3Hng = —Im 44 These vaIues are calculated numerically at H ~ me
L SP(tose)9”
“ i (fone) = —— 1L J\Zﬁ < °“) |yam|ms 2ot | dex = sin(arg(yan) + 3arg(S1) + 26)
@ P
npg 8 nL
Barvon asymmetry: —
~ 23 s Kuzmin, Rubakov, Shaposhnikov, Phys. Lett. B155, 36 (1985)
1 1
_ Tren 1N\ 3 /mg Mg 3
10 o — 1 -1
o[ )0 () ) st
s _ Tren 1\ ® /mgz) meg 3
10 _ = =
0.68 x 10 (105GeV) (\y|> ( me ) <1TeV for cp =c1 =1
The enough amount of baryon asymmetry is produced!
12/12

Conclusion

The SUSY DFSZ axion model
* explain the baryon asymmetry via Affleck-Dine mechanism

* may explain neutrino masses and baryon asymmetry in supersymmetric
theory without introducing new fields such as right-handed neutrinos.

Future work

* Investigating the detail of neutrino sector
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Redshift space distortions in the
presence of non-minimally couple
dark matter

Fabio Chibana

Tokyo Institute of Technology

JGRG 28 (Rikkyo University)
2018/11/05

In collaboration with:  R. Kimura, T. Suyama, M.Yamaguchi,
D. Yamauchi, S. Yokoyama

Qutline

l. Introduction:
a. Redshift space distortions in standard cosmology
b. Kaiser formula
Il. Coupled dark matter
a. Disformal coupling
b. Modified Kaiser formula
lll. Forecasts
a. Constraints from future galaxy surveys

IV. Summary

1 /14
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Euclid
SKA2
Euclid
SKA2

Table 9. Marginalized mean values and 68% C.L. intervals for coupled DE (see Sect. 5.3.4).

CDE models Planck TT+lowP Planck TT+lowP Planck TT+lowP Planck TT+lowP Planck TT+lowP
+WL +BAO/RSD  +WL+BAO/RSD

0.026 7 0.019
00437006 0.034* 0ls

(), 44+0.18

65.4+3 67474058 67.6+238 66.7+ 1.1 66.9 + 1.1

-6
0.031 0.031
081270031 0.829+0018  0819*0%!  0817+0017  0.810£0.017

Euclid
SKA2
Euclid
SKA2

Table 9. Marginalized mean values and 68% C.L. intervals for coupled DE (see Sect. 5.3.4).

CDE models Planck TT+lowP Planck TT+lowP Planck TT+lowP Planck TT+lowP Planck TT+lowP
+WL +BAO/RSD  +WL+BAO/RSD

0.026 0.019 0.020
0.04370026 0.034*0912 0.037+

() 44+0-18

65.4* , 67.6+28 667+ 1.1 669+ 1.1

.6
0.031 0.031
0.812+0031 0.819*9%1  0817+0017  0.810+0.017
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Nonlinear astrophysical phenomena and
the viability of screening mechanisms in
gravity beyond General Relativity

wa/ £ Mota

B UiO ¢ Institute of Theoretical Astrophysics
Y University of Oslo

General Relativity is quite unique

Curvature

1
167G

/d4x\/——gR(g) +/d4az\/——g£(g,matter)

Metric of space time

Lovelock’s theorem (1971) :“The only/second-order, local gravitational field equations
derivable from an action containing solely the 4D metric tensor (plus related tensors) are the
Einstein field equations with a cosmological constant.”



Higher-order

Higher dimensions’ Non-local

Modified Gravity

New degrees of freedom

| Tessa Baker 2013 |

Common Feature to Modified Gravity

Screening Mechanisms!

|Solar System Bounds|

|Astrophysical Bounds]

_\‘\I\I‘\\\I‘\\\I‘I\\\‘I\\\‘I\_
&

Binary Pulsars 4

time (s)

eriastron

shift of p

ool /
[ General Relativity prediction

Cumulative

,357\‘\I\I‘H\I‘H\I‘I\H‘I\H‘IF
1975 1980 1985 1990 1995 2000
Year




Screening Mechanisms in Scalar-Tensor Gravity

1 -

L= —52"(9,06,..)0,00,¢

= Z20a@)  dm

3. Large ine l’tl a

Couplings, Mass, Inertia environmental dependent

Screening mechanism # Theory of gravity

1

L= ~52"(6,00,..)0u00,6 — V(@) + g(d)T};

_ ___m@) .
g2(¢) e VZ(¢)es(d)

Z(d)eA¢)  Amr

Vie)=

Chameleon | Vainshtein

(R)-gravity | PGP R~ YV?® > A7

mass/range | 0°¢

d > Af

coupling | O¢

field value

k-Mouflage
Symmetron

] D-Bionic
Dilaton

- massive gravity Galileons

A

W12} 919U



Symmetron Screening
Strength of fifth force depends on local density

2
5= [dtoy=g (“PR- 3007 = V(®)) + Suster [A2(@)gr ¥

GM
»»»»»»»»»»»» 1P(I/') = _—(1+OL -V/K)
1 e R
A(‘fb) =1+ 5 M?f‘b? ..... coupling ———
- Lrp o\ 2, 1y 4

(High density) ‘/eﬁ(qb) o 5 (W —H ) ¢ ™ EAQS (Low density)

No coupling! coupled!

1
Alg) =1 Verr(4) A(9) =1+ 7%

i
¢

Chameleon Screening
Mass/Range of field depends on local density

2
S - /d4m\/__g (%R - %(8¢)2 - V(¢)) e Smatter [A2(¢)gw, ¢]
_ _ B ~ Low density region
meg(¢) = Va;fé (@) = Vg (0) + Aspe (0)p Veff(Adﬁ)
Ap) ~ 1+ §Mipl V(g) = M;:n

Chameleon f(R)-gravity

S

_ Mg,
92




Constrains on Modified Gravity
Post-Newtonian Parameter

ds® = (=1 + 2G—M) dt* + (1 + 2~yGTM) dz?

-
“How much space is curved by a unit rest mass”
P Y

y—1=(214+23)x107°

v—1=0, GR

Computing the profile of the field
In the solar system

2
S = /d4$\/?g (%P—IR o %(a(b)z o V(¢)> og Smatter [A2(¢)guww]
e Scalar field equation of motion

q}g = 3H¢ - %VQQb = _Veff,qg (pa ¢)

« A damped wave equation



Quasi-static approximation
Field profile doesn’t change in virialised/quasi-static systems

» Scalar field equation of motion

1
a—2v2¢ = _Veff,qj (pa ¢)

» Quasi-static approximation

2
S = /d4x\/—_g (%R - %(8¢)2 - V(¢)) i Smatter [Az((b)guv,"/}}

Quasi-static approximation
Field profile does change in virialised/quasi-static systems

» Scalar field equation of motion

1
CL_QVZQS = _V;ﬁ"¢ (pa ¢)

* Quasi-static approximation

O
¢
L oo dInA(¢) =
Q= vi) 3 Vo
Newtonian

2
5 / - (@R Lo - V(¢)) + Suatter [A2(6)gyus ¥]



Quasi

-static approximation

Field profile does change in virialised/quasi-static systems

» Scalar field equation of motion

1
a_2v2¢ = _Veff,qj (pa ¢)

» Quasi-static approximation

O
¢
i=-V®— ‘“’Z—’;(@%
r Nev>t'onian
¢* 2
Y — 1= _M2 $2 b2
A7z T 2 (1 + W>
The Thin Shell Effect A
Verr
¢
Large p
299.87
99.50 /

M’




4 The Thin Shell Effect N

Large p Small p

80

60+
All field variations coZal

|3ar body surface
This region is called |

20+

1 L 1 L | L 1 L
\_ % 40 g 10 160 200 Y.
rM7]

Thin shell effect
Screening mechanisms suppress value field and gradient

= - Newtonian
Q()ED Q potential
MERCURY »wg E;\RTH MARS ("-‘1
b = —
r !
R
F F 1 & . <1
< Y= -
PR M2 2 4 91 4 £5)




Waves from Supernovae

Chameleon Potential Profile of field

15

1.0F

0.5}

0.0 |

V()

—0.5}

-1.0F

Vetr(®) Production of waves Vett(®)
Symmetron

Density (z= 0.000) chi(z= 0.000)
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Waves from collapse of domain walls
I

Density (z= 0.000) chi (z=0.000)
1000

05
100
0
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-0.5
i
1
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Profile of field G
15 ; :
Vete (@)
10}
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-0.5F
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0 :
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E (;" : 1
or
= _Q . J
~10
12¢
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Hagala, Llinares, DFM, PRL



[y =1
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r[kpe]

Distance from milky way centre

100 L
1072}
1074}

1076,

107

1071() L

10712 L
0 20 10 G0 80 100
r/kpc

Distance from milky way centre

Screening disrupted!

Scalar waves increase the PPN parameter
and fifth force several orders in magnitude!

¢* 2

M2 22 4 ow(1 + £5)

Hagala, Llinares, DFM, PRL

e (GASSIiNi bound

Amplitude A

Oscillations are a smoking gun!

/|Vﬁtﬂfri(’ - 1|

1

1 3
w/Megayears™

Hagala, Llinares, DFM, PRL

1



Summary

» A light extra degree of freedom in the gravity sector is viable
only if a screening mechanism is efficient to suppress it at
local scales

» The viability and efficiency of screening mechanism generally
relies on the quasi-static approximation

» Astrophysical events can create waves and the quasi-static
approximation is no longer valid

» Waves diminish the screening mechanism efficiency in
several orders of magnitude reducing the viability of many
modified gravity theories
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Ghost-free scalar-tensor theories
in metric-affine formalism

Katsuki Aoki, Waseda University

with K. Shimada

Based on Phys.Rev. D98 (2018) 044038 (arXiv: 1806.02589)
and in preparation

2018/11/06 JGRG28@Rikkyo

Introduction

GRis 1) a theory of massless spin-2 field
— Gravity determine dynamics of a symmetric tensor g,,,.

2) a theory of curved geometry
— Gravity determine all geometrical quantities.

Physics should require how to measure the distance and the derivative.
— two independent objects, metric g, and connection T ;.

Riemannian geometry: metric is only independent object

]' 12
Pop = {a“ﬂ} = 59" (0agpy + 9gav — Ougap)

in which V4903 =0, Ffaﬂ] =0
Preserving inner product and torsionless  Just a special case!



Metric and Metric-affine formalisms

O Metric formalism: Gravity is a theory of metric (= spin-2 field)
— Gravity determine dynamics of a symmetric tensor g,,,,.

O Metric-affine (Palatini) formalism: Gravity is a theory of geometry
— Gravity determine not only the metric but also the connection.

Two formalisms generally give different theories.

Einstein gravity: Riemannian = beyond Riemannian

Beyond Einstein: Riemannian # beyond Riemannian

r
For exampler ¢2R(g) * ¢2R(9: F) Bauer and Demir, 2008
¢0¢  #  ¢0¢  seenexttalk!

2018/11/06 JGRG28@Rikkyo

Why are two different?

For convenience, we introduce the distortion tensor k

i TH ) K 1 .
Kk O‘B . Faﬁ {Olﬁ} {aliﬁ} = 59“ (aagﬁu"i'aﬁgau_augaﬁ)

The metric-affine formalism = The metric formalism with k.
T
Rﬂaﬁﬁ(r) = Ruaﬁv(g) + 2V[a/€g]y + RFMUHE]U

linear in curvature ~ M3 R(g) + M3x* :mass term of distortion

higher curvature D (Vk)? : kinetic term of distortion

When higher curvatures can be ignored, i can be integrated out.

SST[Q’a R, ¢] = SST[Qa /f(ga ¢)a Gb] KA and K. Shimada, 2018
v’ Einstein gravity = £"ap =0 cf. The metric formalism
v' Beyond Einstein = x#,5#0 & kMg =0

2018/11/06 JGRG28@Rikkyo



What can we get from metric-affine?

In low energy scales,
Integrating out k

SST[ga K, ¢] — SST[ga /{(ga ¢)a ¢]

We can discuss metric-affine theories in the metric formalism.

However,
v Two formalisms give different predictions. (e.g. ¢0¢ # oU0)

v" The metric-affine may reveal a hidden structure of ghost-free theories.
M2 r r T

r
L= TPIR(Q,F) + L4y(9,0,V,6,V,,V,0) + non-minimal couplings

is ghost free if 1) the theory is projective invariant
2) we can take the unitary gauge ¢ = ¢(t)

2018/11/06 JGRG28@Rikkyo

Projective invariance

Let's back to Einstein gravity. KFag = T4, — {auﬁ}
M3+ M?
Leu(g,I') = TPIR = Tpl (R(g) = Iiaagliﬁv»y = H,O‘B,yfﬂalg) + total divergence

The EH action has an additional symmetry, “projective invariance”,
FZB — ng aF 5gUa($) or I{Maﬁ — Hﬂaﬂ aF 5gUa(m)
The projective transformation preserves the geodesic equation
d?x+ dz® dxP

- IJJ —_—
d\2 1o A\ d)\ 0

and the change of the angle for parallel transport (a conformal symmetry)

5 A-B s A-B
ANE] ANE]

2018/11/06 JGRG28@Rikkyo



Scalar field with projective invariance

Consider the Lagrangian
£ = =2 R(g,T) + L4(9,6, Vo6, Vi Vo)
Higher derivatives of ¢ have the connection
Vb= 0,0, V,Vyd=0,0,6— %00
Projective invariance I', ; — T ; + 03U, (z) is realized by invariance under

I8 T r T
V. Vit =V, Vb — U,dyo

In the gauge ¢ = ¢(t)
r IN r r
A, =n"0,¢,n" is the normal vector

2018/11/06 JGRG28@Rikkyo

Scalar field with projective invariance

In the gauge ¢ = ¢(t)
r r r r
V.V, =V, V,0—AU,n,
A, =n"0,¢,n" is the normal vector

Since U, is an arbitrary vector, we can choose U, x n,,.

r I

V.V, — %M%u(/b —U(x)nun,
This symmetry implies the 00 component is just a gauge mode.
V.Vb = £nAinum, + - (A, = —4/N)
= L4(g, 0, %qu, %M%ycﬁ) = L(t,N, K;j, D;N, k)

The Ostrogradsky ghost (= lapse) does not appear in the unitary gauge.
(trivially degenerated)

2018/11/06 JGRG28@Rikkyo



Ghost-free scalar tensor theory

We found more general ghost-free Lagrangian
L= R+ 2G"VuV,¢ + f3GHPV 0V, 6V Visd + faRu VE VY ¢ + Ly

where - -
fl — fl(g7¢7 v,u¢7vuvu¢) and so on
are assumed to be projective invariant.

uvas . _ 1 GBS | i

GHYOP = Ee“”P"eO‘ "R,svs  dual Riemann tensor
r r . .
G = e Einstein tensor

Up to the quadratic in the connection,
we can explicitly get the solution x = (g, ¢) and integrate k out.

2018/11/06 JGRG28@Rikkyo

Quadratic projective invariant theory

. . . F F . . .
Expanding the functions in terms of YV¢ and ignoring higher orders
L(g,T,¢) = LR+ [rG"' V.oV, + faRu V'OV ¢ + Fy + F L5 + FuLs"
1. Cleul/paeu/y/plUvu(bvur(bvyvyl¢V[pvp,]¢ e 02(£§a1P)2
uB b oy ;wafyﬂér it r r r r
+C3(9"" 9" 9™ — g g™ g )V 0wV, 0V V3V, Vs
= The most general projective invariant

scalar-tensor theories up to quadratic order

After integrating out the connection,
the theory is reduced to the quadratic U-DHOST theory.

2 4 1
£00,9) = PR+ P+ by + Qa0 + () I+ (2= £ ) 187+ (3 = 2 +20m 2 s = | ma) 7

2fx  2f 261 .(2) o 2fx 1 , 20 1%\ @
+(a+7*747 L4 = 7E+F+m1 F+3G 7} + Ko 304} L5

2018/11/06 JGRG28@Rikkyo



Hidden structure of ghost-free theories

Up to quadratic order in the connection

v" The most general ST theory = The (quadratic) U-DHOST theory

r r r 1 0 o o " . De Felice, et al. 2018
L(g,T,¢) = LR+ f2G* vmwmm v“¢VV¢+F2+F3£§ Tt Rt

+ Cpervro e v'e vmv BV, ¢v 16+ Ca(L5'T)?
+ Ca(g"P g g™ — g VPPNV .6V, 6V oV 36V, V56

The degeneracy conditions are satisfied only in the unitary gauge.

v" Projective invariance + Galileon type combinations = (quadratic) DHOST
Langlois and Noui 2016

A 2 VF = gall’ gall’
L(g,T,¢) = iR+ foG"'V ¢V, + Fo + F3 L5 + Fu L5

The degeneracy conditions are satisfied in any gauge.
v Theories beyond quadratic order = new theories

2018/11/06 JGRG28@Rikkyo

Relations between Palatini and metric

v" (Conventional) non-minimal coupling

M?2 r r
0= ng‘“’RW - %((%)2 —V(g) — §¢2R
3 M? M? — £(1 4 6£)¢” £ T

Non-canonical kinetic term
v" Kinetic non-minimal coupling

L= f( )R+P(X)

& L= f(X)R(g) + P(X) + J}X 608 G}

“counter term” to eliminate the ghost (NOT ad-hoc!)

= (09)*

= should rediscuss well-known models which give new phenomenology.



Summary and Discussions

O Metric-affine formalism: metric and connection are independent.

O Beyond Einstein gravity: metric-affine formalism # metric formalism
Integrating out T (in low energy)
Sstlg, T, ¢] = Sstlg, T'(g, ®), d] ' # Levi-Civita connection
O Projective invariance — Ghost-free theories (in the unitary gauge)
le iy r r r o -
L= TPR(Q,F) + Ls(9,¢, V0, V, Vi) + non-minimal couplings
In particular, beyond quadratic = new theories
*Non-projective invariant theory is also possible

O Phenomenology? e.g. inflation
see next talk for the simplest case! (¢0¢ # ¢|5¢)

2018/11/06 JGRG28@Rikkyo
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Inflation in Metric-affine Gravity

The 28th Workshop on General Relativity and Gravitation in Japan
@Rikkyo U.
mﬁo $HIMADA (WASEDA U.)
COLLABORATING WITH K. AOKI-SAN anp K. MAEDA-SAN (WASEDA)

BASED ON KS, K.AOKI, K.MAEDA[arxiv:1811.XXXX]

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. 1

Prelude:

1. K.Aoki-san’s Talk:  [The Formulation]

” Ghost-free scalar-tensor theories in metric-affine formalism”
»The ldea:
Metric-affine Formalism + Projective Invariance = Ghost-free?

2. My Talk: [The Phenomenology]
»The Idea:
Inflationary scenarios differ depending on Geometry
»Not necessarily Projective Invariant Theories

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. p




Extending the Geometry

Introduction: Non-Riemannian Geometry

Non-Riemannian Geometry(what do we keep and what we don’t)
In (Pseudo-)Riemannian Geometry...
1. Riemann Metric g,
Defines length ds® = g, dx*dx”
Symmetric two-rank tensor

2. Connection{;v}: (Riemann-)Levi-Civita Connection
Defines parallel transport
. Al _ (A . . _
Symmetric ({uv} = {vﬂ}), Metric-Compatible (V3 g,, = 0)

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. 3

Extending the Geometry

Introduction: Non-Riemannian Geometry

U Decided from the gravitational action
1. Riemann Metric g, :

Po
Fundamentally different geometrical variabl%

2. Connection{lfv}: (Riemann-)Levi-Civita Connection

1t Decided by hand 1!

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U.




Extending the Geometry

Introduction: Metric-Affine Geometry

Metric-Affine Geometry
In Metric-affine Geometry...

1. Riemann Metric g,,: | < Keep the metric as Riemann

Let’s let ‘the action’
. : . decide th ti
2. Connection FAW: Arbritary Connection ecice The connecton

Defines parallel transport

—#y T vy 3 234
A 1A _rT1l Y — pl . . .
T =T =Ty Q' =Vag”  Metric-Affine Gravity
2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. 5

Introduction: Metric-Affine Geometry

Arbitrary Affine-Connection

.
Non-metricity Tensor‘ ’Torsion Tensor
Q" = Vi ghr T4y =Ty =T,
Length/angle does not conserve Spacetime is Twisted

(Under Parallel Transport) 7.7 V* = RA, Vo — T, 7,V

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U.




Introduction: Metric-Affine Geometry

@@@ Arbitrary Affine-Connection

A
@@%@ M50
Non-metricity Tensor‘ Torsion Tensor
Qaﬁy = Vargﬁy TA/,W = Fluv - Flvu

A 1 y) A
F/luv - {#v} + 2 (TAW - ZT(MV) o QAW T ZQ(W) )

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U.

Metric Affine Gravity allows one to ‘Select’ the Geometry | ] 3 1
T4, =T%, -T

vu
Q" = Vi gPr

Riemann Geometry

T=0

Einstein-
Cartan

Torsionless
Theories

Non-
Q I
Symmetric
4 ’\I/'eleparallel
Length/an R=0 POINT
(U] Metric-Affine Teleparallel

Riemann Geometry
is a small subset

Geometry

2018/11/06



Raﬂw(r) =0 — 0I5 + FauAFAVB - FOAMFAW

Metric-Affine Formalism In GR

s

Metric-affine Formalism (Einstein,1925): (ko)p

Symmetric metrlc Juv and Connection r4 op are independent %‘%

4
l
5= f 4o =g R0, + Sulal D %,
K2 v
N
& U
X
&
N A
& r4 { } + Us6)

c.f. Aoki-san’s Talk U,: Projective Mode

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. 9

R%3uu(0) = 0,15 — 0,0 %5 + T a5 = T 5

Metric-Affine Formalism In GR

Y

Metric-affine Formalism (Einstein,1925): Iko;),
Symmetric metrlc guv and Connection F’lp are independent @%
v
Pl 1,
§=——Jd**x/=gR(g, 1) +Su(g,{ D Y,
S v
N
v
X
&
Q/}% 1-1,1 N ) 1. Gauge Fixing: U, = 0
AN op — op 2. Levi-Civita became a ‘solution’
c.f. Aoki-san’s Talk ¥ But not unique!

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U.




Raﬂuu(r) = 0,10 — 0T 5 + FauAFAVB - FawaAuﬁ

Metric-Affine Formalism In GR

%
‘ ’ 4,
As a ‘second’ approach... A
M2 %
_ Pl 4 4/
S=—=[d*xy=gR(g,1) +Su(g.{ D) 1,
2 ‘?4,

—| We could also ‘select’ the geometry
A priori / Assume the geometry before variation

1. Riemann Geometry F’lﬂv = {,1:11/} T/luv = F)luv - Flvu

2. Einstein-Cartan Geometry T);w #0 Ql’w =0 Qaﬁy = Vofgﬁy

3. Weyl Geometry Ty =0 QY =A49"

R%3uu(0) = 0,15 — 0,0 %5 + T a5 = T 5

Metric-Affine Formalism In GR
Metric-affine Formalism (Einstein,1925): 4/

Symmetric metric g,,, and Connection F’lap are independent Y%,

MZ ’?
§= =2 dxy=g R(g.D) +Su(g,( D) %,
|

N A By ‘Select’ th t
Q.é‘ Tuv=00an =0 elec e geometry

&
& r4,=1"
AN op op
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Qaﬁy = V‘{gﬁy Tluv = Fluv - Flvu

Metric-Affine Formalism In GR:  short summary

\ 4

Projective Invariant
I

2 ..
sa=%fd4xv——gzz(g,r) Q=0 | Gauge Fixing | | U, =0

. . ¢
Metric-Affine GR Einstein equations

S— . .
+Connection is LC
Choose
Geometry T=0r
2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. 13

Qaﬂy =0gghr Thy=T%, —Th,

Metric-Affine Formalism In GR:  short summary

However
General metric-affine gravitational theories
do not admit L.C. connection as a solution
Metric-affine and Riemann geometry
computes different results in
“Extended Theories of Gravity”

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. 14




Application to Inflation o = 13,0,

How to apply the framework to Cosmology?

Starting point: A ‘Non-minimal’ coupled Lagrangian

1
Ly flat = §¢D"¢ —V(¢)

I | ’ Up to surface term ‘

—-n"9,$0,¢ —V (9)

Covariantize: ‘Curve’ space-time onto Metric-Affine space

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U.

Application to Inflation
» Flat Space

1
Ly frar = §¢D"¢ —V(¢)

» Curved Riemann Space 09:d’'Alembertian Operator
with the L. C. connection

M3 1
Lorg =— R(g,T) +5¢09¢ — V(¢)

Covariantization is trivial ||

Mgl 1 vyd 479
T R(g' F) - E«g# Vv ¢Vv d) _V(¢)

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. 16




Application to Inflation

» Flat Space
1
Ly flat = §¢D"¢ — V(o)
» Curved Metric-Affine Space o = a4y, + (1—a)V, Vh
MZ 1 Due to Non-metricity
51 v, VH =7,(g"'7,)
> POINT < Lorg =—— R(g,T) + §¢DF¢ - V() T QI:/” + 7,
. . # U,
Covariantization is non-trivial , H
Mp,; 1
—" R(G.T) =59* 0,43, ~V(9)
2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. Equal Only for certain I's
o = al™y + (1 — )V V- Slgrg o5 _
oTh,
Solving the Connection
I.  Projective Invariant:
Impose Pl o
Miz’l 1 T wv
Lyrg = R(9,T) +5¢07¢ +V(4)
Metric-Affine Q=0 II.  Metric-compatible
Scalar-Tensor J M, =
Choose |
1 ll.  Torsionl
Geometry T=O orsionless
: M =
etc

2018/11/06 Inflation in Metric-affine @ I




o' = al™pf + (1 — )7 V¢

Solving the Connection

E.L. eq for I' is Algebraic

Impose Pl

M} 1
Lorg == R(g.T) +5¢0"¢ +V($)

Metric-Affine
Scalar-Tensor

Choose
Geometry

Inflation in Metric-affine @

—

— . . 1
I.  Projective Invariant: Fixes & = 2

A ¢
ri, = {W} iz (620,¢ — guvd*0)

+U, 67

II.  Metric-compatible

A ¢
ri, = {W} i (670, — 9,070

[ll.  Torsionless
l’*l

=l

¢
oM, [3(a — 1)guyd*¢ + 2(a + 1)6(,0,)¢]

+

Solving the Connection

E.L. eq for I' is Algebraic

0
The connection does not have
any new d.o.f

(does not propagate)

v Lgrg does not have
a kinetic term of T’
Can Integrate out I’

Inflation in Metric-affine




1
X =—20"$0,¢

To the ‘Riemannian’ frame

Integrating out I’ o = aVT™ 7l + (1 — Q)7 7T+
Mgl 1 1
borg =" RN +59009 —5md”

['hasnonewd.of.] |] [“}v={ } 4 -

M3 P2 1
Loy =—LR +(1+B(a) = | X —=m2¢?
09 = R, () (@) 7 | X —5m*¢
Pl
The only variables are the metric and the scalar 3 Pland Q = 0
Selected Geometry is encoded in B(«) B(a) = 8

1
—(11a2-8a—-1) T=0
2018/11/06 Inflation in Metric-affine Gravity @JGF 6

Consider B(a) > 0 ex) Torsionless MAG
Observational Constraints (ng — 1)

0257 - - Planck TT,TE,EE+lowE B(a) as a new parameter
Planck TT,TE,EE+lowE-+lensing
"7, % +BK14+BAO
% 2 Planck 2018 Data
O\ 1
_ 242
e _B@=0 V() —Em ¢

Tensor-to-Scalar |
Ratio

B(a) =107

o' = aV™yf + (1 — )y V-

EX) For the Torsionless case...

a=>0.84 or < —0.12

0.00 .




| .

0.25 s} Planck TT,TE,EE+lowE

_ Planck TT,TE,EE+lowE+lensing

N % +BK14+BAO

|Ri G t
|eman‘n | eometry rameter
" _B(@)=0
r|
) G = T
Tensor-to-Scalar Q::"’e,\. ?(f)— — D ¢2
Ratio _ KOS
______ B(a)=1 F (1 _ d)VMFVF”
T §S case...

0.00 Metric-affine Geometry |  a< —0.12

_ 0.94 ng:Spectral Index 1.0

Discussion

1. In Metric-affine Geometry covariantization is nontrivial

2. The (arbitrary) connection does not propagate
1. The connection could be integrated out
2. Existence of a ‘Riemann Frame’

3. Different ‘Geometry Postulates’ computes different results
Riemann, Einstein-Cartan, Weyl, Torsionless... etc etc

4. Observational variables changes
@ Greatly differs from the Riemann counterpart
v/ Some may seem observationally viable?

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U. 2%




Summary

v'Metric-Affine Formalism is

an extension of gravity that could (should?) be considered.
VIt is possible to formulate viable metric-affine models
that differs from its purely metric counterpart.

v'"When I is non-propagating,
one could obtain classically equivalent actions between
Riemann and Metric-affine geometry theories

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U.

Future Prospects:

1. Theoretical/Observational constraints from
the spin half/integer difference
» In MAG, SM particles with spin 1/2 and 0,1 act differently

1. Different interaction with scalar(inflaton)
2. Different Geodesics (Calculable from WKB approximation)

2. Including Higher derivatives/curvatures
» Great difference between MAG and Riemannian
1 Connection propagates!!
» Hamiltonian analysis is crucial (In progress)
» How many new physical d.o.f.s? Observational constraints?

2018/11/06 Inflation in Metric-affine Gravity @JGRG28-Rikkyo U.




Session S2A2 10:45-12:15

[Chair: Yasusada Nambu]

Zhi-Bang Yao

School of Physics and Astronomy, Sun Yat-Sen University

“Spatially Covariant Gravity with Velocity of the Lapse

Function”
(10+5 min.)

[JGRG28 (2018) 110604]
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JGRG28@ Rikkyo university

Spatially covariant gravity W|’rh
velocity of the lapse function

Speaker: Zhi-Bang Yao (#kEFR)
Supervisor: Xian Gao (&%)
Department of Physics and Astronomy
Sun Yat-Sen University
Date: Nov. éth, 2018

Reference: X. Gao and Z-B. Yao, [arXiv: 1806.02811]

Infroduction

Einstein-Dilaton-
Gauss-Bonnet

Cascading gravity Tessa Baker

Conformal gravi
Hofava-Lifschitz graviey

Strings & Branes,_ (£) R, O Lrw F(G)
‘ DGP D ‘ Some |
degravitation Hi gh er-order

scenarlos

Randall-Sundrum | & Il
2T gravity

Higher dimensions’ Non Iocal / Gen;;l RuRIY,
f(RJ OR,etc.

Kaluza-Klein

\/ectlor

!
. . Einstein-Aether
Generalisations

of Sy

TeVes Add new field content Massive gravity
Gauss-Bonnet \ BE,?Wty
- Chern-Simons i

Scalar-tensor & Brans-Dicke Te
Lovelock gravity  Ghost condensates
Galileons -

Em e"gent the Fab Four-ﬁ_l —
Approaches | KGB-

i
Coupled Quintessence [P

cpT Padmanabhan A— Spatially covariant gravity

thermo. Torsion theories

[Bull et. al, 2016]




Infroduction

Modified Gravity

New degrees of freedom

Add scalar field Reduce symmetries

1974 Horndeski theory 2004 Ghost condensate
2011 Generalized Galileons 2007 EFT of inflation
2013 Mimetic Dark Matter 2009 Horava gravity
2014 GLPV theory 2014 Spatially covariant
2015 Quadratic theory t= gravity

2016 DHOST - Unitary gauge

L’(gw,(‘l)Rng,qb,V) )= (N,<3>hij,<3>Rij,Kij,$ﬁN,vi;t>

The acftion
How fo determine the Lagrangian? [Xian Gao, PRD, 2014]

scalar—tensor, - ( 6, Gy @ RW;VM) / Spo’rlally
' Covariant

) _ ~Gravity

) with

/" \ e velocity

)

ADM, (¢,N Ry @ Ry £33, D,

wltary B8, 1 (1, N, hij, O Rugs £2, Vs

Mﬁ(t N hz] (B)Rwa&{n]lz]av‘ Of quse

func’rlon

MLj(t s (3>Rzy LN, £LihijV

To the XG theory, DoF is 3, but, naively thinking, to
the extended one, the DoF generally should be

Under what conditions it’s reduced to 3 only ?




Hamiltonian analysis

Action in unitary gauge: F=£;N
yww::/dm%ﬂm@LquthyﬁFJgﬁvg 1széfﬂw

The equivalent action with Lagrange multipliers:

0SanB 0SaB

(e0) —ng dtda ' — K;; — By

Phase space:

(N N¥ R

s v

) dim =2 x (10+7) = 34

[Rio Saitou, PRD, 2014]

Hamiltonian analysis

Primary constraints:

m; ~ 0 p~0 P a0

19054 ~

0SAB A~
N 6A ~0

1
2N 6B
@&

Consistency conditions of primary constraints:

. 7= i

/ d*y

1
5 (#Var S e #151‘ b #an)

1
S (1T x2—6x2—14)




Hamiltonian analysis

Primary constraints:

p~~0 p a0

1 05aB ~ ~ij . 47 1 6Sap ~
N 54 ~ = N oo ~ 0

Consistency conditions of primary constraints:

|
>

o&o:@o:w
&

fes

N
N
&

#(10f i 5 (#V;u‘ Sl = #lst, e P #an)

1
51T x2-6x2-14)

Hamiltonian analysis

Tk
0

[ (%), 7
[77(&), #()] |
(#var = #lst X 2/ — #2nd)

~—~

N~ N~

(17%x2—-6x2—14)

[p* (Z), %

[7 (&), 7 ()] ]
e (#var X 2= #kt X 2 — #Qnd)

™
= == |

7)

(17Tx2-7x2—13)




Hamiltonian analysis

Consistency conditions

~—~

[77(&), # ()] |
)

(#var X 2— #1St X 2 — #2nd

N =N~

(17% 2—6'x 2= 14)

I

<#var X 2— #1st 38 A= #Qnd)

(17 X2— 7% 2& 14)

L
2
L
)
3

Hamiltonian analysis

Spatially covariant gravity with velocity of the lapse function:

S(u.g.) = /dtdBZUN\/E,C (t,N, hij,F,Kij,Rij,Vi) F=£zN

the degrees of freedom is 3 if it is satisfied two conditions:

D(Z,4) =0, (Degeneracy condition) Degenerate kinetic matrix

(Consistency condition) Existence secondary constraint

Degenerate Lagrangian is a sufficient condifion to remove the ghost.




Concrete examples

Lagrangian up to quadratic order:
L) — o K 4 agF 4+ 01 Kij K9 + by K2 4+ ¢/ KF + coF2 4V

Case 1: a; ~ ¢z are the functions of (¢, N)

i

b1 + 3b2

3
D(f,g)IOjCQZZ

b 3 2
E(quad) — g1 K+ as " {)1[('/,;]‘}(' i j e bQK S 7 1 . plgb 2 +V
l 2

] 2 3
L) — 8 K + agFE#oK;; K& +bal? 4 cLEGE+ 4 261 o5
2

[Domenech, Mukohyama and etc., PRD, 2014]

Concrete examples

Case 2: a; ~ co are the functions of (¢, N, V;N)

3
4by + 3by

= 0,:6° (T — §) VR (@)0" N (&) E (&) — (Z §) =0

8a2 - § C1 6&1
0X  2by+3by 0X

A 7 el Jcy
— = 2A
+(ax 15, + 355 ax)

dcq c1 0(by + 3by)
+(8X AT ol O

=0=c9 =

Consistency condition: responding to the mixed time
and spatial derivative terms




Concrete examples

Constrained equations:

9ca _ 3 — 3. ¢ "

dX — 4b,+3b; 0X 0 :> {2 T (t, N)

das _ 3 Cq da, __ - il

X 2b1+3b28X_0 az =7, N)ar=a(i,N)
dc1 ¢y O(b1+3ba) __ 0

LOX  b1+3be  0X

] Il
E(quad) =] (K+’YF)+()&F+b1 (KUKU = §K2> —|—§(b1+3b2) (K+7F)2+V

Where a1, b1 and bz are the general functions of (¢, N,9;N)
while aand v are the functions of (¢, N) only.

Hamiltfonian analysis

Canonical Hamiltonian:
Helr, =~ /d% (NC+N¢C¢) ~ /d% (NC +11, £ 3 07)

VN — 2\/Ev

7 VilNJ + VRV \/]Yj)

1k
+pV,;A + (pklvinl 2\/_V (Z\Q/E ))

Because of spatial covariance of the theories:

i

/ d*ze [C; (B), F] =~ / d%Wf»ff




Conclusions

<« Spatially covariant gravity with velocity of the lapse
k function.

« Degeneracy condition and Consistency condition.
* some concrete examples.

» Non-perturbative Hamiltonian analysis and some
useful formulas.

Thank you!




Kazufumi Takahashi
Rikkyo University

“Extended Cuscuton: Cosmology”
(10+5 min.)

[JGRG28 (2018) 110606]

211



/kas'kju:ton/

Extended Cuscuton:
Cosmology

Kazufumi Takahashi BE#E —5 (JSPS fellow)
Rikkyo University ILZ{ K

(sequel to the talk “Extended Cuscuton: Formulation” by Aya lyonaga)

Based on

* Aya lyonaga, KT, and Tsutomu Kobayashi
“Extended Cuscuton: Formulation” arXiv: 1809.10935

* Aya lyonaga, KT, and Tsutomu Kobayashi
“Extended Cuscuton: Cosmology” in preparation

M A theory with 2 DOFs in the unitary gauge ¢ = ¢(t)

mm) $ “merely follows the dynamics of the fields that it couples to. Thus we call

the field Cuscuton” (afshordi+2006)
~ > — — 4 R 2
® Cuscuta: name of a parasitic plant (“#FHXZ") |5 fd =g [2—K2+# V2Ix| - V(¢)]

B Some characteristics of the cuscuton model:
v'Only 2 tensor DOFs propagate = “minimal” modification of GR!
v'Nontrivial effects on cosmology (Afshordi 2007)
v'Related to a low-energy limit of Hotava-Lifshitz gravity (Afshordi 2009) — quantum gravity?

WA general class of theories having only 2 DOFs in the unitary gauge (within the GLPV theory)
mmm) “extended cuscuton”

2018/11/6 JGRG28 2/10



MExtended cuscuton — GLPV (beyond Horndeski) action in the ADM language
S = fdtd3x NVY[A; + AsK + Ay(K? — KZ) + BuR + As(K® — 3KK} + 2K) + BsGUK;; |
A = +N? _ N(usN +v,) _ 2(usN + v,)?
> (usN +vs)2’ * 7 (usN +vg)?’ > 3(usN +vs)?’

V_2+ 2(usN +vy)
N ~ 9N(usgN + vs)?’
where U,, Ua, Us, Vo, V3, Vs, Vs, by, and by are arbitrary functions of t

A2=I.l2+ B4_=b0+ﬁl, Bs=0

WMA: = 0case
vuN V3 v, 3v2
Ay =— Ay = , My=up - .
T TN+, 3TN +u, 2= TN T B NN + uy)

B,=b +b1 B-=0
4_0 N’ 5_

where Uy, Uy, Vo, V3, Vs, bg, and by are arbitrary functions of ¢

2018/11/6 JGRG28 3/10

BGLPV theory written in the covariant manner:
SeLpv = Jd‘*x\/_—g(Lz + Ly + Ly + L + LT + 12H),

Ly =Gy(¢,X), L3=0G3(,X)0h, Ly =Gyl X)R + Gux[([@P)? — L],
1
Ls = Gs(, X)G*" buy — 2 Gox[(0)* — 3(@d)piidy + 200085 ]
L = F (¢, X){—2X[(@g)? — ¢l | — 2¢,05 (¢VDd — ¢) d1)},
L2 = Fo (¢, X){—2X[(0)® — 3(p) Pyl + 22l o]
—3¢203¢0°[(@P)? — by | + 69Dy ¢ (de0d — ¢} d7)}

B |n the case of A5 = 0, the extended cuscuton action can be covariantized as follows:

U3X 3173 2X
G, = uy +v,V2X — 4by X + 2b;' (2X 3/2——<—+2u'\/2X>+2v’X10 ———— +2b)X1logX
2 2 2 0 1 (2X) 1+u4m 4v, 4 3 g1+u4m 0 g

G3 = —4biV2X — v, < — bylog X

G4=b0+b1V2X

1 X
+lo
1+ u,v2X g1+u4\/2X>

F—l(b+ T )
R G TR >

Ge=Fs=0 The expression for the As # 0 case is lengthy...
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M Stability in the presence of a matter field

BExtended cuscutons satisfying coyy = 1

B ate-time cosmology (preliminary)

2018/11/6 JGRG28 5/10

B Cuscuton with a matter scalar field y in the extended cuscuton theories:
1
5 =S + [ d*r/=gPn) = L9008

Energy density, pressure, squared sound speed of y:
dp _ Py

p=2YPY—P, p=P, CEE%—W

M Linear perturbations (unitary gauge for ¢)
1
N = 1+(Z, Ni =6i,8, ]/U =a2e2§ <6l]+hl]+§hlkhk]+>

dp=¢@), x=x@)+x
We use the following (gauge-invariant) density fluctuation instead of dy:

5p  _p+p =p+p<ﬁ_a> p+p

§=—+3 +35—"¢
p ) ¢ pc? \ ¥ p

M Scalar perturbations: «, 8, and { are auxiliary variables
mmm) § is the only dynamical variable! <— ({ is dynamical in generic ST theories)

2018/11/6 JGRG28 6/10



M Quadratic action for tensor perturbations (in the Fourier space):

. S .
S'I('Z) = Jdg.X'dt a3 [g'rhlz] — :FT_ZhLZJI f, memo i
a | Lo = A + AsK + Ay (K — K2)
Gr = —2(A, +3HAs), Fr = 2B, ; +B4R + As(K® = 3KKE +2K7) |
— G, >0, Fr>0 (2 _ﬂ)
Cow = g_
M Quadratic action for scalar perturbations (in the Fourier space): T
s = f d3xdt a3[A(t, k)62 — B(t, k)6?]
In the large-k limit,
2,2 2.2
PP i
2k*(p +p)Y 2(p +p)
m p+p>0, ¢2>0, Y>0
2Fs0% — GF(p + p) Depends not only on theory

r= 2Fs0%2 — G- (2Gr — Gr)(p + p)  butalso on the matter!
(In the Horndeski limit, Y — 1)

2018/11/6 JGRG28 7/10

B The almost simultaneous detection of GW170817 and GRB170817A implies
|CGW - 1| < 10_15.
Note that it applies to only low-redshift universe (z < 0.01)!

B¢,y = limplies Depend on H Bs = 0inE.C.
—2(A, + 3HAs) = 2B, +.B%
Requiring A5 = 0, the extended cuscutons have

v, (H)N b, (t) v3(t)
B: =0, Ap=————"">—=, B, = by(t ) Az = ———,
> 4 N + u,(t) 4= bo(t) + N 3TN +u,(t)
v, (t 3v2(t P7TTTTIRS ST eeeenssssens oo |
A, = uy(6) + 2O 5(t) - i
N 8, (t)N[N + u,(t)] | Lpc = A + AsK + A, (K> — K7) |
- A4_ = —B4_ = —U4(t) S T _Eﬁ}i:"_fs_g(_?:__":’j{(_lﬁj_f_z_ﬁtf?—j
M Covariantized form
E.C ’ " 31]3% Ui = ul(qb)
Loy =1 = Uy +vV2X — | 23 + 4v, +4_v4 X v; = v;(¢)

v
+(v5 + 2v)/)Xlog X — (73 + v[}) (logX)o¢ + v,R c (HorndeskKi class)

2018/11/6 JGRG28 8/10



v'Consider a dust limitp = 0, cg = 0sothatp + 3Hp =0
v'For simplicity, focus on Horndeski theories

M Evolution equation for §:

3p(Gr + HGr)

Sz 8 — AmGogpS = 0,
6r (2567 +3p)

5+ |2H +

26% [2(Gr + HGr)' — Fr(p + 26 + 2H®)] k2 ﬂ-'Tp[gT(p +20) — 26,0]

4 Gogr =
6r (267 +252) f227s02 - 620) - 2L[G1 (o + 26) - 26, 0]}

B Poisson equation for¥ = a + /3
k? 3p(Gr + HGr)

——Y =471G ffp6 +
a? € 2k?
6r (5561 +3p)

)

v'The above expressions can be obtained without quasi-static approximation!
... Specific models are to be investigated

2018/11/6 JGRG28 9/10

MExtended cuscuton: A general class of scalar-tensor theories having
only 2 DOFs in the unitary gauge

M Stability conditions for cosmological perturbations have been obtained

BExtended cuscuton with cgyy = 1:
3v2 u; = u(P)
4—1,4)’( v; = vi(¢)

+(v5 + 2v)/)Xlog X — (73 + v[t) (log X)og¢ + v,R c (Horndeski class)

LEC

CGW 1~

=u, + v,V2X — <2v3 + 4v,' +

MThe evolution Eqg. for § and the Poisson Eq. are obtained without
resorting to the quasi-static approximation

M Cosmology in specific theories is to be investigated

2018/11/6 JGRG28 10/10
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Introduction

® f(R) gravity is one of the modified gravity theories

P — 1 g4, =
action: § = Zszd x non-linear function of R

® f(R) models can explain inflation / late-time acceleration

— Starobinsky inflation model :  f(R) = R + q@R?  Starobinsky (1980)
Tomita&Nariai (1971)

(a>0)

— f(R)DEmodel : f(R) =R—BR™ etc. Amendola+ (2007)

Li+ (2007)
(B>00<m<1)



Introduction

® f(R) gravity is one of the modified gravity

ion: S =—= [d4xg=
action: S = zszd x non-linear function of R

® f(R) models can explain inflation / late-time acceleration

— ; ; ; . — 2 Starobinsky (1980)
Starobinsky inflation model :  f(R) =R ;I— aRO) TomitaBNarial (1871)
a >

— f(R)DEmodel : f(R)=R—-[BR™ etc Amendola+ (2007)
Li+ (2007)
B>00<m<1)

one f(R) model may explain both inflation and DE

Purpose

® Verification of the cosmological evolution from radiation era to the present

Unified model : f(R) = R+ aR™ — BR*™™  Artymowski & Lalak (2014)

Ilrahze}[ f(R) = R + aR"™ — BR™ ]

MmM>1,0<m<1,a>»1,0<pB K1)

Constrain the model parameters from...

existence conditions

observational constraint on EoS




f(R) =R + aR™ — BR™ model

This model can be approximated during/after inflation

mM>1,0<m<La>»1,0<pB K1)

® during inflation

R is sufficiently large = aterm > [ term

[f(R) ~R+ ocR”] = generalized
Starobinsky inflation model

From Planck result, we constrain the parameter n:

1.965 <n < 2.015 MY (2017)

f(R) =R + aR™ — BR™ model

This model can be approximated during/after inflation

mM>1,0<m<La>»1,0<p K1)

® after inflation

R is sufficiently small = aterm « f term

[f(R) ~R-— ﬂRm] = Amendola+, Li+ model

This model satisfies the conditions to be a viable DE model
(Amendola & Tsujikawa, 2010)



f(R) =R + aR™ — BR™ model

This model can be approximated during/after inflation

mM>1,0<m<La>»1,0<pB K1)

® after inflation

R is sufficiently small = aterm < f term

[f(R) ~R— ,B’Rm] = Amendola+, Li+ model

This model satisfies the conditions to be a viable DE model
(Amendola & Tsujikawa, 2010)

Before the unified model,
we consider the cosmological viability in this DE model

Why consider the cosmological evolution?

® existence conditions Amendola+ (2007)

— radiation, matter era and late-time exist

f(R) = R — BR™ model satisfies for 0 < m g%

| Theses conditions are not sufficient conditions

e.g.) matter era might be too short in some models

check the time evolution of density parameters

® |[ate-time

equation of state deviates from w = —1in f(R) gravity

check the time evolution of EoS of DE (wpg)




How to calculate

® Friedmann eq. in f(R) gravity

= 1=_£+FR—f+prad Pm

HF 6FH2 3FH2 3FH2 Amend0|a+ (2007)
V1 Y2 Vs Vs
We introduce the variables: y; —ys, y; = 26]::5 —Qn

- . v _ R _ y
® auxiliary variable: X = P 2y, + V3 +?5

" O =ys, Qpg=y1+Y2, Qraga =Ya
_ 1-ys—2X
T 3(y1+y2)

" WpE

Evolution equation

d
=y +yE+ (2 —y)(X —2) + 4y, + 3ys

dN

d

ﬁ= y2(4 +y1) — X(y1 + 2y,)

d

Ds—x(-L 42y -2y +4) - 2y, + D - E 3+ D)
d

ﬁ=Y4()’1 —2X)

%23’5(1"'}’1_2)() N =Ina

v i = _RfRR = E = d_zf
model dependence appearsin M = o (fR = dR'fRR = dRZ)

In f(R) = R — BR™ model,

We choose the initial condition to correspond to the observational values Q.,, Qpgo



GR
m=0.01

1,

EoS of DE: wpy = ZR2E

PDE

-0.75

-0.85 -

WpE
I}
©

-0.95

1. ‘ ‘ ‘
55 -1 -0.5 0 05 1 15 2

loal1+zl




Constraint on time-varying wpg

o IfWDE * —1,

time-varying EoS : w(a)
Taylor expansion @ z=0 ‘ a : scale factor
W, : the present value
w@=wy+{1—-a)w, +**- cf) GR: wo=-1, w, =0

¢ higher terms are not so relevant in fitting the data (Planck(2018))

® Constraints from Planck with other observational data (2018)
wy = —0.961 + 0.077

we = —0.282537

[ Restrict the power m ]

Comparison with the observation

2
Planck TT,TEEE+lowE+lensing
+BAO+SNe
T bsﬁL/ T ,)Ng, m=oo1 .
1 +BAO/RSD+WL m=0.0 ®
m=0.1 o
m=0.2 ®
m=0.3 ®

Planck (2018)




Comparison with the observation

2 _
Planck TT,TE,EE+lowE+lensing
+BAO+SNe 0]
1 +BAO/RSD+WL m=0.05 @
m=0.1 ®
m=0.2 [
m=0.3 [
0
g
_‘l I
0<m<0.04 (1lo)
5 | 0<m<0.08 (20)
_3 I

Planck (2018)

Summary / Future work

In f(R) = R — BR™ model,
® matter-dominated era lasts longer than GR
® comparison with the observational constraint for time-varying wpg

= 0<m<0.04 (1o) CMB+SNe+BAO

We ignore aR™ term after inflation = |s this OK?

» a weak curvature singularity arises in f(R) DE model (Appleby+, 2009)
— R diverges temporarily

» considering the local gravity constraints
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Introduction: Killing horizons

Informal description of a Killing horizon.

Null hypersurface H,¢ where a Killing vector field & becomes
non-zero null and tangent. J

§HE,, can
@ have a simple zero on H¢ (= "¢ changes causal character”)
@ have a double zero on H; (= "degenerate horizon”)
© be zero around H¢ (£ is a null Killing vector)

The fixed points of £ are not part of the Killing horizon

Introduction: a Killing Horizon in Minkowski

ds? = —dt* + dz® + dy?
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Hyperplane t = x

Introduction: a KH in Minkowski

Hyperplane t = @ Notice that the Killing Horizon is given
by He ={t=2>0}U{t =2 <0}

& = x0¢ + tog

Definition (Killing horizon)

A smooth null hypersurface H, is a Killing horizon of a Killing £ if
and only if £ is null but nowhere zero on H,¢ and tangent to H.
Killing horizons may have several connected components, but we
always require that the interior of its closure be a smooth
connected hypersurface.




Introduction: a KH in Minkowski

Hyperplane t = @ Notice that the Killing Horizon is given
by He ={t=2>0}U{t =2 <0}

@ That is, the points where £ = 0 do not
belong to He.

£ = x0¢ + tog

Definition (Killing horizon)

A smooth null hypersurface H; is a Killing horizon of a Killing £ if
and only if € is null but nowhere zero on H,¢ and tangent to H.
Killing horizons may have several connected components, but we
always require that the interior of its closure be a smooth
connected hypersurface.

Introduction: a KH in Minkowski

Hyperplane ¢ = = e Notice that the Killing Horizon is given
by He ={t=2>0}U{t =2 <0}

@ That is, the points where £ = 0 do not
belong to H.

@ Thus, Killing horizons can have several

connected components as long as they
are linked by a set of fixed points of €.

& = x0¢ + tog

Definition (Killing horizon)

A smooth null hypersurface H, is a Killing horizon of a Killing £ if
and only if £ is null but nowhere zero on H,¢ and tangent to H.
Killing horizons may have several connected components, but we
always require that the interior of its closure be a smooth
connected hypersurface.




Hyperplane t = x

= (z+y)0t + (t +y)0z + (t — x)dy

o = = = ey
Hyperplane t = x
t
’4 m

Hyperplane t = =«

t=x =0

§ = x0¢ + tOg

E=(xz+y)d + (t + )0z + (t — )0y

o The Killings ¢ and € are linearly independent

I
i



Introduction: same hyperplane!

Hyperplane t = x

Hyperplane t = x

£ = x0¢ + tOg _
£ = (= + ?I)at + (t +y)ox + (t — T)()y

o The Killings ¢ and ¢ are linearly independent

@ and the set of fixed points of the respective Killings are
different

Introduction: same hyperplane!

Hyperplane t = «

Hyperplane t = x

P o

Y

£:T0t+f(()$ ~
§=(z+y)0t + (t+y)0z + (t —x)0y

o The Killings ¢ and € are linearly independent

@ and the set of fixed points of the respective Killings are
different

e However, the null hyperplane {t = z} = H_g = ’Hé is the
same




Multiple Killing Horizons

Definition (Multiple Killing horizon (MKH))

A null hypersurface H is a multiple Killing horizon of order m if the
spacetime admits Killing horizons H,, ¢ € {1,...,m} with m > 2,
associated to linearly independent Killing vectors &; satisfying

Multiple Killing Horizons

Definition (Multiple Killing horizon (MKH))

A null hypersurface H is a multiple Killing horizon of order m if the
spacetime admits Killing horizons H,, ¢ € {1,...,m} with m > 2,
associated to linearly independent Killing vectors &; satisfying

{t = x} in Minkowski is a Multiple Killing Horizon




Multiple Killing Horizons

Definition (Multiple Killing horizon (MKH))

A null hypersurface H is a multiple Killing horizon of order m if the
spacetime admits Killing horizons H,, ¢ € {1,...,m} with m > 2,
associated to linearly independent Killing vectors &; satisfying

{t = x} in Minkowski is a Multiple Killing Horizon

Our aim is to study the properties of MKHs, and their physical
relevance.

Surface gravities

@ Recall: For a Killing horizon H¢ of &, its surface gravity k¢ is
defined as

H
R£ZH§—>R ng :Eligf.




Surface gravities

@ Recall: For a Killing horizon H¢ of &, its surface gravity k¢ is
defined as

H
ket He — R Veb = ek

@ In general, this is a function which, as a consequence of the
identity
H
2kF = —V,&, VI,

actually extends to a continuous function on the entire He.

Surface gravities

@ Recall: For a Killing horizon H¢ of &, its surface gravity k¢ is
defined as

H
R§:H§—>R ng :Eligf.

@ In general, this is a function which, as a consequence of the

identity
H
2/4:2 = —V,.&VHEY,

actually extends to a continuous function on the entire Hy.

H
@ Recall also: H¢ degenerate <= k¢ =0




Surface gravities

@ Recall: For a Killing horizon H¢ of &, its surface gravity k¢ is
defined as

H
ket He — R Veb = ek

@ In general, this is a function which, as a consequence of the
identity

H
2 He
2/{'/5 — _Vugl/vlugy,
actually extends to a continuous function on the entire He.
o Recall also: H¢ degenerate <= K¢ =0

Theorem

All surface gravities of a multiple Killing horizon H are necessarily
constant on the entire H.

Surface gravities — many temperatures?

e Note that, locally, any black-hole horizon looks like the flat
spacetime {t = x} horizon shown (equivalence principle!).
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effect for accelerated observers, leads unequivocally to consider
the surface gravity of a Killing horizon as its Temperature.
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@ Note that, locally, any black-hole horizon looks like the flat
spacetime {t = x} horizon shown (equivalence principle!).

@ Constancy of the surface gravity is understood as the zero-th
law of horizon thermodynamics.

@ The Hawking quantum emission process, as well as the Unruh
effect for accelerated observers, leads unequivocally to consider
the surface gravity of a Killing horizon as its Temperature.

@ To a MKH we can ascribe different surface gravities
(temperatures), and thus an immediate question arises: what
is the physical meaning of this?

Surface gravities — many temperatures?

e Note that, locally, any black-hole horizon looks like the flat
spacetime {t = x} horizon shown (equivalence principle!).

@ Constancy of the surface gravity is understood as the zero-th
law of horizon thermodynamics.

@ The Hawking quantum emission process, as well as the Unruh
effect for accelerated observers, leads unequivocally to consider
the surface gravity of a Killing horizon as its Temperature.

@ To a MKH we can ascribe different surface gravities
(temperatures), and thus an immediate question arises: what
is the physical meaning of this?

@ We are going to address this problem. To that end, we need to
understand the mathematical structure of the set of Killing
vectors attached to the MKH.




The Killing ¢ :=¢ —¢

One can take linear combinations of the Killings providing new ones
which are also null on the null hypersurface t = .

Hyperplane t = x

1.

¢ = yOoy +t8y + yOg — Ccay

The Killing ¢ :=¢& — ¢

One can take linear combinations of the Killings providing new ones
which are also null on the null hypersurface t = x.

Hyperplane t = =

1.

¢ =y0¢t + 10y + yOg — 0y

In simpler words, the set of all Killing vectors sharing (the
appropriate subset of) H as Killing horizon is a vector space.




@ We define:

Ay = {€ Killing with a KH H satisfying He = H}U{ =0}

I

[m] =0 = QU

@ We define:

Ay = {€ Killing with a KH H satisfying He = H}U{ =0}
@ We have seen that Ay is a vector space. Moreover:

l

Ay



@ We define:

Ay = {€ Killing with a KH H satisfying He = H}U{ =0}
@ We have seen that Ay is a vector space. Moreover:

Ay is a Lie algebra

I

[m] =0 = QU

@ We define:

Ay = {€ Killing with a KH H satisfying He = H}U{ =0}
@ We have seen that Ay is a vector space. Moreover:

Ay is a Lie algebra

@ Ay is called the Lie algebra of the MKH #H

l

Ay



The Lie algebra of Multiple Killing Horizons

e We define:
Ay, := {¢ Killing with a KH H; satisfying He = H} U {€ =0}

@ We have seen that Ay is a vector space. Moreover:

Theorem

Ay is a Lie algebra

@ Ay is called the Lie algebra of the MKH #H
@ Observe that dim Ay, = order of H (also called multiplicity).

Structure of the Lie algebra of H

The structure of the Lie algebra A4 turns out to be very simple:

Theorem (Mars, Paetz, S.)
Let H be a multiple Killing horizon of order m.

@ A4 always contains an Abelian sub-algebra A;lf 9" of dimension
at least m — 1.

@ For any non-trivial n € .Af:,lf 9, the corresponding surface grzvity
ki vanishes (i.e. H is degenerate with respect to all n € A77).

° lfA;lfg has dimension m — 1, any element of £ € Ay \A;ng
has k¢ # 0 and satisfies

€, n] = —kKen, Vi € ALY,




Structure of the Lie algebra of H

The structure of the Lie algebra Ay turns out to be very simple:

Theorem (Mars, Paetz, S.)
Let H be a multiple Killing horizon of order m.

@ Ay always contains an Abelian sub-algebra Afff 9" of dimension
at least m — 1.

@ For any non-trivial n € .A;lf 9, the corresponding surface gravity
Ky vanishes (i.e. H is degenerate with respect to all n € A;lfg ).

° IfA;ng has dimension m — 1, any element of £ € Ay \Aifg
has k¢ # 0 and satisfies

[€,m] = —ken, v € A9

These are spacetime properties providing a necessary condition for
the existence of a MKH: the Killing algebra must contain an
appropriate sub-algebra with the required structure constants

MKHs types: Fully degenerate MKHs

@ The previous theorem implies that there are
two distinct classes of Multiple Killing Horizons:
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@ Hence, non-fully degenerate MKHs have a unique non-zero
surface gravity —up to normalization, of course.




MKHs types: Fully degenerate MKHs

@ The previous theorem implies that there are
two distinct classes of Multiple Killing Horizons:

Definition (Fully degenerate MKH)

A multiple Killing horizon H is said to be fully degenerate if
Ay = .Aifg and non-fully degenerate otherwise.

@ Hence, non-fully degenerate MKHs have a unique non-zero
surface gravity —up to normalization, of course.

Important result

To any MKH one can attach, at most, one single non-zero
temperature.

Maximal order of MKHSs

Let n be the spacetime dimension

Corollary

The maximum possible dimension of A;l_[eg ism — 1. Consequently,
the maximum possible order of H is n — 1 for fully degenerate H
and n for non-fully degenerate H.




@ The maximal multiplicity m = n can be attained.

@ The maximal multiplicity m = n can be

Hyperplane t = x

. Hyperplane t = x
|4 v

&= a0, + tdy

¢ =yt + tdy + ydg — x0y

attained.

. Hyperplane t = x
|4 v

n = 0t + g

I



Non-fully degenerate MKHs of maximal order

@ The maximal multiplicity m = n can be attained.

Hyperplane t = x Hyperplane t = x

Yy

Hyperplane t = x
t t
N T
Yy

Yy

& =28y + tOy C=yd; + tdy + ydy — xdy n =08 + 8z

@ All maximally symmetric spacetimes have a MKH of maximal
order passing through any of its points.

Non-fully degenerate MKHs of maximal order

@ The maximal multiplicity m = n can be attained.

Hyperplane t = x Hyperplane t = =

Hyperplane t = x

1.

Y

&= a0 + L0y ¢ =y + tdy + ydg — xdy

@ All maximally symmetric spacetimes have a MKH of maximal
order passing through any of its points.

@ MKHs in Minkowski, de Sitter or anti-de Sitter spaces have
been completely classified.




Reminder: Bifurcate horizons

Recall: A bifurcate Killing horizon of a Killing £ is the set of points
along all null geodesics orthogonal to a co-dimension two spacelike
submanifold S of fixed points of &: £|g = 0.

Reminder: Bifurcate horizons

Recall: A bifurcate Killing horizon of a Killing £ is the set of points
along all null geodesics orthogonal to a co-dimension two spacelike
submanifold S of fixed points of &: &|g = 0.

@ This is a pair of Killing horizons
HT UH] and Hy UH; of &, each
one with two connected components
HE, HT,

@ together with the intersection of their
closures H{ UH] NHy UH; =S,

@ S spacelike codimension-two surface Hy
where ¢|g = 0.

Bifurcate t2 = z

E = flfat +T()T
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® Ona MKH H D H¢ let 7 : He — R be defined by {(7) = 1.
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o Vne Ayl = fre e E(fy) =0,
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e — integral curves of £ in H¢ N H,, are incomplete geodesics

A rer (ke #0)




Non-fully degenerate MKHs are Bifurcate horizons

® Ona MKH H D H¢ let 7 : He — R be defined by {(7) = 1.

o Ve AL, = freTE E(fy) =0,

o (Freedom: 7 = 7+ 19, &(10) =0 = f, — f,e"¢)

® ky =0 = nis affinely parametrized on H,, C H.

@ Thus, affine parameter A along the null geodesics on H,, N H
is .

B “ﬁfne

e — integral curves of £ in H¢ N H,, are incomplete geodesics

A

e (ke # 0)

@ integral curves of 1 are longer geodesics and & vanishes along
them on a co-dimension two submanifold S C H.

Non-fully degenerate MKHs are Bifurcate horizons

® Ona MKH H D H¢ let 7 : H¢ — R be defined by {(7) = 1.

e H —KeT
o Vne Ay, = fye e E(fy) =0,
o (Freedom: 7 = 7+ 19, &(10) =0 = f, = free™)
® ky =0 = nis affinely parametrized on H,, C H.

@ Thus, affine parameter A along the null geodesics on H,, N H

IS
1

= e
ke I

e — integral curves of £ in H¢ N H,, are incomplete geodesics

A

e (ke # 0)

@ integral curves of 1 are longer geodesics and £ vanishes along
them on a co-dimension two submanifold S C H.

@ —> non-fully degenerate MKHs can be seen as a branch of
appropriate bifurcate Killing horizons with £ as the bifurcate
Killing vector field




@ The Nariai spacetime is the direct product dS; x S"~2:

1
gNar = —dt® + cosh?(set)da® + —dQ"?
e

I

[m] =0 = QU
@ The Nariai spacetime is the direct product dSs x S”~2:

1
gNar = —dt* + cosh?®(set)da® + — dQ2"

»
@ This is a A-vacuum solution with A = 3(n — 3)s?/(n — 1)

I
i



Example 1: Nariai's spacetime

@ The Nariai spacetime is the direct product dS; x S"~2:
1
GNar = —dt* + cosh? (set)dx? + —2dQ"_2
»

@ This is a A-vacuum solution with A = 3(n — 3)s%/(n — 1)
@ H := {tanh(st) — sin(sx) =0} D {t =z =0}

Example 1: Nariai's spacetime

@ The Nariai spacetime is the direct product dS; x S"~2:
1
gNar = —dt* + cosh?®(set)da® + — dQ2"
7
@ This is a A-vacuum solution with A = 3(n — 3)s?/(n — 1)
@ H := {tanh(st) — sin(sx) =0} D {t =z =0}
e Topologically H ~ R x S*—2.




Example 1: Nariai's spacetime

@ The Nariai spacetime is the direct product dS; x S"~2:
1
GNar = —dt* + cosh? (set)dx? + —2d§2"—2
»

@ This is a A-vacuum solution with A = 3(n — 3)s%/(n — 1)
@ H := {tanh(st) — sin(sx) =0} D {t =z =0}

e Topologically H ~ R x S*—2.

@ H is a double Killing horizon, a basis of Ay given by

€ = sin(»x)0 + cos(sex) tanh(s¢t)0,,
n := cos(sx)0; + [1 — sin(sex) tanh(sct)] 0

Example 1: Nariai’s spacetime

@ The Nariai spacetime is the direct product dS, x S"—2:
1
GNar = —dt® + coshz(%t)dx2 + —2dQ”_2
%
This is a A-vacuum solution with A = 3(n — 3)s?/(n — 1)
H := {tanh(st) — sin(sxx) = 0} D {t =z = 0}
Topologically H ~ R x S*~2.
‘H is a double Killing horizon, a basis of Ay, given by

€ = sin(»x)0; + cos(sex) tanh(st)0;,
n := cos(sx)0 + [1 — sin(sex) tanh(set)] 9,

@ A direct calculation gives [, 1] = —3mn and thus the
non-vanishing surface gravity of H is kg = —.




Example 1: Nariai's spacetime

@ The Nariai spacetime is the direct product dS; x S"~2:
1
GNar = —dt* + cosh? (set)dx? + —2d§2"—2
»

This is a A-vacuum solution with A = 3(n — 3)»?/(n — 1)
H = {tanh(s¢t) — sin(xx) =0} D {t = x =0}
Topologically H ~ R x S"2.

‘H is a double Killing horizon, a basis of Ay, given by

€ = sin(»x)0 + cos(sex) tanh(s¢t)0,,
n := cos(sx)0; + [1 — sin(sex) tanh(sct)] 0

@ A direct calculation gives [, 1] = —2mn and thus the
non-vanishing surface gravity of H is kg = —.

@ Observe that this is bifurcate with &£|;—,—¢ = 0.

Example 1: Nariai’s spacetime

@ The Nariai spacetime is the direct product dS, x S"—2:
1
GNar = —dt® + coshz(%t)dx2 + —2dQ”_2
%
This is a A-vacuum solution with A = 3(n — 3)s?/(n — 1)
H := {tanh(st) — sin(sxx) = 0} D {t =z = 0}
Topologically H ~ R x S*~2.
‘H is a double Killing horizon, a basis of Ay, given by

€ = sin(»x)0; + cos(sex) tanh(st)0;,
n := cos(sx)0 + [1 — sin(sex) tanh(set)] 9,

@ A direct calculation gives [, 1] = —3mn and thus the
non-vanishing surface gravity of H is kg = —.
@ Observe that this is bifurcate with &|;—,—¢ = 0.

@ Similar direct (or warped) products of either (A)dS; with S”‘k
provide many examples of MKHs.
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Example 2: Plane waves

@ General plane-wave spacetime in arbitrary dimension n
gpw = 2dudv + MAB(u)ar:‘élzchalu2 + 0 apda?da®

e Ricci flat if 648 M 45 = 0: Einstein-Maxwell solutions if
Map = V(u)dap.

@ Every H := {u = ug} is a fully degenerate MKH of maximal
order n — 1.

e The Killing vectors generating Ay = A;lfg are given by

n = (b—éa(u)x)Oy+c(w)da, ¢4 = Map(u)c®, calug) =

Fully degenerate MKHSs of any order m

Fully degenerate MKHSs of any order m € {2,--- ;n — 1} can also
be built explicitly.

When and how are Killing horizons multiple?

@ Which equations need to be satisfied so that a Killing horizon
‘H is multiple?
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When and how are Killing horizons multiple?

@ Which equations need to be satisfied so that a Killing horizon
‘H is multiple?

@ Under which conditions are these equations sufficient?

e Fix a Killing generator & on ‘H. We already know that

€ H —ReT
Ve ALY, 0 = fe e, £(f) =0,

@ It is very simple to show that f;, is fully determined by
f = fne "¢"|s,, where Sy is any spacelike cross section of H.

@ Our approach: find equations for f: S;p — R




A little Killing Horizon geometry

Geometry of cross sections of Killing horizons:
@ {ea} basis of tangent vector fields on S

@ Induced metric v4p: all cross sections are
s isometric.

/9y @ Associated covariant derivative: D

—§ @ K 4p: unique 2nd fundamental form of Sy
‘ ‘ | iy | /7 De,ep — Ve, e =Kap§
= _S @ Torsion one-form s4:

T T AV = —5 48" + KBl

® Rap:= Ry|s,e’e’%: ambient Ricci
tensor along S on S.

@ r4p: Ricci tensor of (Sp, 7).

The master equation

Theorem (Master equation)

Let H be a multiple Killing horizon and pick up (a non-trivial)
£ € Ay with surface gravity k¢

Select a cross section Sy of H and define S¢ := Sy N He.

S
Then, for any n € Afffg the function f : S¢ — R such that n = fé
satisfies the following master equation:

1

1
DaDpf—2s4Dp)f+ (gRAB — 5TAB + SASB — D(ASB)> f=0.
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The master equation

Theorem (Master equation)

Let H be a multiple Killing horizon and pick up (a non-trivial)
£ € Ay with surface gravity k¢

Select a cross section Sy of H and define S¢ := Sy N He.

S
Then, for any n € Afffg the function f : S¢ — R such that n = fé
satisfies the following master equation:

1

1
DaDpf—2saDp)f+ <§RAB — 5TAB + SASB — D(ASB)> f=0.

@ At most one can prescribe freely f|, and df|, at p € S¢. Since
dimension of S¢ is 7 — 2, maximal number of solutions is n — 1.

@ How does this fit with the fact that dimAy = n — 1 for fully
degenerate H?




A reformulation of the master equation

e For any Killing horizon H¢ (not necessarily part of a MKH)

M
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where £ is the unique null vector field transverse to H;
normalized to &, 0" = —1 .
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A reformulation of the master equation

e For any Killing horizon H¢ (not necessarily part of a MKH)

H

A He

EoRP neiepl” = Dasp — sasp + keKap
where / is the unique null vector field transverse to H;

normalized to &, 0" = —1 .

@ Using also here the Gauss equation for Sy, the master
equation can be rewritten in the following simpler form

DaDpf —s54Dpf —spDaf +keKapf = 0.

e Now, if H is fully degenerate, then in particular k¢ = 0 and
f =const. is a solution of the master equation which leads to
the original Killing ¢ itself

@ Hence, there are at most n — 1 independent Killings in A4 in
this case.
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Full integrability

@ Under which conditions the maximal number of solutions is
achieved?

@ An analysis of the integrability conditions, requiring them to
be identically satisfied, leads to

Theorem

The master equation admits a maximal number of solutions (i.e.
n — 1 solutions) if and only if

@ sy isclosed: Dasgp — Dgsa =0;

e (S,7) is maximally symmetric (ergo, it has constant curvature q)

© Rap=(n—1)gvasB.
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Sufficiency of the master equation?

@ In general, the master equation gives
necessary conditions for MKH. Under
which assumptions it is also sufficient?

Characteristic initial data + KID

@ By using the characteristic initial-value
problem [Rendall 1990] together with results
on the required initial data for Killing vectors
[Chrusciel & Paetz, 2013], one can derive
satisfactory sufficiency results.

@ To deal with the case of non-fully degenerate MKHs, we also
assume that the initial data give rise to a bifurcate Killing
horizon (on the initial characteristic hypersurfaces).

@ And we consider the master equation on the bifurcation
surface S

e Of course, for the initial-value problem we need fixed field
equations. Simplest situation: A-vacuum spacetimes.

Sufficiency of the master equation

Theorem

Let the spacetime solve the A-vacuum field equations and admit a
bifurcate Killing horizon {Hi, HE,S}.

Select k a non-vanishing future null generator of H{ U S UH7,
and define the torsion one-form on S by €,V ,k* = ¢4 k*.

Then H U SUH, is a MKH of order m if and only if the linear
PDE (master equation on S):

"AB
o — 2%43 T o + CASB — D(ACB)) f=0

DADBf_2§(ADB)f+(

admits m — 1 independent solutions.
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Reminder: Near Horizon Geometries

@ All degenerate Killing horizons give rise to a related “near
horizon geometry’.

@ Construction based on a limiting procedure (details: [Kunduri,
Lucietti, Living Reviews Relativity (2013)] by using Gaussian null
coordinates {u,v, x4} associated to the degenerate Killing
horizon ‘H : {u = 0}, with Killing generator 0,:

g = 2dudv-+auw 5 (u, )dz +u?Z(u, )dv 4o 45 (u, z)dz de®,

e Replacing u — u\, v — A~ 'v and taking the limit A — 0
yields its Near Horizon Geometry spacetime:

Onne = 2dudv + 4us 4 (z)dz? + v h(z)dv?® + yap(z)dz?dz?

with h(z) := E|y=0, 54 := walu=0, YAB := TAB|u=0.
@ This is the “focused” geometry near the original horizon.
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Near Horizon Geometries

@ The near horizon geometry can be defined in an intrinsic
manner, using geometrical objects.
@ Choose any co-dimension two submanifold Sy C H of the
original degenerate horizon. Then
© .43 is the first fundamental form on S,
© 54 is the torsion one-form on Sy (relative to 9,)
O h= 28ASA — DASA + %R‘SO — %WABRAB
® gnnc = 2dudv + 4usa(x)dx? + uh(z)dv? + yap(x)drdda?
@ In either case, intrinsic or with Gaussian null coordinates, the

metric gune is only given on a connected part of the MKH
without fixed points of the degenerate Killing

All Near Horizon Geometries have MKHs
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® gnne = 2dudv + 4us o(z)dz? + u?h(z)dv? + yap(x)drda?

@ , :={u =0} is a degenerate Killing horizon of gyuc for the
Killing n = 0, (as nun* = u?h, a double zero at u = 0).

@ One can check that the Near Horizon Geometry of gyuc with
respect to 7 is itself —so the process cannot be iterated.

General property [Pawlowski, Lewandowski, Jezierski, 2004] J

& =00, — ud, is another Killing vector of the metric gyuc.

e ¢ is null and tangent to H,, \ {u = v = 0}, so that £ € Ay,

@ Obviously [£,n] = —n so that kg = =1 # 0

@ Therefore, H,, is a non-fully degenerate MKH.

e Actually, any cut Sy, :={u=0,v=wvo} C H, is the
bifurcation surface with respect to the Killing

§ — Vo1 = (U - UO)av — U0y

of a bifurcate Killing horizon with a multiple branch.

MKHs in Near Horizon Geometries
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MKHs in Near Horizon Geometries

In conclusion, every Near Horizon Geometry possesses a non-fully
degenerate Multiple Killing Horizon
The near horizon geometry limit increases, or keeps, the order of
the Killing horizon.

Theorem

Let H be a degenerate Killing horizon, possibly multiple, of order

m > 1 and let gyue be the near-horizon metric of a degenerate
Killing vector of H. Then

(i) IfH is fully degenerate, gnwe admits a multiple Killing horizon
of order at least m + 1.

(ii) If H is non-fully degenerate (so that m > 2), then gyuc has a
multiple Killing horizon of order at least m.
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@ Given that any MKH has a non-empty Af,i_fg, MKHs always
have associated Near Horizon Geometries

@ However, if dim Aifg > 2 then one can construct the
near-horizon limit for more than one (independent) degenerate
Killing.

@ Does this lead to various, inequivalent, Near Horizon
Geometries for such a given MKH?

Theorem

Let H be a Multiple Killing Horizon either of order m > 3 or fully
degenerate. Then, the near horizon geometries with respect to the
elements of Aifg (and away from their fixed points) are all
isometric to each other.
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Non-fully degenerate MKHs are NHGs locally

@ We know that

e Every Near Horizon Geometry contains a non-fully degenerate
Multiple Killing Horizon

e Any Multiple Killing Horizon has associated a unique Near
Horizon Geometry

@ Are these two concepts, NHG and non-degenrate MKH,
“equivalent” in any sense?

Theorem (Ongoing work)

Any spacetime with a non-fully degenerate MKH H is locally
isometric to the unique near horizon geometry relative to H.

@ This provides a classification of NHGs, with explicit local
expressions

@ More importantly, it allows for an improved definition of Near
Horizon Geometries, incorporating fixed points into the
picture, and thus providing global definitions and results
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Explicit general form of NHGs

@ Let the non-fully degenerate MKH generating the sought NHG
be of order m := 2+ p, with p € {0,1,...,n — 2}

@ Any cross-section Sy € H is a warped product Sp =V xq X
with p-dimensional maximally symmetric fibers. Thus, the
metric Y4 on Sy decomposes as

Y=+ 0%, Q:V S R\{0)

with g. the metric of constant curvature ¢

@ p linearly independent hypersurface-orthogonal Killing vectors
Sa = %dfa of (3, g-) provide the p non-constant solutions
{fa} of the master equation.

@ Then, sy = DaZ/(2Z), and h either vanishes or h = Z

@ 7 has a fully explicit expression in terms of {f,}, £ and some
free constants

@ A basis of Ay is
2
vy — udy, Oy, faboy + %Afaau — ugradf,
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Conclusions and outlook

@ MKHs are very interesting geometrical objects that can
provide useful insights into the classification and properties of
black holes and other black objects in higher dimensions

@ Study of non-fully degenerate MKHs leads to a better
understanding of NHGs —and permits to classify them

@ Characterization of NHGs: those spacetimes with a non-fully
degenerate MKH. Thus, one has a criterion to decide if a given
spacetime is a NHG or not.

@ Improved (global) definition of NHG, including bifurcation
surfaces and other fixed-point sets.

@ Topology of cross sections

e Fully degenerate MKHs are special and must be studied in
deep.

@ For maximal order, plane waves arise, thus they are related to
Penrose limits. But little is known hitherto for smaller ordersiilias




Thank you for your attention!
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Spontaneous scalarization (SS)

R 1 Damour, Esposito-Farese (1993)
5 = [ @*0y=g (1org — 5 0u90") + Sm(Gpo )

Juv = Qz(qb)gm, Nonminimal coupling to matter

cf. Many variations have been considered recently, including
- Massive scalar field Chen et al. 1508.01384, Ramazanolu, Pretorius, 1601.07475

- Coupling via disformally transformed metric Minamitsuiji, Silva, 1604.07742

- Coupling to Gauss-Bonnet term
Doneva, Yazadjiev, 1711.01187,
Silva et al. 1711.02080, Antoniou et al. 1711.03390

- Coupling to Chern-Simons term Brihaye et al. 1810.09560

- Coupling to Maxwell invariant Herdeiro et al. 1806.05190



Spontaneous scalarization (SS)

Damour, Esposito-Farese (1993)

5= j d“x\/—_g(l;jm—% u$04B) + S (G )

G = Q*(¢$)g,y,  Nonminimal coupling to matter

Background
GV = 8rG(Q*TH + T@w)
D(p = V,qb — .QB.Q.’(pT

Ansatz: Q(¢y) =1 and Q 4(¢py) =0

Solution: GR metric & ¢ = ¢, = const.

Spontaneous scalarization (SS)

Linear perturbation ¢ = ¢y + ¢
- Einstein eq is unchanged from GR at linear order
- Klein-Gordon eq is given by
08¢ = MegS¢h
Effective mass

MmZe(P) = —Qpp (Po)T = —

Tachyonic instability of ¢
< SS: local modification of gravity

Bo Bo
T ~ 2 P
3MPl 3MPl

Stability analysis
= Schrodinger problem






Bound states exist if U > 1%/(4D?)




Spontaneous scalarization (SS)

(1) Spherically sym. [Well-studied] Harada. gr-qc/9706014
SS occurs when 5, < . < 0

(<& Tachyon mass is sufficiently large)

To be a realistic model, it is important to study other
configuration. As an extreme case we consider...

(2) Planar sym. [New] HM, Mukohyama, 1810.12691
Using the analogy, we expect that ,[?O,C =0

Sensitive shape dependence of SS '




Spherically symmetric p(r)

r

Po

>
0 d r

Metric = Internal & external Schwarzschild solution
2

dr
ds? = —A(r)dt? + + r?dQ?

B(r)
Pressure P(r) = Exact solution for TOV equation

Spherically symmetric p(r)
Perturbation ¢ = ¢y + 6¢

BOP
08¢ =~ )
¢ 3M3; ¢
- Spherical harmonics decomposition
- Focus on £ = 0 mode

- Fourier decomposition dr/dr, = VAB
—iwt t, ., d: dimensionless
o ~ 7 variables normalized by
¢ r Y(E) Jeans scale
T — -1/2
EOM: Schrédinger eq L = (8mGpy/3)™Y

d2
(— Tt U(ﬁ)) Y = 0



_ _ Large —f3,: Deep well
Effective potential | arge d - Wide wel

1.0/
05
> 0.0
-0.5 — (Bo,d)= (0, 0.1) (0, 0.5)
_1.05-___5(—0.5,0.1)
0.0 0.2 04 06 0.8 1.0

~>
*

Spherically symmetric p(r)

—iwt
5 ~ ()
dZ
<_ d?l’\'*z + U(ﬁ))’# — wzl/)

Boundary condition y(0) = 0 (Regularity of §¢(0))

SS
& 6¢: Tachyonic instability
& : 3 Bound state with w? < 0



Critical value —f, .~ 2d?

108 o
Scalarization

—Eo 10°

100 GR solution

105 10 0001 0010 0100 1

d
Critical values
UO,C _,BO,C
Sphericall n’ -
erically sym. — —
P y Sy 4D2 2
Planar sym. 0




Planar symmetric p(z)
P A

>
—d d VA

Consider general planar sym. p(z) and pressure

satisfying a kind of energy condition.

Metric Bonjour, Charmousis, Gregory, gr-qc/9902081
ds? = —a?(2)dt? + e?!ta?(z)(dx? + dy?) + dz?

Follow the process similar to the spherical case.

_ _ Large —f3,: Deep well
Effective potential  [arge d - Wide wel
0.5 | | | | |

0.0 —f
0.5 (Bo,d)=(0,0.1) (0,0.5) ]
1.0 . 4

Step fungtion p(Zj

(=0.5, 0.1)

0.0 0.2 0.4 0.6 0.8 1.0

N D>
*



" 5 v" Analytically proved for
Critical value o =0 oneral p(z)
T v Numerically confirmed
for step function p(z)

GR solution
Bo o
Gener'il p(2)
Scalarization
0.0 0.2 0.4 0.6 0.8
d
Critical values
UO,C _IBO,C
Sphericall n’ -
erically sym. — -
PRETIEETY Y 4D2 FE
Planar sym. 0 0




Summary

Spherically sym. Planar sym.

() A

SS occurs much
more easily.

» Possible application: Constraints from planar sym.
objects such as domain wall, accretion disk, galactic

disk etc.
« Similar analysis for other configurations.
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Scalarized Black Holes in the
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Scalar Fields

- appear ubiquitously in theoretical physics beyond general relativity
(GR) and particle physics.

- provide the robust mechanisms for inflaton and dark energy,
which have been tested in observations and experiments.

- may scalarize” compact objects strong gravity regimes,
which will be a target for the future GW observations.




Spontaneous Scalarization

1
S=352 / d'zv/—g (R——g“”é‘mau¢+£(¢)RGB> + / d*e\/~gLom [Guv, V]

Rgp = R? — 4Ra‘3Ra[)’ + RaﬂuyRaﬁuV gLLV = 62A(¢)

2
Scalar EOM: g+ €V () Rap + %A(l)(gb)T“u ~0

Juv

GB coupling Matter coupling
- GR solution at ¢ = ¢, = const & 5(1)(¢0) = A(l)(rpo) =0
- GR solution = solution with ¢ # const.
i) E(p) = 0: Inside astar B < —4.35for A(¢p) = P2 vamour and esposio-Farese (33, 96)

_ 2
co Doneva and Yazadjiev (17)

i) L,, = 0: Around a vacuum BH §(P)ecl—e

f(q’)) X ¢2 Silva, Sakstein, Gualtieri, Sotiriou, and Berti (17)

Instability of a Schwarzschild Solution

$(¢) = g(bz + Z c;$' : Schwarzschild solution with ¢ = 0

i=3
- Perturbation §¢: (Dsch + 2 pieh) ) 36 + O(6¢%) = RGN — 45012 )6
M: BH mass
— —igmt WL(T) d2
=R i) oun) = B
! drz
Var = (- 280) | 220° - o) + 22

V¢ for the radial mode (I = 0) contains a negative region for 1/ M? >§

— Gravitational spontaneous scalarization



Scalarized BHs- Test Field Analysis

- Static scalar field ¢ = ¥ (r) on a fixed Schwarzschild BG

gy 20r—M) , 48 M (1) B
v —I_r(r—?M)w +r5(r—2M)£ (¥)=0

Y(r = 2M) =1y >0, P(r - ) =9, = 0= {W () >0

- Scalar charge: Y = %+ 0 (riz)
- Perturbation about: ¢ = Y(r) + d¢:

(Osan + €@ @RGS0 = 0
s Vi (r) = (r— 20M) [ﬂ (r* - 24062 () +

r? 73

00+ 1)]

1) £(¢) =22 ¥(r), Q@
8 [ | = —
ot o2 — 290 node = 0525, 025060, 01741
o6 | Onode 1node 2 nodes

- 77/1\/[2 =50.9 (2 nodes) Silva, Sakstein, Gualtieri, Sotiriou, and Berti (17)

r

04 i -

02f

02 -

n/M? = 19.5 (1 node)

04 -
(Osen + ZRS];h)) So=0 =
FUH analySiS Blzquez-Salcedo, Doneva, Kunz, and Yazadjiev (18)

&= gcpz: All scalarized BH solutions are unstable against radial perturbation.

&= ;7—8 (1 — e‘6¢’2): 0-node solutions are radially stable.

Importance of higher order terms in £(¢) in obtaining stable scalarized BHs



(2§ =2¢*A+ad?) o >0,

5 1
Yoo = 0= apg = —

2

IQI/v 77 Yo = 1.0
o 2 nodes
25 1 node
e _~~ 0node
15~ /,/’/ )

f ~ra» 1 @) =3¢"
10} -7

_ Q/M = 0.650ty, —0.8241), 0.9434)
05 -
0‘0(1()" | Iois 1‘.0‘ 1%5‘ a0 | ‘2{5‘ - ‘3;0M/V i

The radial perturbation (I = 0)

MV
X <0

0.01

-0.01

-0.02

(n/M2?,a) = (2.14,0.30), (2.90,
(3.32,-0.10), (3.402, —0.1155), (3.59, —0.15)

2 nodes

S

0.0),

=0+

No negative region mode for 0 -node solution of — 1/2 < a§ < —0.1155



Scalarized BHs- Full Analysis

- Static and spherically symmetric spacetime and scalar field
2
+72 (d6? +sin?0dp?) ¢ =1P(r)

dr
B

3 — /1 — 9660 (o)?
4rp€M (o)

i > 96 EW ()2

- Asymptotic behavior at r = oo, ADM mass M, and Scalar charge Q

ds® = —A(r)dt® +

- Near horizon r>= T'h: ¢ = % = ( ) (7“ _Th) i) ((7‘ _ Th)2)7

2 2
B=1—ﬂ+Q—+MQ —I-@(MQ+24£(1)(¢OC))+O(%5),

r 4r? 4r3 3rd

2 3
vt T M2 2 (4M Q_ Q—) + o (12020 - @ — 24MEM () + O (%)

3 24 614
For §(—¢) = &(p) and o > 0,1 = 0 = W (1Y) > 0

(1) f = 2 ¢2 : ‘]";LL > 6]”21/)(2) Silva, Sakstein, Gualtieri, Sotiriou, and Berti (17)

8 Blzquez-Salcedo, Doneva, Kunz, and Yazadjiev (18)

QU7 0636,0275)

.25 r
i 0 node \/7
0.20 -
: AR (0.233,0.0162)
0.15 — s
ool 1 (0.144,0.00464) | 1 node
: 0.005 - 2 nodes [’-
0.05 ; “”U:J)l)() 0.05 0.10 ‘l).li 0.20 025 0.30 M/J;
[ 1 node
| 2 nodes
0.00 i I 4 | [ | | | L | M/ T]
0.0 0.1 0.2 0.3 0.4 0.5 0.6

-

. ;
— x 226 (—= =~ 19.
0.140 (MZ 50.9) 0.226 (Mz 5) 0.587 (M

~ 2.90)



(20§ =221+ ad?): rt > 6n*P3(1+2apd)?  ayp? > 1

0.002

(0.338,10000)
N r
(n/r )
ol
0.251?1 0 node
W
020 \\ \ A
_ i
0.15 a= \\\\\\\\\
| M 1
'o.i)oo 0005 0010 0015 0020 0025 0030 . - )

Schwarzschild

W»(r) 2

0.010

0.005

(3.09,10000) __+_ b,
(4.87,0.0

(20.2,-4990)

~0.005 -

|0
— 1 node
'
004 a = O W
Ll
003 \\\\\\
N
0.0 \\¥\§
001 \x\\\

a— o u_1
n(llg()[]ll‘ ‘l)v(l(]l‘ ‘ ‘1)(]()2‘ o (),I‘I)}‘ o (ll‘i(}el ‘()[)05 ‘ rh 2
| Q]

” 2 nodes
T
Y015 \\\
a=0 \\\\\\\
2010 -
, e
| \\\\\
H)US‘» \\\‘\\
N
S M1
r a — 00 mo
m{ﬁ){l)() ‘ 0.0005 ‘ 0.0010 0.0015 rh 2



Radial perturbation

A= A(r) +ealt,r), B = B(r)+¢eb(t,r), d=v(r)+edt,r) €K1

Master equation: —p1® + pa®” + ps® + ps® =0
Effective Potential & = e @i, (r) P =C(r)¥u(r)

[_ acliz + UeH(T)] W, (r) = 2 (AB)wW, (r)

P2
1 | a2 1/ ps\  p2 o pa
Ui (1) = —AB{ = (In(AB — [(InAB))]" -z [E] - B+ 2
() {4<n< )+ 5 [ ) - 5 (2) - 5+ 2
F%U?ff 1 node
r% [{eff 0 node { e
[ "l a<0 r

0.05

2 nodes

—0.05 |

(n/r#,a) = (0.558 10000), (0.725, 0.0),
(0.803,—3000), (1.03,—9000) ’

-0.10 -

No pure imaginary mode for 0 node scalarized BH solutions of @ < 0



Summary

- We have investigated scalarized BH solutions and their radial perturbation
in the presence of higher order power of the GB coupling function.

- Test field analysis on a fixed Schwarschild background povides qualitatively
the same results as full analysis, due to the bound 7f > 96 ED ()2

- For a < 0, the Schwarzschild solution with ¢ = +,/—1/(2a), and the
scalarized BHs with 0 node seem to be stable against the radial perturbation.

Thank you.
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No hair conjecture

black hole formation
= higher multipole moments (/22) carried by gravitational waves

= stationary states characterized by mass (/=0) & angular momentum (/=1)

o 120 hair conjecture Ruffini & Wheeler 1971

stationary black holes admit only small set of parameters

o uniqueness theorems Israel 1967, Carter 1972, Robinson 1975, Mazur 1982....

stationary & vacuum black holes are exhausted by Kerr family



Static uniqueness

Theorem:

Consider a static vacuum black hole in the asymptotically flat spacetimes. If the
horizon is nondegenerate and connected, the spacetime is isometric to the
Schwarzschild solution.

o Israel 1967

1 dimensional divergence equation (assumption: $2 horizon)

e Robinson 1977

3 dimensional divergence equation

o Bunting & Maswood-ul-Alam 1987

positive mass theorem

Robinson’s proof

Robinson’s idea: 2-parameter divergence equations Robinson 1977

divJ = |deviation from spherical symmetry|* > 0

Integrate over hypersurface X and use Stokes’ theorem

0= / J;dSt — / J;dSt = / divJdY >0
oo B >

S%: surface at infinity, B: horizon cross-section

By adjusting 2 parameters in J7 , one can set the surface integral to vanish

= divJ=0
= deviation from spherical symmetry vanishes

= spherical symmetry (Schwarzschild)



Robinson’s current

“Miraculous identity”

(no systematic derivation available)

' i R
V2 2 6(c V2

Cijk = 2D (P Ry, — (B R/4)g;,) :Cotton tensor

Motivations

Extend Robinson’s proof into several directions

» How to derive equations of divergence type (divJ=520)?
unknown for nonvacuum/non-asymptotically flat
what is the physical/geometric meaning of the current?

o Possible to prove w/o using Smarr’s formula?

M = %A g M: ADM mass, An: horizon area, k: surface gravity

no analogous formula in asymprotically AdS case

o Possible to extend into nonvacuum/ higher dimensions?
Robinson’s equation involves Cotton tensor (intrinsic to 3 spatial dim)

proofs thus far utilized nonlinear sigma-model property

o Related to the proof based on the positive mass theorem?



Vacuum static spacetime

static spacetime (invariant under t — -7)

ds? = —V?*(x)dt* + g;;(z)da'da? 9ij : metric of a spatial slice ¥={r=constant}
e event horizon at V=0 where static Killing vector 0/0¢ becomes null

e vacuum Einstein’s equations R,, = 0 decompose into
——p  ouraim: uniqueness of solutions
to the boundary value problem

D, :covariant derivative for 9ij
notation: D2V = D,D'V
(DV)? = |D,V|? = D,V DV

Local foliations

LOC&HY foliate 2 by Sy ={V= Constant} asyX =R x Sy V ~radial coordinate

% = {t = constant}

n; = pPiV, : unit normal to S.V gi;daida? = p*dV? + hydaida?

p = (D'VD;V)~1/2: lapse function
hij = gi; — nin; : 1st fundamental form on Sy vacuum Einstein’s eqs:
kij = hi* Din; : 2nd fundamental form on Syin X n'D;p = pk,

g 1 g
k= h"k;; : mean curvature  o;; = k;; — §k’hi3 : shear 2R = % + k2 — kik .



Boundary conditions

(1) Infinity : asymptotically flat

2M
V~1—M, gij~<1+7) 05, M>0: ADM mass

r
2 r2

k~ — ~
— P U

(2) Horizon : regular surface
K= Rupo RE707 — 5| 17 132 4 2 (Dp)?
= v po - V2_p2 i + + ?( p) )

K must be finite at the horizon (V=0) D; = h;/ D, :covariant derivative for 4;

kijly,—o =0, :horizon is totally geodesic

Diply_o=0. =P 0<po=ply=g <oo (0thlaw of thermodynamics)

po: inverse of surface gravity

Deviation from spherical symmetry

deviation from spherical symmetry is encoded in Nozawa-Shiromizu-

_ B

.. 1 4
2+1 decomp051t10n H;j = p_ﬁ —2p*nuDjp+ on <k - /)(TVVQ)> (hij — 2n4n; ) .
=0 g

4V =0 =0

= = =p’k, Dip = V) =4AM/(1 — V2)?
k p(l—VQ)’avp p°k, Dip=0 —> p(V) /( )

1 1

V-independent metric  h; unit sphere

~

=2

H;j=0 < spherical symmetry (Schwarzschild)

Remark: Robinson’s proof shows the conformal flatness of &
2 .
Cotton tensor:  Cjj = W(QHWDJ-]V + p‘QH[igj]k) . Hy D'V =—p?H,

Hj; is more fundamental and well-defined also in higher dimensions

we wish to find a divergence equations of the form  D;J* ~ |H;;|* + |H;|?



Derivation of divergence equation

Separable ansatz

) i i HUED,‘D]'V—72V i ﬂDZVD]V,
J'=[i(V)g1(p)D*p+ fo2(V)g2(p) D'V, PA-v)% Ty
H:@—LDV
Top 1-v27

, H;? ! -
—> DS =f1(V)pPg1(p) [—lHijl2 i p2' <3 + ’; “’11((;))) HH, DV S, +5,,
terms of no definite sign

= we require $1=5,=0

Sy =

W V2R(V)e(p) [a —VI2H(V)  Spgi(p) <3+ M(p))]
A=V~ T A= VR V2fi(V) 92(p) alp) )]

_pa(@VAWV) [1-V2 (1 fi(V) 8pgi(p) |1V f2(V) g5(p)
S= e [ v (V fl(V)) B TV .fl(vm(p)]’

(1) 93(p) < g1(p)

i v
either choice gives the same final result () £o(V) o =y (V)

gi(p) =~y = VT vy
92 =P R(V) = T lale— 1)+ 21 = V),

a,b,c :integration constants

Divergence formula

i cfri(V 2
DJi=5, S= 21£ ) |20 DV Hp = Hygye|* + (20 = 1) |HLf?]
e —
 1r2\1-2¢ ,
gi(p) = —cp™ T p(v) = % [atb(l=V?)],  HyD'V=-p~*H,,
—c 2
92(p) =p~°, f2(V) = m[a@c — 1) +2be(1 = V2)],

N =

S>0 <+ a>0, a+b>0. c¢>

e 3 parameter family of divergence equation

c=2 :Robinson’s identity is recovered

¢ $=0 ¢ spherical symmetry

e beyond the separable ansatz, the current involves two arbitrary functions



Uniqueness proof

Inequality for surface integral DiJi=8>0 & a>0, a+b>0. c¢>

0< / D;JidY = / Jin'dS — / Jin'dS
> Soe B

_@4 —(1+c) 1—c —(1+c) 2
insert boundary conditions: - o ) +0 [WO—QAH] '

>0 >0 >0 >0

N | —

infinity
Ay = / d4s :area of horizon
B

horizon

x = 4i / @ Rds : Euler characteristic of horizon
B

™

—1- -2 T _ . .
sete=1: 7 <Aupy® < ox = y22 = y=2 (horizon is sphere)
sety=2: w<App,><nm = saturate equality

= divJ=0 = $=0 spherical symmetry (QED)

Utilities

e no use of Smarr’s formula

possible to extend to the asymptotically AdS case

e x=2: RP2 (y=1: unorientable) is explicitly ruled out
stronger restriction than Hawking’s topology theorem =0 (Hawking, 1973)

e conservation of Ji is obvious for spherical symmetry

Jh= (0= v

C

1= VAa+b1-VIH + 2aDiv] .

H; = Dillog{(1-V??2p}], (1-V?)2p=4M for Schwarzschild

* Hjj: obstruction for the existence of dilatational conformal Killing field
) 2 2
G=01-V3H3D,V, D;(; + D;G — ngC 9ij = mHij . Veconst
e NoN-vacuum cases

Maxwell = Reissner-Nordstrom, Maxwell-dilaton = Gibbons-Maeda

key: maximum principle can be applied to divergence type equations



Final comments

Summary

established a unified picture of static black hole uniqueness based on
“divergence equation”

o simple proof, general proscription for derivation, lots of applications

e only 52 horizon, independent of Smarr’s formula, extensible to nonvacuum

o possible to combine w/ positive mass theorem (valid in higher dimensions)
Outlook

e cxtension to asymptotically AdS case (in progress)

e cxtension to stationary case (complex gen. of Hj; < Simon tensor)

e application to static stars/modified gravity
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Introduction and Motivation

Outline

@ Introduction and Motivation

Introduction and Motivation
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Introduction and Motivation

Rotation curve problem

We cannot explain the flatness of rotation curves of galaxies
by the Newtonian gravity.

There are 2 possibilities to

sof - solve this problem.
S NGC 8503 R

@ Dark matter + Newtonian
gravity

@ Modified gravity theories

e MOND
° Rudius (ipe) . o f(R) gravity
@ massive graviton

http://inspirehep.net/record /805890 /files/figl.png



Introduction and Motivation
oe

Introduction and Motivation

Recently we have a black hole solution from the dRGT
massive gravity (S. Ghosh et al., 2015 ):

20GM  Ar?

nr) = f) =1- =2 -2 har s g, (1)

and we know that a circular velocity can be obtained from the
geodesic equation as (using g,, = M + huw)

’02(7’) = —%Tarhoo . (2)

Research question

Can we fit rotation curves of galaxies by the dRGT massive
graviton?

Circular velocity in the presence of massive graviton

Outline

© Circular velocity in the presence of massive graviton



Circular velocity in the presence of massive graviton
@000000

Massive graviton halo

The dRGT massive gravity (C. de Rham et al., 2010)

S = /d4x\/—_gMTlgl [R+mU(g, f)] + Sm . (3)

where m, is a graviton mass, and the potential is defined as

U = Uz + agl3 + auldy
Uz = [K]* — [K?],
Us = [K]? = 3[K]IK?] + 2[K7]
Uy = [K]* = 6[K]?[K?] + 3[K?]? + 8[K][K?] — 6[K],
and KM =64 — (Vg 1H)~.

Variation with respect to g*¥, we find field equations as

G +m2X}E = STGTH™ (4)

Circular velocity in the presence of massive graviton
0Oe00000

Massive graviton halo

The tensor X" is given by
Xp =Ki - [K]of) — {(/CZ)ﬁ - [KIKY + %55([@2 — [K?])
+35 {(KJP’),‘} — [K](K*)5 + %KS‘J([/C]2 - [K%)

_éag([ic]?’ —3[KIIK%) + 2[163])] 7 (5)

where a3 = 2% and ay = £ + 122 to simplify the EOM

(for « = 8 = 0 the nonlinear interactions vanish).

We choose the fiducial metric ansatz as (D.Vegh, 2013)

0 0 O 0
0 0 O 0

fMV = 0 0 02 0 ) (6)
0 0 0 (CZ?sin%0

where (' is a positive constant.



Circular velocity in the presence of massive graviton
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Massive graviton halo

Using the static spherically symmetric metric:

—n(r) 0 0 0
0 r)~1 0 0
Juv = 0 f( 3 r2 0 ) (7)
0 0 0 r2sin%46

the field equations become
! - a\or — T — T — 2
U A A (37" 2C | a@r-C)(r-C) , 38(r—C) ) 8 Gpm(r),

T2 + r2 + r 9 r 72 r2
1 / -9 _ _ _ 2
__+i+ fn _ 2 (3r C_{_Oz(?)?" C)(r—C) +36(r C) ) +8TG P (),
r2 2 rm g r 72 r2
/ 12 /.7 / 12 . _»2 _
ffn f'n +fn +fn = m? (3r C+a(3’r’ C) +3,B(7’ C)>—|—87rGPm(7
2r 4n?2 4n 2rn 2n r r r

For T\™ = 0. we find the BH solution.

%
G Ar?
n(r):f(r):1—2TM— ; +yr+(, (8)

Circular velocity in the presence of massive graviton
0O00@000

Massive graviton halo

However, if there are massive gravitons around galaxies
(assuming that the massive gravitons act as a halo), we have

to find the TOV equation.



Circular velocity in the presence of massive graviton
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Massive graviton halo

However, if there are massive gravitons around galaxies
(assuming that the massive gravitons act as a halo), we have
to find the TOV equation.

Integrating the (00) component from 0 to r, we find

/ r— a(3r — T — r—C)?
] e e BT
2Gm(r)  Ar?

flr)=1- = +r + ¢, (9)
r 3
where

= —Smg(l +a+p),y= —mZC’(l +2a+30),( = m302(a+36).

Circular velocity in the presence of massive graviton
0000800

Circular velocity

Substituting f(r) into the (rr) component, we find

dlnn  2Gm(r) +8rG P, — 21%7“3 I
dr r(r —2Gm(r) — ATT?’ +yr2 4+ Cr)

(10)

If my; =0, i.e. A=~ = (=0, we obtain the usual TOV
equation.



Circular velocity in the presence of massive graviton
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Circular velocity

Substituting f(r) into the (rr) component, we find

dlnn  2Gm(r) + 8rGP, — 2/;7’3 IO
dr r(r — 2Gm(r) — ATT?’ + 72+ (1) .

(10)

If my =0, i.e. A=v=( =0, we obtain the usual TOV
equation.

Since a galaxy scale is a non-relativistic scale,
@ we ignore pressures of the visible matter, P, ~ 0,
@ and assume that gravity is weak, n(r) =~ f(r).

Circular velocity

Circular velocity in the presence of massive graviton
0000080

Circular velocity

A galaxy can be decomposed into bulge, disk, and gas:

Gm(r) 2 2

=T vbulge(r> + Yy Uc2iisk<r) + 2 Ugas ’

T

where z, ¢, z are the dimensionless mass-to-light ratio.



Circular velocity in the presence of massive graviton
Q00000 e

In this work we choose «a = —33, 5 =1/2+ ¢, then
Aobs = —3m3(1 +a+f) = 6m§e,
1
v = —mzC(l +2a+38) = §m§C + O(e),
¢ = mng(a +35) =0.

A finely tunes to the DE observed value, ~ 107°2 m~2.

Circular velocity in the presence of massive graviton
0O00000e

In this work we choose o« = —33, §=1/2+¢, then
Aops = —3m3(1 +a+p)= Gm?]e,
1
v = —mgC’(l + 20+ 35) = §m30 + O(e),
¢ = m302(a +35) =0.

A finely tunes to the DE observed value, ~ 107°2 m~2.

Circular velocity

Gm(r) ArZ2  r
UC(T):\/ r()_ 3 T

The fitting parameter is only v, thus we obtain constraints on
m;C (not on m}).
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Results

0000000

Milky Way

Observational data from Y. Sofue, et al., 2009

Milky Way

350;“““““‘.‘““

300§ ]

250} o 1 — VdRGT + Vbulge + Vdisk
E 200? ' — VdRGT
= 150 ]
> 5 Vbulge

100 ¢

505— Vdisk

oL

r (kpc)

v =4.877x 10**m™", m, = 6.163 x 10~*'eV where C' = 1 m.



Spiral galaxies

Observational data from F. Lelli,

NGC 6195
250F &
33
200 f} BN — VdRGT
g 150¢ \\~\ ————— Vbulge
I TP
> 100 .~ TTTmeeea ] Vdisk
50¢ Vgas
[0)8 ‘ ‘ ‘ ‘ ‘ ‘ i
5 10 15 20 25 30 35
1 (kpc)
NGC 6946
EEX,
150 it
& — VdRGT
> \
E 100 \\ ————— Vbulge
> Vdisk
50+ N
__________________________ Vgas
0y . .
0 5 10 15
r (kpc)

Spiral galaxies

Results
O@000000

et al., 2016 (SPARC)

NGC 4157
200/
1500 /b
R
£
Z 100
> 1
S0P
5 10 15 20 25
1 (kpc)
UGC 8699
200}
\
150§,
I S
g w00f /N
> \\~\\‘~
soff TR ]
0f
0 5 10 15 20
r (kpc)

[e]e] Jelele]e]e]

The x,y, z are the dimensionless mass-to-light ratio.

dRGT v (10728 m—1) x,Y, 2 C (m)
Milky Way 4.87739 1,1,0 1.00
NGC6195 (Sb) 6.74171 0.7,0.4427, 1 1.39
NGC4157 (Sb) 6.43075 0.7,0.49216, 1 1.32
NGC6946 (Scd) 6.14538 0.4580,0.6127,1 1.26
UGC8699 (Sab) 6.70334 0.514856,1.18365, 1 1.38

Table: The v of each spiral galaxy where C'is calculated from ~

— VdRGT
————— Vbulge
Vdisk

Vgas

and my (from the Milky Way). For the Milky Way, the bulge are
refitted together with the 7.



Results
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Low-surface-brightness (LSB) galaxies

Observational data from W. de Blok and A. Bosma, 2002

UGC 4325

— VdRGT + gas

V (km/s)

7 m——— Vgas + VNFW

00 05 10 15 20 25
r (kpe) r (kpe)
UGC 4173 UGC 3371

— VdRGT + gas

V (km/s)

————— Vgas + VNFW

2 4 6 8§ 10 12 2 4 6 8 10
r (kpc) r (kpe)

x The dRGT vyields similar effects as the NFW DM halo.

Results
O000@000

Low-surface-brightness (LSB) galaxies

Since for small galaxies (r — small),

i 1
pNEw (1) = P o — V. X AT

1 — VARGT + gas

Vgas + VNFW

Circular velocity

ve(r) = \/Gm(r) A7 + L 5 Ve OC /T .

r 3 2

. Both circular velocities are similar.

+ However, it is true for small galaxies or galaxies with large 7.



Results
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Low-surface-brightness (LSB) galaxies

For these LSB galaxies we set y = 0, i.e. only DM and gas
contribute the rotation curves.

dRGT v (10722 m~1) | C m)
UGC4325 19.9956 4.11
DDO64 7.49968 1.54
UGC4173 1.5165 0.31
UGC3371 5.0024 1.03

Note that rotation speeds of the UGC4235 are faster than
other LSB galaxies.

Results
00000080

Low-surface-brightness (LSB) galaxies

However, some LSB galaxies require modification on the stellar

disk.
UGC 1230 DDO 189
T T ; 80 F . , , —
120} ]
70f
100} g 60k 1
2 =
£ 80} ] — VARGT + mvdisk + a0 | 1 — VdRGT + mVdisk + Vga
= 60} ] Saf Yo
-~ n 1 - mVdisk + Vgas > B S —— mVdisk + Vgas
40 30E A,
20 L 2014/
4 6 8
r (kpc)
UGC 5005
‘ ‘ 120f
100}
100}
_ of _ 80 ]
E 601 1 — VdRGT + mVdisk + VEas 601 1 — VARGT + mVdisk +\
~ 40l 1 ----- mvVdisk + Vgas > 40[/; b — mVdisk + Vgas
4
-~ 20t
20017
OF

r (kpc) r (kpc)

Large values of the stellar M/L ratio of the disk is required.



Results
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Low-surface-brightness (LSB) galaxies

Thus, for the last four LSB galaxies

V(1) = \/?J Vi (7)) + Vias — BN + 5

dRGT v (10728 m—1) C m)

UGC41230 1.06442(y = 10.2822) 0.22

DDO189 2.90571(y = 7.03932) 0.60

UGC5005 2.39079(y = 2.9603) 0.49

F5631 3.89396(y = 6.05839) 0.80

Large values of the stellar M/L ratio of the disk is required.

Summary

Outline

Q Summary



Summary
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Summary

@ The dRGT massive gravity contributes an increasing

circular velocity (v, o< 4/7) which be able to fit most of
the galactic rotation curves.

Gm(r Arz  Ar
UC(T):\/ 7°<>_ 3 T

@ There is only one fitting parameter in the model, and the
best-fit values are in the same order for all of galaxies,
including cluster scale (y ~ 1072 m™1).

@ However, some LSB galaxies requires large value of the
stellar mass-to-light ratio of the disk.

Summary
oce

Summary

@ Since there is no direct constraint on C' in the galactic
scale, we can choose C' to be very large to satisfy Lunar
Laser Ranging experiments.

For C' =1— 10" m, we find m, ~ 1072! —107%" eV.

Thank you very much for your attention.
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Black holes and stars in the minimal theory of
massive gravity (MTMG)

Michele Oliosi

Yukawa Institute for Theoretical Physics
Kyoto University

presentation at JGRG28, November 6, 2018

based on arXiv:1808.01403

with Antonio De Felice, Francois Larrouturou, and Shinji Mukohyama.

Outline

Introduction

MTMG

New results in MTMG

Conclusion
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Introduction

Mcerem

expansion

/”, \
%, Farthest
Slowing “ supernova

expansion )

Time
(~15 billion years)

Big

Expanding universe
: . ] image by NASA
What is the accelerating expansion? ge By
» cosmological constant?
» dark energy source?
» IR modification of GR?
Massive gravity  Sgravity = Sgr + Smass (1)
3/9

Massive gravity (MG)

» Physical metric g,,,,, nondynamical reference metric g,,,..
» mass term > g#*g,, — Diffeomorphisms are broken.

» Boulware-Deser ghost-free, Lorentz invariance (LI):

de Rham, Gabadadze, Tolley MG [de Rham et al, 2010]

2 f g2
Smass - m 2,\/IPI /d4XZ/{ [\/ gupgpl/] (2)

where U/ is a symmetric polynomial, whereas m controls
the graviton mass. Propagates 5 d.o.f.

» Cosmology — look further: inhomog., bigravity, MTMG

See [Boulware, Deser, 1972], [de Rham et al, 2011], [Hassan, Rosen, 2011], [De
Felice, Mukohyama, 2015]

4/9



Black holes in dRGT

Reviews: [Volkov, 2014], [Babichev, Brito, 2015]

9w X G v K Qv
both diagonal | beth-diagonat
, X Singularity at (A)dS-
Stﬁuc, the horizon | Schwarzschild:
[Deffayet, infinite strong
Jacobson, 2011] coupling.
Hairy BH? Hairy BH?

Different coordinates means different solutions.

Statie: this is one way out, see e.g. [Rosen, 2018]

5/9

Minimal theory of massive gravity [pe Feiice, Mukohyama, 2015]

(Cosmological) LI violations allow for more variety

m? M3 — N —
Smass = o i /d4X 1 4% [\/ 'Vlk'}/kja Na KIj? at\/ 71k7M7Di] (3)

where the v and % are the physical and reference 3D metrics, N
and N the physical and reference ADM lapses, and Kj; the
extrinsic curvature.

» By a careful choice, propagates only 2 d.o.f., nonlinearly.

» There exist 2 branches of FLRW solutions: the normal
branch, and the self-accelerating branch.
» Successful cosmology [De Felice, Mukohyama, 2018]

6/9



Lemma in MTMG

Ansatz: Spatially flat physical metric, FLRW reference metric.

» Both the normal and the self-accelerating branches still
exist.

» Choosing the self-accelerating branch, one finds the usual
Einstein equations

Mg| (G,uy + mz/\effg;u/> — T,uv (4)

with A4 = cst.
» = Spatially flat GR solutions are solutions in MTMG

7/9

Applications of the Lemma

1. Painlevé-Gullstrand forms of Schwarzschild-(Anti)de
Sitter black-holes.

2
2 p2
ds? — —dr2 + (dr + \/ 2:‘/’ _ Nerm-r dT) +r2d02. (5)

3

2. Spherically symmetric static matter solutions
(e.g. Schwarzschild interior). Solutions are regular at the
center.

3. Solutions matched to background cosmology.
4. ...

Solutions are free from the strong-coupling issues that
exist in dRGT

8/9



Summary

» Black holes are difficult to find in dRGT massive gravity
» They may be easier to find in other theories

» Our result: spatially flat solutions of GR are also solutions
in MTMG.

» MTMG Schwarzschild black holes are free from strong
couplings. There are other nice solutions.

...thank you | ®

9/9
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Tetrad formalisms and gauge fixing
for binary black hole simulations

Tetrad approaches in numerical relativity

m Tetrad approaches have been used only in few cases in
numerical relativity (see for example the work by Bardeen and
Buchman).

m The Newman-Penrose formalism is used in numerical codes to
extract the information about gravitational waves.

m Thinking of implementing the whole set of NP equations in a
numerical code would be rather tough, however a specific
gauge choice can help simplify the equations to a big extent.



Self-dual forms

The Newman-Penrose formalism can be rewritten in a much more
compact way using self-dual forms. A self dual two-form is defined
by the condition

cd .
€ab zcd — _2’zab

Instead of tetrad vectors, an equivalent approach is to introduce
the following set of three self-dual forms

T = Ay — mpmy,
Z:[,/ = Lpmy);
Ly = MMy

The X variables satisfy contraction relations of the type

Zaczjb - _Z:b'

Connection and Curvature

The connection is completely determined by the following three

vectors:
1 1
A = -3 ) HID B v/ i - ) BSD SaCL v 2
1 1
B, = ¢ T ST T ) T T T

1
C, = Zzabz—devsze.

While the self-dual Weyl tensor is given by

abed = V- [Z:_b SIIED B9 Z;d]

[Zab zcd - z:b z;d o za_b Z;{—d} :

SIE



Gauge fixing

The gauge freedom corresponds to the 6 parameter Lorentz group.
It is possible to fix completely this gauge freedom by imposing the
following three conditions:

C*abcd Z;l-b zcd _ 0,
C*abcd Z;b zcd _ O,

xabcd = =
e [z:b zjd — 2o ch] = 0.

So that the Weyl tensor is given by

bed = V- [z:b Yo+ Xop z;d}

[Zab 2cd — Z:b g~ Lab zjd} :

S

Different approaches to Einstein’s equations

Coord. approach Newman-Penrose Gauged self-dual
o Hont mt, mt 2L e Z:[,/, PR

I_abc P,y T, T, 0, )‘7 vV, R, 67’775705 A/MB/M C,u

Cabcd W07W17w27w37w4 w-f-aw—

m WV, and W_ are simple functions of the two curvature
invariants / and J:

Ve = —5 (0+071),
1
v o= é%(@-e—ﬂ,

m ©=f(lJ)).



Relevant equations

The relevant equations in tetrad formalisms are the Bianchi and
Ricci identities.

m Bianchi identities
VaC*ade = O-
m Ricci identities

2V Vile = Capeal®.

In order to obtain scalar relations, all the possible independent
projections along the tetrad vectors are considered.

The Bianchi identities

When written as functions of the variables introduced in this
approach, they give the following simple relations

Voin|i2(0+ 07| = —,\F@ gl> B, — 3A,,
V.hn[iz@ -0 = '\f(ngg )Ba+(2Ca—Aa).

It turns out that the Bianchi identities can be used as simple
relations to derive the two vectors A, and C, once B, is known.
But what about the third vector? Is there a third potential
involved?



The Petrov type D limit

In the single black hole limit (© — 1) the connection vectors tend

to
A, = 1VI /
=T e ps 11T,
B, = 0, \, O, U, K
1 1
C, = —6v3|n/—§va|n¢. €,7, 53,
where

é = <r2 — 2Mr + 32) sin? 6.

m These values are consistent with the known expressions for the
spin coefficients in Kerr.

m [he value of C; calculated in the Kerr space-time confirms
that S, = V,In ®! (at least in this limit).

The Ricci identities

When written in function of the variables introduced in this

approach:
202

a _ a a =1
V.A? = A,A°—B,B 7 (e+e )
V.B? = -2B cuﬁ(@—e—l)
a - a \/§

1
4/2 -

V,C? = AaA"’—BaBa+2AaC"’—%(@+@ 1)

Given that A,, B, and C, are functions of V,/, V,© and V¢ (7)
would then lead to equations for V,V?/, V,V?0 and V,V?0,



Conclusions

m A tetrad approach with this specific gauge fixing is an
alternative approach to Einstein's equations worth studying
further.

m |t has been shown that using the self-dual approach equations
become much simpler and compact.

m Connection and curvature can be expressed as functions of the
two curvature invariants / and J plus a third (possibly scalar)
quantity.

m The dynamics for these quantities is governed by the Ricci
identities.

m Numerical implementation of these equations is the subject of
future work.
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Introduction

Singularity Ly

Space time of Gravitational Collapsing star

|:| Blue region : Causal past of future null infinity

. Orange region : Black Hole

\ 4

> [y Observers outside black holes can’t get
any signals from black holes.

Observer

Surface of

the star The shadow image that we observe is not

the black hole itself, but the surface of
the gravitationally collapsing star.

Observable
region

Gravitationally Collapsing Star

Oppenheimer-Snyder Collapse

This model showed for the first time based on the General relativity scenario
of the black hole formation through gravitational collapse of a dust sphere.

V™ FLRW

d
ds? = —dr? +a2< r

2

T2t r2d02>

v+ : Schwarzschild

2 R
+ R2d0? (f R)=1- F“’)

2 _ 2,2, AR
ds® = —f(R)c*dt +f(R)

Homogeneous
dust

Matching of the metric at the
surface of the dust star




Gravitationally Collapsing Star

80 I I I I I
Oppenheimer-Snyder Collapse Surface
70 .
Matching of metric
. 60 [ .
# the surface move along a radial
timelike geodesic. S sof i
R
+~ 40 + —
R(1+cos§)
r=—
2 30 .
/R §
——1+tan(—)
2M 2 ’R R . R 20 -
t = 2Mlog = ¢ + m—l(ismf+(2M+§)§>
m—l—tan(f) 10 ]
0 1 | | |
The trajectory of the timelike geodesic is right figure. 0 2 4 6 8 10 12
R=10,M=G=1) ro(x M)

Gravitationally Collapsing Star

Lights emitted from the star surface
is bent by gravity.

For that reason, light that reaches

+@ the observer has various trajectories.
Observer

At the late stage, lights leakage from
the unstable circular orbit remains.

Unstable circular orbit



In this study,
The star surface is assumed to isotropically emit the light of the same frequency
from each point .

[ \jL/ .

Setup

0.4
03
0.2

0.1

-0.1
-0.2
-0.3

04

| calculate the Redshift and get the image
on the screen.

Photon Number : N = 5000
Initial radius of surface of the star: R, = 10M
Location of the observer : 1, = 50M

t=0
1 t=0
1 1
1+2z
0.8 0.3
06 06
04 04
0.2 0.2
1 1 1 1 1 1 1 0 D I 1 1 L
0 005 01 015 02 025 03 90

-04 03 02 01 0 01 02 03 04



@ Photon Number : N = 5000

Initial radius of surface of the star: R, = 10M

Location of the observer : 1, = 50M

- The image size that the observer
receives will become smaller with
the collapse.

1+z

- At the late stage of collapse the edge of

the image asymptotically approac

hes 3M.

- The strength of the Redshift of the

limb not time dependent.

08

02 ¢

0 0.03 01 015 02 025 03 80

We consider the Energy Spectrum of the Black body.

In this study,

The star surface is assumed to isotropically emit the light from each point .

The Energy Flux dFg(t,) normalized with Fg(0) is written by

dﬂﬂ%)=n4(@ffﬂﬂlmﬂ< 1
Fg(0) R/ (%) J(R)

1+z

4
) cos6,dQ,

dFg(1,)

o

Here, we call

the surface brightness.

2
(FE(O) = hwoJ (R)Aens %I:_Z

|




Numerical Calculation-Energy Spectrum-

The Surface brightness

Numerical Calculation-Energy Spectrum-

And the Energy Spectrum of the Blackbody Radiation is

The limb of the surface brightness
is time independent as well as redshift.

e

dFg(t,)/dw,

Fz(0)

30
-=(3)

f(R)
L f(ro) (wo/Te)®

T f(R) !
expl ];((11?) ]— 1

2 @(&)3 feS(TO) sin,cos0,d0,
0 exp[(wo/T)(1 +2)] -1

smH (7o)
smHmax (0)

ol




The Spectrum of the Blackbody Radiation

0.3

dFg (1,)/dw,
Fg (0)

Te

Surface temperature : T, = 1

When the time evolves, the spectrum
gradually gets darker.

the shape of the spectrum is maintained
and the peak appears to be not moving.

The Spectrum of the Blackbody Radiation

To make the behavior of the peak easy to see, normalize to the initial peak.

[Normalized to the value of peak]

1

08

06 ¢

04 ¢

02

1

08

06 |

04 |

02

[Normalized to the value and location of peak]




The Spectrum of the Blackbody Radiation

To make the behavior of the peak easy to see, normalize to the initial peak.

[Normalized to the value of peak]

1

- The peak of flux slide the Red side
by the Redshift.
- The peak approaches asymptotically to
a certain value.
- The slide to Red side will stop at late stage.

¥

The spectrum can’t be observed due to
becomes dark rather than becomes red.

08

06 ¢

04 ¢

02

100

We consider the light of the limb.

1 The trajectory of the light of the limb
: which the observer receives at a certain
time is as shown in this figure.

60 -

This light is emitted inward from the emission
point, and it reaches the observer through 3M.

Unstable ‘

40

Circular orbit

The Doppler effect working on this light is

5 the Blueshift, not the Redshift.




The Redshift of the limb’s light can be written analytically.
When the surface’s 4-velocity u#= (t,7,0,0), the redshift factor 1/1 + z is

1 fi _,_2M
1472 [y <f= _7J

Here, the surface of the star follows timelike geodesics.

Therefore, when we use ¢ = \/f(Rs)/f, the Redshift factor « becomes

1 JfRy)

1+z  [f(r)

This form is consistent with the Gravitational potential due to
the initial radius of the star.

- We calculated the Redshift of the light of gravitationally collapsing star
receives by the observer.

-The edge of the image is characteristic, and it is time
independent for Timelike geodesics.

- We consider the energy spectrum of the Blackbody radiation.
-When the time evolves, the spectrum gradually gets darker.

-However, the peak of the spectrum asymptotically approaches
a certain value.
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Critical collapse in general relativity

- critical behaviour discovered by Choptuik in 1993 for scalar field in
spherical symmetry

- take a family of initial configurations parameterized by “field strength” —
weak ones disperse and strong ones collapse and form a black hole

- “critical point” at the threshold of collapse — discrete self-similarity &
power-law scaling

- analogous results by Abrahams and Evans in 1993 for gravitational waves
in axial symmetry (“Teukolsky waves”)

- several attempts to find critical behaviour for “Brill waves”, so far no
reproducible success

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov



Evolution method

« 3+1 splitting a la ADM — spacetime foliated by a sequence of spacelike
surfaces labelled by the time parameter ¢

- evolved variables — spatial 3-metric y;; and extrinsic curvature Kj;

- Einstein equations split into a set of evolution equations and a set of
constraints

. solve the constraints to construct initial data

. evolve {yij, KU} forward in time using the evolution equations (free
evolution)

. coordinate choice — determined by the lapse a and shift f

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov

Initial data

« Brill waves — a family of axially symmetric vacuum initial data at the
moment of time symmetry

- parametrized by an “amplitude parameter” A
- A = 0is flat space
* |A] = Ayjg is a black hole

- critical point — smallest value of A when a black hole is formed, for our
initial data A* ~ 4.69

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov



Coordinate choice

- time coordinate encoded in the lapse a(t, x?)
- spatial coordinates determined by the shift vector (¢, x’)
. {a, p i} freely specifiable functions

« typically chosen dynamically as solutions to hyperbolic or elliptic
equations

- common slicings
- maximal: K/ =K =0 = D’a — K;K/a =0
« 1+log: @ = —2aK

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov

1+log slicing breakdown for near-critical Brill waves

I I I
1.0 =
0.3
0.1
—0.1
o 921 —03 7
~~
CI\]Q —0.5 | | | |
S 0.84 0.85 0.86 0.87 0.88
0.0 —
—0.5 '
0.5 0.6 0.7 0.8 0.9 1.0

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov



1+log slicing vs maximal slicing

1.00 —

E 1 075}

0.50

0.25

0.00

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov

Quasi-maximal slicing I

+ 1+log slicing is simple and fast, but breaks down
- maximal slicing is well-behaved, but slow and hard to implement
« try to combine them to get the best of both world

- extract just the “core / lowest-order” information from maximal slicing
and plug it into 1+log

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov



Quasi-maximal slicing II

take the time derivative of the maximal slicing condition
0= (9; — &) |D?a — K;KVa]

» define a new function W = (0; — Zp)a

get an elliptic equation for W
D*W — K;K'W = - 2aKYD;D;a + y7 (0,I'%) orax
— (yYD;D;p*) Dya — PRID;jat

. . . k j
+a <2KUKU + 4aK; K; Kk)

compute a low-order solution for W and add it as an extra term in 1+log
slicing
0y — ZLpa =—-2aK + W

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov

Invariants

 Kretschmann scalar & = RﬂvaﬂR”V“ﬂ
- axial symmetry — angular Killing vector ##
. circumferential radius p* = n.n"

2

=12

« dimensionless quantity y = p_—z
p

- for Schwarzschild y =1 — % sin® 6

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov



Conformal diagrams for constructed spacetimes

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov

Event horizon evolution

1.5

1.0 F

0.5 F

0.0

-0.5

—-1.0 =

~15 | 1 !
0.0 0.5 1.0 1.5 2.0

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov



Ongoing work

« true maximal slicing — hard to integrate with mesh refinement
- other initial data families, e.g. Teukolsky waves as per Abrahams&Evans

- no longer time-symmetric, so requires solving a set of nonlinear elliptic
equations
« preliminary results hint at non-uniqueness of the constraint solutions

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov

Summary

« 1+log slicing is pathological for near-critical Brill waves

- we have extended it by adding a source function derived from the
maximal slicing

- this “quasi-maximal” slicing allows us to get closer to the critical point

- for supercritical initial data we are able to follow the collapse as an

apparent horizon forms and the geometry settles down to a Schwarzschild
black hole

« we discover non-regular shape of the event horizon for weakly
supercritical data

Numerical evolution of axisymmetric gravitational wave collapse Anton Khirnov
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Mechanical Structure

e Hydrostatic Equilibrium Equation

GAS PRESSURE
Forcing Out

e Mass Equation

Muhammad Sharif Tilted University of the Punjab



Polytropes ’

Coupling of hydrostatic equilibrium equation and mass

conservation equation leads to

1 d <r2dp

—— | —— | = —4nGp.
r2dr pdr) e

]

The Poisson Equation

Muhammad Sharif Tilted University of the Punjab

Polytropes ]

Polytropic Equation of State

A gas governed by polytropic change has an EoS
, 1

pV7 = constant, =1+ —.

n

Since p =m/V, we have

-y
pox V7T x (@) :
0

p=kp' = kp"n.

Muhammad Sharif Tilted University of the Punjab



A combination of the Poisson equation with polytropic EoS

]

Lane-Emden equation

Polytropes

Muhammad Sharif Tilted University of the Punjab

Whether the equilibrium state is stable?

Adiabatic Index

7’dr
F:P+p p'

pr dp

Stable — F>%,
Unstable — otherwise.

[Heintzmann, H. and Hillebrandt, W.: Astron. Astrophys. 38(1975)51]

Muhammad Sharif Tilted University of the Punjab



Energy Conditions

For physically realistic matter, energy conditions must be

imposed on the energy-momentum tensor.
e Weak Energy Condition: p+p;, >0, p >0,
e Dominant Energy Condition: p+p;, >0, p >0,

e Strong Energy Condition: p+p; >0, p+3p >0,

Prt+2p;
==

[Hawking, S.W. and Ellis, G.F.R.: The Large Scale Structure of Space- time
(Cambridge Univ. Press, 1975)]

where i = r,t and p =

Muhammad Sharif Tilted University of the Punjab

Congruence

e A congruence is a collection of curves in a region of spacetime
through each point of which there passes precisely one curve,

i.e., the curves never intersect with each other.

e For an observer comoving with the fluid, congruence of both

the observer and the fluid remains the same.

e For an observer moving relative to the fluid, the congruence of

the observer is tilted.

Muhammad Sharif Tilted University of the Punjab



e A tilted congruence can be obtained by applying the Lorentz

transformation to a non-tilted congruence.

The analysis of the universe with two
different congruences can be completely
different.

Muhammad Sharif Tilted University of the Punjab

Spacetime

d32 _ _G.F(t_7’)dt2 + Gg(t,l')dTQ + T2 (dQQ + Sin2 ngbQ) )

Matter Distribution

ﬂzu = (/0 + pt)v;z,vy + PtGuv + (pr - pt)S/LSu;

V, = ———(—¢""%, @wed/2,0,0),

S, = —(—wef/Q,eg/Q,O,O), w=ce —.
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Tilted Anisotropic Polytropes 10

Einstein field equations

p+wp 1 . e /G 1
1—w?2 8mr?2 8r r2 )’
g

r
w@w?p + py 1 e (F 1
1 — w? __87T7“2+87T (T+7‘2)’
w(p+p)e> G
1 — w? 8
G,]: J,—_-/Q JT_'IQI JT_'/ g/
o 2 !/ < 7 )
Pr=30n <g(F 9) g) 167 (; LR R r>
Muhammad Sharif Tilted University of the Punjab

Tilted Anisotropic Polytropes I

Conservation Law

Oi;a:()7
2 F e G2 FG
1 = 1 2 1 oy  — v
TlJrr(T1 T5) + 2(T —1T5) . <Q+2 2) 0.

Muhammad Sharif Tilted University of the Punjab



Tilted Anisotropic Polytropes 12

Slowly Evolving Approximation

e A system either does not change or alters slowly on a very

long time scale compared to hydrostatic time.

e For such evolution, the radial velocity is smaller than the

speed of light (w << 1) leading to the vanishing of the terms
of order O(w?).

w2zwzfznggzgzz0,

Muhammad Sharif Tilted University of the Punjab

Tilted Anisotropic Polytropes 13

Consequently, the field equations yield
1 ! 1
87rp:—2+e_g (g——> :
1 Foo1
87Tp7’ = —— + e_g <_ + _) )
r

(F19) '
87rw(p+pr)e ;r :_gu

]:// J,—_'/Q Jr/g/ ./T/ g/
ST = e Y ( — ) :

2+4 4+27’ 2r

Muhammad Sharif Tilted University of the Punjab



Tilted Anisotropic Polytropes 14

Misner-Sharp mass

m = %(1 — gaﬁC,aC’ﬁ),

m(t,r) = g (1- e*g) :
d
d
d_T = d7rp.

[Misner, C.W. and Sharp, D.H.: Phys. Rev. 136(1964)B571]

Muhammad Sharif Tilted University of the Punjab

Tilted Anisotropic Polytropes 15

A combination of second field equation and mass function gives

I 87, + 2m
r(r—2m)
Consequently,
. daprd +m 2A

. m(ﬂerr) - =0

where A = p; — p,..

Muhammad Sharif Tilted University of the Punjab
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Polytropic EoS

1

o Case |: p, = /€,03+ﬁ, Po =P — NpPr,

1 n
o Case ll: p, = kp'*i,  py=p (1 - kﬂ(’f) '

[Herrera, L. and Barreto, W.: Phys. Rev. D 88(2013)084022]

Muhammad Sharif Tilted University of the Punjab

17

o Case |

Consider dimensionless variables

6:p/7 tzga T:ia = P )
Pe A A B(n+1)
T/ Po 471’0(:@(97 g)
Ui(o,s) = —, m(t,r) = ————=.
U(KQ §> pOC/ ( ) ./43

“c" indicates that values are evaluated at star’s center,

s, B, v, ¥, are dimensionless variables and A is constant.

[Herrera, L. et al.: Gen. Relativ. Gravit. 46(2014)1827]
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Tilted Anisotropic Polytropes 18

Structure Equations

{Cga‘lfo . 20" } 1—28(n+ 1)%
8< 6:00(n + 1) 1 - nﬁ + B(TL + 1)@0

) + B + 0 =0,(1)

ov _ _
= UL~ nf +npTy). (2)
Js
Two differential equations (non-linear)
Three unknowns, i.e., ¥y, 0, A.
Muhammad Sharif Tilted University of the Punjab

Tilted Anisotropic Polytropes 19

Conformally Flat Condition

The Weyl scalar is obtained as

o r3e—9 (69 F'g 1 f”Q F G — f’)
p— 6 - - .

EJF 4 r2 4 2 2r

Muhammad Sharif Tilted University of the Punjab



Tilted Anisotropic Polytropes

20

From the field equations, the anisotropy parameter is found to be

-G Jf// f-"2 f’ / ]:/ / J,—_'/ 1
A= C T A .
St \ 2 4 4 2r  2r r 72
L]
Smr2’

The conformally flat condition (C = 0) yields

A L(e_g; 1>, —r <2m>/.

8 r B St \ 73

In terms of dimensionless parameters, this gives

3U T T
A = p, g—\lfo(l—nﬂJrnﬁ\Ifo)].

Muhammad Sharif Tilted University of the Punjab

Tilted Anisotropic Polytropes

21

Structure Equations

S ds \1—nB+ B(n+1)¥, Bln+1) =) —\Ifg(l—rLﬁJrnﬁ\Ifo)}

1—28(n+1)7 .
_ \IJ”—H 0 =0
X(l—nﬁ+ﬁ(n+1)\po Jrﬁg 0o TU ,

_Qa\po< 1—-2B(n+1)% )+ 207 {3U

. ]
= SU(1 —np +npYy).
Now, we investigate the behavior of density, pressure, anisotropy,

energy conditions and the stability.
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Figure 1: Plots for W, (left) and © (right) versus ¢ and o with 3 =3 and n = 0.5.

The dimensionless density parameter satisfies the maximality
condition (maximum at the center but monotonically decreases

towards the stellar surface). Mass function increases with radius.

Muhammad Sharif Tilted University of the Punjab
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Figure 2: Plot for % versus ¢ and o with 8 = 3 and n = 0.5 for case I.

Ratio of anisotropy to the central density has maximum values in

the interior regions while smaller in the exterior.
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Tilted Anisotropic Polytropes 2%

Energy Conditions

WEC: (i) p.Y0(1 —nB+nB¥g) >0,

(ii) e (@8“ +i—§) >0,

(iii)  pe¥G(1—nf + (n+1)5%) > 0,

DEC: (i) p.¥5(1—np+ (n—1)8¥) >0,

(i) . {@3(2 — 208 + (2n — 1)) - ‘j—} >0,

SEC: p. {\T/g(nﬁ —1—npYy+38¥) + 60} > 0.

§3

Muhammad Sharif Tilted University of the Punjab

Tilted Anisotropic Polytropes 2

WEC[)

Figure 3: Plots for WEC versus ¢ and ¢ with 8 =3 and n = 0.5 for case I.
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Tilted Anisotropic Polytropes 2%

DEC(H)

Figure 4: Plots for DEC and SEC versus ¢ and ¢ with 5 =3 and n = 0.5 for case .
Muhammad Sharif Tilted University of the Punjab

Tilted Anisotropic Polytropes 2

Adiabatic Index

1 —nB+Bn+1)T d(vgth)
= U, d((1 — nB)¥p + npUith > 4/3.
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Figure 5: Plot for I versus ¢ and o with 5 =3 and n = 0.5 for case I.

Muhammad Sharif Tilted University of the Punjab
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e Case ll

U"(0,5) = p/pe-

- \Ij—n 1—28n+1 £ 9=
{gQ(?\If 2AU "¢ } ( Bl >s> + BT 4 5 =0,

+ —
Js  Bpen+1) 1+ BWv
00 5 v -
_ \Ijn A =0, | — — \Ifn )
gc pe L‘3 ]
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Tilted Anisotropic Polytropes 3

Structure Equations

L0 (1= 25(n + 1) Lo2T {3_0_@} 1—2B(n+1)7
S 1+ BY¥ Bn+1) | ¢ 1+ p¥

+ BP0 =0,

0v

Muhammad Sharif Tilted University of the Punjab

Tilted Anisotropic Polytropes 31

Figure 6: Plots for U (left) and © (right) versus ¢ and o with 8 = 3 and n = 0.5 for
case Il
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Figure 7: Plot for % versus ¢ and o with 3 =3 and n = 0.5 for case Il.
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Energy Conditions

o 60
SEC: ). {\IJ”(B/’)’\I/ —9)+ 2} > 0.
C
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Tilted Anisotropic Polytropes 4

WECH)
Figure 8: Plots for WEC versus ¢ and ¢ with 5 =3 and n = 0.5 for case Il.
Muhammad Sharif Tilted University of the Punjab

Tilted Anisotropic Polytropes 3
DEC(H) - 55 108 Y0 DECGE) -5 108 10

~1x10? 1w 10

Figure 9: Plots for DEC and SEC versus ¢ and ¢ with 5 =3 and n = 0.5 for case Il.
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Tilted Anisotropic Polytropes 3%

Adiabatic Index

14 pUd(ent

I
v A

> 4/3.

Figure 10: Plot for I versus ¢ and o with 8 = 3 and n = 0.5 for case II.

Muhammad Sharif Tilted University of the Punjab

Conclusions 37

e Role of tilted congruence on spherical system satisfying two

types of polytropic EoS under slowly evolving approximation.
e Compactness of system increases with the passage of time.
e The developed models are stable.
e All the energy conditions are satisfied for the first case only.

e Polytropic models of the first case are physically viable for

tilted observer.

e Non-tilted anisotropic spherical system, these energy bounds
are satisfied only for the first case. This shows that our results

are consistent with non-tilted spherical system.
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