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Preface
    Year 2015 was the centenary from the proposal of general relativity. So far, not only its 
theoretical beauty but also various verification experiments and observations give general relativity 
a firm position as the theory describing the gravity at low energies. Modern cosmology and high-
energy astrophysics have been developed based on general relativity. Although the history of 
general relativity and gravity is long, recent development of research is still showing new 
expanding directions. On one hand, untrapped with the prejudice that physically meaningful target 
of research is limited to the one about four-dimensional spacetime, the scope of research has been 
widely opened to higher-dimensional spacetime. On the other hand, as a result of rapid development 
computer and computational techniques, it has also become possible to study the evolution of less 
symmetric dynamical spacetime.
    In order to celebrate the milestone of JGRG25 as well as 100 years of general relativity, we had 
arranged the 25th workshop on general relativity and gravitation (JGRG) at the Yukawa institute, 
which is one of the most influential centers of research on general relativity in Japan. We had 
invited outstanding lecturers who can give a scope of the long history of research on general 
relativity, such as Abhay Ashtekar (Penn State U), Robert M. Wald (Chicago U), Richard Schoen 
(Stanford U), Mordehai Milgrom (Weizmann Institute of Science), Takashi Nakamura (Kyoto 
University), Hideo Kodama (KEK). In addition to the lectures by such domestic and foreign 
prominent researchers, lively discussions following the invited lectures by younger researchers have 
been made. Besides the 12 invited lectures, there were 86 contribution talks and 33 poster 
presentations. The total number of participants was 198, which exceeded the number recorded by 
the past JGRG workshops. We had parallel sessions using Maskawa hall to respond to a large 
number requests of oral presentations that greatly exceeded our original expectation.
    The workshop was supported by Grant-in-Aid for Scientific Research on Innovative Areas No. 
24103006 "Theoretical study for astrophysics through multimessenger observations of gravitational 
wave sources" and No. 15H05888 "Multifaceted Study of the Physics of the Inflationary Universe".
    We would like to thank all the participants for their kindly help of JGRG25. 

Takahiro Tanaka
(on behalf of the JGRG25 LOC)
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Presentation Award
The JGRG presentation award program was established at the occasion of JGRG22 in 2012. 
This year, we are pleased to announce the following six winners of the Outstanding 
Presentation Award for their excellent presentations at JGRG25. The winners were selected 
by the selection committee consisting of the JGRG25 SOC based on ballots of the 
participants.

Keiju Murata (Keio University)
“Turbulent strings in AdS/CFT”

Xian Gao (TiTech)
“Disformal transformation and cosmological perturbations of spatially covariant theories of 
gravity”

Naritaka Oshita (RESCEU, The University of Tokyo) 
“Black holes as seeds of baby univers”

Katsuki Aoki (Waseda University)
“Relativistic stars in the bigravity theory”

Shinichi Hirano (Rikkyo University)
“Large scale suppression with ultra slow-roll inflation scenario”

Mao Iwasa (Kyoto University)
“Orbital evolution of stars around shrinking massive black hole binaries”
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Oral  Presentations: First Day
Monday 7 December

9:30	

 Reception desk opens

10:30	

Opening address
	

 [*]

Plenary Session 1 [Chair: Misao Sasaki]

10:45	

Abhay Ashtekar (Penn State U.)  [Invited]
	

 “Gravitational waves from isolated systems: The phantom menace of a positive Λ”
	

 [JGRG25(2015)I01]

11:45 Short poster talks (1/3) 

12:30-14:00 Lunch & poster view

Parallel Session 1a [Chair: Naoki Seto]

14:00	

Yoshio Kamiya  (ICEPP)
	

 “Experimental Constraints on Fifth Force Candidates in Nanometer Range”
	

 [JGRG25(2015)1a1]

14:15	

 Tatsuya Narikawa (Osaka City U.)
	

 “Model-independently testing gravitational theory with gravitational-wave 	


	

 observations”
	

 [JGRG25(2015)1a2]

14:30	

Naoki Tsukamoto (Rikkyo U.)
	

 “Microlens of light rays near photon sphere”
	

 [JGRG25(2015)1a3]

14:45	

Kazunari Eda (RESCEU)
	

 “All-sky coherent search for continuous gravitational waves in 6-7 Hz band with a 
	

 torsion-bar antenna”
	

 [JGRG25(2015)1a4]

15:00	

 Sousuke Noda (Nagoya U.)
	

 “Wave Optics in the Kerr spacetime and the black hole shadow”
	

 [JGRG25(2015)1a5]

15:15 Kazuki Sakai (Nagaoka U. of Tech.)
	

 “Amplitude-based approach to the detection of gravitational-wave bursts with the 
	


	

 Hilbert- Huang Transform”
	

 [JGRG25(2015)1a6]
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Parallel Session 1b [Chair: Chulmoon Yoo]

14:00	

Alexander Vikman (FZU, ASCR, & YITP)
	

 “Mimetic Dark Matter”
	

 [JGRG25(2015)1b1]

14:15	

Masashi Kimura (DAMTP)
	

 “On massive scalar field in AdS$_2$”
	

 [JGRG25(2015)1b2]

14:30	

 Cristian Martinez (CECs)
	

 “Mass of asymptotically anti-de Sitter hairy spacetimes”
	

 [JGRG25(2015)1b3]

14:45	

Yosuke Misonoh (Waseda U.)
	

 “Black holes and Thunderbolt Singularities with Lifshitz Scaling terms”
	

 [JGRG25(2015)1b4]

15:00	

 Shoichiro Miyashita (Waseda U.)
	

 “Monopole black holes in asymptotically AdS spacetime”
	

 [JGRG25(2015)1b5]

15:15 Keiju Murata (Keio U.)
	

 “Turbulent strings in AdS/CFT”
	

 [JGRG25(2015)1b6]

15:30-16:30 Coffee break & poster view

Plenary Session 2 [Chair: Hideo Kodama]

16:30	

 Sean Hartnoll (Stanford U.)
	

 “Disordered Horizons”
	

 [JGRG25(2015)I02]

17:15	

Masaomi Tanaka (NAOJ)
	

 “Electromagnetic Emission from Compact Binary Mergers”
	

 [JGRG25(2015)I03]
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“Gravitational waves from isolated systems: The phantom menace of a 

positive Λ”

by Abhay Ashtekar (invited)

[JGRG25(2015)I01]
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Gravitational waves from isolated systems:

The phantom menace of a positive ⇤

Abhay Ashtekar
Institute for Gravitation and the Cosmos, Penn State

Summary of work with Béatrice Bonga and Aruna Kesavan in the weak field approximation
(CQG+, CQG 32, 025004 (2015); PRD 92, 044011 (2015); PRD 10432 (2015)) (ABK),
and, outline the proposal for gravitational radiation theory full GR AA (in preparation).

We profited a great deal from correspondence and discussions with:

Bicak, Blanchet, Chrusciel, Costa, Garriga, Goldberg, Lehner, Poisson, & Saulson.

JGRG 25, Kyoto 7-11 December, 2015

Isolated Systems and Gravitational Waves

• Confusion regarding the reality of gravitational waves in full GR (Einstein:
1916-18 vs 1936; the Levi-Civita c-metric)

• The Bondi, Penrose et al framework (1960s-1980s):
Notion of null infinity I. Topology S

2 ⇥R. Because I is null, it is ruled by its null
normals. This structure reduces the asymptotic symmetry group from Di↵(I) to
the Bondi-Metzner-Sachs Group B = S o L.
• B admits a unique 4-d normal subgroup T of translations.

Used critically in the definition of energy-momentum.

• Gravitational radiation: Curvature of the intrinsic
connection D on I defines the Bondi News tensor Nab. No
incoming radiation: Nab = 0 on I�. The BMS group naturally
reduces to the Poincaré on I�.

• Bondi 4-momentum and fluxes: Balance laws
Q⇠[C2

]�Q⇠[C1

] =
R
�I+

⇠|Nab|2 d3I+

Flux is manifestly positive (Bondi: “Gravitational waves are real; you

can boil water with them.”). Positive energy theorem for Q⇠[C]
(Horowitz & Perry; Schoen & Yau).

2 / 1
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The menace of a positive ⇤
• None of the rich structure, just discussed, exists if there is
⇤ > 0. We do not have even the basic notions: Bondi news
to characterize gravitational radiation; non-trivial balance
laws; positive Bondi energy and positive energy-flux; ‘no
incoming radiation condition’ on I�. Don’t know what
gravitational waves mean in full, non-linear GR if ⇤ > 0,
however tiny! (Some of the Di�culties have been pointed out by

Penrose, Bičák, Krtouš, Podolský, ... over the years.)

• We do not have a canonical positive and negative
frequency decomposition that is needed in the construction of
asymptotic Hilbert spaces.

+

J

J

−

Organization of the talk

1. Asymptotically de Sitter space-times: Unforeseen Di�culties.
2. Linear Theory: Novel features.
3. Generalization of the Bondi-Penrose framework: Proposal
4. Summary and Outlook.

3 / 1

1. ⇤ > 0: Unforeseen Di�culties

Gravitational radiation introduces qualitative di↵erences

• Recall first the notion of Asymptotic flatness. A Physical space-time (M̃, g̃ab)
is said to be asymptotically Minkowski if g̃ab approaches a Minkowski metric as
1/r as we recede from sources in null directions. In Bondi coordinates:

ds̃2 ! �du2 � 2dudr + r2 (d✓2 + sin2 ✓ d'2)

• Presence of gravitational waves adds an unforeseen twist: there is no longer a
canonical Minkowski metric that g̃ab approaches! The possible Minkowski metrics
di↵er by angle dependent translations (i.e. BMS supertranslations). The
asymptotic symmetric group is not the Poincaré Group P = T o L but the BMS
group B = S oL. The BMS group B reduces to P if there is no radiation, i.e. for
the class of space-times with Nab = 0.

• It is not even larger, i.e., Di↵(I+), because there is extra structure: S2 ⇥ R

topology and, more importantly, the ruling of I+ by its null normal.

4 / 1
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The first key di�culty in a nutshell

• One would like to say that a Physical space-time (M̃, g̃ab) is asymptotically de
Sitter if g̃ab approaches a de Sitter metric as 1/r as we recede from sources in null
directions. This condition is indeed satisfied by stationary space-times such as
Kerr-de Sitter. Then the asymptotic symmetry group is just the de Sitter group
D. Allows us to define de Sitter momenta (mass, angular momentum, ...).

• But in presence of gravitational waves, there is an entirely new twist: Now g̃ab
deviates from de Sitter metric (in a controlled fashion) even to leading order! For
example, in the axi-symmetric case, an appropriate generalization of the Bondi
ansatz gives, to leading order, (He, Cao)

ds2 ! �(1� (⇤/3)r2)du2 � 2dudr + r2 (e2⇤f d✓2 + e�2⇤f sin2 ✓ d'2)

where f = f(u, ✓). The de sitter metric results at infinity only if f = 0. But in
that case, there is no radiation radiation (ABK).

• In presence of gravitational waves, then, the asymptotic symmetry group is not
the de Sitter group D but Di↵(I+) (Strominger et al, ABK). No semi-direct product
structure; No notion of ‘de Sitter momentum or angular momentum.’

5 / 1

More precisely ...

• A physical space time (M̃, g̃ab) is said to be
asymptotically de Sitter if it admits a conformal
completion (M, gab), where M = M̃ [ I is a
manifold with boundary I and gab = ⌦2g̃ab s.t.
(i) At the boundary I, we have ⌦ = 0 and
ra⌦ 6= 0;
(ii) g̃ab satisfies Einstein’s equations
G̃ab + ⇤g̃ab = 8⇡G

N

T̃ab, with T̃ab falling o↵
appropriately; and,
(iii) I is topologically S

3 (minus punctures, e.g.
S

2 ⇥ R) and complete in an appropriate sense.

i0

i�

I+

I�

R
=

0

• Field equations now imply that I is space-like so its normal is no longer
tangential to it. Hence now I does not have an extra structure like a preferred
ruling. Asymptotic symmetry group is just Di↵(I)! Not clear how to define
energy, momentum, or angular momentum at I.

6 / 1
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Strengthening the boundary conditions removes gravitational waves!

• Can we strengthen the boundary conditions to reduce Di↵(I) to a manageable
size? A natural strategy, commonly used in the literature is to demand that the
intrinsic metric on I be conformally flat. Natural because the intrinsic geometry
of I is then the same as in de Sitter space.

• Not only is the group reduced but it is reduced precisely to the de Sitter group!
One can define Bondi-like charges Q⇠[C] =

H
C
Eab⇠

adSb. Yield expected answers
in Kerr-de Sitter.

• However, the condition is too strong (Friedrich)! Explicitly, conformal flatness of
intrinsic geometry , Bab = 0 at I (ABK). Since I is space-like, half the solutions
simply thrown out. Physical restriction: In cosmological perturbations, for
example, it removes by hand the ‘growing mode’, leaving behind only the ‘decaying
mode’ ! Furthermore, all de Sitter fluxes associated with these remaining solutions
vanish identically! In the full theory, Q⇠[C] are well-defined but absolutely
conserved! No flux of de Sitter energy, momentum or angular momentum!

• Contrast with the AdS case: Since I is time-like there, an additional ‘reflective’
boundary condition is needed to make the evolution well-defined. So absolute
conservation of Q⇠[C] is physically reasonable e.g. in the AdS/CFT analysis.

7 / 1

2. Linear fields on de Sitter

• We have a quandary in full non-linear GR. Practical Strategy: Bypass it by
going to the weak field limit; analyze key issues; and return to the full theory using
guidance from the linear analysis. There are surprises already in the linear theory!

• The background de Sitter space-time provides isometries. Straightforward to
define the corresponding de Sitter momenta for test fields, say, Maxwell:
F⇠ =

R
⌃

T̃ab ⇠
adSb; can take limit ⌃ ! I+. But for gravitational waves, we do

not have a stress-energy tensor. Can use symplectic methods instead.

• Covariant phase space �
cov

consists of space of regular
solutions to Maxwell’s equations and is equipped with a
symplectic structure:

!(A,A0) =
R
⌃

(AaF
0ab �A0

aF
ab) dS

b

;
which is conserved and gauge invariant.

• Infinitesimal transformation Aa ! Aa + ✏L⇠Aa

preserves ! and the Hamiltonian H⇠ := 1

2

!(L⇠A,A)
exactly equals F⇠!

• These Hamiltonian methods can be applied to the linearized (and indeed, full)
GR, bypassing the need of a stress-energy tensor.

8 / 1
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de Sitter momentum fluxes
• To compute energy, momentum and angular momentum carried by
gravitational waves, start with the covariant phase space �

cov

of linearized
solutions (on a Poincaré patch –with an eye to the quadrupole formula). Then,

!(h, h0) = 1

H

R
⌃

habE
0ab � h0

abE
ab)dV, where H =

p
⇤/3.

• We can calculate Hamiltonians H⇠ = 1

2

!(L⇠h, h) correspond to any de Sitter
symmetry ⇠a. A de Sitter ‘time translation’ T a yields de sitter ‘energy’:
HT = 1

2H

R
I+

Eab (LThab � 2H hab) dV

• Note that gravitational waves can carry arbitrarily
large negative de Sitter energy, no matter how tiny ⇤
is. The limit ⇤ ! 0 is subtle but well-defined and we
recover the standard positive definite answer in
Minkowski space-time. Thus, the lower bound of
energy carried by gravitational waves has an infinite
discontinuity! Same holds for electromagnetic waves
in de Sitter.

i0

i�

I+

R = 1

R = 1

I�

R
=

1

/
H

T
=

�
1

R
=

1/
H

T
=

1

R
=

0

R
=

0

• Note also that if Bab vanishes on I+, so does hab. Hence these gravitational
waves in de Sitter carry no energy (or momentum and angular momentum).

9 / 1

The Quadrupole formula
• During 1916-18, Einstein used the first post-Minkowskian, first PN
approximation, to obtain the celebrated quadrupole formula:

Ė = G
8⇡

R
I+

(
...
Qab

...
Q

ab
TT

)
Ret

dI+

The problem of extending it to the ⇤ > 0 case has been open for almost a century
because a host of unforeseen di�culties arise no matter how tiny ⇤ is!

(i) Gravitational waves can carry arbitrarily large negative energy. Potential for instability!
Physical quantities can be discontinuous in the ⇤ ! 0 limit.

(ii) For ⇤ = 0 one considers energy fluxes across time-like cylinders r=const approaching I+,
and makes a heavy use of the 1/r-expansions. But in de Sitter space-time, these cylinders
approach a past cosmological horizon (across which there is no energy-flux for retarded
solutions) rather than I+. The familiar 1/r-expansions no longer useful!

(iii) A tail term in the retarded solution already
in the first post-de Sitter order. At I+, as
significant as the sharp term.

(iv) wave-lengths increase as the wave
propagates, making the geometrical optics
approximation invalid near I+.

10 / 1
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Generalization to include ⇤ > 0
• Find retarded solution in the first post de Sitter, first PN approximation and
then energy flux using Hamiltonian methods. The final expression has the form:

ĖT = G
8⇡

R
I+

(Rab Rab
TT

) dI+ where,

Rab =
⇥...
Q

(⇢)
ab + 3HQ̈

(⇢)
ab + 2H2Q̇

(⇢)
ab +HQ̈

(p)
ab + 3H2Q̇

(p)
ab + 2H3Q

(p)
ab

⇤
Ret

• We know from the Raychaudhuri equation in
cosmology that pressure contributes to gravitational
attraction. We now learn that it also sources
gravitational radiation! Lower derivative terms also
for the standard (density) quadrupole.

• One can show that the energy radiated is positive
definite: Although a neighborhood of I+ does admit
gravitational waves with negative energy of arbitrarily
large magnitude, they cannot be produced by a time
changing quadrupole!

i+ (0,|~x|)

(�|~x|, 0)

i�

⌘ =

c

o

n

s

t

r
=

c

o

n

s

t

⌘ r
e

t

=

c

o

n

s

t

I+

I�

E+

(i�)

• If LTTab = 0, then Rab = 0.
Also, in the limit ⇤ ! 0 we recover the Einstein formula. Furthermore, there is
full control to systematically calculate the corrections due to non-zero ⇤.

11 / 1

Why did the ⇤ > 0 menace turn out to be phantom?

i0

i�

I+

R = 1

R = 1

I�

R
=

1

/
H

T
=

�
1

R
=

1/
H

T
=

1

R
=

0

R
=

0

(i) Positivity of energy:
energy reaching I+ can be
negative only because T a is
past-directed along a portion
of the cosmological horizon
E+(i�). But retarded
solutions have no flux across
E+(i�). So the energy-flux
through I+ is positive!

i+ i0

i�

I+

I�

E�
(i+)

E+

(i�)

(ii) The 1/r expansion is indeed not useful. But one can replace it with a new
late time expansion near I+.

(iii) The retarded solution has a non-trivial tail term. But what matters for energy
loss are time derivatives and their propagation is sharp. But the tail term in the
solution essential to make the flux well-defined.

(iv) Since time derivatives
...
Rab in the in the energy loss formula is evaluated at

the retarded time instant, what enters is the wave length at the source, not in the
asymptotic region.

12 / 1
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3. Full non-linear GR: Proposal

• As in the development of the ⇤ = 0 theory, let us use insights from the linear
theory to develop the ⇤ > 0 analog of the Bondi-Penrose framework.

i+ i0

i�

I+

I�

E�
(i+)

E�
(i+)

• Isolated Systems that
remain spatially bounded
define points i± on I±.
System and radiation it
emits is visible only to the
future of the cosmological
horizon E+(i�). So we
focus only on this region.

i+ i0

i�

I+

I�

• In the quadrupole formula, the ‘no incoming radiation condition’ imposed
across E+(i�). Plays a key role in assuring positivity of energy flux at I+. So we
ask that H� := E+(i�) be a weakly isolated horozn: Topology S

2 ⇥ R;
non-expanding null surface whose null normal `a is a symmetry of the intrinsic
metric and the ‘extrinsic curvature’ of H�. (AA, Beetle, Lewandoswki,...). H�

replaces I� of Asymptotically Minkowski space-times.

13 / 1

Symmetries and Bondi-type Charges
• General Paradigm is realized in Kerr-deSitter, Vaidya, and numerical
simulations of collapse and BH collisions (Shibata, Shapiro and Sperhake groups).

• If H� is axi-symmetric, it carries a 7-dimensional symmetry group. Can define
energy, momentum and angular momentum using the electric part of the Weyl
tensor, Eab, on H�. Absolutely conserved as expected and standard answers in
Kerr-de Sitter. Thus good control on the past boundary that replaces I�.

i+ i0

i�

I+

I�

E�
(i+)

E+

(i�)

• Two strategies for analyzing radiation
at future infinity are being pursued. In
the first, One works with I+ without
imposing the condition Bab = 0 at I+.
So the intrinsic +,+,+ metric qab at I+

is not conformally flat. The idea is to
extract a fiducial equivalence class of
conformally flat metric {q̊ab} ‘that would
result if the radiation were to be
switched o↵’ and the de Sitter group it
selects. Only partial results so far.

14 / 1
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A Second Strategy: ‘Local’ I+

• Local I+: Restricting to
the ‘local universe’ of 5 GPc
size around us. Idea: Use
the past cosmological
horizon H+ := E�(i+) in
place of I+. Note the
resemblance to the

conformal diagram of Asymptotically Minkowski space-times! H±: local I±.

• Using the structure at the bifurcate horizon, one can drag the Weakly isolated
horizon structure from H� to H+. The symmetries of this fiducial WIH enable
one to define Bondi-like charges and fluxes across H+. For example, Bondi-type
energy
QT [C] = 1



H
C
r
⇥
Re( 

2

+ �̄
(`)�(n)

) + ✓
(n)

( 1
r

� 1

2

✓`)
⇤
d2V

= r
2G

⇥
1�H2r2 + 2ṙ

⇤
related to the area of C! (as expected of horizons).

! 1



H
C
r
⇥
Re( 

2

+ �̄
(`)�(n)

)
⇤
d2V in the ⇤! 0 limit.

• QT [C] would be positive if r < 1/H the cosmological radius.

15 / 1

4. Summary and Outlook
• Primary motivation: conceptual. Some 100 Years have passed since Einstein’s

discovery quadrupole formula and some 50 years since the Bondi-Penrose framework. For 15

years, we have known that the accelerated expansion of the universe is best explained by a

positive ⇤. Now, numerical relativists, observers and experimentalists have taken us to the dawn

of the new era of gravitational wave science. So it is high time that we have a firm theoretical

framework describing gravitational waves in GR with ⇤ > 0. (Recall the confusion about reality

of gravitational waves during the first 50 years of GR!)

• The issue of this extension has been open so long because inclusion of ⇤,
however small, introduces novel conceptual issues both in full theory and in the
linear approximation. These arise because the asymptotic space-time structure
changes non-trivially: I+ is space-like rather than null. Hence problems persist if
⇤ were to be replaced by some other form of ‘dark energy’ so long as the
accelerated expansion continues to the future.

• Stability of I+ for ⇤ > 0 was established in a pioneering work by Friedrich in
1991. But the problem of extracting physical information has been open: Bondi
news; energy, momentum and angular momentum 2-sphere integrals; expressions
of fluxes of these quantities; relation between the radiated power to properties of
sources in the weak field, slow motion limit, ... Even a tiny ⇤ casts a long shadow!

16 / 1
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• These issues have now been resolved in the weak field limit: Post de Sitter, first
post-Newtonian approximation. A priori it is not obvious that tiny ⇤ can only
make negligible corrections because the limit is discontinuous in important ways:
I+ changes its character. But detailed analysis provides systematic ways of
calculating the ‘error’ terms and shows why and how the concerns can be
by-passed. For full, non-linear GR, well-developed strategies but further work is
needed.

i+ i0

i�

I+

I�

E�
(i+)

E�
(i+)

• Open issues: Examples:
(i) Is the analog of Bondi-energy 2-sphere integral
positive if the matter satisfies energy conditions and
H� is a weakly isolated horizon? Recall the
importance of the positive energy theorem in
geometric analysis.

(ii) Is the radiated flux positive (since there is no
energy flux across H�) as in the new quadrupole
formula? If not, there would be gravitational
instabilities.

Comment: Definitions of de Sitter momenta of Abbott & Deser; Kelley & Marolf; Chruściel,
Jezierski & Kijowski; ... refer to io. Positive energy theorems of Kastor & Traschen; Luo, Xie
and Zhang also refer to io and, furthermore, a conformal Killing field in de Sitter, which is not
an asymptotic symmetry. Szabodas & Tod: Positive charge but interpretation unclear.

17 / 1

Gravitational Collapse & BH evaporation
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⇤ = 0 versus ⇤ > 0 gravitational Collapse
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Conceptual problems in specifying asymptotic Hilbert spaces for the Hawking
radiation resolved in the new scenario: incoming states can be specified on H�

and outgoing on H+ , even allowing for back-reaction due to outgoing radiation.
18 / 1
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“Experimental Constraints on Fifth Force Candidates in Nanometer 

Range”

by Yoshio Kamiya

[JGRG25(2015)1a1]
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Experimental Constraints on Fifth Force 
Candidates in the Nanometer Range

Y. Kamiya, Y. Sasayama, S. Komamiya, and G. N. Kim 
The Univ. of Tokyo / Kyngpook Nat. Univ.

supported by JSPS KAKENHI Grant No. 25870160

Experimental Constraints on Fifth Force 
Candidates in the Nanometer Range

Y. Kamiya, Y. Sasayama, S. Komamiya, and G. N. Kim 
The Univ. of Tokyo / Kyngpook Nat. Univ.

supported by JSPS KAKENHI Grant No. 25870160

“Gravity-like”

                                                                                                                      17



New Interactions (5th forces)

==> Higgs

The equation of motion simply become the Klein-Gordon 
equation, and the new interaction is described by the 

Yukawa-type scattering potential for massive mediator.

⇠ = 0, ⌘i = ⌘ (universal)●

Start with this Lagrangian for scalar field

L =
1

2
(@�)2 � 1

2
m2

��
2 � ⇠M4(

�

M
)�n � ⌃i

⌘i
MPl

⇢i�

1/15

, ⇠ = �/4!,m2
� = �µ2 n = �4 ,● ⌘i/MPl = 1/v

Yukawa-type Scattering Potential
use more friendly notation of the strength of the Yukawa interaction

⌃i
⌘

MPl
⇢i = gm�(x)

where m is a fermion mass and g is a proportional constant,
then, scattering potential between two objects is obtained as

V�(r) = � 1

4⇡
g2m1m2

e�m�r

r

mass

coupling strength

coupling charges

The coupling charge of this new interaction is mass.  
The new interaction appears as a source which violates the Newtonian, 
inverse square law of the universal gravity.

called “gravity-like” forces

2/15
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Testing Gravity ~ 10^12 m
Verified by analyzing planetary 
and lunar movements

(exception) Pioneer Anomaly
The Pioneer 10/11 spacecrafts 
were observed to be pulled by the 
Sun a little bit stronger than the 
expectation on trajectories out of 
the Solar System. (1980)

It is now “tentatively" solved by 
taking into account an anisotropic 
thermal radiation precisely.

--- PRL108, 241101(2012)

3/15

Testing Gravity ~ 10^1 m
verified in the field of Geophysics

Daiki Goto / Zanpa cape
4/15
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Testing Gravity < 1 m
No significant deviation from the 
Newtonian Gravity has been 
observed in the interaction range 
down to 100 microns.
Many Gravity tests in the shorter 
range have been conducted in 
several institute energetically.

The Eot-Wash Group, Univ. of Washington

http://www.npl.washington.edu/eotwash/sr

V�(r) = � 1

4⇡
g2m1m2

e�m�r

r

mass

coupling strength

coupling charges

Yukawa-type scattering potential

parameter 
space or (g

2,�– = 1/m�):
5/15

(g2,m�)
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this talk

New Force Search using 
Neutron Scattering

1) measure the angular distribution of 5 A neutrons scattering off 
atomic xenon gas
2) evaluate deviations from the 
expectations from know interactions 
to set limits on additional, unknown 
interactions
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We have finally succeeded to improve 
previous constraints for gravity-like forces 
in the 4 to 0.04 nm range by a factor of up 
to 10.

1) measure the angular distribution of 5 A neutrons scattering off 
atomic xenon gas
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— Phys. Rev. Lett. 114, 161101 (2015)

This talk is mostly about this paper.
7/15

This experiment have started from 2013 
with financial support of KAKENHI No. 
25870160

New Force Search using 
Neutron Scattering

2) evaluate deviations from the 
expectations from know interactions 
to set limits on additional, unknown 
interactions

Experimental Site
40 m small angle neutron scattering beam line at HANARO research reactor

Neutron beam

Collimator Section

Sample  Position

Detector Vessel

figs. from Young-Soo Han et.al, The 11th Japan-Korea 
Meeting on Neutron Science, I01 (2011) 

Velocity Selector

250 mm

Beam Stopper

Gas/Vacuum System

7.8 m
3.1 m

980 mm

< 0.1 Pa

Turbo−molecular

Scroll Pump
Pump

Xenon Gas Bottles
RegulatorPurifier

Getter−based

Gas/Vacuum System

Sample Chamber

Xe Gas Chamber

MWPC

Flux Monitor

Velocity Selector

Collimators

• Wavelength: 5 Å 
• Beam size: 22 φ 
• Divergence: ~ 3 mrad 
• Intensity: ~ 1.4 x 105 neutrons/sec

8/15
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• Wavelength: 5 Å 
• Beam size: 22 φ 
• Divergence: ~ 3 mrad 
• Intensity: ~ 1.4 x 105 neutrons/sec

8/15

Experimental Site
40 m small angle neutron scattering beam line at HANARO research reactorSample Chamber

Sample Aperture

Xenon Gas chamber

Scattering Length
Scattering Length is divided into 

coherent/incoherent/Schwinger scatt. Length

b(qqq) = bc(qqq) +
1�

I(I + 1)
��� · bibibi(qqq) · III + ibs(qqq) ��� · n̂̂n̂n

bc(qqq) = (bNc + bp)� (bF + bI)Z[1� f(qqq)]
~ 5 fm ~ -1x10-1 fm

f(q) = [1 + 3(
q

q0
)2]�0.5

q0 ~ 7 A-1

atomic form factor:

bNc: coherent nuclear scatt. length
bp: polarization scatt. length
bF: Foldy scatt. length
bI: intrinsic n-e scatt. length
bNi: incoherent nuclear scatt. length
g: magnetic dipole moment ~ 0.9

σ/2: neutron spin
I : Nucleus spin
   :  unit vector ⊥ scattering planen̂

+ coherent scattering length

+ incoherent scattering length
bbbi(qqq) = bNi111�

�
I(I + 1)gbF (111� q̂̂q̂qq̂̂q̂q)

~ 0 fm ~ -1x10-3 fm

bs = bF Z[1� f(qqq)]cot�
~ -1x10-1 fm

+ Schwinger scattering length

9/15
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b(qqq) = bc(qqq) +
1�

I(I + 1)
��� · bibibi(qqq) · III + ibs(qqq) ��� · n̂̂n̂n

bc(qqq) = (bNc + bp)� (bF + bI)Z[1� f(qqq)]
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f(q) = [1 + 3(
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)2]�0.5

q0 ~ 7 A-1

atomic form factor:

bNc: coherent nuclear scatt. length
bp: polarization scatt. length
bF: Foldy scatt. length
bI: intrinsic n-e scatt. length
bNi: incoherent nuclear scatt. length
g: magnetic dipole moment ~ 0.9

σ/2: neutron spin
I : Nucleus spin
   :  unit vector ⊥ scattering planen̂

+ coherent scattering length

Scattering Length

9/15

Scattering Length is divided into 
coherent/incoherent/Schwinger scatt. Length

b(qqq) = bc(qqq) +
1�

I(I + 1)
��� · bibibi(qqq) · III + ibs(qqq) ��� · n̂̂n̂n

bc(qqq) = (bNc + bp)� (bF + bI)Z[1� f(qqq)]
~ 5 fm ~ -1x10-1 fm

= (bNc + bp) {1 + �[1� f(qqq)]} � � � bF + bI

bNc + bp
Z ~ 3x10-2

+ coherent scattering length

Scattering Length

9/15

Scattering Length is divided into 
coherent/incoherent/Schwinger scatt. Length
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b(qqq) = bc(qqq) +
1�

I(I + 1)
��� · bibibi(qqq) · III + ibs(qqq) ��� · n̂̂n̂n

bc(qqq) = (bNc + bp)� (bF + bI)Z[1� f(qqq)]
~ 5 fm ~ -1x10-1 fm

= (bNc + bp) {1 + �[1� f(qqq)]} � � � bF + bI

bNc + bp
Z ~ 3x10-2

+ coherent scattering length

bc(qqq) = (bNc + bp) {1 + �[1� f(qqq)] + �y[(
q

µ
)2 + 1]�1}

via the Born approximation

+ coherent scattering length with the new forces

Scattering Length

9/15

Scattering Length is divided into 
coherent/incoherent/Schwinger scatt. Length

�y ⌘ mn

2⇡
g2m1m2

1

(bNc + bp)m2
�

Differential Cross Section
d�

d�
� (bNc + bp)2 (1 + 2�[1� f(qqq)] + 2�y[(

q

µ
)2 + 1]�1)

Expected angular scattering distribution to be measured was 
derived from this differential cross section convoluted with 

the finite beam size, the length of the scattering chamber, and  
the thermal motion of the xenon gas.
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Calculated Distributions
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2nd term

new forces (range = 1nm)

distributions are clearly 
distinguished each other

fitting using the shape is 
effective

10/15
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Measured Distribution
Top figure is the same one 
previous slide and they are the 
reference distributions to evaluate 
the measurement. 

Center figure is measured 
scattering distributions w/ Xe gas 
sample and w/o sample 

By subtracted the empty cell data 
and by fitted with the references, 
residual distribution from the 
known interactions is obtained. 

No additional non-Newtonian 
forces are observed within this 
sensitivity.
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New Constraints
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Y. Kamiya, K. Itagaki, M. Tani, G. N. Kim, and S. Komamiya, Phys. Rev. Lett. 144, 161101 (2015)

We have succeeded to improve 
previous constraints for gravity-
like forces in the  4 to 0.04 nm 
range by a factor of up to 10.

Limits of g^2 at 95% C.L. are 
evaluated using the Feldman 
Cousins approach.

(Discussions)
・ to longer range?

21pDF-10 Sasayama (JPS2015 spring)
— possible with neutron lenses

・ for other type of new forces?
— now investigating

12/15
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New Interactions (5th forces)

==> Higgs

The equation of motion simply become the Klein-Gordon 
equation, and the new interaction is described by the 

Yukawa-type scattering potential for massive mediator.

⇠ = 0, ⌘i = ⌘ (universal)●

Start with this Lagrangian for scalar field

L =
1

2
(@�)2 � 1

2
m2

��
2 � ⇠M4(

�

M
)�n � ⌃i

⌘i
MPl

⇢i�

1/15

, ⇠ = �/4!,m2
� = �µ2 n = �4 ,● ⌘i/MPl = 1/v

Chameleon Fields

Start with this Lagrangian for scalar field

L =
1

2
(@�)2 � 1

2
m2

��
2 � ⇠M4(

�

M
)�n � ⌃i

⌘i
MPl

⇢i�

13/15

● —> Nonlinearity will be of particular note⌘i = ⌘ (universal)m2
� = 0

vev: �vac = M(
⌘⇢

n⇠MPlM3
)�

1
n+1

mass: mvac =
p

n(n+ 1)⇠M | M

�vac
|n2 +1

depends on 
fermion surround
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Chameleon Fields

(example) ,n = �4 ⇠ ⇠ 1 ⌘ ⇠ 1,

⇢ = 10�24g/cm^3 1/mvac ⇠ 100 km
In the Universe

⇢ = 1 g/cm^3 1/mvac ⇠ 0.1 mm
In usual material

Interaction charge can not be accumulated (Thin-shell Effect)
Chameleon is still alive somewhere 
Experiments at shorter ranges are effective

14/15

The Chameleon partially contribute to solve 
the cosmological constant problem!

Too short to see the effect by cosmological observations

Summary
・ Searches for new gravity-like short-range forces have been 
performed at many institutes.

・ There are plenty parameter space remaining for new exciting 
physics such as the Chameleon field.

・ We improved previous constraints for the Yukawa-type gravity-
like fifth forces in the 4 to 0.04 nm range by a factor of up to 10.

Y. Kamiya, K. Itagaki, M. Tani, G. N. Kim, and S. Komamiya, Phys. Rev. Lett. 144, 161101 (2015)

・ The research field is still active and exciting.

15/15

・ Please join this experimentally reachable field to your field 
and please make any predictions beyond the standard model.
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Thank you for your attention.

“We plan to continue our work until defeated by systematic errors.”
— William M. Snow (Indiana Univ.)
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“Model-independently testing gravitational theory with gravitational-

wave observations”

by Tatsuya Narikawa

[JGRG25(2015)1a2]
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Model-independently testing  
gravitational theory  

with gravitational-wave observations

Tatsuya Narikawa 
Osaka City U.

JGRG25, Parallel Session 1a@YITP, Panasonic Hall 

14:15-14:30, 2015/12/7
1

1a2

2

Gravitational waves will be detected  
within a few years. 

Advanced GW detectors, aLIGO, aVirgo, and bKAGRA will 
open a new window for GW astrophysics. 

One of topics: 
Testing GR in the dynamical strong-field regime.

[Narikawa, & Tagoshi, in prep.]

Our recent work on "Gravity-by-GW Test".

We demonstrate that Advanced GW detectors have 
potential for new bounds on deviations from GR.
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・GR passes all tests with flying colors so far. 

But, is GR the correct theory of gravity in the entire regime?

・Problems for GR → Motivations for modified gravity theories

Why considering Alternative Theories of Gravity?

・Black Hole singularity　← Unphysical! 

・Unification with other forces or Quantization of gravity 

・Alternative to Dark Energy and/or Dark Matter 

・Useful to contrast their predictions with GR 

      → evaluate the correctness of GR, e.g., ppN

3

The Universe is undergoing an accelerated period. 
Unknown components dominate.

68%

27%

5%

Dark Energy

Dark Matter

Cosmic Pie Chart 
[Planck, 2014]

We do not understand much of the Universe.

Ordinary matter

The most promising source for advanced detectors.CBC

4

in advanced detectors.

[Kim, Perera, & McLaughlin, MNRAS 2013 [arXiv:1308.4676]]

Result 2: Galactic PSR-NS merger rate and the inferred GW event rate 

dotted: B1913+16
short-dashed: J0737-3039 
solid: all (1913+1534+0737)

NS-NS merger rate 

Galactic NS-NS merger rate is 
NOT dominated by 
a single system.

Rdet = 8+10
�5 yr�1

GW detection rate

Rg ⇠ 21+28
�14 Myr�1

95% confidence interval

Expected GW detection rate for neutron star binary:

                                                                                                                      33



3

II. GW

the energy balance law

Ėb = −LGW (2)

where the orbital binding energy Ėb and the GW luminosity LGW.
The main observable for GW observation with the laser-interferometer is the response function, which describes

how a GW laser-interferometer reacts to an input GW. Here we focus on the quasicircular inspiral phase of GWs
from CCB systems. The Fourier transform of the response function in the stationary-phase approximation [? ] in
GR is simply h̃GR = F+h̃GR

+ + F×h̃GR
× , where F+, × are beam-pattern functions, and h̃GR

+, × are the plus and cross
GW polarizations1. This is the restricted inspiral waveform, which is given as

h̃GR = AGRe
iΨGR , (3)

where the amplitude AGR (up to Newtonian order) and the phase function ΨGR are given as a function of the inspiral
reduced frequency u := (πMf)1/3,

AGR = AM5/6

DL
u−7/2, (4)

and

ΨGR =2πftc − Φc +
7∑

k=0

[
ψk + ψlog

k log(u)
]
uk−5, (5)

where A is the constant determined by the sky location, the coefficients ψk and ψlog
k depend on the component masses

m1, m2 in GR. For simplicity, we consider nonspinning binaries. The chirp mass M := (m1m2)3/5/(m1+m2)1/5, the
symmetric mass ratio η = m1m2/(m1 +m2)2, the luminosity distance to the source DL, the coalescence time tc, the
phase at the coalescence Φc, and the GW frequency f ,

h̃ = h̃GR [1 + αiu
ai ] exp[iβju

bj ]

u := (πMf)1/3,

Matched filter

ρ = (d, ĥ) = 2

∫ ∞

−∞
df
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   -Testing GR and extended models of gravity
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tions the deviations from GR waveform are detectable us-
ing an advanced generation detectors. KAGRA will give
stronger constraints on deviation from GR than those of
Solar System Experiments and Binary Pulsar Observa-
tions.

implications for GW data analysis Our results will
be useful priors for the parameters searched over when
one implements the ppE framework in a data analysis
pipeline against detected GW events in the near future.

comments on the relation between these non-GR mod-
els and specific models Brans-Dicke, Massive Graviton,
Chern-Simons.

In almost all of these specific models, both ppE param-
eters α and β depend on the mass ratio of the system.
But we ignore mass-dependency of ppE parameters. Our
results are corresponding to conservative bound. If we
estimate the detectability for a specify model, detectable
regions increase. It is difficult to determine these depen-
dencies with a single detection.

physical meaning of ppE parameters

future work In this paper, we fixed the distance to the
source when we calculated the FF. In the real data anal-
ysis, it is possible to determine the distance as well as
the direction to the source and the inclination angle by
using a network of GW detectors. Even in that case, it
would be very helpful if electromagnetic follow-up obser-
vations could determine the distance by identifying the
host galaxy. Also, we have not included the spins of the
stars in the binaries. If the spin precession effect ex-
ists, there will be an amplitude modulation due to the
spin precession effect. Such modulation will be mixed

with the modification caused by the ppE effects, and the
waveform will become more complicated. In such a case,
the results in this paper may be changed. Since the spin
may not be neglected for black holes, it is important to
investigate the effects of spin. We plan to investigate it
in the future.

ppE for ringdown phase
extended ppE
We will parametrize gravitational waveforms with

physical parameters.
extended ppE: toward more realistic parametrization,

in many modified gravity models, corresponding ppE pa-
rameters, such as α and β, depend on binary masses.
Therefore, ppE parameters depending on binary masses.

If we consider future detectors such as Einstein Tele-
scope [43], eLISA/NGO [44], or DECIGO/BBO [45–47],
it will be possible to constrain another region because it
will be possible to detect GWs from coalescing binaries at
much larger distance, and at a different frequency region.
We also plan to investigate such cases in the future.

h̃GR(f) = AGRe
iΨGR(f)

AGR(f) = Au−7/2 [1 + · · · ]

ΨGR = 2πftc − φc −
π

4
+
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[
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k log(u)
]
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II. GW

the energy balance law

Ėb = −LGW (2)

where the orbital binding energy Ėb and the GW luminosity LGW.
The main observable for GW observation with the laser-interferometer is the response function, which describes

how a GW laser-interferometer reacts to an input GW. Here we focus on the quasicircular inspiral phase of GWs
from CCB systems. The Fourier transform of the response function in the stationary-phase approximation [? ] in
GR is simply h̃GR = F+h̃GR

+ + F×h̃GR
× , where F+, × are beam-pattern functions, and h̃GR

+, × are the plus and cross
GW polarizations1. This is the restricted inspiral waveform, which is given as

h̃GR = AGRe
iΨGR , (3)

where the amplitude AGR (up to Newtonian order) and the phase function ΨGR are given as a function of the inspiral
reduced frequency u := (πMf)1/3,

AGR = AM5/6

DL
u−7/2, (4)

and

ΨGR =2πftc − Φc +
7∑

k=0

[
ψk + ψlog

k log(u)
]
uk−5, (5)

where A is the constant determined by the sky location, the coefficients ψk and ψlog
k depend on the component masses

m1, m2 in GR. For simplicity, we consider nonspinning binaries. The chirp mass M := (m1m2)3/5/(m1+m2)1/5, the
symmetric mass ratio η = m1m2/(m1 +m2)2, the luminosity distance to the source DL, the coalescence time tc, the
phase at the coalescence Φc, and the GW frequency f ,

h̃ = h̃GR [1 + αiu
ai ] exp[iβju

bj ]

u := (πMf)1/3,

Matched filter

ρ = (d, ĥ) = 2

∫ ∞

−∞
df

d̃(f)ĥ∗(f)

Sn(f)
(6)

1 For simplicity, we do not consider additional polarizations, which are discussed in the context of the extended ppE framework in [? ].
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and the chirp mass

A generic parametrization which characterizes  
the departures from GR through free parameters (a,α,b,β).

 Parametrized post-Einsteinian Framework [Yunes & Pretorius,  
PRD 2009]
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The ppE framework reproduces most the models
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5.3.4.2 The simplest ppE model

One of the main disadvantages of the post-Newtonian template family in Eq. (204) is that it is not
rooted on a theoretical understanding of modified gravity theories. To alleviate this problem, Yunes
and Pretorius [467] re-considered the quasi-circular inspiral of compact objects. They proposed
a more general ppE template family through generic deformations of the ` = 2 harmonic of the
response function in Fourier space :

h̃
(`=2)

ppE,insp,1

= h̃GR (1 + ↵
ppE

uappE) ei�ppEu

bppE
, (205)

where now (↵
ppE

, a
ppE

,�
ppE

, b
ppE

) are all free parameters to be fitted by the data, in addition
to the usual system parameters. This waveform family reproduces all predictions from known
modified gravity theories: when (↵

ppE

,�
ppE

) = (0, 0), the waveform reduces exactly to GR, while
for other parameters one reproduces the modified gravity predictions of Table 3.

Table 3: Parameters that define the deformation of the response function in a variety of modified gravity
theories. The notation · means that a value for this parameter is irrelevant, as its amplitude is zero.

Theory ↵
ppE

a
ppE

�
ppE

b
ppE

Jordan–Fierz–
Brans–Dicke

� 5

96

S

2

!BD
⌘2/5 �2 � 5

3584

S

2

!BD
⌘2/5 �7

Dissipative
Einstein-Dilaton-
Gauss–Bonnet
Gravity

0 · � 5

7168

⇣
3

⌘�18/5�2
m

�7

Massive Graviton 0 · � ⇡

2
DMc

�

2
g(1+z)

�3

Lorentz Violation 0 · � ⇡

2��LV

(1��LV)

D�LV

�

2��LV
LV

M
1��LV
c

(1+z)

1��LV
�3�

LV

� 3

G(t) Theory � 5

512

ĠM
c

�8 � 25

65536

Ġ
c

M
c

�13

Extra Dimensions · · � 75

2554344

dM

dt

⌘�4(3 � 26⌘ + 24⌘2) �13

Non-Dynamical
Chern–Simons
Gravity

↵
PV

3 �
PV

6

Dynamical Chern–
Simons Gravity

0 · �
dCS

�1

In Table 3, recall that S is the di↵erence in the square of the sensitivities and !
BD

is the Brans–
Dicke coupling parameter (see Section 5.2.1; we have here neglected the scalar mode), ⇣

3

is the
coupling parameter in Einstein-Dilaton-Gauss–Bonnet theory (see Section 5.2.2), where we have
here included both the dissipative and the conservative corrections, D is a certain distance measure
and �

g

is the Compton wavelength of the graviton (see Section 5.3.1), �
LV

is a distance scale at
which Lorentz-violation becomes important and �

LV

is the graviton momentum exponent in the
deformation of the dispersion relation (see Section 5.3.1), Ġ

c

is the value of the time derivative of
Newton’s constant at coalescence and dM/dt is the mass loss due to enhanced Hawking radiation
in extra-dimensional scenarios (see Section 5.3.2), �

dCS

is given in Eq. (157) and (↵
PV

,�
PV

) are
given in Eqs. (198) and (199) of Section 5.3.3.

Although there are only a few modified gravity theories where the leading-order post-Newtonian
correction to the Fourier transform of the response function can be parameterized by post-Newtonian
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and may also cover unknown models.
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The ppE framework have been formed by adding am-
plitude and phase corrections to the GR response func-
tion. The ppE inspiral waveform have the form as [33]

h̃ = h̃GR [1 + αua] exp[iβub] , (4)

The ppE waveform is corrected by ppE amplitude and
phase functions with free magnitude parameter α and
powers of the frequency a in the amplitude, and free
magnitude parameter β and powers of the frequency b
in the phase. GR is recovered as (α, β) = (0, 0). The
ppE framework covers leading-order corrections of grav-
itational waveforms in almost all of the models of mod-
ified gravity. To simplify the analysis, we consider that
the GR amplitude AGR(f) is up to Newtonian order and
the GR phase function ΨGR(f) is up to 3.5 PN order.
a and b should be restricted an integer values when

the orbit is circular [37]4. In this paper, we consider
(i) amplitude corrections by setting β = 0 and choos-
ing a ∈ {−6, − 5, − 4, − 3, − 2, − 1, 0, 1}, and
(ii) phase corrections by setting α = 0 and choosing
b ∈ {−7, − 6, − 5, − 4, − 3, − 2, 1, 0, 1, 2}. We
consider the amplitude ppE parameters as a < 2, cor-
responding to be less than 3 PN order, and the phase
ppE parameters as b < 3, corresponding to be less
than 4 PN order5. In the above waveform, we can
take the following parameters as independent parame-
ters for GR, θGR = {m1, m2, tc, Φc}6. On the other
hand, there are independent parameters for the ppE,
θMG = {a, logα, b, log β, θGR}7.

III. ANALYSIS METHOD FOR EVALUATE
DETECTABILITY OF MODIFIED GRAVITY

THEORY

In this section, we briefly review the analysis method to
judge the detectability of the deviations from GR wave-
forms. Vallisneri has proposed a model comparison anal-
ysis of simple MG, and derived a formula that character-
ize the possibility to detect the effects of MG on gravita-
tional waves [25, 38].
First, we define the noise-weighted inner product ( · | · )

for signals hA and hB as

(hA|hB) ≡ 4Re

∫ fmax

fmin

h̃A(f)h̃B(f)

Sn(f)
df, (5)

4 However, noninteger powers of the frequency in the phase of the
GWs arise for the non-circular orbit.

5 The relation between the ppE parameters and PN order is as
(b+ 5)/2-PN for phase.

6 We need not to consider the distance to the source DL because
the waveforms are normalized in the fitting factor. And for sim-
plicity, we assume a signal from a face-on binary system at the
zenith.

7 For simplicity, we assume α and β are not dependent of source
masses.

where Sn(f) is the one-sided noise power spectrum den-
sity of a detector. The limits of integration fmin and
fmax are taken to be fmin = flow and fmax = fISCO ≈
(63/2πMt)−1 where flow is the lower cutoff frequency that
is defined for each detector, while fISCO is the frequency
at the innermost stable circular orbit of the binary.

The signal-to-noise ratio (SNR) for a given signal h is
its norm defined as

SNR ≡ |h| =
√
(h|h). (6)

We also define the fitting factor (FF) [29] that is used
to characterize the deviations of a MG waveforms from
the GR waveform. The FF between the GR and MG
waveforms is defined as

FF(θMG) ≡ max
θGR

(hGR(θGR)|hMG(θMG))

|hGR(θGR)||hMG(θMG)|
, (7)

where hGR(θGR) and hMG(θMG) are the GR and MG
waveforms, θGR represents the source parameters in GR,
and θMG represents the parameters in the MG theory.
By definition, the maximum of FF is 1, which is realized
when the MG waveform coincides with the GR waveform.
Thus, 1 − FF measures the strength of the MG correc-
tions that cannot be absorbed by the variation of the GR
source parameters when searching for MG signals using
GR templates.

Next, let us briefly review the Bayesian hypothesis test-
ing. Bayesian parameter estimation can be performed
Bayes’ theorem. For hypothesis H,

p(θ⃗|s,H) =
p(θ⃗|H)p(s|θ⃗,H)

p(s|H)
, (8)

where p(θ⃗|s,H) is the posterior distribution of the hy-

pothesis H given the data s and p(θ⃗|H) is the prior prob-

ability distribution of the unknown parameter vector θ⃗
within the hypothesis H, and p(s|θ⃗,H) describes the like-
lihood function for the observation s, assuming the hy-
pothesis H and given values of the parameters θ⃗, and
p(s|H) is the fully marginalized likelihood or evidence
for H defined as

p(s|H) ≡
∫

dθ⃗p(s|θ⃗,H)p(θ⃗|H), (9)

which is the integral of the likelihood p(s|θ⃗,H) multiplied
by the prior over all parameters within the hypothesis H.
This is the normalization constant in the denominator of
Eq. (8) for the hypothesis H. Here the data s obtained
from the detector is modeled as the sum of the detector
noise n and the inspiral signal h,

s(t) = n(t) + h(θ⃗; t). (10)

Let us assume that the stationary and Gaussian noise,
then its probability density distribution can be written
as

p[n] = N e−(n|n)/2, (11)

                                                                                                                      34
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where A is the constant determined by the sky location, the coefficients ψk and ψlog
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m1, m2 in GR. For simplicity, we consider nonspinning binaries. The chirp mass M := (m1m2)3/5/(m1+m2)1/5, the
symmetric mass ratio η = m1m2/(m1 +m2)2, the luminosity distance to the source DL, the coalescence time tc, the
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Matched filter

ρ = (s, ĥ) = 2

∫ ∞

−∞
df

s̃(f)ĥ∗(f)

Sn(f)
(6)

O ≡ P (MG|s)
P (GR|s) =

P (MG)

P (GR)

P (s|MG)

P (s|GR)
, (7)

O = N ex
2/2+

√
2xSNRres+SNR2

res , (8)

1 For simplicity, we do not consider additional polarizations, which are discussed in the context of the extended ppE framework in [? ].

Bayesian model selection
Which model better describes the data?
the odds ratio for MG over GR
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Analytical approximation of BF [Cornish et al. PRD 2011]

Assumptions: large SNR, FF~1,...

FF(✓MG) = max

✓GR

(hGR(✓GR)|hMG(✓MG))

|hGR(✓GR)||hMG(✓MG)|SNR = |h| =
p
(h|h)

Fitting Factor

1-FF characterizes the strength of MG corrections.
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where the orbital binding energy Ėb and the GW luminosity LGW.
The main observable for GW observation with the laser-interferometer is the response function, which describes

how a GW laser-interferometer reacts to an input GW. Here we focus on the quasicircular inspiral phase of GWs
from CCB systems. The Fourier transform of the response function in the stationary-phase approximation [? ] in
GR is simply h̃GR = F+h̃GR

+ + F×h̃GR
× , where F+, × are beam-pattern functions, and h̃GR

+, × are the plus and cross
GW polarizations1. This is the restricted inspiral waveform, which is given as

h̃GR = AGRe
iΨGR , (3)

where the amplitude AGR (up to Newtonian order) and the phase function ΨGR are given as a function of the inspiral
reduced frequency u := (πMf)1/3,

AGR = AM5/6

DL
u−7/2, (4)

and

ΨGR =2πftc − Φc +
7∑

k=0

[
ψk + ψlog

k log(u)
]
uk−5, (5)

where A is the constant determined by the sky location, the coefficients ψk and ψlog
k depend on the component masses

m1, m2 in GR. For simplicity, we consider nonspinning binaries. The chirp mass M := (m1m2)3/5/(m1+m2)1/5, the
symmetric mass ratio η = m1m2/(m1 +m2)2, the luminosity distance to the source DL, the coalescence time tc, the
phase at the coalescence Φc, and the GW frequency f ,

h̃ = h̃GR [1 + αiu
ai ] exp[iβju

bj ]

u := (πMf)1/3,

Matched filter

ρ = (s, ĥ) = 2

∫ ∞

−∞
df

s̃(f)ĥ∗(f)

Sn(f)
(6)

O ≡ P (MG|s)
P (GR|s) =

P (MG)

P (GR)

P (s|MG)

P (s|GR)
, (7)

O ∝ eSNR2(1−FF) (8)

1 For simplicity, we do not consider additional polarizations, which are discussed in the context of the extended ppE framework in [? ].
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[Vallisneri, PRD 2012]

SNRreq：the value of the signal SNR required to detect 

a given deviation from GR waveform.

log10(SNRreq)

SNRreq∝(1-FF)-1/2

OMG,GR>Othr for a FAP → MG detection!

FF SNRreq
0.9 8.699
0.95 12.3
0.99 27.5

Efficiency E=50% 
FAP F=10-4

MG

E = 1� (erf(�SNRres + erfc�1(F ))� erf(�SNRres � erfc�1(F )))/2

A analytic Bayesian decision scheme
using the odds ratio as a detection statistic, 
with approximation for odds ratio O∝exp[SNR2(1-FF)], 
setting Othr by requiring a given FAP:

9

For BNS (1.4, 1.4)
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A. Amplitude corrections

First, we consider the ppE deviations in the amplitude,
in which the ppE parameters α and a are treated as in-
dependent parameters. The waveform, by setting β = 0
in Eq. (4), is given as

h̃ = h̃GR[1 + αua]. (18)

In this work, we first estimate the detectable region for
ppE amplitude corrections α as a function of powers of
frequency a using the Vallisneri’s method.
Figure 1 shows the detectable regions of the ppE

amplitude corrections to the waveforms, in (a, α), for
BNS. Marks/lines correspond to the distance to the
source DL = 218 Mpc [circle/dotted (red)], 50 Mpc [tri-
angle/dashed (green)], and 10 Mpc [square/dot-dashed
(blue)]. Region above each mark/line is the regions in
which the ppE corrections are detectable. Shaded re-
gions are detectable region for an extremely loud event
at DL = 10 Mpc. GW constraints becomes weaker as
powers of frequency a (or PN-order) becomes larger. At
a = 0, GW cannot distinguish deviations from GR wave-
forms because the resulting correction would be degen-
erate with an arbitrary constant in the amplitude. Solid
line (black) is current bounds from binary pulsar obser-
vations of orbital period decay due to GW emission for
the binary pulsar PSR J0737-3039[34]. Region above this
solid line is already excluded, and GW constraints can be
stronger than those of binary pulsar bounds at a = 1 only
for an extremely loud event.
SNR value is different at each case on (a, α), and is also

dependent of DL for fixed component masses. SNRreq

value is different at each case on (a, α), and but is not
dependent of DL for fixed component masses.
We demonstrate dependence of our results on compo-

nent masses for NSBH with (1.4 M⊙, 15 M⊙) [Fig. 3],
low-mass BBH with (8 M⊙, 15 M⊙) [Fig. 4], and high-
mass BBH with (30 M⊙, 30 M⊙) [Fig. 5].
SNR and the horizon distance increase as component

masses increase. But FF decreases as component masses
increase at each (a, α). Therefore, GW constraints be-
come weaker as component masses increase.

B. Phase corrections

Next, we consider the ppE deviations in the phase, in
which the ppE parameters β and b are treated as inde-
pendent parameters. The waveform, by setting α = 0 in
Eq. (4), is given as

h̃ = h̃GR exp[iβub]. (19)

Here, b is related to PN-order as (b + 5)/2-PN. In this
work, we first estimate the detectable region for ppE
phase corrections β as a function of PN-order (or powers
of frequency b) using the Vallisneri’s method.

FIG. 1. Detectable regions, where SNR > SNRreq > 8.0 is
satisfied, on ppE parameters (a, α), for BNS. Region above
each mark/line is detectable region for different distance to
the source. Shaded regions are detectable region for an ex-
tremely loud event at DL = 10 Mpc. Here, the detection
efficiency is set to PE = 1/2, and the false-alarm probability
is set to PF = 10−4. Solid line is bounds from binary pulsar
observations of orbital period decay due to GW emission for
PSR J0737-3039. Regions below this bounds have been not
yet excluded.

Figure 2 shows the detectable regions of the ppE cor-
rections to the GR waveforms in the phase, in |β| as a
function of PN-order, for BNS.

Marks/lines correspond to the distance to the source
DL = 218 Mpc [circle/dotted (red)], 50 Mpc [trian-
gle/dashed (green)], and 10 Mpc [square/dot-dashed
(blue)]. Region above each mark/line is the regions in
which the ppE corrections are detectable. Shaded re-
gions are detectable region for an extremely loud event at
DL = 10 Mpc. GW constraints becomes weaker as PN-
order becomes higher. At b = 0, GW cannot distinguish
deviations from GR waveforms because the resulting cor-
rection would be degenerate with an arbitrary constant
in the phase. Solid line (black) is current bounds from
binary pulsar observations of orbital period decay due to
GW emission for the binary pulsar PSR J0737-3039[34].
Region above this solid line is already excluded, and GW
constraints can be stronger than those of binary pulsar
bounds at higher PN-order for any events.

SNR value is the same as that of GR for phase correc-
tions, is not dependent of (b, β), and is dependent of DL

for fixed component masses. SNRreq value is different at
each case on (b, β), and but is not dependent of DL for
fixed component masses.

We demonstrate dependence of our results on compo-
nent masses for NSBH with (1.4 M⊙, 15 M⊙) [Fig. 6],Bounds from binary pulsar 

observations  
for PSR J0737-3039.
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For BNS (1.4, 1.4)
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A. Amplitude corrections

First, we consider the ppE deviations in the amplitude,
in which the ppE parameters α and a are treated as in-
dependent parameters. The waveform, by setting β = 0
in Eq. (4), is given as

h̃ = h̃GR[1 + αua]. (18)

In this work, we first estimate the detectable region for
ppE amplitude corrections α as a function of powers of
frequency a using the Vallisneri’s method.
Figure 1 shows the detectable regions of the ppE

amplitude corrections to the waveforms, in (a, α), for
BNS. Marks/lines correspond to the distance to the
source DL = 218 Mpc [circle/dotted (red)], 50 Mpc [tri-
angle/dashed (green)], and 10 Mpc [square/dot-dashed
(blue)]. Region above each mark/line is the regions in
which the ppE corrections are detectable. Shaded re-
gions are detectable region for an extremely loud event
at DL = 10 Mpc. GW constraints becomes weaker as
powers of frequency a (or PN-order) becomes larger. At
a = 0, GW cannot distinguish deviations from GR wave-
forms because the resulting correction would be degen-
erate with an arbitrary constant in the amplitude. Solid
line (black) is current bounds from binary pulsar obser-
vations of orbital period decay due to GW emission for
the binary pulsar PSR J0737-3039[34]. Region above this
solid line is already excluded, and GW constraints can be
stronger than those of binary pulsar bounds at a = 1 only
for an extremely loud event.
SNR value is different at each case on (a, α), and is also

dependent of DL for fixed component masses. SNRreq

value is different at each case on (a, α), and but is not
dependent of DL for fixed component masses.
We demonstrate dependence of our results on compo-

nent masses for NSBH with (1.4 M⊙, 15 M⊙) [Fig. 3],
low-mass BBH with (8 M⊙, 15 M⊙) [Fig. 4], and high-
mass BBH with (30 M⊙, 30 M⊙) [Fig. 5].
SNR and the horizon distance increase as component

masses increase. But FF decreases as component masses
increase at each (a, α). Therefore, GW constraints be-
come weaker as component masses increase.

B. Phase corrections

Next, we consider the ppE deviations in the phase, in
which the ppE parameters β and b are treated as inde-
pendent parameters. The waveform, by setting α = 0 in
Eq. (4), is given as

h̃ = h̃GR exp[iβub]. (19)

Here, b is related to PN-order as (b + 5)/2-PN. In this
work, we first estimate the detectable region for ppE
phase corrections β as a function of PN-order (or powers
of frequency b) using the Vallisneri’s method.

FIG. 1. Detectable regions, where SNR > SNRreq > 8.0 is
satisfied, on ppE parameters (a, α), for BNS. Region above
each mark/line is detectable region for different distance to
the source. Shaded regions are detectable region for an ex-
tremely loud event at DL = 10 Mpc. Here, the detection
efficiency is set to PE = 1/2, and the false-alarm probability
is set to PF = 10−4. Solid line is bounds from binary pulsar
observations of orbital period decay due to GW emission for
PSR J0737-3039. Regions below this bounds have been not
yet excluded.

Figure 2 shows the detectable regions of the ppE cor-
rections to the GR waveforms in the phase, in |β| as a
function of PN-order, for BNS.

Marks/lines correspond to the distance to the source
DL = 218 Mpc [circle/dotted (red)], 50 Mpc [trian-
gle/dashed (green)], and 10 Mpc [square/dot-dashed
(blue)]. Region above each mark/line is the regions in
which the ppE corrections are detectable. Shaded re-
gions are detectable region for an extremely loud event at
DL = 10 Mpc. GW constraints becomes weaker as PN-
order becomes higher. At b = 0, GW cannot distinguish
deviations from GR waveforms because the resulting cor-
rection would be degenerate with an arbitrary constant
in the phase. Solid line (black) is current bounds from
binary pulsar observations of orbital period decay due to
GW emission for the binary pulsar PSR J0737-3039[34].
Region above this solid line is already excluded, and GW
constraints can be stronger than those of binary pulsar
bounds at higher PN-order for any events.

SNR value is the same as that of GR for phase correc-
tions, is not dependent of (b, β), and is dependent of DL

for fixed component masses. SNRreq value is different at
each case on (b, β), and but is not dependent of DL for
fixed component masses.

We demonstrate dependence of our results on compo-
nent masses for NSBH with (1.4 M⊙, 15 M⊙) [Fig. 6],

Even if a detection threshold 
event will be detected, GW 
constraints can be stronger 
than those of binary pulsar 
constraints at high-PN order.

For BNS (1.4, 1.4)

The results demonstrate that Advanced GW detectors have potential 
for new bound on phase-deviations from GR.
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A. Amplitude corrections

First, we consider the ppE deviations in the amplitude,
in which the ppE parameters α and a are treated as in-
dependent parameters. The waveform, by setting β = 0
in Eq. (4), is given as

h̃ = h̃GR[1 + αua]. (18)

In this work, we first estimate the detectable region for
ppE amplitude corrections α as a function of powers of
frequency a using the Vallisneri’s method.
Figure 1 shows the detectable regions of the ppE

amplitude corrections to the waveforms, in (a, α), for
BNS. Marks/lines correspond to the distance to the
source DL = 218 Mpc [circle/dotted (red)], 50 Mpc [tri-
angle/dashed (green)], and 10 Mpc [square/dot-dashed
(blue)]. Region above each mark/line is the regions in
which the ppE corrections are detectable. Shaded re-
gions are detectable region for an extremely loud event
at DL = 10 Mpc. GW constraints becomes weaker as
powers of frequency a (or PN-order) becomes larger. At
a = 0, GW cannot distinguish deviations from GR wave-
forms because the resulting correction would be degen-
erate with an arbitrary constant in the amplitude. Solid
line (black) is current bounds from binary pulsar obser-
vations of orbital period decay due to GW emission for
the binary pulsar PSR J0737-3039[34]. Region above this
solid line is already excluded, and GW constraints can be
stronger than those of binary pulsar bounds at a = 1 only
for an extremely loud event.
SNR value is different at each case on (a, α), and is also

dependent of DL for fixed component masses. SNRreq

value is different at each case on (a, α), and but is not
dependent of DL for fixed component masses.
We demonstrate dependence of our results on compo-

nent masses for NSBH with (1.4 M⊙, 15 M⊙) [Fig. 3],
low-mass BBH with (8 M⊙, 15 M⊙) [Fig. 4], and high-
mass BBH with (30 M⊙, 30 M⊙) [Fig. 5].
SNR and the horizon distance increase as component

masses increase. But FF decreases as component masses
increase at each (a, α). Therefore, GW constraints be-
come weaker as component masses increase.

B. Phase corrections

Next, we consider the ppE deviations in the phase, in
which the ppE parameters β and b are treated as inde-
pendent parameters. The waveform, by setting α = 0 in
Eq. (4), is given as

h̃ = h̃GR exp[iβub]. (19)

Here, b is related to PN-order as (b + 5)/2-PN. In this
work, we first estimate the detectable region for ppE
phase corrections β as a function of PN-order (or powers
of frequency b) using the Vallisneri’s method.

FIG. 1. Detectable regions, where SNR > SNRreq > 8.0 is
satisfied, on ppE parameters (a, α), for BNS. Region above
each mark/line is detectable region for different distance to
the source. Shaded regions are detectable region for an ex-
tremely loud event at DL = 10 Mpc. Here, the detection
efficiency is set to PE = 1/2, and the false-alarm probability
is set to PF = 10−4. Solid line is bounds from binary pulsar
observations of orbital period decay due to GW emission for
PSR J0737-3039. Regions below this bounds have been not
yet excluded.

Figure 2 shows the detectable regions of the ppE cor-
rections to the GR waveforms in the phase, in |β| as a
function of PN-order, for BNS.

Marks/lines correspond to the distance to the source
DL = 218 Mpc [circle/dotted (red)], 50 Mpc [trian-
gle/dashed (green)], and 10 Mpc [square/dot-dashed
(blue)]. Region above each mark/line is the regions in
which the ppE corrections are detectable. Shaded re-
gions are detectable region for an extremely loud event at
DL = 10 Mpc. GW constraints becomes weaker as PN-
order becomes higher. At b = 0, GW cannot distinguish
deviations from GR waveforms because the resulting cor-
rection would be degenerate with an arbitrary constant
in the phase. Solid line (black) is current bounds from
binary pulsar observations of orbital period decay due to
GW emission for the binary pulsar PSR J0737-3039[34].
Region above this solid line is already excluded, and GW
constraints can be stronger than those of binary pulsar
bounds at higher PN-order for any events.

SNR value is the same as that of GR for phase correc-
tions, is not dependent of (b, β), and is dependent of DL

for fixed component masses. SNRreq value is different at
each case on (b, β), and but is not dependent of DL for
fixed component masses.

We demonstrate dependence of our results on compo-
nent masses for NSBH with (1.4 M⊙, 15 M⊙) [Fig. 6],

Even if a detection threshold 
event will be detected, GW 
constraints can be stronger 
than those of binary pulsar 
constraints at high-PN order.
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Strategy

 Parametrized post-Einsteinian Framework  
 Approximate Bayesian analysis 
 Detectable regions of ppE corrections to GR

[Narikawa, & Tagoshi, in prep.]

We demonstrate that Advanced GW detectors have 
potential for new bounds on deviations from GR.

Model-independently testing gravitational theory 
with GW observations

Our results provide prior information for modified-
gravity search.

Summary

Thank you for your attention.
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“Microlens of light rays near photon sphere”

by Naoki Tsukamoto

[JGRG25(2015)1a3]
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Microlens of light rays near photon sphere.

Naoki Tsukamoto
Rikkyo University

(→ Huazhong University of Science and Technology in China)

N. Tsukamoto and T. Harada, arXiv:160x.xxxxx

December 7th 2015, JGRG25 @ Yukawa Institute for Theoretical
Physics, Kyoto University

1

Relativistic images near Photon sphere.

Virbhadra 2009

• If a lens is a black hole, infinite number of images appear near
photon sphere at r = 3rg/2.

• Since these relativistic images are always dimmer than primary
images, we can ignore its effects on microlenses.

2
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Retrolens

Eiroa and Torres 2004.

Holz and Wheeler 2002.
The lens is BH with 10Msun at
0.02pc and the source is the Sun.

• Retrolensed image is brighter by 30 times than relativistic images.

• Retrolensed image and primary image appear at different

direction.

• Retrolensed image is sensitive to the photon spehre.

3

Microlens of light rays which pass a wormhole
throat.

• Images near photon sphere are dominant.

4
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Morris-Thorne Wormhole Morris and Thorne (1988).
• A static and spherically symmetric WH.
• Two infinities are linked by a throat (two-

dimensional spheres with minimal area on a space-
like hypersurface).

• If we assume general relativity without Λ, exotic
matters (w ≡ p/ρe < −1) are needed to support the
throat because of the violation of the null energy
condition (Tµνkµkν ≥ 0).
(p: pressure, ρe: energy density, kµ:null vector.)

• Here, we will concentrate on methods to find
wormholes with gravitational lenses.

5

Ellis wormhole Ellis 1973 and Bronikov 1973.

• The earliest and simplest example of Morris-Thorne class.

By solving the Einstein equations and the wave equation with respect
to a phantom scalar field χ(r)

Rµν −
1

2
Rλ

λgµν = −2
(
χ(r);µχ(r);ν −

1

2
χ(r);λχ(r);λgµν

)
, χ(r);µ;µ = 0

with the boundary condition limr→∞ χ(r) = 0, we obtain a static and
spherical wormhole solution as

ds2 =
r2 + a2 −m2
∣∣∣r2 + a2 −m2

∣∣∣

{
−e−

2mχ(r)
a dt2 + e

2mχ(r)
a

[
dr2 +

(
r2 + a2 −m2

)
dΩ2

]}
,

χ(r) =
a

√
a2 −m2

⎡

⎢⎣
π

2
− arctan

r
√
a2 −m2

⎤

⎥⎦ .

6

                                                                                                                      42



• As r → ∞, it is asymptotic to Schwarzschild spacetime with the
mass m.
Its gravitational lens effects under the weak-field approxi-

mation are same as Schwarzschild lens.

• As r → −∞,

ds2 = −

⎛

⎝1+
2me

mπ
a

r

⎞

⎠ d
(
e−

mπ
a t

)2
+

dr2

1 + 2me
mπ
a

r

+ r2
(
dθ2 + sin2 θdφ2

)
. (1)

It is asymptotic to Schwarzschild spacetime with a negative mass
−me

mπ
a . This is an example of so-called natural wormhole.

• For m = 0, it becomes the so-called Ellis wormhole.

ds2 = −dt2 + dr2 + (r2 + a2)(dθ2 + sin2 θdφ2),

7

Large impact parameter case. Ellis 1973

• Usual lens configuration.

8
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Microlens with large impact parameter.Abe, 2010.

Green :Mass lens

Red :Ellis WH

• A source go across near a lens
object on the lens plane.

• Ellis WH: characteristic de-
magnification.

• We cannot say the difference
between positive Mass worm-
holes and usual massive ob-
jects.

9

Microlens of natural wormhole. Cramer et al. (1995)

Two peaks can appear.

10
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Critical impact parameter case. Ellis 1973

• The photon sphere exists at the throat.

11

Small impact parameter case. Ellis 1973

• We want to give a method to find positive
mass wormholes!

• Photon sphere, non-existance of horizon, geodesically complete,

• We will investigate this case.

12
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Microlens of light rays passing through a wormhole throat.

Tsukamoto and Harada 2016.
• To distinguish the wormhole with a positive mass

from other massive objects, we investigate the mi-
crolensing by the light rays coming from the an-
other flat region through the wormhole throat by
using the exact lens equation (See Perlick 2004).

• For simplicity, we concentrate on the so-called Ellis
wormhole.

• Our method would be applied for passable worm-
holes with positive masses easily.

13

The configuration of the gravitational lens.

• Θ is the image angle on the observer’s sky.

• For φ ∼ π, two images near photon sphere are dominant.

14
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The difference of magnitude

∆m = m−m0 = 2.5 log10
(
D2

lum

)

where m0 is the magnitude of the primary image at Θ = 0.
Dlum is the luminosity distance:

D2
lum =

∣∣∣∣∣∣∣∣∣

∫ rS

rO

√
r2S + a2 cos2Θ− r2O sin2Θ

√
r2O + a2

√
r2 + a2 cos2Θdr

(√
r2 + a2 cos2Θ− r2S sin2Θ

)3

×

√
r2S + a2

sinΘ
sin

⎛

⎜⎝
∫ rS

rO

√
r2O + a2 sinΘdr

√
r2 + a2

√
r2 + a2 cos2Θ− r2O sin2Θ

⎞

⎟⎠

∣∣∣∣∣∣∣

• We will assume a = 10−2 pc and rS = −rO = 10 kpc.

15

Light curves

• We assume the source velocity v̂ = 3×10−15 rad/s
near φ = π on the source plain.

• β: The closest separation between the source and
φ = π.

Source

!

"=#

16
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Summary.

• We have investigated the microlensing of the light rays which have
passed Ellis wormhole throat.

• The closest distance β between the source and φ = π decides the
maximum of apparent brightness of the light curve.

• We would distinguish the light curves from the usual light curves
of mass lenses.

• Our method would be applied for passable wormholes with positive
masses easily.

Thank you.
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“All-sky coherent search for continuous gravitational waves in 6-7 Hz 

band with a torsion-bar antenna”

by Kazunari Eda

[JGRG25(2015)1a4]
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 All-sky coherent search for continuous  

gravitational waves in 6-7 Hz band 
with a torsion-bar antenna 

Kazunari  Eda 
University of Tokyo, RESCEU 
(RESearch Center for the Early Universe) 

Collaborators:  
A.Shoda, Y.Kuwahara, Y.Itoh & M.Ando 

2015/12/07 
JGRG25 @ Kyoto 

• Phys.Rev. D90 (2014) 6, 064039 
• arXiv:1511.08354  

� We search for continuous GW from a rapidly rotating neutron star in 
low-frequency regime using the upgraded TOBA. 

� All-sky search for continuous GWs below 10 Hz have yet to be 
investigated so far.  

�  We put constraints on the GW amplitude.  

Motivation 
�Previous works 

9 We proposed a new antenna configuration for a torsion bar 
antenna (TOBA) last year.  

9 Correspondingly, we have upgraded the TOBA. 
9 We operated the upgraded TOBA for about 24-hours last year. 
9 The sensitivity reached 10-10 Hz-1/2 at around 1 Hz.  

KE, A.Shoda, Y.Itoh, and M.Ando (2014), A.Shoda (2015) 

KE, A.Shoda, Y.Kuwahara, Y.Itoh, and M.Ando (2015) 
arXiv:1511.08354 

Phys.Rev.D90,6,064039 
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� TOrsion-bar Antenna (TOBA) 
9 Low-frequency GW antenna which measures rotations of bars 
9 formed by two bar-shaped orthogonal test masses  
9 sensitive to low-frequency GWs ( f=0.1-1 Hz ) even on the ground 

thanks to its resonant frequency fres < 1mHz.  

(Ando et al. PRL 105, 161101 (2010)) 

Main 
Targets 

• Compact binary coalescence 
• Stochastic GW background 

What is TOBA ?  

Final configuration 
10-m TOBA 

� Phase-I TOBA 
9 Single bar suspended by magnetic force with a superconductor. 
9 Its sensitivity is limited by the magnetic noise below 0.2 Hz.  

� Phase-II TOBA 
9 Two 24-cm bars suspended by tungsten wires 
9 Common mode noise rejection via a null stream 
9 Hexapod-type active vibration isolation system 

 

Design overview 
Ph.D. thesis, K.Ishidoshiro (2010) 

Ph.D. thesis, A.Shoda (2015) 
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� Sensitivity curve of the Phase-II TOBA 

Limited by seismic noise 

Limited by noise caused 
by the optical fiber 

Measured strain sensitivity 

We focus on this frequency band. 

Neutron star 

Spin 

Spin axis 

Line of sight � Ellipticity ε 
9 NS’s non-axisymmetry 
9 Maximum possible value ε ~ 4x10-6 

9 1-cm-high bulge on the 10-km-radius star 

NS’s 
deformation 

GW frequency Distance to 
the NS 

NS’s moment 
of inertia 

GW 
amplitude 

� Typical amplitude 
Bulge on NS 

 

Horowitz & Kadau (2009) 

Continuous GWs 
� Continuous GW from a rapidly rotating neutron star (NS) 

9 NS’s non-axisymmetry ε ➡ GWs 
9 GW frequency = 2×spin frequency → nearly constant 
9 GW duration time >> Observation time 
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� F-statistic 
9 The method of maximum likelihood ratio 
9 Indicator to see whether the GW signal is present or not  
9 2F > 2Fthr ➡ GW detection 

� Threshold of F-statistic 
9 S/N=8 ➡ 2Fthr=68. 
9 2F < 2Fth ➡ Upper limits on GW amplitudes 

Jaranowski, Krolak, and Schutz (1998) 

Search method: F-statistic 

s : Output 
h : GW signal 
(・|・) : Inner product 

Input h(t) data 

Make 9000-sec SFTs 

Compute F-statistic 2F > 2Fthr 

List of candidates 

Set an upper  
limit on h0 

� LAL (LSC Algorithm Library) 
9 Useful tool for GW data analysis 
9 Developed by LIGO 
9 Written in C language 

• MakeSFTs.c  
• ComputeFstatistic_v2.c 
• ComputeFstatMCUpperLimit.c 
• ……  

Short Fourier Transform 

Flow chart of our search pipeline 

Yes 

 No 

Computations were mainly 
conducted on the ORION  computer 
cluster of the Osaka City University. 
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� Statistical properties 
9 Statistical properties of our data in 6-7Hz band of interest 
9 We evaluate the Gaussianity and the stationarity of the noise.  

(a) Gaussianity check (b) Stationarity check 

F-distribution Uniform distribution 

KE, A.Shoda,Y.Kuwahara, Y.Itoh, M.Ando (2015) 

Histogram of an averaged power 
in a single frequency bin 

Histogram of a difference 
between the adjacent phases 

arXiv:1511.08354 Data analysis 1 
� Preparation for data analysis 

9 Convert time-series data into GWF (GW frame) format for LAL 
9 Make 9,000-sec SFTs from the 22.5-hour TOBA data  

(Short Fourier Transform) 

� Results 
9 No GW signals ➡ PDF for F-stat. obeys χ2-distribtuion with 4 dof. 
9 Our data is filled with almost Gaussian noise.  
9 For large F-stat, small non-Gaussianity appear. 

Probability distribution function for F-statistic over 0.01 Hz band 

Measured values 

Curves predicted in the 
case of no GW signals Non-Gaussianity 

Data analysis 2 
� Computation of F-statistic 

9 Employing ComputeFstatistic_v2.c in the LAL code 
9 F-statistic for all-sky regions in 6.10-6.11 Hz band 

KE, A.Shoda,Y.Kuwahara, Y.Itoh, M.Ando (2015) 
arXiv:1511.08354 
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� Results 
9 The threshold 2Fthr is set to be 68 corresponding to S/N=8. 
9 The measured values of F-stat in each sub-band are below Fthr .     
9 The most strict UL in this band with 95% confidence level is 3.6x10-12 at 

6.84Hz. 
 Loudest values of F-statistic Upper limits on h0 

Data analysis 3 
� Upper limits on GW amplitudes 

9 1Hz band is divided in to 0.01Hz sub-band. 
9 We evaluate the loudest values of F-stat in each sub-band. 

 

KE, A.Shoda,Y.Kuwahara, Y.Itoh, M.Ando (2015) 
arXiv:1511.08354 

� Upper limits on ellipticity ε 
9 The ULs on h0 can be interpreted in terms of ULs on the ellipticity. 
9 Maximum possible value ε ~ 10-6  (Horowitz&Kadau (2009)) 
9 Our ULs on ε are far from an interesting parameter region. 

 

9 Distance : r = 0.1 kpc 
9 Moment of Inertia : I = 1038 kgm2 

9 Gravitational constant : G 

9 Speed of light : c 
9 GW frequency :  f0  
 

Upper limits on ε 

Discussion KE, A.Shoda,Y.Kuwahara, Y.Itoh, M.Ando (2015) 
arXiv:1511.08354 

� Expected upper limits on GW amplitudes 
9 From JKS98 paper, expected upper limits are 4.0x10-12.  
9 Our upper limits are typically h0~5 x 10-12. 
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� Using the data from the upgraded TOBA, We searched for 
continuous GWs in 6-7 Hz for all-sky regions which had yet to be 
searched so far.  

� No significant GW signals are found in this frequency band.  
� The most strict upper limit on h0 with 95% confidence level is 

3.6x10-12 at 6.84 Hz.   

Thank you !! 

Summary 
� The Phase-II TOBA was constructed. 
� We operated the Phase-II TOBA in the end of last year. 
� The sensitivity reached 10-10 Hz-1/2 at around 1 Hz.  
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“Wave Optics in the Kerr spacetime and the black hole shadow”

by Sousuke Noda

[JGRG25(2015)1a5]
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Wave Optics in the Kerr spacetime  
and  

the black hole shadow

7/12/2015  JGRG25 @ YITP

Sousuke Noda (Nagoya Univ.)

Yasusada Nambu (Nagoya Univ.)
Collaborator

1

In this presentation… 
① Wave scattering by a Kerr black hole

② Image construction from the scattered wave
Wave optical imageInterference pattern

caustics Black hole shadow

Kerr BH

E

Observer

2

photon sphere
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3

Image construction in wave optics

Square  Aperture Screen image plane

imaging system

Fourier transform

(x, y) (xI , yI)

light source

Interference pattern Image

Image construction in wave optics

Kerr BH
Screen image plane

imaging system

Fourier transform

(x, y) (xI , yI)

source

?
Interference pattern Image

?
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Why Wave Optics ??

photon sphere ⇔ rim of shadow

Geometrical Optics

Wave Optics

photon sphere ~ Quasi Normal Modes
Wave optical effects 

Beat between modes etc.
e.g.) Diffraction

5

BH Shadow

M. Moscibrodzka & H. Falcke,  
Radboud-Universität Nimwegen

©photon sphere

BH

E

observersource

E ?
photon sphere

Wave Optical BH Shadow

Set up

Source monochromatic, scalar wave 

Helmholtz eq.
r2

G(~x, ~xs) = ��

(3)(~x� ~xs)

partial wave expansion 

G(x, xs) =
X

l

X

m

G̃lm(r, rs)p
r

2 + a

2
p

r

2
s + a

2
Slm(✓)S⇤

lm(✓s)e
im(���s)

� ⇠ e�i!t
S ⇠ �

(3)(~x� ~xs),

spheroidal harmonics

!M � 1
short wavelength

6

Kerr BH

E

ObserverPoint source

Green function

Kerr metric ・・・ Boyer Lindquist coordinates

・・・

stationary

Klein Gordon eq.

a

M
= 0 ⇠ 1
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Horizon

The radial part

uin ⇠ sin

✓
!r⇤ �

⇡l

2
+ �lm +

Alm + a2!2

2!r

◆

short wavelength case

uup = exp

✓
i

⇢
!r⇤ �

⇡l

2

+ �lm +

Alm + a2!2

2!r

�◆

incidence

reflectiontransparence

r

r

t

∞Horizon

∞

Independent linear WKB solutions ( r >>1 )

The radial part

!M � 1

w(uin, uup) : WronskianG̃lm = �uin(rs)uup(r)

w(uin, uup)

Q =
[!(r2 + a2)�ma]2 ��(Alm + a2!2 � 2am!)

(r2 + a2)2

The radial equation

d2u(r⇤)

dr2⇤
+Qu(r⇤) = 0

(homogeneous)

8

Green function

G(x, xs) =
e

i!(r⇤+r⇤s )

2i!rrs

1X

l=0

lX

m=�l

e

i
Alm+a2!2

2! ( 1
r+

1
rs
)
e

i2�lm
Slm(✓)Slm(✓s)e

im(�+�̃s)

observer’s sky

source plane BH

x

y

↵

�
r

rs

E

�̃s

G(x, xs) =
X

l

X

m

G̃lm(r, rs)p
r

2 + a

2
p

r

2
s + a

2
Slm(✓)S⇤

lm(✓s)e
im(���s) G̃lm = �uin(rs)uup(r)

w(uin, uup)

partial wave expansion radial part

                                                                                                                      61



= GW=0 + GW 6=0

Direct part Winding part

G(x, xs) =
e

i!(r⇤+r⇤s )

2i!rrs

1X

l=0

lX

m=�l

e

i
Alm+a2!2

2! ( 1
r+

1
rs
)
e

i2�lm
Slm(✓)Slm(✓s)e

im(�+�̃s)

Decomposition of the Green function

1X

l=0

!
1X

W=�1

Z

C
dL ei2⇡W (L�1/2)

L = l + 1/2

W : integer

photon sphere

Poisson’s formula

GW=0

GW 6=0

= GW=0 + GW 6=0

Direct part Winding part

G(x, xs) =
e

i!(r⇤+r⇤s )

2i!rrs

1X

l=0

lX

m=�l

e

i
Alm+a2!2

2! ( 1
r+

1
rs
)
e

i2�lm
Slm(✓)Slm(✓s)e

im(�+�̃s)

Decomposition of the Green function

1X

l=0

!
1X

W=�1

Z

C
dL ei2⇡W (L�1/2)

L = l + 1/2

W : integer

photon sphere

Poisson’s formula

GW=0

GW 6=0
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µ = �1

Sum in the Green function & QNMs

S(l,m) = e2i�lm = �(�)l
ei⇡⌫p
2⇡

✓
⌫ +

1

2

◆⌫+1/2

e�(⌫+1/2)�(�⌫)

GW 6=0 =
ei!(r⇤+r⇤s )

2i!rrs

1X

W=1

Z

C
dL

lX

m=�l

e2⇡W (L�1/2)ei
Alm+a2!2

2! ( 1
r+

1
rs
)e2i�lmSlm(✓)Slm(✓s)e

im(�+�̃s)

S matrix

Winding part

Poles of the S matrix

⌫ = n

Quasi Normal Modes

= n
n = (0, 1, · · ·)

lX

m=�l

!
Z 1

�1
dµ L

Sum over m

µ = 1

µ = 0

µ = 0

µ = 1

µ = �1

: prograde
: polar
: retrograde

µ =
m

L

b ⇠ l

!

impact parameter

�
wave length

� ⇠ 1

!

Short wave length

L � 1

Interference patterns & images

a = 0.1 a = 0.2 a = 0.3

M! = 25

-6 -4 -2 2 4 6
a

-6

-4

-2

2

4

6

b

-6 -4 -2 2 4 6
a

-6

-4

-2

2

4

6

b

-6 -4 -2 2 4 6
a

-6

-4

-2

2

4

6

b

12

✓

�

r
rs ✓

�
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Interference patterns & images

M! = 25

13

r
rs ✓

�

-6 -4 -2 2 4 6
a

-6

-4

-2

2

4

6

b

-6 -4 -2 2 4 6
a

-6

-4

-2

2

4

6

b

✓

�

-6 -4 -2 2 4 6
a

-6

-4

-2

2

4

6

b

a = 0.4 a = 0.5 a = 0.6

Green function

Interference & Image
Direct part & Winding part

Future work

3. Polarization

2. Super radiance

1. Direct part (W=0)

 4. Mimic BH

! < m⌦H
angular velocity of horizon

14

Summary & Future work

G(x, xs) =
e

i!(r⇤+r⇤s )

2i!rrs

1X

l=0

lX

m=�l

e

i
Alm+a2!2

2! ( 1
r+

1
rs
)
e

i2�lm
Slm(✓)Slm(✓s)e

im(�+�̃s) ! GW=0 +GW 6=0

caustics wave optical BH shadow

・Image
・Beat between direct part & winding part

It may be possible to distinguish the mimic BH from BHs

double ring? double cross?

electrowave gravitational wave

We can see it in power spectrum?
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“Amplitude-based approach to the detection of gravitational-wave 

bursts with the Hilbert- Huang Transform”

by Kazuki Sakai

[JGRG25(2015)1a6]
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Amplitude*based.approach.to.the.detec3on.
of.gravita3onal*wave.bursts.with.the.

Hilbert*Huang.Transform 

1 

JGRG25.1a6.@Kyoto.Univ...7th.Dec..2015 

Kazuki.Sakai,.Ken*ichi.OoharaA,.Masato.KaneyamaB,.
Satoshi.Ueki,.Yukitsugu.Sasaki.and.Hirotaka.Takahashi.

e*mail.:.k_sakai@stn.nagaokaut.ac.jp 
 
 

Nagaoka.University.of.Technology,.Japan,.
.ANiigata.Univ.,.BOsaka.City.Univ. 

Outline 
Background1
• Gravita3onal*Wave.detectors.will.be.ready.soon.
• Difficulty.of.the.detec3on.of.grabita3onal*wave.bursts.
.

Method1
• Hilbert*Huang.Transform.:.new.approach.for.3me*frequency.
analysis.
• Our.proposing.detec3on.method.

.

Simula6on1&1Results1
•  Evalua3on.with.simulated.aLIGO.noise.and.simulated.
waveform.of.gravita3onal*wave.bursts.from.SNe.

2 
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Background 
Advanced.ground*based.laser.interferometer.detectors.for.GWs.
are.about.to.be.operated.now..

.
Their.main.targets.are.GWs.from.compact.binary.coalescences,.
whose.waveforms.are.predictable.in.Post*Newtonian.
approxima3on.

GWs.from.SNe.are.thought.as.detectable.by.these.detectors,.but.
their.waveforms.cannot.be.predicted.in.detail..

Detec6on1method1without1waveform1informa6on1is1needed1

3 

KAGRA1(Japan) 
advanced1LIGO1(USA) 

Method11.:.Hilbert*Huang.Transform 
To.examine.observed.data,.Time*Freq.analysis.is.useful..
Hilbert*Huang.Transform.(HHT).is.a.new.approach.of.T*F.analysis.
for.non*linear.and.non*sta3onary.data[Huang.et.al..1998]..
A.characteris3c.feature.of.it.is.a"posteriori.defining.basis. 

4 

data 

IMF1 IMF2 IMFn 

IA1 IA2 IAn IF1 IF2 IFn 

EMD 

HSA 

Essence.of.IMF.
•  |#(extrema).*.#(zero.cross)|.≦.1.
•  local.mean.is.zero.
!  These1make1hilbert1transform1

wellObehaved.1
1

.

.

.

.

.

EMD Empirical.Mode.Decomposi3on 
IMF Intrinsic.Mode.Func3on 
HSA Hilbert.Spectral.Analysis 
IA Instantaneous.Amplitude 
IF Instantaneous.Frequency 

To1validate1a1possibility1of1a1new1approach1with1this1new1technique 
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Method12.:.Our.Proposing.Method 
By.means.of.EMD;.

• Noise.will.be.dispersed.to.all.IMFs.with.equal.amplitudes.

•  Burst.signals.is.expected.to.be.decomposed.to.specific.IMFs.

If1signal1exists,1significantly1high1IA1exist1in1specific1IMFs1
.

Policy.of.the.method:.

1.  If.average.IA.in.a.region.doesn't.exceed.noise.level,.signal.doesn't.exist..

2.  If.the.average.IA.exceed.pre*determined.threshold,.signal.exists...

5 

IMF1.*.IA 

IMF2.*.IA 

IMF3.*.IA 

IMF4.*.IA 

IA.(×1021) IA.(×1021) 

Method12.:.Our.Proposing.Method 
By.means.of.EMD;.

• Noise.will.be.dispersed.to.all.IMFs.with.equal.amplitudes.

•  Burst.signals.is.expected.to.be.decomposed.to.specific.IMFs.

If1signal1exists,1significantly1high1IA1exist1in1specific1IMFs1
.

Policy.of.the.method:.

1.  If.average.IA.in.a.region.doesn't.exceed.noise.level,.signal.doesn't.exist..

2.  If.the.average.IA.exceed.pre*determined.threshold,.signal.exists...

6 

IMF1.*.IA 

IMF2.*.IA 

IMF3.*.IA 

IMF4.*.IA 

IA.(×1021) IA.(×1021) k 
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Method12.:.Our.Proposing.Method 
By.means.of.EMD;.

• Noise.will.be.dispersed.to.all.IMFs.with.equal.amplitudes.

•  Burst.signals.is.expected.to.be.decomposed.to.specific.IMFs.

If1signal1exists,1significantly1high1IA1exist1in1specific1IMFs1
.

Policy.of.the.method:.

1.  If.average.IA.in.a.region.doesn't.exceed.noise.level,.signal.doesn't.exist..

2.  If.the.average.IA.exceed.pre*determined.threshold,.signal.exists...

7 

IMF1.*.IA 

IMF2.*.IA 

IMF3.*.IA 

IMF4.*.IA 

IA.(×1021) IA.(×1021) 
0.224 

0.184 

k 

Evalua6on11.:.Simula3on.setup 
SIGNAL.:.Simulated.waveforms.of.GW.from.SNe[Dimmelmeier.2008].

Assume.
•  GWs.enter.from.op3mal.direc3on.
•  SNe.occur.in.our.galaxy.
(at.most.30kpc.apart).

.

We.assigned.numbers.to.136.waveforms.in.alphabe3cal.order.

NOISE.:.1000.colored.Gaussian.noises.based.on.aLIGO.sensi3vity.

8 
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Evalua6on12.:.Detec3on.Probabili3es 
Varia6ons1in1DP.for.each.waveform.with.threshold.value.
In.case.of.window.width.k = 41.samples.(op3mal.value) 

9 

30kpc.apart.from.the.earth 

ROC.(Receiver.Opera3ng.Characteris3c).Curve.
•  parallel.:.Analyze.the.same.data.with.different.configs...

30kpc.apart.from.the.earth 

Under.low.FAR,.
DP = 0.934 

Evalua6on13.:.ROC.Curve 
10 
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Discussion.:.Contribu3ons.to.the.trend 
xTH.at.DP.=.1.0.and.hrss.of.each.waveform 

11 

xTH.at.False.Alert.was.0 

Discussion.:.Contribu3ons.to.the.trend 
xTH.at.DP.=.1.0.and.hrss.of.each.waveform 

12 

Correla3on.Coefficient.
r   .=.0.893 
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Discussion.:.Contribu3ons.to.the.trend 
Focus.waveforms.which.could.have.DP.=.1.0.with.FA.=.0.

Table:.Parameters.in.waveform.simula3on.of.those.
...................    Mprog.=.{11.2,.15.0,.20.0,.40.0},..A.=.{50.0,.1.0,.0.5}.

.

.

.

.

.

.

.

.
Waveforms.whose.A = 50.0.(almost.uniform).is.not.contained..

Differen6al1rota6on1is1more1important1parameter1than1mass1

13 

Conclusion 
Present1Works1
•  To.detect.GW.Bursts.with.the.detectors,.a.method.which.does.not.
require.the.informa3on.of.waveform.is.needed..
• We.have.constructed.an.amplitude*based.method.with.the.
Hilbert*Huang.Transform,.new.approach.for.Time*Freq.analysis..
•  In.our.simula3on,.Detect.Probability.=.0.934.with.False.Alert.=.0..
•  From.inves3ga3on.of.waveform.dependency,.we.know.that.
differen3al.rota3on.is.important.rather.than.other.parameters..

.

Future1Works1
•  Further.Evalua3on.by.using.real.observed.data.form.detectors..
•  Considering.more.efficient.feature.value.(eg..using.IF).

14 
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“Mimetic Dark Matter”

by Alexander Vikman

[JGRG25(2015)1b1]
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Alexander Vikman

07.12.15

Mimetic Dark Matter

Institute of Physics  
of the Czech Academy of Sciences

arXiv: 1403.3961, JCAP 1406 (2014) 017  
A. H. Chamseddine and V. Mukhanov, A. Vikman 

arXiv: 1412.7136, JCAP 1506 (2015) 06, 028     
L. Mirzagholi, A. Vikman

arXiv: 1003.5751, JCAP 1005 (2010) 012 
I. Sawicki, E. Lim, A. Vikman 

This talk is mostly based on
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Mimetic Matter 
One can encode the conformal part of the physical metric in a 
scalar field:                                        

physical metric of free fall auxiliary metric, dynamical variable

gµ⌫ = g̃µ⌫
�
g̃↵� @↵�@��

�
Chamseddine, Mukhanov (2013)

S [g̃µ⌫ ,�,�m] =

Z
d4x

p
�g

✓
�1

2
R (g) + L (g,�m)

◆�

gµ⌫=gµ⌫(g̃,�)

“matter”

Mimetic Matter

g̃µ⌫ ! ⌦2 (x) g̃µ⌫

The theory becomes invariant with respect to Weyl transformations:                                         

The scalar field obeys the relativistic Hamilton-Jacobi equation:                                          

gµ⌫ @µ�@⌫� = 1

                                       

physical metric of free fall auxiliary metric, dynamical variable

gµ⌫ = g̃µ⌫
�
g̃↵� @↵�@��

�

gµ⌫ = g̃µ⌫
�
g̃↵�@↵�@��

��1

Chamseddine, Mukhanov (2013)
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gµ⌫ @µ�@⌫� = 1

the Hamilton-Jacobi equation

uµ = @µ�

corresponding four-velocity 

is geodesic 

aµ = u�r�uµ = r�� (r�rµ�) =
1

2
@µ (@�)

2 = 0

Modification of the Einstein equation 

Gµ⌫ (g)� Tµ⌫ (g)� (G (g)� T (g)) @µ�@⌫� = 0
�S

�g̃µ⌫

Gµ⌫ = Tµ⌫ + ⇢uµu⌫

⇢ = G� T

Einstein equations with dust or DM
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Mimetic Dark Matter

 use Weyl-invariance and fix                                  gµ⌫ = g̃µ⌫

 constraint via Lagrange multiplier                                   ⇢
⇣
(@�)2 � 1

⌘

S [g,�, ⇢, SM] =

Z
d4x

p
�g

✓
�1

2
R+

1

2
⇢

⇣
(@�)2 � 1

⌘
+ LSM

◆

Tµ⌫ = ⇢uµu⌫

Dark Matter

uµ = @µ�
Lagrange multiplier is the energy density

Chamseddine, Mukhanov; Golovnev; Barvinsky (2013)  
Lim, Sawicki, Vikman; (2010)

⇢
⇣
(@�)2 � 1

⌘
dust / DM via Lagrange multiplier 

Cosmological Constant / DE via Lagrange multiplier 

⇤ (rµV
µ � 1)

M. Henneaux and C. Teitelboim (1989)
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S [g̃µ⌫ ,�,�m] =

Z
d4x

p
�g

✓
�1

2
R (g) + L (g,�m)

◆�

gµ⌫=gµ⌫(g̃,�)

with gµ⌫ (g̃,�) = g̃µ⌫ g̃
↵� @↵�@��

is not in the Horndeski (1974) construction of the most 
general scalar-tensor theory with second order 

equations of motion  

But it is still a system  
with one degree of freedom            

+ standard two polarizations for 
the graviton! 

 Disformal Transformation 
Nathalie Deruelle and Josephine Rua (2014), Domènech et al. (2015)

One obtains the same dynamics  
(the same Einstein equations), 

if instead of varying the Einstein-Hilbert action  
with respect to the metric   

gµ⌫ = F ( , w) `µ⌫ +H ( , w) @µ @⌫ 

gµ⌫

w = `µ⌫@µ @⌫ 

`µ⌫ ,  

one plugs in a disformal transformation (Bekenstein 1993)  

and varies with respect to 

w2F
@

@w

✓
H +

F

w

◆
6= 0with and

Mimetic gravity is an exception! And 
it does provide new dynamics! 
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Mimicking any cosmological evolution  

gµ⌫ @µ�@⌫� = 1                                                   Convenient to take       as time         �

Enough freedom to obtain any cosmological evolution! 

potential provides time-dependent pressure 

Just add a potential               ! V (�)

Tµ⌫ = ⇢uµu⌫ + gµ⌫V

Chamseddine, Mukhanov, Vikman (2013)  
Lim, Sawicki, Vikman; (2010)

Perturbations I
Even with potential, the energy 

 still moves along the timelike geodesics 

cS = 0

� = C1 (x)

✓
1� H

a

Z
adt

◆
+

H

a
C2 (x)

Here on all scales but in the usual cosmology it is an 
approximation for superhorizon scales 

Newtonian potential:

Chamseddine, Mukhanov, Vikman (2013)  
Lim, Sawicki, Vikman; (2010)
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rµr⌫�rµr⌫�

Z
d4x

p
�g �;µ;⌫�

;µ;⌫ =

Z
d4x

p
�g

⇣
(⇤�)2 �R

µ⌫
�;µ�;⌫

⌘
is not that useful:

the unique quadratic term with higher derivatives

� (⇤�)2

✓ = ⇤� = rµu
µexpansion

Next term in the gradient expansion

There are no new degrees of freedom, because higher time 
derivatives can be eliminated by differentiating                     

the Hamilton-Jacobi equation.                                            

Chamseddine, Mukhanov, Vikman (2013)  

CHARGE CONSERVATION 
no potential � ! �+ c symmetry

rµJ
µ = 0

Noether current:

charge density

n / a�3
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Imperfection 

Jµ

shift-charge current 

Eckart frame

Energy flow: 
timelike eigenvector of  

energy-momentum tensor 

Landau-Lifshitz frame

/ �2

Imperfection  
in the Noether current 

Jµ = ⇢uµ � �✓,µ

✓ = ⇤� = rµu
µexpansion
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Imperfect Dark Matter 
Mirzagholi, Vikman (2014)

?µ⌫= gµ⌫ � uµu⌫

✓ = rµu
µexpansion

energy flow qµ = ��?�
µr�✓

Tµ⌫ = "uµu⌫ � p ?µ⌫ +qµu⌫ + q⌫uµ

(no potential) 

pressure p = ��

✓
✓̇ +

1

2
✓2
◆

energy density " = ⇢� �

✓
✓̇ � 1

2
✓2
◆

✓̇ = uµrµ✓

Vorticity for a 
single dof  DM!

✓ = ⇤� = rµu
µ

in the frame moving with the charges (Eckart frame)

V µ =
Jµ

p
J↵J↵

⌦µ (V ) =
1

2
"↵��µV�V�;↵ ' �

2⇢2
"↵��µ⇢,↵ ✓,� �,�

Vorticity vector:

the circulation is conserved up to O �
�2

�
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Perturbations II
��̈+H��̇� c2s

a2
���+ Ḣ �� = 0

c2s =
�

2� 3�

with the sound speed

� = ��̇
Newtonian potential:

Ramazanov,Capela (2014)

cS ⇠ 10�5

" =
2

2� 3�
n+ 3c2

S

⇢
ext p = 3c2

S

P
ext

n / a�3
DM

Ge↵ = GN

�
1 + 3c2S

�

3
�
c2
S

��
matter

� c2
S

��
radiation

�
. 0.066± 0.039

Narimani, Scott, Afshordi(2014)
�GN bounds are mild:

Background cosmology
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shift-symmetry breaking is needed for mimetic DM!

mimetic construction and inflation

n / a�3

Generating shift-charge (DM) during  
radiation domination époque                          

rµJ
µ =

1

2
�0 (�) ✓2

✓ = 3H

� (�)Out[7]=

�� ⌧ H�1

��

�� '
✓
acr
aeq

◆
' zeq

zcr

⇢DM (zeq) = ⇢rad (zeq)at DM / radiation equality

 �  10�10 Tcr '
Teq

��
& 10GeV

n (tcr) / a�3

Z
dt0 a3�̇H2 ' ⇢rad (tcr)��
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New large class of Weyl-invariant scalar-tensor theories                              

Unification of Dark Matter with Dark Energy in one degree 
of freedom.    

Imperfect Dark Matter, with a small sound speed and 
vorticity. Only one free parameter for the late Universe. 

Conclusions 

New class of inflationary models with suppressed gravity 
waves and low non-Gaussianity. 

!anks a lot for a"ention! 
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“On massive scalar field in AdS$_2$”

by Masashi Kimura

[JGRG25(2015)1b2]
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Masashi Kimura 

�(���979"69C����	�

On massive scalar field in AdS2 

w/ T.Houri (Kobe Univ.)  in preparation  

(DAMTP, University of Cambridge) 

�  ���

/#(CA8)7(�A#�
Supersymmetric BH : extremal horizon 

Near horizon behavior of test fields 
                    � massive scalars on AdS2 

e.g.) massless KG eq on 4Dim  
        extremal RN BH 
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�  ���

/#(CA8)7(�A#�
	
��
���� showed the �instability� of 
scalar field on 4Dim extremal RN BH�

49�+A)!8�!� 9�(A�D()8I�"5DD�G9�0��9%�
+�(�����������������������A#��83����

It is useful to use the 	
��
������
	�
.�

if�

�  ���

�C9(5 �D�7A#D(5#(��#��83��

out going null vector                     �
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	  ���

15DD!9DD�75D9�

This is the 	
��
������
	�
�	
�in the 
massless case�
We may have similar understanding  
for general �


  ���

15DD�G9�75D9�
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�  ���

15DD�G9�75D9�

(Inversely, we can find       from       )�

                        massive scalars can be 
mapped into massless scalars�

�  ���

�C9(5 �D�7A#D(5#(��#��83��

:const.  
 on      = const. null surface�

with�
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  ���

�A"")(5(AC�

            maps                         massive 
scalars into massless scalars�

��  ���

�Massive KG eq with 
  can be mapped into massless KG eq 
  by acting (k+1)-th order differential operator�

3)""5CI�5#8���D7)DD�A#D�

�We need to discuss black hole case 
  without taking a near horizon geometry limit�

�The Aretakis constant on AdS2 can be    
 understood as a result of this hidden  
 conformal symmetry. �
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��  ���

2#�A�#��+AC �
�We can also define the operators which  
  define maps from massless scalar to  
  massive scalar with �

�Recently, we found more fundamental �� 
  operators, mass shift operator, which is 
  related to conformal symmetry and BF bound�

�We can also generalize to the Einstein  
  spaces /spacetimes in arbitrary dims�

��  ���

Thank you 
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“Mass of asymptotically anti-de Sitter hairy spacetimes”

by Cristian Martinez

[JGRG25(2015)1b3]
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Mass of asymptotically anti-de Sitter hairy
spacetimes

Cristián Martı́nez

Centro de Estudios Cientı́ficos (CECs)
Valdivia – Chile
martinez@cecs.cl

JGRG25
Dec 7, 2015

In collaboration with

I Andrés Anabalón
Universidad Adolfo Ibáñez, Viña del Mar, Chile

I Dumitru Astefanesei
Pontificia Universidad Católica de Valparaı́so, Chile

I arXiv:1407.3296. PRD 91, 041501(R) (2015).
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Outline

Let us consider LHilbert =
R
2

, with  = 8⇡G

ds2
r!1 ⇠ �

lapse functionz }| {⇣
1 � µ

r

⌘
dt2 +

⇣
�ij + µ

xixj

r3

⌘
dxidxj

Mass:
M =

4⇡

µ

I In the standard asymptotic expansion of four dimensional static
asymptotically flat spacetimes, the coefficient of the first
subleading term of the lapse function can be identified with the
mass of the spacetime.

Outline

I Main result. Using the Hamiltonian formalism we show that, in
asymptotically locally anti-de Sitter spacetimes (ALAdS)
endowed with a scalar field, the mass can read off in the same
way only when the boundary conditions are compatible with the
asymptotic realization of the anti-de Sitter symmetry.

Lapse function for an ALAdS

�gtt =
r2

l2
+ k � µ

r
+ O(r�2)

where 2k is the scalar curvature of the “angular section” with volume
V(⌃), then

M =
V(⌃)


µ

only if the boundary condition on the scalar field preserves the AdS
symmetry.
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How it works?

I Since the mass is determined only by the spatial metric and the
scalar field, the above effect appears by considering not only the
constraints, but also the dynamic field equations, which relate the
spatial metric with the lapse function.

I Proper boundary conditions on the scalar field.

I This result implies that prescriptions for computing the mass of a
hairy spacetime —based on gtt— are not suitable when the
scalar field breaks the asymptotic anti-de Sitter invariance.

Plan of the talk

I Part 1: Introduction
I Brief review of the scalar fields in asymptotically AdS spacetime.
I Hamiltonian formalism for computing the mass:

Regge-Teitelboim method
I Part 2: Explicit example in 4D for m2 = �2l�2

I Inclusion of the dynamic field equations. Mass on-shell.
I Analysis on the boundary conditions and their effect on the mass

and asymptotic symmetry.
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Brief review of the scalar fields in asymptotically AdS
spacetime
Preliminaries: Action and field equations

I A real scalar field minimally coupled to D-dimensional Einstein
gravity with ⇤ = �(D � 1)(D � 2)l�2/2 and a self-interaction
potential U(�)

I[gµ⌫ ,�] =
Z

dDx
p�g

✓
R � 2⇤

2
� 1

2
gµ⌫@µ�@⌫�� U(�)

◆
,

where  is the gravitational constant.
I Field equations:

Eµ⌫ ⌘ Gµ⌫+⇤gµ⌫�


@µ�@⌫��

✓
1
2
@��@��+ U(�)

◆
gµ⌫

�
= 0,

and
⇤�� dU(�)

d�
= 0.

Fixed AdS background and a massive scalar field

Let us consider a scalar field of mass m, i. e. U(�) = 1
2 m2�2 coupled

to an AdS background

ds2 = �
✓

1 +
r2

l2

◆
dt2 +

✓
1 +

r2

l2

◆�1

dr2 + r2d⌦2
D�2,

From the Klein-Gordon equation we obtain the asymptotic form of �

� ⇠ a
r��

+
b

r�+

where

�± =
D � 1

2

 
1 ±

s

1 +
4l2m2

(D � 1)2

!

are the roots of �(D � 1 ��) + m2l2 = 0.
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I Both branches are physically acceptable [Ishibashi, Wald, 2004] if

m2
⇤  m2 < m2

⇤ +
1
l2

where m2
⇤ = � (D�1)2

4l2 (BF mass)
I

D � 1
2

� �� >
D � 3

2
D � 1

2
 �+ <

D + 1
2

Switching on nonlinear interactions and backreaction
Now, consider the following expansion for the self-interaction
potential around � = 0

U(�) =
1
2

m2�2 + C3�
3 + C4�

4 + C5�
5 + O(�6) .

For the static, spherically symmetric case, the asymptotic behavior of
the scalar field and the deviation from AdS metric hµ⌫ ⌘ gµ⌫ � gAdS

µ⌫

are [Henneaux, CM, Troncoso, Zanelli, 2007]

� = ar��� + �1a2r�2�� + �2a3r�3�� + �3a4r�4��
| {z }

nonlinear terms in a

+br��+ + · · ·

and

hrr = r�2(

nonlinear terms in az }| {
↵1a2r�2�� + · · ·+ ↵4a5r�5��) +

frr

r5 + · · ·

htt =
ftt
r
+ · · ·

where the final dots (· · ·) indicate subleading terms that do not
contribute to the mass.
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Logarithmic branches

I In general, for any dimension, logarithmic branches are present
when �+

��
= n is a positive integer. In this case the scalar field

acquires a logarithmic branch of the form

� = ar��� + · · ·+ h anr��+ log(r) + br��+ + · · · ,

where h is a fixed constant for each case.
The critical values of the spacetime dimensions and mass for
which this phenomenon occurs are [Henneaux, CM, Troncoso, Zanelli, 2007]

I D � 4, m2 = m2
⇤, n = 1,

I D = 4, 5, 6, m2 = m2
⇤ +

(D�1)2

36l2 , (n = 2),
I D = 4, m2 = m2

⇤ +
9

16 l2 , (n = 3),
I D = 4, m2 = m2

⇤ +
81

100l2 , (n = 4).

Hamiltonian formalism for computing the mass.

I The canonical generator of an asymptotic symmetry defined by
the vector ⇠ = (⇠?, ⇠i) is a linear combination of the constraints
H?,Hi plus a surface term Q[⇠]

H[⇠] =

Z
dD�1x

⇣
⇠?H? + ⇠iHi

⌘
+ Q[⇠].

I The surface term Q[⇠] is chosen so that the generator has
well-defined functional derivatives [Regge, Teitelboim,1974].
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I �Q[⇠] = �QG(⇠) + �Q�(⇠), where

�QG(⇠) =
1

2

Z
dD�2SlGijkl(⇠?�gij;k � ⇠?,k�gij)

+

Z
dD�2Sl(2⇠k�⇡

kl + (2⇠k⇡jl � ⇠l⇡jk)�gjk),

�Q�(⇠) = �
Z

dD�2Sl(⇠
?g1/2glj@j���+ ⇠l⇡���),

I gij denotes the components of the (D � 1)-spatial metric, ⇡ij are
their conjugate momenta, and ⇡� is the momentum associated to
�. We have also defined Gijkl ⌘ 1

2 g1/2(gikgjl + gilgjk � 2gijgkl).
I In the static case all the momenta vanish, and there is a

symmetry generated by the vector @t.
I The mass M is the conserved charge associated with this

symmetry.

Mass

I Therefore,

�M = �Q(@t) = �QG(@t) + �Q�(@t).

I The variation of the mass �M requires asymptotic boundary
conditions to be integrated.

I As is expected from physical grounds, the mass is well defined
after imposing suitable boundary conditions.
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m2 = �2l�2 in 4D
I This value of the scalar field mass is relevant for gauged

supergravities in four dimensions. Also, there exist analytic hairy
black hole solutions [CM R. Troncoso and J. Zanelli, 2004, A. Aceña, A. Anabalón, D. Astefanesei

and R. Mann,2014, A. Anabalón and D. Astefanesei, 2014].
I In absence of a cubic term in the self-interaction potential, the

fall-off of the scalar field is

� =
a
r
+

b
r2 + O(r�3),

I For static metrics that match (locally) AdS at infinity, the
relevant fall-off is

�gtt =
r2

l2
+ k � µ

r
+ O(r�2),

gmn = r2hmn,

grr =
l2

r2 +
Al4

r4 +
l5B
r5 + O(r�6),

I hmn(xm) is the two-dimensional metric associated to the ‘angular
section’ ⌃k (volume V(⌃), curvature 2k).

We obtain the gravitational contribution

�MG =
V(⌃)


[r�A + l�B + O(1/r)],

and scalar contribution

�M� =
V(⌃)

l2
[ra�a + a�b + 2b�a + O(1/r)].

�M =
V(⌃)

l2
[r(l2�A + a�a) + l3�B + (a�b + 2b�a) + O(1/r)]

The above expression for �M is meaningful only in the case of
vanishing constraints. For the asymptotic conditions considered here,
H? = 0 implies

k + A


+
a2

2l2
= 0.

In this way, the divergent piece is removed and the asymptotic
variation of the mass takes a finite value

�M =
V(⌃)

l2
[l3�B + (a�b + 2b�a)].
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To integrate the variations we need to impose boundary conditions on
the scalar field. If we define b = dW(a)/da, the mass of the
spacetime is given by 1

M = V(⌃)


lB


+
1
l2

✓
a

dW(a)
da

+ W(a)
◆�

.

I At this point, it is important to emphasize that the coefficient of
the first subleading term, µ, in the expansion of gtt does not
appear explicitly in the expression of the mass.

I In fact, in static spacetimes gtt is the lapse function which is not a
canonical variable and consequently, does not appear either in
the constraints or in the surface terms. However, as we will see
shortly, once we use the dynamic equations of motion the
situation will change.

1[see also T. Hertog, G. Horowitz, 2005]

Inclusion of the dynamic field equations. Mass on-shell
Now, for a given solution with the required asymptotics, we have
additional information since not only the constraints are satisfied, but
also the equations of motion. The Et

t � Er
r combination of the

Einstein-scalar field equations, which is not a constraint, is
independent of the scalar field potential and yields

Et
t �Er

r =
2A + 2k + a2l�2

r2 +
�3µ+ 3Bl + 4abl�2

r3 +O(r�4) = 0.

The first term gives the same relation as the constraint H? = 0, but
the second one provides a relation containing µ and the parameters of
the asymptotic expansions of grr and the scalar field

Bl = µ� 4
3
abl�2.

M = V(⌃)


µ


+

1
l2

✓
W(a)� 1

3
a

dW(a)
da

◆�
.
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Analysis on the boundary conditions and their effect on the
mass and asymptotic symmetry

M = V(⌃)


µ


+

1
l2

✓
W(a)� 1

3
a

dW(a)
da

◆�
.

Therefore, there are only three situations when the mass reduces to
M = µV(⌃)�1:

I a = 0: this is the usual Dirichlet boundary condition and ensures
asymptotic AdS invariance;

I b = 0: this is the Neumann boundary condition and also ensures
asymptotic AdS invariance;

I b = Ca2: this boundary condition corresponds to multi-trace
deformations in the dual field theory [Witten, 2001] and is also
compatible with the asymptotic AdS symmetry [Amsel, Marolf,

2006],[Henneaux, CM, Troncoso, Zanelli, 2007].

Logarithmic branches
We are interested in a scalar field with the conformal mass
m2 = �2l�2. To obtain the logarithmic branch, a cubic term in the
asymptotic expansion of the scalar field potential is necessary [Henneaux,

CM, Troncoso, Zanelli, 2007]

V(�) = � 3
l2

� �2

l2
+ ��3 + O(�4)

so that the fall-off of the scalar field to be considered is

�(r) =
a
r
+

b
r2 � 3a2�l2

ln(r)
r2 + O(r�3),

and the one for grr is

grr =
l2

r2 +
l4A
r4 +

l5B
r5 +

l5C ln r
r5 + O


ln (r)2

r6

�

The Hamiltonian constraint H? = 0 implies

A = �a2

2l2
� k and C = 4�l4a3
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Now, we have

�MG =


�A


r +
l�C


ln r +
l�B


�
V(⌃)

and

�M� =


a�a
l2

r � 12�a2�a ln r +
a�b + 2b�a + 3a2l2��a

l2

�
V(⌃)

Both contributions contain linear and logarithmic divergences, which
are cancelled out by virtue of Hamiltonian constraint. Thus, we obtain
a finite expression for the variation of the mass,

�M =


l�B


+
a�b + 2b�a + 3a2l2��a

l2

�
V(⌃)

Again, we need a boundary condition, a functional relation between a
and b, in order to integrate �M. We consider the general relation
b = dW

da , so that the Hamiltonian mass is given by

M =


lB


+
1
l2

✓
a

dW
da

+ W + a3l2�
◆�

V(⌃)

B can be related with µ by using the Et
t � Er

r combination

B =
µ

l
� 2a

�
a2�l2 + 2b

�

3l3

Thus, the mass can be written as

M =


µ


+

1
l2

✓
W � 1

3
a

dW
da

+
1
3

a3l2�
◆�

V(⌃)

Therefore, the expression M = µ�k�1 is obtained only for a = 0, or
b = 0, or

W(a) = a3 ⇥C0 + l2� ln a
⇤

which correspond to AdS invariant boundary conditions [Henneaux, CM,

Troncoso, Zanelli, 2007].
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“Black holes and Thunderbolt Singularities with Lifshitz Scaling 

terms”

by Yosuke Misonoh

[JGRG25(2015)1b4]
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Y.Misonoh

Black holes and Thunderbolt Singularities  
with Lifshitz Scaling terms

based on YM and K.Maeda, Phys. Rev. D92, 084049(2015) [arXiv:1509.01378[gr-qc]]

Yosuke Misonoh (Waseda Univ.) 
collaborate with Kei-ichi Maeda (Waseda Univ.)

JGRG25@Kyoto Univ. (7 Dec. 2015)

Y.Misonoh

Introduction
• Horava-Lifshitz gravity :                                                                                  

• LV leads unusual dispersion relation : 

   

JGRG25@Kyoto Univ. (7 Dec. 2015)

(power-counting) renormalizable, Lorentz violating gravity 

Question : Can we construct BH without Lorentz invariance? 
                      Instantaneous mode c=∞ should be taken into account.

!2 = ak2 + bk2n cUV ⇠ kn�1 ! 1 n > 1for
It becomes instantaneous in UV limit

theory : classical Horava-Lifshitz (HL) gravity (LV theory, with UV correction)

ansatz : static, spherically symmetric and asymptotically flat spacetime

solutions : BH and a kind of singularity “thunderbolt”

What we done

(Hawking and Stewart, 1992)
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Y.Misonoh

Previous works : theory
• “Einstein-aether” (IR limit of HL gravity) 

• spacetime : preferred foliation via khronon 

JGRG25@Kyoto Univ. (7 Dec. 2015)

gravitational dynamical fields :       , aether        (timelike, fixed-norm, twistless)gµ⌫ uµ

S =
1

22

Z
d

4
x

p
�g

⇥
R� c13(r↵u�)(r�

u

↵)� c2(r↵u
↵)2 + c14u

↵
u

�(r↵u�)(r�u
�)
⇤

uµ := rµ'/
p

�(r↵')(r↵') : aether, ' : khronon 

The action : effective theory of Lorentz violating gravity 

Lorentz violation : breaking rotational symmetry in spacetime

“spacial” direction

“time” direction
'

Y.Misonoh

Previous works : universal horizon 
• Universal horizon : static limit for instantaneous particle with c=∞. 

Lorentz violating BH ⇔ solution with universal horizon 

• Static and spherical symmetric BH with universal horizon.                                                                                                          
(Barausse et al. 2011; Blas and Sibiryakov 2011; Berglund et al. 2012)

particle with c=∞

JGRG25@Kyoto Univ. (7 Dec. 2015)

(null)  
(superluminal)  Light cone angle
(instantaneous)  

8
><

>:

= 90�

> 90�

= 180�

 Local structure  global structure 

⇠ · ⇠ = 0

⇠ · u = 0

universal horizon

any particle cannot escape from UH even if c=∞

uµ / rµ'

⇠µ
:
t
i
m
e
l
i
k
e
K
i
l
l
i
n
g
v
e
c
t
o
r
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Y.Misonoh

Einstein-aether is a effective theory of LV gravity. 

 if it were exist HL gravity in UV, can we find BH?

our motivation 

JGRG25@Kyoto Univ. (7 Dec. 2015)

QG 
(HL?)

Effective theory 
of LV gravity

IR UV
GR and SM

 motivation 

HL gravity : “Einstein-aether” + up to sixth ”spacial” derivatives 

LIR := R� c13(r↵u�)(r�u↵)� c2(r · u)2 + c14(u̇
↵u̇↵)

S =
1

16⇡G

Z
d

4
x

p
�g(LIR + LUV)

where,                 is a 3-Ricci tensor and                         .

power-counting renormalizability of gravity

Rµ⌫ [g, u] u̇µ := u↵r↵u
µ

         is regarded as renormalization counter-termLUV

previous works our works

( # of possible terms is over 30 )LUV = LUV [Rµ⌫ , u̇
µ]

Y.Misonoh

our model

JGRG25@Kyoto Univ. (7 Dec. 2015)

LIR := R� c13(r↵u�)(r�u↵)� c2(r · u)2 + c14(u̇
↵u̇↵)

S =
1

16⇡G

Z
d

4
x

p
�g(LIR + LUV)

UV correction

LUV := �m�2
pl

⇥
�1(u̇↵u̇

↵)2 + �2R2
⇤

Theory motivated by HL : “Einstein-aether” + fourth ”spacial” derivatives 

(1)  For simplicity 
(2)  Modified dispersion relation of gravity

!2
G =

1

1� c13
k2 !2

S =
(c13 + c2)(2� c14)

c14(1� c13)(2 + c13 + 3c2)
k2 +

8(c13 + c2)�2

2 + c13 + 3c2

✓
k2

mpl

◆2

R2 term effect

• Reason why we choose above 

method

ansatz : ds2 = �T (r)dv2 + 2B(r)dvdr + r2d⌦2 , uµ = (a(r), b(r), 0, 0)

Numerical solutions in static and spherically symmetric spacetime with asymptotic flatness

LUV

scalar graviton becomes instantaneous if       term joinsR2
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Y.Misonoh

  

  

• BH with universal horizon can be found  

    when          includes               without      .   

    In this case dispersion relation of gravity is  

    not modified. 

• solution is dependent on two parameters : 

               (mass),       (aether distribution)     

• If we choose large     , aether field around 

    horizon is collapsed, which generates  

    physical singularity.

New solution : BH with UV correction

JGRG25@Kyoto Univ. (7 Dec. 2015)

: outgoing particle  
   with c=∞

'

M ↵

(u̇↵u̇↵)
2

↵

 Properties 

R2LUV

Black hole solution with regular universal horizon

Y.Misonoh

  

  

• This kind of solution can be found when 

           term is joined in          , which modify  

    the dispersion relation of scalar graviton.   

• Universal horizon always turns to be  

    physical singularity. Thus it is not BH. 

• This singularity has similar properties to   

    thunderbolt singularity. 

New solution : “Thunderbolt singularity”

JGRG25@Kyoto Univ. (7 Dec. 2015)

'

: outgoing particle  
   with c=∞

R2 LUV

 Properties 

Solution with singular universal horizon 
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Y.Misonoh

  

  

• This kind of solution can be found when 

           term is joined in          , which modify  
    the dispersion relation of scalar graviton.   

• Universal horizon always turns to be  
    physical singularity. Thus it is not BH. 

• Singular signal cannot escape outside, thus   

    it does not violate Cosmic Censorship. 

New solution : “Thunderbolt singularity”

JGRG25@Kyoto Univ. (7 Dec. 2015)

'

: outgoing particle  
   with c=∞

R2 LUV

 Properties 

Solution with singular universal horizon 

  (Hawking and Stewart,1992; Ishibashi and Hosoya,2002)

What is Thunderbolt singularity? 
• One of the final state of BH evaporation in 2 dim. quantum gravity.   

  

Reconsider our solution 

• If UV correction becomes dominant, universal horizon turns to be singular. 
• the BH singularity may be captured on the universal horizon.  

• Modification in gravitational dispersion relation may leads this singularity.

singular wave

BH remnant : disappear

t

x

- At the end, singularity spreads across spacelike or null surface. 
- “It hit you and wipes you out”, as it were, hitting with a thunderbolt.

Y.Misonoh

conclusion

JGRG25@Kyoto Univ. (7 Dec. 2015)

• There are about 30 possible terms left in         .
future works

LUV

• Although our thunderbolt solution does not violate Cosmic Censorship at 
background level,  it is unclear that it is also preserved even if perturbation is 
considered. 

• Black hole solution can be constructed including only               term as UV 
correction motivated by Horava-Lifshitz gravity.

results

• However,        correction term leads singular universal horizon, which means 
BH cannot exist if such a correction term is present.

• Horava-Lifshitz gravity may reproduce the property of quantum black holes.

• The solution with singular universal horizon has similar property to 
thunderbolt as a final state of BH evaporation in 2 dim. quantum gravity.

(u̇↵u̇↵)
2

R2
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“Monopole black holes in asymptotically AdS spacetime”

by Shoichiro Miyashita

[JGRG25(2015)1b5]
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Monopole black holes
in asymptotically AdS spacetime

Waseda U.

Shoichiro Miyashita

Kei-ichi Maeda

JGRG25 at Kyoto U.  2015/12/07

Introduction

Black hole uniqueness

“M,Q,J specify the BH solution uniquely”

in Einstein-Maxwell system,   correct

in Einstein-Yang-Mills system incorrect

⇒ Kerr-Newmann + non trivial (Non-abelian BH)

Extention to asymptotically AdS

colored BH[Bizon(1992)] ⇒ AdS colored BH[Winstanley, (1999)]

Stability unstable                            stable

Charge             M                                  M,Q

[Bizon(1992)]

JGRG25 at Kyoto U.  2015/12/07
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Introduction

Monopole BH : magnetically charged non-abelian BH 

in SO(3)EYMH system [Lee et, al 1992]

It exhibits various phase transitions

in asymptotically flat spacetime. [Tachizawa et al. 1995]

In this work,

we extend it to asymptotically AdS spacetime

★ BH uniqueness ?

★ effect of negative Λ ?

★ phase transition ? (★ Holography ?)

[Breitenlohner et. al 1992]

[Ortiz 1992]

JGRG25 at Kyoto U.  2015/12/07

Monopole BH

Monopole BH : ”Black Holes in Magnetic Monopole” 

Phase transition

・ monopole BH ⇔ RN BH

・ monopole BH ⇒ extreme RN BH

[Lee, Nair and Weinberg 1992]

Monopole BH RN BH

transition

t’ Hooft Polyakov monopole

・finite size ~ 1
𝑒𝑣

・inside → non-abelian
・outside → U(1)

JGRG25 at Kyoto U.  2015/12/07
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AdS monopole BH: setup

★action                                   ★ansatz
metric

matter fields (Hedgehog)

𝑒:coupling of Yang-Mills  𝑣:VEV of Higgs 

𝜆:coupling of Higgs JGRG25 at Kyoto U.  2015/12/07

AdS monopole BH: equation

Basic equations

JGRG25 at Kyoto U.  2015/12/07
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AdS monopole BH: solutions

radius

JGRG25 at Kyoto U.  2015/12/07

BH uniqueness

Not able to specify solution

uniquely with M (and Q) 

Uniqueness breaks down

even in AdS case

( 𝜆𝑒2 = 0.1, 𝐺𝑣 = 0.1, Λ
(𝑒𝑣)2 = −0.1 )

JGRG25 at Kyoto U.  2015/12/07
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BH thermodynamics: flat case (review)

First order phase transition( 𝜆𝑒2 ≲ 1)

Second order phase transition( 𝜆𝑒2 > 1)

Monopole BH

RN BH

Monopole BH

RN BH

[Tachizawa, Torii and Maeda 1995]

JGRG25 at Kyoto U.  2015/12/07

BH thermodynamics: flat case (review)

First order phase transition( 𝜆𝑒2 ≲ 1)

Monopole BH

RN BH

[Tachizawa, Torii and Maeda 1995]

JGRG25 at Kyoto U.  2015/12/07
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BH thermodynamics: AdS case

The cusp structure gets smaller in AdS

Let’s see the Λ dependence of the entropy discontinuity 

JGRG25 at Kyoto U.  2015/12/07

Parameter dependence of cusp structure

There exist critical value
Λ𝑐𝑟
𝑒𝑣 2 𝐺𝑣, 𝜆𝑒2

where 1st⇒2nd ordered

The condition for 1st ordered

・in asymptotically flat

・in asymptotically AdS

BH thermodynamics: AdS case

AdS Monopole BH

RN AdS BH
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Other type of 1st order phase transition

When |Λ| is small enough, phase transition is first ordered,
and when not, phase transition is second ordered.

However, when |Λ| is sufficiently large,

“AdS monopole BH ⇒ extreme RN AdS BH” occurs.

AdS Monopole BH

RN AdS BH

JGRG25 at Kyoto U.  2015/12/07

Stability of AdS monopole BH

“entropical stability”~”solution’s stability”

AdS monopole BH is

entropically stable.

⇒ AdS monopole BH solution
may be stable…

JGRG25 at Kyoto U.  2015/12/07
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Summary

★We show the AdS monopole BH solution numerically.

★ As in asymptotically flat case,
BH uniqueness is violated some parameter region.

★ The second or first order phase transition occurs. 

The type of transition depends on Λ
★ From entropy consideration,

AdS monopole BH solution may be stable.

☆Hawking-Page phase transition

JGRG25 at Kyoto U.  2015/12/07
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“Turbulent strings in AdS/CFT”

by Keiju Murata

[JGRG25(2015)1b6]
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Turbulent strings in AdS/CFT 

Keio University 
Keiju Murata 

With T. Ishii �

"Turbulent strings in AdS/CFT“, arXiv:1504.02190 [hep-th] 

Non-equilibrium process in 
AdS/CFT�

Quantum field 
theories 

Gravity theories�

Non-equilibrium process�

AdS/CFT�

In this talk,�

Too difficult… Tractable! �

qq̄non-equilibrium process in           pair in N=4 SYM�
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Dynamics of quark-antiquark 
pair in AdS/CFT�

quark and antiquark pair = fundamental string in AdS�
Maldacena,98 
Rey&Yee,98�

A
dS

 b
ou

nd
ar

y�

F-string�

L�

z�

x1�

x2,x3�

We give a perturbation on the string 
and study its non-linear dynamics 
numerically.�

q-q̄Non-equilibrium physics of             pair.�

z = z0

q

q̄

S = �
�

d2�
�

�h

ds2 =
1

z2
[�dt2 + dz2 + d�x2]

Longitudinal “quench” of 
quark position�

3d space in the boundary�

The string motion along (x2, x3)-directions is not induced by this quench.�

The string is restricted in (2+1)-dimensions.�

�

�t

(t,z,x1)�
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Numerical solution for 
longitudinal quench�

x1�

z�

Cusp formation.�

snapshots�
� = 0.03, �t = 2L

�S[xq,xq̄ ]
�xq

Forces acting on quarks =�

String turbulence�

Energy flow from large to small scales. �

The spectrum obeys power law.� Weak turbulence.�

We decompose the non-linear solution 
into normal modes in the linear theory.�

Eigen function in 
linear theory�

Energy contribution from the n-th mode.�

z�

x�

Z(t, x) =
�

n cn(t)en(x)

�n = ċ2
n + �2

nc2
n

� = 0.01, �t = 2L

Bizon&Rostworowski, 11�
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Transverse circular quench�

The string motion is in (4+1)-dimensions.�

3d space in the boundary�

(t, z, x1, x2, x3)�

Numerical solution for 
transverse circular quench�

We did not find any cusp 
formations.�

x3�

x2�
x1�

x1�
x2�

z� z�

x1�
x3�

Dynamics of the “flux tube” in N=4 SYM.�
� = 0.02, �t = 2L
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Direct and inverse energy 
cascade�

Although we did not find cusp 
formations, we found the weak 
turbulence.�

We also found inverse energy 
cascade after the direct one.�

Field theory interpretation of 
the string turbulence�

x�

z� n-th nomal mode�

n-th excited state of a fluxtube 
in the boundary theory.�

excited state �

The weight of the highly excited state increases as a function of time.�

The quark-antiquark pair tends to be observed as a heavy state.�

|�� = c0|0� + c1|1� + c2|2� + · · ·
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Summary and future work�
We studied non-linear dynamics of the string in AdS5.�

cusp formations for (2+1)- or (3+1)-dimensional case�

energy flow from large to small scales = weak turbulence �

The quark-antiquark pair tends to be observed as a heavy state.�

Future works�

Confined geometry.  
(AdS soliton or Witten geometry).�

Finite temperature.�

� � 1 � � 0.01Strong quench              . (in this work,                )�
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“Disordered Horizons”

by Sean Hartnoll (invited)

[JGRG25(2015)I02]
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Disordered Horizons

Sean Hartnoll (Stanford)


JGRG25 — YITP, 2015


Based on:  1402.0872 with J. Santos,

                	 	 	 	 	  1504.03324 with D. Ramirez and J. Santos,

	 	 	 	 	 	 	  1508.04435 with D. Ramirez and J. Santos.

Motivation: disordered QFTs

• I will mainly talk about some new types of black holes in 
Anti-de Sitter spacetime. 

• I would like to convince you these black holes have 
interesting properties that we have not fully understood. 

• Before, I will give a brief dual field theory motivation. 

• The motivation has to do with the description of 
disordered fixed points, which are an important but also 
difficult topic in condensed matter physics.
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Motivation: disordered QFTs

• Let us first remember a basic fact from QFT. 

• A perturbation of a scale-invariant theory by an operator  
 
 
is relevant or irrelevant, depending on the dimension      . 
Relevant if the dimension is < d (spacetime dimension). 

• Relevant operators have strong effects on low energies 
and long wavelengths. For example, they can cause 
confinement or superconductivity.

�O

L ! L+ hO(x)

Motivation: disordered QFTs

• Via the AdS/CFT correspondence, this QFT perturbation 
can be mapped into a gravitational problem. 

• The operator     corresponds to a scalar field    in AdS. 

• The scaling dimension determines the mass 

• Near the AdS boundary (r → 0), the scalar behaves as  

• The effect of the boundary value             grows towards 
the interior (r → ∞) precisely if the operator is relevant.

O �

L2
AdSm

2
� = �O(�O � d)

�(x, r) = �

(0)(x) rd��O + · · ·
�

(0)(x)
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Motivation: disordered QFTs

hOφ

Boundary of AdS

Interior of AdS

Scalar field 
in AdS

Boundary value h 
of scalar field 

=

Source for the

dual operator

Motivation: disordered QFTs

• Spatially homogeneous couplings:  
  Option 1. Geometry ends (gap). 
  Option 2. Geometry flows to a new AdS (IR fixed point). 

• In condensed matter it is often important to consider the 
effect of quenched disordered couplings: 

• Here V(x) is drawn from some random distribution (let’s 
say, Gaussian + short range, for simplicity). 

• The Harris criterion says this coupling is relevant if:

L ! L+ V (x)O(x, t)

� <
d+ 1

2

                                                                                                                    130



Motivation: disordered QFTs

0 100 200 300 400 500 600

-4

-2

0

2

4

x

V

0 100 200 300 400 500 600
-1.0

-0.5

0.0

0.5

1.0

x

Φ ℋ

Disordered  
source

Disordered 
IR fixed point

RG flow 
→ Solve Einstein 
     equations

• This talk will be about the search for disordered fixed 
points in AdS. We will find spacetimes that look like:

Motivation: disordered QFTs

• In homogeneous cases, fixed points in the interior of the 
spacetime (at zero temperature), are characterized by an 
emergent scaling invariance of an extremal ‘horizon’: 
 

• z=1: Poincare AdS horizon 
z=∞: extremal Reissner-Nordstrom horizon 
1<z<∞: Lifshitz ‘horizon’ 

• What does a disordered fixed point look like?

ds

2 ⇠ �dt

2

r

2
+

dr

2

r

2
+

d~x

2

r

2/z
as r ! 1
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Disordered spacetimes

• We will be finding solutions to the following theory:  
 

• It is a theorem that Gaussian disorder can be modeled 
with a sum over cosines with random phases:

S =

Z
d

d+1
x

p
�g

✓
R+

d(d� 1)

L

2
� 2 (r�)2 � 2↵�2

◆

V (x) = V

N�1X

n=1

2

p
�k cos (n�k x+ �n)

Short  
distance 
cutoff

Long 
distance 
cutoff

Disorder 
strength

Random phase, 
uniformly drawn 
from [0,2π]

�k =
kUV

N

Disordered spacetimes: zero T [Hartnoll-Santos ’14]

• Perturbative analytical and numerical study of 1+1 and 
2+1 boundary dimensions. 

• Constructed the solutions then looked at the metric 
averaged over boundary space dimensions. I.e. take  
 
 
 
and then 

• Perturbatively we write:

ds

2 =
L

2

r

2

�
�A(x, r)dt2 + dr

2 +B(x, r)dx2
�
, � = �(x, r)

A(r) = hA(x, r)i
disorder

, etc.

A(x, r) = 1 + V

2
A(2)(x, r) + · · · , etc.
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Disordered spacetimes: zero T

• Perturbation theory shows a log divergence: 
                                                     [First found by Adams and Yaida] 

• Naively, suggests a resummation to get: 

• Perturbatively we found (in 1+1 boundary)

A(2)(r) ⇠ #log(r) + · · · as r ! 1

A(r) ⇠ rV
2
# ⌘ r2(1�z) as r ! 1

z = 1 +

1

2

V
2
+

log 2

2

V
4
+ · · ·

• Start with the case of marginal disorder.

Disordered spacetimes: zero T
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• Numerical confirmation:
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Disordered spacetimes: finite T [Hartnoll-Ramirez-Santos ’15a]

• Wanted: a more physical observable that shows scaling. 

• The entropy is an integral over the horizon and therefore 
self-averaged. Expect, as T → 0: 

• In perturbation theory, same z appears. Numerically:

s ⇠ T (d�1)/z

0.02 0.04 0.06 0.08 0.10

0.6

0.7

0.8

0.9

1.0

T
k0

d log �
d logT

0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

1.90

1.92

1.94

1.96

1.98

2.00

T
k0

d log �
d logT

Disordered spacetimes: finite T

• The horizon:

• It is important to take the IR cutoff on the disorder to be  
at an energy scale below the horizon temperature.
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Relevant disorder [Hartnoll-Ramirez-Santos ’15b]

• So far: evidence that marginal disorder leads to an 
emergent disordered fixed point characterized by z > 1. 

• Geometrized by a highly inhomogeneous ‘disordered 
horizon’ for which averaged quantities show scaling. 

• Would like to understand the horizon more intrinsically. 

• Now consider relevant disorder. The disorder grows with 
a power of r away from the boundary. Perturbation theory 
not useful (no plausible resummation). Do numerics for 
1+1 boundary with a particular choice of mass.

Relevant disorder

0.000 0.005 0.010 0.015 0.020

0.86

0.88

0.90

0.92

0.94

T

kUV

T

s

ds

dT

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.82

0.84

0.86

0.88

0.90

0.92

0.94

T

kUV

T

s

ds

dT

• Oscillations at low temperatures! Fits to:
T

s

ds

dT
= T �

✓
b0 + b1 sin


� log

T0

T

�◆

• Characteristic of discrete scale invariance. Corresponds to 
complex scaling exponent: Tγ+iδ. Find δ ≈ 4.5 in both cases.
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Relevant disorder

• Discrete scale invariance is often associated with 
instabilities (e.g. field below BF bound in AdS). Related to 
fact that CFT operators have real scaling exponents. 

• Disordered fixed points are not CFTs. Perturbative 
computations in condensed matter also found discrete 
scale invariance at disordered fixed points. It was 
believed to be an artifact of certain approximations in 
those computations. Our results suggest it is real. 

• Again, would like to understand these solutions better.

Thermal conductivity [Hartnoll-Ramirez-Santos ’15b]

• Finally, there is another very natural observable to obtain. 
The thermal conductivity of the dual field theory: 

• In the spacetime, it is the rate at which the horizon 
absorbs certain gravitational radiation. It is given by

~Q = �rT

 =
⇡

2
T

2

2G
N

"
1

L

x

Z
dx

(@
x

�(r+, x))
2

L

p
g

xx

(r+, x)

#�1

• Nice quantity because it is infinite if the horizon is  
homogeneous (because momentum does not relax).  
Direct probe of disorder.

[cf. Donos- 
Gauntlett]
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Thermal conductivity

0.005 0.010 0.050 0.100 0.500 1

1000

5000

1×104

5×104

1×105

5×105

1×106

T

kUV

GN
L

��

� =
h2

sT
lim
!!0

Z
ddk

(2⇡)d
k2

d

ImGR
OO(!, k)
!

.

 ⇠ const. as T ! 0

Analytic perturbative 
result using ‘memory matrix’

[SAH-Herzog ’08]

• Weak disorder, marginal case V = 0.01.

 ⇠ 1

V
2

Thermal conductivity

0.00 0.02 0.04 0.06 0.08

0.46

0.48

0.50

0.52

0.54

0.56

T

kUV

GN
L

��

• Stronger disorder, marginal case. V = 1.

• See oscillations on top of constant behavior. Evidence  
for discrete scale invariance in the marginal case too!
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Thermal conductivity

0.01 0.02 0.03 0.04

0.3

0.4

0.5

0.6

0.7

0.8

T

kUV

GN
L

��

Both well fit by:

 ⇡ T 0.3
sin

✓
4.5 log

T0

T

◆

V=0.5

Discrete scale invariance! 
    ➝ Complex scaling 
         exponent

V=1

• Relevant disorder.

Summary

• AdS spacetime with a disordered source on the boundary 
leads to new classes of horizons. 

• These horizons are inhomogeneous. Want to understand 
them. Looked at three observables:  
   (i) Disorder-averaged metric.  
   (ii) Entropy as a function of temperature. 
   (iii) Thermal conductivity as a function of temperature. 

• All show evidence for an emergent scaling. 

• Needed: better analytical techniques to get a handle on 
the near horizon geometry of these solutions.
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orientation and sky position, and distribute the mergers assum-
ing a constant comoving volume density for DL > 200 Mpc
or using a B-band luminosity galaxy catalog (Census of Local
Universe; Kasliwal 2011) for DL < 200 Mpc.

Next, we select the NS mergers that are detectable with only
the two LIGO interferometers at positions xH and xL (the
subscripts denote the Hanford and Livingston sites, hereafter
LIGO-H and LIGO-L). GW detection and source characteri-
zation methods use optimum matched filtering between GW
predictions and simulated detector streams (see Section 3 of
Paper I for details). The measured GW strain hM at a particular
detector xH or xL is the sum of the two GW polarizations, h+ and
h×, each weighted by their antenna response functions F+,[H/L]
and F×,[H/L], and multiplied by a time-of-flight correction. The
time delay of the signal between the detector and the coordinate
origin is given by τ[H/L] ∼ −n̂ · x[H/L]/c, where c is the speed
of light. h+ and h× are functions of DL, cos ι, masses, and the
GW frequency f. The antenna responses, F+,[H/L] and F×,[H/L],
depend on n̂ and ψ . Based on triangulation with three or more
interferometers, the time delay factor and phase effects domi-
nate over amplitude when reconstructing sky location errors for
the majority of sources (Nissanke et al. 2011; Veitch et al. 2012;
Grover et al. 2014; Sidery et al. 2014; Rodriguez et al. 2014).

For LIGO-H and LIGO-L, we assume two anticipated noise
curves at mid- and full-sensitivity (the upper red and black lines
in Figure 1 of Aasi et al. 2013a) and idealized noise. We define a
binary to be GW detectable if its expected signal-to-noise ratio
(S/N) at each detector is >6.5 and its expected network S/N
(the rms of the individual S/Ns) >12 (Aasi et al. 2013a).

To infer the binary’s sky position, we explicitly map out
the full nine-dimensional posterior probability density function
(PDF) using MCMC methods (see Section 3 of Paper I and
Nissanke et al. 2010) and derive two-dimensional PDFs in
(cos θ , φ). We took particular care to start each MCMC chain at
random all sky positions and polarizations before marginalizing
over the remaining seven-dimensional parameter space.

Finally, to better understand our MCMC derived measures,
we also implement two toy models using amplitude-only GW
waveforms. The first model incorporates only time-of-arrival
information, whereas the second incorporates a combination
of time-of-arrival and the detector antenna responses. Our sec-
ond toy model assumes a six-dimensional GW waveform which
incorporates time-of-arrival information weighted by an am-
plitude term of the form: AF ∼ [F+(n̂,ψ)(1 + cos2 ι)/DL +
F×(n̂,ψ)(−2 cos ι/DL)]. By simulating hundreds of noise real-
izations, we map out the likelihood function for (cos θ,φ) for
randomly orientated and located binaries on the sky at different
S/Ns[H/L].

3. GW RESULTS: DISTANCE, LOCALIZATION
ARCS, AND SKY SENSITIVITY

In Figure 1(a), we show the cumulative distance distributions
of NS mergers detectable using only LIGO-H and LIGO-L at
full sensitivity. As expected, the distance distribution of mergers
detected by Net2 is similar to those detected with Net3 and
Net5 in Section 2 of Paper I. At mid-sensitivity, the distance
distribution is scaled down by a factor of ∼0.6.

In Figure 1(b), we show the cumulative histogram of sky
localizations at 95% confidence regions (c.r.) for Net2 and
compare to Net3 and Net5 (Section 2 of Paper I). The median
localization is 250 deg2 compared with 17 deg2 in Net3. As
in Paper I, we expect NS black-hole (BH) binaries to show a
distribution similar to NS–NS. At mid-sensitivity, we expect the
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(b) NS-NS mergers: Sky errors

Figure 1. Cumulative distribution in luminosity distance (a) and 95% confidence
sky error (b) of NS–NS mergers. Red lines denote a network of two GW
interferometers. Gray lines denote Net3 and Net5 as presented in Paper I. We
require an expected network S/N > 12 and normalize to each specific network.
(A color version of this figure is available in the online journal.)

specific distribution in sky localizations to be similar to those at
full sensitivity because the majority of mergers will be detected
at the S/N threshold (distribution not shown here due to small
number of detections).

In Figure 2, we show the localization shapes, orientation,
and sky position of detected mergers at full sensitivity. Using
only time of arrival of signals at LIGO-H and LIGO-L, sky
localization estimates have so far predicted annular error rings
for non-spinning mergers of several thousand deg2 (Aasi et al.
2013a). Instead, we find that inclusion of F+(n̂,ψ) and F×(n̂,ψ)
in the GW waveform’s amplitude and phase information appears
to significantly improve localization errors to arcs comprising
several hundred deg2. For Net3–5, we found that degeneracies
between parameters result in non-contiguous areas for a handful
of mergers (e.g., Nissanke et al. 2011). Indeed, for a single
spinning NS–BH merger using two initial LIGO sensitivities,
Raymond et al. (2009) generated a localization arc by including
the BH’s spin.

The quadrupolar antenna patterns of LIGO-H and LIGO-L
are 89% aligned. Figure 2 shows that Net2 have significantly
reduced sensitivity in two out of four sky quadrants for sources
arriving in the plane of the interferometer arms. In contrast to
Net3–5, we do not find a strong correlation between the DL
and sky error as a result of the two-quadrant sky sensitivity.
We find that two binaries at the same distance can have
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with specific stellar populations). Because merger counterparts
are predicted to be faint, obtaining a spectroscopic redshift
is challenging (cf. Rowlinson et al. 2010), in which case
spectroscopy of the host galaxy is the most promising means
of obtaining the event redshift.

It is important to distinguish two general strategies for con-
necting EM and GW events. One approach is to search for a
GW signal following an EM trigger, either in real time or at
a post-processing stage (e.g., Finn et al. 1999; Mohanty et al.
2004). This is particularly promising for counterparts predicted
to occur in temporal coincidence with the GW chirp, such as
short-duration gamma-ray bursts (SGRBs). Unfortunately, most
other promising counterparts (none of which have yet been
independently identified) occur hours to months after coales-
cence.6 Thus, the predicted arrival time of the GW signal will
remain uncertain, in which case the additional sensitivity gained
from this information is significantly reduced. For instance, if
the time of merger is known only to within an uncertainty of
∼ hours (weeks), as we will show is the case for optical (radio)
counterparts, then the number of trial GW templates that must
be searched is larger by a factor ∼104–106 than if the merger
time is known to within seconds, as in the case of SGRBs.

A second approach, which is the primary focus of this paper,
is EM follow-up of GW triggers. A potential advantage in this
case is that counterpart searches are restricted to the nearby
universe, as determined by the ALIGO/Virgo sensitivity range
(redshift z ! 0.05–0.1). On the other hand, the large error
regions are a significant challenge, which are estimated to be
tens of square degrees even for optimistic configurations of GW
detectors (e.g., Gürsel & Tinto 1989; Fairhurst 2009; Wen &
Chen 2010; Nissanke et al. 2011). Although it has been argued
that this difficulty may be alleviated if the search is restricted
to galaxies within 200 Mpc (Nuttall & Sutton 2010), we stress
that the number of galaxies with L " 0.1 L∗ (typical of SGRB
host galaxies; Berger 2009, 2011) within an expected GW error
region is ∼400, large enough to negate this advantage for most
search strategies. In principle the number of candidate galaxies
could be reduced if the distance can be constrained from the
GW signal; however, distance estimates for individual events
are rather uncertain, especially at that low of S/Ns that will
characterize most detections (Nissanke et al. 2010). Moreover,
current galaxy catalogs are incomplete within the ALIGO/Virgo
volume, especially at lower luminosities. Finally, some mergers
may also occur outside of their host galaxies (Berger 2010;
Kelley et al. 2010). Although restricting counterpart searches to
nearby galaxies is unlikely to reduce the number of telescope
pointings necessary in follow-up searches, it nevertheless can
substantially reduce the effective sky region to be searched,
thereby allowing for more effective vetoes of false positive
events (Kulkarni & Kasliwal 2009).

At the present there are no optical or radio facilities that can
provide all-sky coverage at a cadence and depth matched to
the expected light curves of EM counterparts. As we show in
this paper, even the Large Synoptic Survey Telescope (LSST),
with a planned all-sky cadence of four days and a depth of
r ≈ 24.7 mag, is unlikely to effectively capture the range of
expected EM counterparts. Thus, targeted follow-up of GW

6 Predicted EM counterparts that may instead precede the GW signal include
emission powered by the magnetosphere of the NS (e.g., Hansen & Lyutikov
2001; McWilliams & Levin 2011; Lyutikov 2011a, 2011b), or cracking of the
NS crust due to tidal interactions (e.g., Troja et al. 2010; Tsang et al. 2011),
during the final inspiral. However, given the current uncertainties in these
models, we do not discuss them further.
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Figure 1. Summary of potential electromagnetic counterparts of NS–NS/
NS–BH mergers discussed in this paper, as a function of the observer angle,
θobs. Following the merger a centrifugally supported disk (blue) remains around
the central compact object (usually a BH). Rapid accretion lasting !1 s
powers a collimated relativistic jet, which produces a short-duration gamma-
ray burst (Section 2). Due to relativistic beaming, the gamma-ray emission
is restricted to observers with θobs ! θj , the half-opening angle of the jet.
Non-thermal afterglow emission results from the interaction of the jet with
the surrounding circumburst medium (pink). Optical afterglow emission is
observable on timescales up to ∼ days–weeks by observers with viewing angles
of θobs ! 2θj (Section 3.1). Radio afterglow emission is observable from all
viewing angles (isotropic) once the jet decelerates to mildly relativistic speeds
on a timescale of weeks–months, and can also be produced on timescales of
years from sub-relativistic ejecta (Section 3.2). Short-lived isotropic optical
emission lasting ∼few days (kilonova; yellow) can also accompany the merger,
powered by the radioactive decay of heavy elements synthesized in the ejecta
(Section 4).
(A color version of this figure is available in the online journal.)

error regions is required, whether the aim is to detect optical
or radio counterparts. Even with this approach, the follow-
up observations will still require large field-of-view (FOV)
telescopes to cover tens of square degrees; targeted observations
of galaxies are unlikely to substantially reduce the large amount
of time to scan the full error region.

Our investigation of EM counterparts is organized as follows.
We begin by comparing various types of EM counterparts, each
illustrated by the schematic diagram in Figure 1. The first is an
SGRB, powered by accretion following the merger (Section 2).
Even if no SGRB is produced or detected, the merger may still
be accompanied by relativistic ejecta, which will power non-
thermal afterglow emission as it interacts with the surrounding
medium. In Section 3 we explore the properties of such “or-
phan afterglows” from bursts with jets nearly aligned toward
Earth (optical afterglows; Section 3.1) and for larger viewing
angles (late radio afterglows; Section 3.2). We constrain our
models using the existing observations of SGRB afterglows,
coupled with off-axis afterglow models. We also provide a re-
alistic assessment of the required observing time and achiev-
able depths in the optical and radio bands. In Section 4 we
consider isotropic optical transients powered by the radioac-
tive decay of heavy elements synthesized in the ejecta (referred
to here as “kilonovae,” since their peak luminosities are pre-
dicted to be roughly one thousand times brighter than those
of standard novae). In Section 5 we compare and contrast the
potential counterparts in the context of our four Cardinal Virtues.
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Fig. 4.— Final nuclear abundances for selected trajectories (top;
Ye = 0.09, 0.14, 0.19, 0.24, 0.34, and 0.44) and that mass-averaged
(bottom; compared with the solar r-process abundances).

abundances by weighting the final yields for the repre-
sentative trajectories with their Ye mass fractions (Fig-
ure 3). We find a remarkable agreement of our result
with the solar r-process abundance distribution over the
full-A range of ∼ 90–240. This striking result, differ-
ing from the previous works exhibiting production of
A > 130 nuclei only, is a consequence of the wide Ye
distribution predicted from our full-GR merger simula-
tion with neutrino effects taken into account. Note also
that fission plays only a subdominant role for the fi-
nal nucleosynthetic abundances. The second (A ∼ 130)
and rare-earth-element (A ∼ 160) peak abundances are
dominated by direct production from the trajectories of
Ye ∼ 0.2. Our result reasonably reproduces the solar-like
abundance ratio between the second (A ∼ 130) and third
(A ∼ 195) peaks as well, which is difficult to explain by
fission recycling.
Given that the model is representative of NS-NS merg-

ers, our result gives an important implication; the dy-
namical component of NS-NS merger ejecta can be the
dominant origin of the Galactic r-process nuclei. Other
contributions from, e.g., the BH-torus wind after col-
lapse of HMNSs (Surman et al. 2008; Wanajo & Janka
2012; Fernández & Metzger 2013), as invoked in the pre-
vious studies to account for the (solar-like) r-process uni-
versality, may not be needed. The amount of the en-
tirely r-processed ejecta, Mej ≈ 0.01M⊙, with present
estimates of the Galactic event rate, a few 10−5 yr−1

(e.g., Dominik et al. 2012), is also compatible with

the mass of the Galactic r-process abundances (e.g.,
Wanajo & Janka 2012).

4. RADIOACTIVE HEATING

The r-processing ends a few 100 ms after the onset
of merger. The subsequent abundance changes by β-
decay, fission, and α-decay are followed up to 100 days
after the merging; the resulting radioactive heating is rel-
evant for kilonova emission. Figure 5 displays the tempo-
ral evolutions of the heating rates for selected trajecto-
ries (top-left) and those mass-averaged (top-right). For
a comparison purpose, the heating rate for the nuclear
abundances with the solar r-process pattern (q̇solar-r), β-
decaying back from the initial composition at neutron-
separation energies of 2 MeV (A ≥ 90, the same as that
used in Hotokezaka et al. 2013a; Tanaka et al. 2014), is
also shown by a black-solid line in each panel. The short-
dashed line indicates an analytical approximation defined
by q̇analytic ≡ 2× 1010 t−1.3 (in units of erg g−1 s−1; t is
time in day, see, e.g., Metzger et al. 2010). Lower panels
are the same as the upper panels, but for those relative
to q̇analytic.
Overall, each curve reasonably follows q̇analytic by ∼

1 day. After this time, the heating is dominated by
a few radioactivities and becomes highly dependent on
Ye. Contributions from the ejecta of Ye > 0.3 are gen-
erally unimportant after ∼ 1 day. We find that the
heating for Ye = 0.34 turns to be significant after a few
10 days because of the β-decays from 85Kr (half-life of
T1/2 = 10.8 yr; see Figure 4, bottom, for its large abun-
dance), 89Sr (T1/2 = 50.5 d), and 103Ru (T1/2 = 39.2 d).
Heating rates for Ye = 0.19 and 0.24, whose abun-
dances are dominated by the second peak nuclei, are
found to be in good agreement with q̇solar-r. This is due
to a predominance of β-decay heating from the second
peak abundances, e.g., 123Sn (T1/2 = 129 d) and 125Sn
(T1/2 = 9.64 d) around a few 10 days.
Our result shows that the heating rate for the lowest Ye

( = 0.09) is the greatest after 1 day (Figure 5, left panels).
The values are larger than the previous results (with Ye ∼

0.02–0.04 in Goriely et al. 2011; Rosswog et al. 2014) by
a factor of a few. In our case, the radioactive heating is
dominated by the spontaneous fissions of 254Cf, 259Fm
and 262Fm. It should be noted, however, the heating
from spontaneous fission is highly uncertain because of
the many unknown half-lives and decay modes of nuclides
reaching to this quasi-stable region (A ∼ 250–260 with
T1/2 of days to years). In fact, tests with another set
of theoretical estimates show a few times smaller rates
after ∼ 1 day (as a result of diminishing contributions
from 259Fm and 262Fm), being similar to the previous
works. It appears, therefore, difficult to obtain reliable
heating rates with currently available nuclear data when
fission plays a dominant role.
In our result the total heating rate is dominated by

β-decays all the times (Figure 5, right panels) because
of the small ejecta amount of Ye < 0.15 (in which fis-
sion becomes important). The radioactive heating after
∼ 1 day is mostly due to the β-decays from a small num-
ber of species with precisely measured half-lives. Uncer-
tainties in nuclear data are thus irrelevant. The mass-
averaged heating rate for t ∼ 1–10 days is smaller than
q̇analytic and q̇solar-r because of the overabundances near
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3 R A D I OAC T I V E H E AT I N G

3.1 Network calculations

In this section we present calculations of the radioactive heating of
the ejecta. We use a dynamical r-process network (Martı́nez-Pinedo
2008; Petermann et al. 2008) that includes neutron captures, pho-
todissociations, β-decays, α-decays and fission reactions. The latter
includes contributions from neutron-induced fission, β delayed fis-
sion and spontaneous fission. The neutron capture rates for nuclei
with Z ≤ 83 are obtained from the work of Rauscher & Thielemann
(2000) and are based on two different nuclear mass models: the
Finite Range Droplet Model (FRDM; Möller et al. 1995) and the
Quenched version of the Extended Thomas–Fermi with Strutinsky
Integral (ETFSI-Q) model (Pearson, Nayak & Goriely 1996). For
nuclei with Z > 83 the neutron capture rates and neutron-induced
fission rates are obtained from Panov et al. (2010). β-decay rates
including emission of up to three neutrons after β-decay are from
Möller, Pfeiffer & Kratz (2003). β-delayed fission and spontaneous
fission rates are determined as explained by Martı́nez-Pinedo et al.
(2007). Experimental rates for α and β decay have been obtained
from the NUDAT data base.1 Fission yields for all fission processes
are determined using the statistical code ABLA (Gaimard & Schmidt
1991; Benlliure et al. 1998). All heating is self-consistently added
to the entropy of the fluid following the procedure of Freiburghaus
et al. (1999). The change of temperature during the initial expan-
sion is determined using the Timmes equation of state (Timmes &
Arnett 1999), which is valid below the density ρ ∼ 3 × 1011 g cm−3

at which our calculation begins.
As in the r-process calculations performed by Freiburghaus et al.

(1999), we use a Lagrangian density ρ(t) taken from the NS–NS
merger simulations of Rosswog et al. (1999). In addition to ρ(t), the
initial temperature T , electron fraction Ye and seed nuclei properties
(Ā, Z̄) are specified for a given calculation. We assume an initial
temperature T = 6 × 109 K, although the subsequent r-process heat-
ing is not particularly sensitive to this choice because any initial ther-
mal energy is rapidly lost to P dV work during the initial expansion
before the r-process begins (Meyer 1989; Freiburghaus et al. 1999).
For our fiducial model we also assume Ye = 0.1, Z̄ ≃ 36, Ā ≃ 118
(e.g. Freiburghaus et al. 1999).

Our results for the total radioactive power Ė with time are shown
in Fig. 1. On time-scales of interest the radioactive power can be
divided into two contributions: fission and β-decays, which are
denoted by dashed and dotted lines, respectively. The large heating
rate at very early times is due to the r-process, which ends when
neutrons are exhausted at t ∼ 1 s ∼10−5 d. The heating on longer
time-scales results from the synthesized isotopes decaying back to
stability. On the time-scales of interest for powering EM emission
(tpeak ∼ hours–days; equations3), most of the fission results from
the spontaneous fission of nuclei with A ∼ 230–280. This releases
energy in the form of the kinetic energy of the daughter nuclei and
fast neutrons, with a modest contribution from γ -rays. The other
source of radioactive heating is β-decays of r-process product nuclei
and fission daughters (see Table 1 for examples corresponding to
our fiducial model). In Fig. 1 we also show for comparison the
radioactive power resulting from an identical mass of 56Ni and its
daughter 56Co. Note that (coincidentally) the radioactive power of
the r-process ejecta and 56Ni/56Co are comparable on time-scales
∼1 d.

1http://www.nndc.bnl.gov/nudat2/

Figure 1. Radioactive heating rate per unit mass Ė in NS merger ejecta
due to the decay of r-process material, calculated for the Ye = 0.1 ejecta
trajectory from Rosswog et al. (1999) and Freiburghaus et al. (1999). The
total heating rate is shown with a solid line and is divided into contributions
from β-decays (dotted line) and fission (dashed line). For comparison we
also show the heating rate per unit mass produced by the decay chain
56Ni → 56Co → 56Fe (dot–dashed line). Note that on the ∼day time-scales
of interest for merger transients (t ∼ tpeak; equation 3) fission and β-decays
make similar contributions to the total r-process heating, and that the r-
process and 56Ni heating rates are similar.

Table 1. Properties of the dominant β-decay nuclei at t ∼ 1 d.

Isotope t1/2 Qa ϵb
e ϵc

ν ϵd
γ Eavg e

γ

(h) (MeV) (MeV)

135I 6.57 2.65 0.18 0.18 0.64 1.17
129Sb 4.4 2.38 0.22 0.22 0.55 0.86
128Sb 9.0 4.39 0.14 0.14 0.73 0.66
129Te 1.16 1.47 0.48 0.48 0.04 0.22
132I 2.30 3.58 0.19 0.19 0.62 0.77
135Xe 9.14 1.15 0.38 0.40 0.22 0.26
127Sn 2.1 3.2 0.24 0.23 0.53 0.92
134I 0.88 4.2 0.20 0.19 0.61 0.86
56Nif 146 2.14 0.10 0.10 0.80 0.53

aTotal energy released in the decay.
b,c,dFraction of the decay energy released in electrons, neutrinos and γ -rays.
eAverage photon energy produced in the decay.
f Note: 56Ni is not produced by the r-process and is only shown for compar-
ison [although a small abundance of 56Ni may be produced in accretion disc
outflows from NS–NS/NS–BH mergers (Metzger et al. 2008b)].

In Fig. 2 we show the final abundance distribution from our
fiducial model, which shows the expected strong second and third
r-process peaks at A ∼ 130 and ∼195, respectively. For comparison,
we show the measured Solar system r-process abundances with
points. The computed abundances are rather different to the one
obtained by Freiburghaus et al. (1999) due to an improved treatment
of fission yields and freeze-out effects.

Although we assume Ye = 0.1 in our fiducial model, the ejecta
from NS mergers will possess a range of electron fractions (see
Section 2.1). To explore the sensitivity of our results to the ejecta
composition we have run identical calculations of the radioactive
heating, but varying the electron fraction in the range Ye = 0.05–
0.35. Although in reality portions of the ejecta with different compo-
sitions will undergo different expansion histories, in order to make
a direct comparison we use the same density trajectory ρ(t) as was
described earlier for the Ye = 0.1 case. Fig. 3 shows the heating rate

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 406, 2650–2662
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6 Tanaka et al.

TABLE 1
Summary of Models

Model Mej EK vch Abundance1

(M⊙) (erg)

NSM-all 1.0 × 10−2 1.3 × 1050 0.12c 31 ≤ Z ≤ 92
NSM-tidal 1.0 × 10−2 1.3 × 1050 0.12c 55 ≤ Z ≤ 92
NSM-wind 1.0 × 10−2 1.3 × 1050 0.12c 31 ≤ Z ≤ 54
NSM-Fe 1.0 × 10−2 1.3 × 1050 0.12c Z = 26 (only Fe)

APR4-12152 8.6 × 10−3 4.3 × 1050 0.24c 31 ≤ Z ≤ 92
APR4-13142 8.1 × 10−3 3.6 × 1050 0.22c 31 ≤ Z ≤ 92

H4-12152 3.5 × 10−3 1.4 × 1050 0.21c 31 ≤ Z ≤ 92
H4-13142 7.0 × 10−4 1.9 × 1049 0.17c 31 ≤ Z ≤ 92

Note. — 1 Solar abundance ratios (Simmerer et al. 2004) are
assumed. 2 Models from Hotokezaka et al. 2013.
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Fig. 2.— Bolometric light curve of model NSM-all (black, multi-
frequency simulations). It is compared with the light curves for the
same model but with the gray approximation of UVOIR transfer
(κ =0.1, 1, and 10 cm2 g−1 for blue, purple, and red lines, respec-
tively). The result of multi-frequency transfer are most similar to
that of gray transfer with κ = 10 cm2 g−1.

Figure 3 shows the mass absorption coefficient as a
function of wavelength at t = 3 days in model NSM-all
at v = 0.1c. The mass absorption coefficient is as high as
1-100 cm2 g−1 in the optical wavelengths. The resulting
Planck mean mass absorption coefficient is about κ =
10 cm2 g−1 (Figure A4). This is the reason why the
bolometric light curve of multi-frequency transfer most
closely follows that with gray κ = 10 cm2 g−1 in Figure
2.

The high opacity in r-process element-rich ejecta is also
confirmed by the comparison with other simple models.
Figure 4 shows the comparison of the bolometric light
curve with that of models NSM-tidal, NSM-wind, and
NSM-Fe. Compared with NSM-Fe, the other models
show the fainter light curves. This indicates that the
elements heavier than Fe contributes to the high opacity.
The opacity in model NSM-Fe is also shown in Figure 3.
It is nicely shown that opacity in NSM-all is higher than
that in NSM-Fe by a factor of about 100 at the center of
optical wavelengths (∼ 5000 Å).

As inferred from Figure 4, NSM-tidal (55 ≤ Z ≤ 92)
has a higher opacity than that of NSM-wind (31 ≤ Z ≤
54). This is because lanthanoid elements (57 ≤ Z ≤
71) have the largest contribution to the bound-bound
opacity, as demonstrated by Kasen et al. (2013). Note
that, however, even with the elements at 31 ≤ Z ≤ 54,
the opacity is higher than Fe.

Figure 5 shows the multi-color light curves of model
NSM-all. In general, the emission from NS merger ejecta
is red because of (1) a lower temperature than SNe and
(2) a higher optical opacity than in SNe. Especially, the
optical light curves in the blue wavelengths drops dra-
matically in the first 5 days. The light curves in the
redder band evolves more slowly. This trend is also con-
sistent with the results by Kasen et al. (2013); Barnes &
Kasen (2013).

Since our simulations include all the r-process ele-
ments, spectral features are of interest. Since the sim-
ulations by Kasen et al. (2013); Barnes & Kasen (2013)
include only a few lanthanoid elements, they do not dis-
cuss the detailed spectral features. Figure 6 shows the
spectra of model NSM-all at t = 1.5, 5.0 and 10.0 days
after the merger. Our spectra are almost featureless at
all the epochs. This is because of the overlap of many
bound-bound transitions of different r-process elements.
As a result, compared with the results by Kasen et al.
(2013); Barnes & Kasen (2013), the spectral features are
more smeared out.

Note that we could identify possible broad absorption
features around 1.4 µm (in the spectrum at t = 5 days)
and around 1.2 µm and 1.5 µm (t = 10 days). In our
line list, these bumps are mostly made by a cluster of
the transitions of Y I, Y II, and Lu I. However, we are
cautious about such identifications because the bound-
bound transitions in the VALD database are not likely to
be complete in the NIR wavelengths even for neutral and
singly ionized ions. In fact, Kasen et al. (2013) showed
that the opacity of Ce from the VALD database drops in
the NIR wavelengths, compared with the opacity based
on their atomic models. Although we cannot exclude a
possibility that a cluster of bound-bound transitions of
some ions can make a clear absorption line in NS merg-
ers, our current simulations do not provide prediction for
such features.

5. DEPENDENCE ON THE EOS AND MASS RATIO

Full#simula)on

constant
opacity
(cm2#gC1)
κ##=#0.1
κ#=#1
κ#=#10

(see#also#Kasen+13,#ApJ,#774,#25,#Barnes#&#Kasen#13,#ApJ,#775,#18)

Fainter#by#a#factor#of#10!

RV I J HBU

 1

 2

 3

 4

 5

 6

 5000  10000  15000  20000

Lo
g 

flu
x 

(F
h)

 +
 c

on
st

an
t

Wavelength (A)

1.5 days
5.0 days
10.0 days

 1

 2

 3

 4

 5

 6

 5000  10000  15000  20000

Lo
g 

flu
x 

(F
h)

 +
 c

on
st

an
t

Wavelength (A)

1.5 days
5.0 days
10.0 daysType#Ia#SN

C#Red#spectrum#(peak#at#nearCinfrared)#
C#Extremely#broadCline#(featureCless)#spectra

op)cal nearCinfrared

                                                                                                                    147



this field. The redshifts of the afterglow21 and the host galaxy22 were
both found to be z 5 0.356.

Another proposed signature of the merger of two neutron stars or a
neutron star and a black hole is the production of a kilonova (some-
times also termed a ‘macronova’ or an ‘r-process supernova’) due to
the decay of radioactive species produced and initially ejected during
the merger process—in other words, an event similar to a faint, short-
lived supernova6–8. Detailed calculations suggest that the spectra of
such kilonova sources will be determined by the heavy r-process ions
created in the neutron-rich material. Although these models10–13 are
still far from being fully realistic, a robust conclusion is that the optical
flux will be greatly diminished by line blanketing in the rapidly expan-
ding ejecta, with the radiation emerging instead in the near-infrared
(NIR) and being produced over a longer timescale than would other-
wise be the case. This makes previous limits on early optical kilonova
emission unsurprising23. Specifically, the NIR light curves are expected
to have a broad peak, rising after a few days and lasting a week or more
in the rest frame. The relatively modest redshift and intensive study of
GRB 130603B made it a prime candidate for searching for such a kilonova.

We imaged of the location of the burst with the NASA/ESA Hubble
Space Telescope (HST) at two epochs, the first ,9 d after the burst
(epoch 1) and the second ,30 d after the burst (epoch 2). On each occa-
sion, a single orbit integration was obtained in both the optical F606W
filter (0.6mm) and the NIR F160W filter (1.6mm) (full details of the imag-
ing and photometric analysis discussed here are given in Supplemen-
tary Information). The HST images are shown in Fig. 1; the key result is
seen in the difference frames (right-hand panels), which provide clear
evidence for a compact transient source in the NIR in epoch 1 (we note
that this source was also identified24 as a candidate kilonova in indepen-
dent analysis of our data on epoch 1) that seems to have disappeared by
epoch 2 and is absent to the depth of the data in the optical.

At the position of the SGRB in the difference images, our photo-
metric analysis gives a magnitude limit in the F606W filter of
R606,AB . 28.25 mag (2s upper limit) and a magnitude in the F160W
filter of H160,AB 5 25.73 6 0.20 mag. In both cases, we fitted a model
point-spread function and estimated the errors from the variance of
the flux at a large number of locations chosen to have a similar back-
ground to that at the position of the SGRB. We note that some tran-
sient emission may remain in the second NIR epoch; experimenting
with adding synthetic stars to the image leads us to conclude that any
such late-time emission is likely to be less than ,25% of the level in
epoch 1 if it is not to appear visually as a faint point source in epoch 2,
however, that would still allow the NIR magnitude in epoch 1 to be up
to ,0.3 mag brighter.

To assess the significance of this result, it is important to establish
whether any emission seen in the first HST epoch could have a con-
tribution from the SGRB afterglow. A compilation of optical and NIR
photometry, gathered by a variety of ground-based telescopes in the
few days following the burst, is plotted in Fig. 2 along with our HST
results. Although initially bright, the optical afterglow light curve dec-
lines steeply after about ,10 h, requiring a late-time power-law decay
rate of a < 2.7 (where F / t2a describes the flux). The NIR flux, on the
other hand, is significantly in excess of the same extrapolated power
law. This point is made most forcibly by considering the colour evolu-
tion of the transient, defined as the difference between the magnitudes
in each filter, which evolves from R606 2 H160 < 1.7 6 0.15 mag at about
14 h to greater than R606 2 H160 < 2.5 mag at about 9 d. It would be
very unusual, and in conflict with predictions of the standard external-
shock theory25, for such a large colour change to be a consequence of
late-time afterglow behaviour. The most natural explanation is there-
fore that the HST transient source is largely due to kilonova emission,
and the brightness is in fact well within the range of recent models
plotted in Fig. 2, thus supporting the proposition that kilonovae are
likely to be important sites of r-process element production. We note
that this phenomenon is strikingly reminiscent, in a qualitative sense,
of the humps in the optical light curves of long-duration c-ray bursts

produced by underlying type Ic supernovae, although here the lumino-
sity is considerably fainter and the emission is redder. The ubiquity and
range of properties of the late-time red transient emission in SGRBs
will undoubtedly be tested by future observations.

The next generation of gravitational-wave detectors (Advanced LIGO
and Advanced VIRGO) is expected ultimately to reach sensitivity levels
allowing them to detect neutron-star/neutron-star and neutron-star/
black-hole inspirals out to distances of a few hundred megaparsecs26

(z < 0.05–0.1). However, no SGRB has been definitively found at any
redshift less than z 5 0.12 over the 8.5 yr of the Swift mission to date27.
This suggests either that the rate of compact binary mergers is low,
implying a correspondingly low expected rate of gravitational-wave
transient detections, or that most such mergers are not observed as
bright SGRBs. The latter case could be understood if the beaming of
SGRBs was rather narrow, for example, and the intrinsic event rate was,
as a result, two or three orders of magnitude higher than that observed
by Swift. Although the evidence constraining SGRB jet opening angles
is limited at present28 (indeed, the light-curve break seen in GRB 130603B
may be further evidence for such beaming), it is clear that an alterna-
tive electromagnetic signature, particularly if approximately isotropic,
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Figure 2 | Optical, NIR and X-ray light curves of GRB 130603B. Left axis,
optical and NIR; right axis, X-ray. Upper limits are 2s and error bars are 1s. The
optical data (g, r and i bands) have been interpolated to the F606W band and
the NIR data have been interpolated to the F160W band using an average
spectral energy distribution at ,0.6 d (Supplementary Information). HST
epoch-1 points are given by bold symbols. The optical afterglow decays steeply
after the first ,0.3 d and is modelled here as a smoothly broken power law
(dashed blue line). We note that the complete absence of late-time optical
emission also places a limit on any separate 56Ni-driven decay component. The
0.3–10-keV X-ray data29 are also consistent with breaking to a similarly steep
decay (the dashed black line shows the optical light curve simply rescaled to
match the X-ray points in this time frame), although the source had dropped
below Swift sensitivity by ,48 h after the burst. The key conclusion from this
plot is that the source seen in the NIR requires an additional component above
the extrapolation of the afterglow (red dashed line), assuming that it also decays
at the same rate. This excess NIR flux corresponds to a source with absolute
magnitude M(J)AB < 215.35 mag at ,7 d after the burst in the rest frame. This
is consistent with the favoured range of kilonova behaviour from recent
calculations (despite their known significant uncertainties11–13), as illustrated by
the model11 lines (orange curves correspond to ejected masses of 1022 solar
masses (lower curve) and 1021 solar masses (upper curve), and these are added
to the afterglow decay curves to produce predictions for the total NIR emission,
shown as solid red curves). The cyan curve shows that even the brightest
predicted r-process kilonova optical emission is negligible.
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for NS-NS and BH-NS models, respectively. Left panel: NS-NS models. Each point shows the ejecta mass for the equal mass cases. Error
bars denote the dispersion of the ejecta masses due to the various mass ratios. Right panel: BH-NS models. The filled and open symbols
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BH-NS models, respectively. The lower and upper bounds are imposed by the hypothetical high- and low-heating models, respevtively.

H4 (Mej = 0.05M⊙), and APR4 (Mej = 0.01M⊙) with
(Q, χ) = (3, 0.75). For these cases, we employ the
fiducial-heating model. Note that the r-band light curves
of the BH-NS models reach ∼ 27 mag, which implies that
the light curves of the BH-NS models are bluer than those
of the NS-NS models. This is because the energy from
the radioactive decay is deposited to a small volume for
the BH-NS models (see Tanaka et al. (2013) for details).
We now translate these results into the progenitor

models, such as mass ratio, black hole spin, and EOS.
NS-NS models. The NS-NS models for GRB 130603B

should have ejecta of mass " 0.02M⊙. This is con-
sistent with that derived by Berger et al. (2013). This
value strongly constrains the NS-NS models because the
amount of the ejecta is at most ∼ 0.02M⊙ for an NS-NS
merger within the plausible mass range of the observed
NS-NS systems (Özel et al. 2012). Specifically, as shown
in the left panel of Fig. 2, such a large amount of ejecta
can be obtained only for the soft EOS models in which
a hypermassive neutron star with lifetime " 10 ms is
formed after the merger. For the stiff EOS models, the
amount of the ejecta is at most 4 × 10−3M⊙. Thus we
conclude that the ejecta of the NS-NS models with soft
EOSs (R1.35 ! 12 km) are favored as the progenitor of
GRB 130603B.
BH-NS models. The observed data in the H-band is

consistent with the BH-NS models which produce the
ejecta of ∼ 0.05M⊙ in our fiducial-heating model. Such
a large amount of ejecta can be obtained with only the
stiff EOSs (R1.35 " 13.5 km) for the case of χ = 0.75 and
3 ≤ Q ≤ 7 as shown in the right panel of Fig. 2. For the
soft EOS models, the total amount of ejecta reaches only
0.01M⊙ as long as χ ≤ 0.75, which hardly reproduces the
observed near-infrared excess. Thus the models with stiff
EOSs are favored for the BH-NS merger models as long
as with 0.5 ≤ χ ≤ 0.75 and 3 ≤ Q ≤ 7 as the progenitor
model of GRB 130603B. It is worthy to note that any
BH-NS models with χ ≤ 0.5 and Q ≥ 7 are unlikely to
reproduce the observed near-infrared excess.

5. CONCLUSION AND DISCUSSION

We explored possible progenitor models of the elec-
tromagnetic transient associated with the short GRB
130603B. This electromagnetic transient may have been
powered by the radioactive decay of r-process elements,
so called kilonova/macronova. We analyzed the dynam-
ical ejecta of NS-NS and BH-NS mergers for the progen-
itor models of this event. For computing the expected
light curves, we carried out the radiative transfer simu-
lations using the density and velocity structures obtained
from the numerical-relativity simulations with several to-
tal masses, mass ratios, and EOSs. Depending on these
quantities, the total amount of ejecta mass varies by or-
ders of magnitude 10−4M⊙ to 10−2M⊙ for the NS-NS
models and 10−5M⊙ to 10−1M⊙ for the BH-NS mod-
els. The expected light curves for the BH-NS models
are bluer than those for the NS-NS models due to the
morphology effects.
For both NS-NS and BH-NS models, we found that

there are progenitor models that can reproduce the ob-
served near-infrared excess within the realistic parameter
ranges. Specifically, the observed data suggest that the
required ejecta mass is at least ∼ 0.02M⊙ for NS-NS
mergers. For BH-NS mergers, the required ejecta mass
would be ∼ 0.02–0.1M⊙ taking into account the uncer-
tainty in the heating rate and opacities. These values
are consistent with the results of a spherically expanding
ejecta model (Berger et al. 2013). Such a large amount
of material is ejected when a hypermassive neutron star
with its lifetime " 10 ms is formed after the merger for
the NS-NS models and when the neutron star is tidally
disrupted for the BH-NS models. For these cases, the
merger results in a spinning black hole surrounded by
a massive torus ∼ 0.1M⊙. Such a remnant could have
been the central engine of GRB 130603B.
We constrained the progenitor models of GRB

130603B, which should produce the required amount of
ejecta. We found that the soft EOS models are favored
for NS-NS models. For BH-NS models with the mass
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Figure 3. Bolometric light curves of the BH–NS merger models. The luminosi-
ties are those averaged over all solid angles. Different colors show the models
with different EOSs adopted in the merger simulations. The BH–NS mergers
with stiff EOSs (H4 and MS1) are brighter than that with a soft EOS (APR4)
because of the larger ejecta mass for the stiffer EOSs.
(A color version of this figure is available in the online journal.)

the bound–bound opacities of almost all of the r-process
elements from the VALD database (Piskunov et al. 1995;
Ryabchikova et al. 1997; Kupka et al. 1999, 2000). As discussed
in TH13, our line list includes the data for r-process elements
only up to doubly ionized ions (there are no data for triply and
more ionized ions in the VALD database). As a result, the code
cannot correctly evaluate the opacity (and gives an extremely
low opacity) at the epoch of t ! 1 day, when the temperature
is higher than about 10,000 K. To avoid this artificially low
opacity, we set a lower limit to the opacity of κlow = 1 cm2 g−1,
and assume a gray opacity of κlow when the computed Rosseland
mean opacity is lower than this value. For the most part in this
paper, we do not discuss the emission at such early epochs which
would be affected by the above assumption (see also Appendix
B of TH13).

3. RESULTS

3.1. Dependence on the EOS and Comparison
with NS–NS Mergers

Figure 3 shows the computed light curves of the BH–NS
merger models. The luminosities are those averaged over all
solid angles. Because of the ejecta entirely made of r-process
elements, their opacities for the BH–NS mergers reach κ ∼
10 cm2 g−1 as in the NS–NS mergers (Kasen et al. 2013; Barnes
& Kasen 2013; TH13).

The mass ejection in the BH–NS merger occurs dominantly
by the tidal effect. When a stiffer EOS, such as H4 or MS1, is
adopted, the NS radius is larger and the tidal disruption is more
efficient. Thus, the ejecta mass becomes larger with a stiffer
EOS for a given mass ratio and BH spin (Kyutoku et al. 2013).
As a result, the models with stiffer EOSs are brighter for a given
mass ratio and BH spin, provided that the heating rates are not
dependent on the adopted EOSs.

The peak luminosity and the transition time to the declining
phase approximately scale with L ∝ M

1/2
ej and t ∝ M

1/2
ej ,

respectively, as expected by analytic formulae (Li & Paczyński
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Figure 4. Bolometric light curves of the BH–NS (APR4Q3a75 and H4Q3a75,
solid lines) and NS–NS merger models (APR4-1215 and H4-1215, dashed
lines). The luminosities are those averaged over all solid angles. For the NS–NS
merger models, the heating rate per ejecta mass is assumed to be the same with
the BH–NS merger models (see the main text). A stiffer EOS (blue lines) leads
to a higher luminosity by the larger ejecta mass for BH–NS mergers while it
leads to a lower luminosity for NS–NS mergers.
(A color version of this figure is available in the online journal.)

1998; Metzger et al. 2010). At declining phases, the photon
diffusion is not important, and the luminosity scales with
L ∝ Mej as long as a constant thermalization factor ϵtherm is
adopted.

Figure 4 shows the bolometric light curves of the BH–NS
merger models (solid lines) compared with those of the NS–NS
merger models (dashed lines). For the NS–NS merger models,
the gravitational masses of two NSs are 1.2 M⊙ and 1.5 M⊙
(Hotokezaka et al. 2013a). The light curves of these NS–NS
merger models have been shown in TH13, but for ease of
comparison, we show the light curves computed with the same
heating rate taken for the BH–NS merger models.

For the mass ratio (Q = 3) and BH spin parameter (χ = 0.75)
adopted in our models, mass ejection from BH–NS mergers
tends to be more efficient than that from NS–NS mergers.
The light curves of such BH–NS merger models (solid lines)
are more luminous than those of NS–NS merger models as
long as the same heating rate is assumed.6 Among the NS–NS
merger models shown in TH13, the model with the APR4
EOS (red dashed line in Figure 4) gives the highest luminosity.
The luminosities of the BH–NS merger models H4Q3a75 and
MS1Q3a75 are higher than that of the NS–NS merger model
with the APR4 EOS by a factor of ∼5. As already discussed in
Kyutoku et al. (2013), the dependencies on EOSs are opposite
between BH–NS and NS–NS mergers; a stiffer EOS leads to
brighter light curves in BH–NS mergers while it results in fainter
light curves in NS–NS mergers.

Interestingly, even with the similar ejecta mass, the behaviors
of multi-band light curves can be different between BH–NS
and NS–NS mergers. Figure 5 shows the multi-band light
curves of the BH–NS merger model APR4Q3a75 (solid line)

6 Since the dominant mechanism of mass ejection in NS–NS mergers can be
shock heating (especially when the mass ratio of the two NSs is close to unity,
Hotokezaka et al. 2013a), Ye in the ejecta can be quite different between
NS–NS and BH–NS mergers. As discussed by Grossman et al. (2013), such a
difference can affect the heating rate.
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Figure 2. Ejecta masses as a function of the compactness of the neutron star, which is defined by GMtot/2R1.35c
2 and GMNS/R1.35c

2 for NS–NS and BH–NS models,
respectively. Left panel: NS–NS models. Each point shows the ejecta mass for the equal mass cases. Error bars denote the dispersion of the ejecta masses due to
the various Q. Right panel: BH–NS models. The filled and open symbols correspond to the models with (Q, χ ) = (3–7, 0.75) and (7, 0.5), respectively. The blue
shaded region in each panel shows the ejecta masses allowed in order to reproduce the observed near-infrared excess of GRB 130603B, 0.02 ! Mej/M⊙ ! 0.07 and
0.02 ! Mej/M⊙ ! 0.1 for the NS–NS and BH–NS models, respectively. The lower and upper bounds are imposed by hypothetical high- and low-heating models,
respectively.
(A color version of this figure is available in the online journal.)

as a hypermassive neutron star with a lifetime of !10 ms is
formed after the merger. More massive NS–NS mergers result
in hypermassive neutron stars with a lifetime of "10 ms or in
black holes. For such a case, the ejecta mass decreases with
increasing Mtot because of the shorter duration of mass ejection.

BH–NS ejecta. Tidal disruption of a neutron star results in
anisotropic mass ejection for a BH–NS merger (Kyutoku et al.
2013). As a result, the ejecta is concentrated near the binary
orbital plane as shown in Figure 1, and it is shaped like a disk
or crescent.

The amount of ejecta for the BH–NS models is smaller for
more compact neutron star models with fixed values of χ and Q
as shown in Figure 2. This is because tidal disruption occurs in
a less significant manner. This dependence of the BH–NS ejecta
on the compactness of neutron stars is opposite to the case of
the NS–NS ejecta.

More specifically, the amount of ejecta is

5 × 10−4 " Mej/M⊙ " 10−2 (soft EOSs),

4 × 10−2 " Mej/M⊙ " 7 × 10−2 (stiff EOSs), (2)

for χ = 0.75 and 3 # Q # 7. For χ = 0.5, the ejecta mass is
smaller than that for χ = 0.75. Only the stiff EOS models can
produce large amounts of ejecta more than 0.01 M⊙ for χ = 0.5
and Q = 7.

For both NS–NS and BH–NS merger models, winds driven
by neutrino/viscous/nuclear-recombination heating or the mag-
netic field from the central object might provide ejecta in addi-
tion to the dynamical ejecta (Dessart et al. 2009; Wanajo & Janka
2012; Kiuchi et al. 2012; Fernández & Metzger 2013). However,
it is not easy to estimate the amount of wind ejecta, because it
depends strongly on the condition of the remnant formed after
the merger. In this Letter, we focus only on the dynamical ejecta.

3. RADIATIVE TRANSFER SIMULATIONS
FOR THE EJECTA

For the NS–NS and BH–NS merger models described in
Section 2, we perform radiative transfer simulations to obtain

the light curves of the radioactively powered emission from
the ejecta using the three-dimensional, time-dependent, multi-
frequency Monte Carlo radiative transfer code (Tanaka &
Hotokezaka 2013). For a given density structure of the ejecta
and elemental abundances, this code computes the emission
in the ultraviolet, optical, and near-infrared wavelength ranges
by taking into account the detailed r-process opacities. In this
Letter, we include r-process elements with Z $ 40 assuming the
solar abundance ratios by Simmerer et al. (2004). More details
of the radiation transfer simulations are described in Tanaka &
Hotokezaka (2013); Tanaka et al. (2013).

The heating rate from the radioactive decay of r-process
elements is one of the important ingredients of radiative transfer
simulations. As a fiducial-heating model, we employ the heating
rate computed with the abundance distribution that reproduces
the solar r-process pattern (see Tanaka et al. 2013 for more
detail). Heating is due to β-decays only, which increase atomic
numbers from the neutron-rich region toward the β-stability
line without changing the mass number A. This heating rate is in
reasonable agreement with those from previous nucleosynthesis
calculations (Metzger et al. 2010; Goriely et al. 2011; Grossman
et al. 2013) except for the first several seconds.

We note that quantitative uncertainties could exist in the
heating rate as well as in the opacities. As an example, the
heating rate would be about a factor 2 higher if the r-process
abundances of A ∼ 130 (or those produced with the electron
fraction of Ye ∼ 0.2) were dominant in the ejecta (Metzger
et al. 2010; Grossman et al. 2013). To take into account such
uncertainties, we also consider the cases in which the light
curves of mergers are twice and half as luminous (high- and low-
heating models; only explicitly shown for the NS–NS models
in Figure 3) as those computed with the fiducial-heating model.

4. LIGHT CURVES AND POSSIBLE
PROGENITOR MODELS

The computed light curves and observed data in r and
H-band are compared in Figure 3. The left panel of Figure 3
shows the light curves of the NS–NS merger models SLy
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Figure 5. Snapshots for the BH-torus model M3A8m3a5 at t = 50ms (top row) and t = 2 s (bottom row). At early times neutrino-driven
ejecta dominate the outflow, whereas at late times the viscous component is more important. Plot (a) shows the total net neutrino-heating
rate (left panel), overlaid with arrows indicating the vectors of the energy-integrated energy flux for electron neutrinos multiplied by
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