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Programme: Day 2
Tuesday 11 November 2014

Morning 1 [Chair: Tetsuya Shiromizu]

9:30 Claudia de Rham (Case Western) [Invited]
            “Cosmology and Massive Gravity” [JGRG24(2014)111101]

10:15 Yasuho Yamashita (YITP, Kyoto)
            “Appearance of Boulware-Deser ghost in bigravity with doubly coupled matter”
            [JGRG24(2014)111102]

10:30 Atsushi Naruko (Titech) 
            “Cosmology in rotation-invariant massive gravity with non-trivial fiducial metric”
            [JGRG24(2014)111103]

10:45-11:00  coffee break

Morning 2 [Chair: Ken-ichi Oohara]

11:00 Hayato Motohashi (Chicago)
            “Stability of self-accelerating solutions in extended quasidilaton massive gravity”
            [JGRG24(2014)111104]

11:15 Daisuke Yoshida (Titech) 
            “Covariant Stueckelberg analysis of dRGT massive gravity with a general fiducial 

metric” [JGRG24(2014)111105]

11:30 Katsuki Aoki (Waseda) 
            “Dark matter in ghost-free bigravity theory” [JGRG24(2014)111106]

11:45 Yuki Sakakihara (Kyoto)
            “Tensor Spectrum in Bimetric Gravity” [JGRG24(2014)111107]

12:00 Tatsuya Narikawa (Osaka)
            “Detectability of bi-gravity with graviton oscillations using gravitational wave 

observations” [JGRG24(2014)111108]

12:15 Shinsuke Kawai (Sungkyunkwan)
            “Improvement of energy-momentum tensor and non-Gaussianities in holographic 

cosmology” [JGRG24(2014)111109]

12: 30 - 14:00  lunch & poster view

Afternoon 1 [Chair: Tomohiro Harada]
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14:00 Andrzej Rostworowski (Jagiellonian) [Invited]
            “Current status of the AdS (in)stability” [JGRG24(2014)111110]

14:45 Masashi Kimura (DAMTP) 
            “Higher-dimensional extremal Reissner- Nordstr ̈om black holes are fragile”
            [JGRG24(2014)111111]

15:00 - 15:30  short poster talks (B01 - B19, 1 minute each)

15:30-16:00  coffee break & poster view

Afternoon 2 [Chair: Ken-ichi Nakao]

16:00  Ryo Namba (Kavli IPMU) 
            “Toward constructing ghost-free scalar-tensor theories beyond Horndeski”
            [JGRG24(2014)111112]

16:15 Rio Saitou (YITP, Kyoto)
            “Structure of constraints of the theory beyond Horndeski” [JGRG24(2014)111113]

16:30 Xian Gao (Titech) 
            “Spatially covariant gravity and unifying framework for scalar-tensor theories of 

gravity” [JGRG24(2014)111114]

16:45 Ryotaro Kase (Tokyo Science)
            “Effective field theory approach to modified gravity including Horndeski theory 

and Horava-Lifshitz gravity” [JGRG24(2014)111115]

17:00 Tomotaka Kitamura (Waseda) 
            “The Relation Between Tree Unitarity and Renormalizability in Lifshitz Scalar 

Theory” [JGRG24(2014)111116]

17:15 - 18:00  poster view
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“Cosmology and Massive Gravity”

Claudia de Rham [Invited]

[JGRG24(2014)111101] 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IPMU%&%JGRG24%
Nov.%11st%2014% Claudia%de%Rham%

GR%has%been%a%successful%theory%from%mm%length%scales%to%
Cosmological%scales%

  
 Then why Modify Gravity ?
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Tes$ng'gravity'requires'alterna$ves'theories'
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Massive'spin52'fields'&'Holography'
!  Spin&2%field%may%be%useful%in%condensed%matter%
applications%of%the%AdS/CFT%correspondence%
%

!  ‘realistic’%materials%with%momentum'relaxation%(lattice)%
are%dual%to%massive'gravity%%
%

! New%dofs%in%graviton%encodes%the%phonon%dynamics%

Vegh,%arXiv:1301.0537,%%
Blake,%Tong,%Vegh,%arXiv:1310.3832%
Baggioli,%Pujolas,%arXiv:1411.1003,…%%

Gravita$onal'Waves'
 !GR:!2%polarizations%
%

 !In%principle%GW%could%have%4%other%polarizations%
%

2%‘vectors’% 2%‘scalars’%
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Massive'Gravity'
! When%breaking%covariance,%GW%can%in%principle%
propagate%up%to%6%independent%polarizations%(in%4d)%
%

! A%massive%spin&2%field%in%4d%has%2s+1=5%dofs%
%

!  %The%6th%dof%always%comes%in%as%a%ghost.%

%Boulware%&%Deser,%PRD6,%3368%(1972)%

Ghost5free'Massive'Gravity'

!  In%4d,%there%is%a%2&parameter%family%of%ghost%free%
theories%of%Lorentz&invariant%massive%gravity%%

CdR,%Gabadadze,%1007.0443%
CdR,%Gabadadze,%Tolley,%1011.1232%%%
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Ghost5free'Massive'Gravity'

!  In%4d,%there%is%a%2&parameter%family%of%ghost%free%
theories%of%Lorentz&invariant%massive%gravity%%

! Absence%of%ghost%has%now%been%proved%fully%non&
perturbatively%in%many%different%languages%
CdR,%Gabadadze,%1007.0443%
CdR,%Gabadadze,%Tolley,%1011.1232%
Hassan%&%Rosen,%1106.3344%
CdR,%Gabadadze,%Tolley,%1107.3820%
CdR,%Gabadadze,%Tolley,%1108.4521%
Hassan%&%Rosen,%1111.2070%
Mirbabayi,%1112.1435%%

Kluson,%1202.5899%
Hassan,%Schmidt&May%&%von%Strauss,%1203.5283%
Kluson,%1204.2957%
Deffayet,%Mourad%&%Zahariade,%1207.6338%
Alexandrov,%1308.6586%
Kugo,%Ohta,%1401.3873%%
Golovnev,%1401.6343,%…%

Ghost5free'Massive'Gravity'

!  In%4d,%there%is%a%2&parameter%family%of%ghost%free%

theories%of%Lorentz&invariant%massive%gravity%%

! Absence%of%ghost%has%now%been%proved%fully%non&

perturbatively%in%many%different%languages%

! As%well%as%around%any'reference'metric,'be%it%
dynamical%or%not%BiGravity!!!!!

Hassan,%Rosen%&%Schmidt&May,%1109.3230%

Hassan%&%Rosen,%1109.3515%



�168

Degrees'of'Freedom'
Massive!Gravity!

!  1%massive%spin&2%
%&%2%helicity&2%
%&%2%helicity&1%
% %&%1%helicity&0%
%
%
%
%

5%dofs%

Degrees'of'Freedom'
Massive!Gravity!

!  1%massive%spin&2%
%&%2%helicity&2%
%&%2%helicity&1%
% %&%1%helicity&0%
%
%
%
%%%%%%%%&%2%dof%in%metric%
%%%%(after%gauge%fixing)%
%%%%%%%%&%3%Stückelberg%fields%

5%dofs%

Restore%diff%invariance%
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Degrees'of'Freedom'
Massive!Gravity! Bi0Gravity!

!  1%massive%spin&2%
%&%2%helicity&2%
%&%2%helicity&1%
% %&%1%helicity&0%
%
%
%
%%%%%%%%&%2%dof%in%metric%
%%%%(after%gauge%fixing)%
%%%%%%%%&%3%Stückelberg%fields%

!  1%massive%&%1%massless%spin&2%
%&%2x2%helicity&2%
%&%2%helicity&1%
% %&%1%helicity&0%
%
%
%
%%%%%%%%&%2x2%dof%in%both%metrics%
%%%%(after%gauge%fixing)%
%%%%%%%%%&%3%Stückelberg%fields%

%

5%dofs% 7%dofs%

Restore%diff%invariance% Restore%2nd%copy%of%diff%invariance%

Gauge'Transforma$on'
!  Start%with%Massive%Gravity%
%
%
%
%

! With%reference%metric%
%

!  And%Stuckelberg%fields%
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Gauge'Transforma$on'
!  Start%with%Massive%Gravity%
%
%
%
%

! With%reference%metric%
%

!  And%Stuckelberg%fields%
%

!  Clearly%the%theory%is%invariant%under%a%change%of%gauge%

Gauge'Transforma$on'
!  The%change%of%gauge%can%be%viewed%as%a%(field%dependent)%
coordinate%transformation,%%
%
%
%
%
%
%
%

With%
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Gauge'Transforma$on'
!  The%change%of%gauge%can%be%viewed%as%a%(field%dependent)%
coordinate%transformation,%%
%
%
%
%
%
%
%

!  The%map%is%invertible%and%forms%a%group%

Trivial'invariance'under'gauge'
transforma$on'

Galileon!Duality!
%

Insight%for:%
superluminality%%

(and%potentially%Quantum%Stability%
and%UV%completion)%

Generalized!MG!
!

Insight%for:%
Cosmology%in%MG%
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Limit'of'Massive'(Bi5)Gravity'

!  In%some%limit,%theory%looks%like%a%Galileon%%
%
%
%
%

! Where%!%plays%the%role%of%the%helicity&0%mode%%%plays%the%role%of%the%helicity&0%mode%%

Limit'of'Massive'(Bi5)Gravity'

!  In%some%limit,%theory%looks%like%a%Galileon%%
%
%
%

!  But%there%is%a%“gauge”%freedom%
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Dual'to'a'Galileon'

!  A%Galileon%theory…%
%
%
%
%
%
%
%
%
%

! Maps%a%theory%that%exhibits%Vainshtein%to%another%one%
which%also%exhibits%Vainshtein.%

Maps%to%another%Galileon%theory,%with%different%coefficients%

Eg.2'Dual'to'a'Free'theory'

!  A%Free%theory%

Maps%to%a%specific%quintic%Galileon%theory%
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Dual'to'a'free'theory'
! The%dual%theory%admits%superluminal%propagation%
%
%
%
in%the%vacuum%!%(ie.%no%matter%or%other%sources)%
%
%

Dual'to'a'free'theory'
! The%dual%theory%admits%superluminal%propagation%
%
%
%
in%the%vacuum%!%(ie.%no%matter%or%other%sources)%
%
plane%wave%solutions%
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Dual'to'a'free'theory'
! The%dual%theory%admits%superluminal%propagation%
%
%
%
in%the%vacuum%!%(ie.%no%matter%or%other%sources)%
%
plane%wave%solutions%
%

!  Speed%of%fluctuations:%

Superluminal%propagation%for%%

Dual'to'a'free'theory'
! The%dual%theory%admits%superluminal%propagation%
%
%
%
in%the%vacuum%!%(ie.%no%matter%or%other%sources)%
%
plane%wave%solutions%
%

!  Speed%of%fluctuations:%
%

!  FULLY%EQUIVALENT%to%a%characteristic%analysis%
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Dual'to'a'free'theory'
! The%dual%theory%admits%superluminal%propagation%
%
%
%

! Yet%it%maps%to%a%free%theory%
%
%
%

! Trivially%causal,%unitary,%UV%complete,…%%

Group'vs'front'velocity'
! No%Paradox%here%!%Group%velocity%is:% %%

%&%Not%invariant%
%&%Has%been%observed%to%be%SL%in%the%real%world%
%&%Was%computed%here%classically:%Valid%till%the%strong%coupling%scale%%

Classical%phase%velocity%%
in%dual%theory%

%
EQUIVALENT%to%what%is%

diagnosed%by%a%
characteristic%analysis%
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Superluminal'phase&group'
veloci$es'have'been'observed'in'

real'world…'

quant&ph/0407155%

Group'vs'front'velocity'
! No%Paradox%here%!%Group%velocity%is:% %%

%&%Not%invariant%
%&%Has%been%observed%to%be%SL%in%the%real%world%
%&%Was%computed%here%classically:%Valid%till%the%strong%coupling%scale%%

Classical%phase%velocity%%
in%dual%theory%

(or%characteristic%analysis)%

Classical%and%Quantum%%
phase%velocity%in%free%theory%
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Group'vs'front'velocity'
! No%Paradox%here%!%Group%velocity%is:% %%

%&%Not%invariant%
%&%Has%been%observed%to%be%SL%in%the%real%world%
%&%Was%computed%here%classically:%Valid%till%the%strong%coupling%scale%%

Classical%phase%velocity%%
in%dual%theory%

(or%characteristic%analysis)%

Classical%and%Quantum%%
phase%velocity%in%free%theory%

Full%phase%velocity%%
in%dual%theory%

Group'vs'front'velocity'
! No%Paradox%here%!%Group%velocity%is:% %%

%&%Not%invariant%
%&%Has%been%observed%to%be%SL%in%the%real%world%
%&%Was%computed%here%classically:%Valid%till%the%strong%coupling%scale%%

Classical%phase%velocity%%
in%dual%theory%

(or%characteristic%analysis)%

Classical%and%Quantum%%
phase%velocity%in%free%theory%

Full%phase%velocity%%
in%dual%theory%
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Group'vs'front'velocity'
! The%classical%group%and%phase%velocities%may%depend%
on%the%field%representation%and%may%be%SL%

! The%Causal%structure%is%dictated%by%the%front%velocity%
%

! The%front%velocity%(and%therefore%the%causality)%cannot%
be%inferred%by%a%simple%classical%calculation%%
(neither%by%a%classical%characteristic%analysis)%
%

!  If%the%duality%was%going%through%at%the%quantum%level%
one%could%compute%the%front%velocity%in%the%free%
theory.%Since%it%is%luminal%we%would%infer%that%the%
quintic%Galileon%is%actually%causal…%

Trivial'invariance'under'gauge'
transforma$on'

Galileon!Duality!
%

Insight%for:%
superluminality%%

(and%potentially%Quantum%Stability%
and%UV%completion)%

Generalized!MG!
!

Insight%for:%
Cosmology%in%MG%
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Generalized'MG'
! The%framework%provides%inspiration%on%how%to%
generalize%MG%

Generalized'MG'
! The%framework%provides%inspiration%on%how%to%
generalize%MG%
%
%
%

!  Lorentz%invariant%!%
!  Same%number%of%constraints%as%Ghost&free%MG%
% % %5%propagating%dofs.%
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Generalized'MG'
! The%framework%provides%inspiration%on%how%to%
generalize%MG%
%
%
%

!  Lorentz%invariant%!%
!  Same%number%of%constraints%as%Ghost&free%MG%
% % %5%propagating%dofs.%
%

!  In%unitary%gauge%
% % %translation%invariance%broken%%

Consequences'for'Cosmology''
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No spatially-flat  
FLRW solutions 
with Minkowski  
Reference metric 

Open%solutions%
(unstable)%

Additional%degrees%of%freedom%

Large%Scale%Inhomogeneities%

Scalar% Tensor%
(Extended) Quasi-dilaton 

Mass-Varying 
f(R) 
 … 

Bi-Gravity, Multi-Gravity 

Break%Poincaré%invariance%

Break%%
Lorentz%

Break%%
Translation%

New%coupling%

dS%or%FRLW%reference%metric%%
(problem%with%Higuchi%ghost)%

Generalized'MG'
! The%framework%provides%inspiration%on%how%to%
generalize%MG%
%
%
%
%

! Allows%for%exact%FLRW%solutions%%
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From'Lorentz'invariance'to'cosmology'
!  Start%with%Open%Universe%(could%be%thought%of%as%
local%effect%from%long%wavelength%inhomogeneity)%
%

Gumrukcuoglu,%Lin,%Mukohyama,%arXiv:1109.3845%

From'Lorentz'invariance'to'cosmology'
!  Start%with%Open%Universe%(could%be%thought%of%as%
local%effect%from%long%wavelength%inhomogeneity)%
%

Gumrukcuoglu,%Lin,%Mukohyama,%arXiv:1109.3845%
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Exact'FLRW'solu$ons'
! There%are%exact%(self&accelerating)%FLRW%solutions%
%

%
%
%
%

CdR,%Fasiello,%Tolley%arXiv:1410.0960%

Eg.%

Exact'FLRW'solu$ons'
! There%are%exact%(self&accelerating)%FLRW%solutions%
%

%
%
%
%

! Which%are%stable%in%the%decoupling'limit%where%%
%

%"→0,$$ $↓&' →∞,$$Λ= ("↑2 $↓&' )↑1/3 →%fixed%
%
For'all'the'modes%(tensors,%vectors,%scalar,%no%tachyon,%
gradient%or%ghost%instability)% CdR,%Fasiello,%Tolley%arXiv:1410.0960%

Eg.%
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Validity'of'DL'
! Derived%a%family%of%DL%theories%valid%for%arbitrary%
time%

!  Fails%to%account%for%long%wavelength%modes%≫,↑−1 %
!  Stability%analysis%only%fails%to%%
account%for%the%long&wavelength%%
modes.%%

Any%instability%which%arises%at%the%
resp.%horizon%scale%is%harmless.%

DL at -↓2  

,↑−1 %

DL at -↓3  

DL at -↓4  

DL centered 
at -↓1  

DL at -↓5  

Cosmology'in'the'DL'
! There%are%exact%(self&accelerating)%FLRW%solutions%
%

%
%
%
%

! Which%are%stable%in%the%decoupling'limit.%%
%

%
%Full%Stability%should%be%explored%
%As%well%as%viability%of%the%resulting%Cosmology%

%
CdR,%Fasiello,%Tolley%arXiv:1410.0960%

Eg.%



�186

Outlook'

! Massive%Gravity%is%a%specific%framework%to%study%%
IR%modifications%of%Gravity%%
%

! The%Vainshtein%mechanism%comes%hand%in%hand%with%
strong%coupling,%non&analyticity%and%
superluminalities%
%

! Galileon%duality%may%help%understanding%these%issues%
%

! Theory%with%these%issues%is%dual%to%a%free%and%
manifestly%UV%complete%theory%

Outlook'
! One%can%generalize%massive%gravity%%
%while%preserving%Lorentz%invariance%
%without%ghost%
%manifestly%5%degrees%of%freedom%
but…%breaks%Poincare%invariance%
%

! Generalized%massive%gravity%allows%for%exact%stable%
FLRW%solutions%(which%can%self&accelerate)%
%

! Their%full%analysis%should%be%explored%further%
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Causal'structure'
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Coupling'to'MaSer'
!  If%coupling%to%an%external%source%%
%
%
%
%
%
%

!  These%would%map%to%a%non&local%coupling.%

!  The%same%would%happen%for%GR:%%
An%external%source%breaks%diffeomorphism%invariance%

Eg.%

CdR,%Fasiello,%Tolley%2013%
Creminelli,%Serone,%Trevisan,%and%Trincherini,%2014%

Coupling'to'MaSer'
!  If%coupling%to%a%dynamical'source%%
%
%
%
%
%
%

!  Dynamical%sources%preserve%diffeomorphism%invariance.%
!  Local%dynamical%sources%map%to%local%sources%
%

!  This%map%can%be%applied%to%any%theory.%

Eg.%

CdR,%Keltner,%Tolley%2014%
Kampf%&%Novotny,%2014%
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MaSer'transforma$on'
!  If%coupling%to%a%dynamical'source%%
%

! Matter%fields%should%transform%as%they%would%do%under%a%
standard%coordinate%transformation%
%

!  Eg.%Scalar%field%

CdR,%Keltner,%Tolley%2014%

MaSer'transforma$on'
!  If%coupling%to%a%dynamical'source%%
%

! Matter%fields%should%transform%as%they%would%do%under%a%

standard%coordinate%transformation%

%

!  Eg.%Scalar%field%
%

!  Arbitrary%tensor%field%

CdR,%Keltner,%Tolley%2014%

%

Local%dynamical%sources%%

map%to%local%sources%

%
Following%results%are%not%are%artefact%of%non&locality%

%
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Classical'Causal'Structure'
!  Galileon%coupled%to%a%scalar%field%χ%with%standard%kinetic%
term%
%
%
%

! The%field%χ%propagates%luminaly%independently%of%the%
configuration%

! There%are%configurations%where%the%Galileon%is%
superluminal%

!  χ%is%subluminal%compared%to%the%Galileon%

Classical'Causal'Structure'
!  In%the%dual%picture,%
%
%
%

!  %%%%%has%a%standard%kinetic%term % %propagates%
luminally%
%

!  %%%%%acquires%a%non&standard%kinetic%term%and%
propagates%subluminaly%
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The%Classical%Causal%structure%remains%preserved%

Shown%for%any%field%configuration,%%
%does%not%rely%on%plane%waves%
%does%not%rely%on%vacuum%
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If%a%UV%completion%exists%then%we%should%have%%

Quantum'Stability'???'
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Ghost5free'Massive'Gravity'
!  Structure%of%mass%term%is%essential%to%avoid%BD%ghost%

Boulware%&%Deser,%PRD%6,%3368%(1972)%
CdR%&%Gabadadze,%PRD%82,%044020%(2010)%

CdR,%Gabadadze%&%Tolley,%PRL%106,%231101%(2011)%

Ghost5free'Massive'Gravity'
!  Structure%of%mass%term%is%essential%to%avoid%BD%ghost%
%
%
%

! We%expect%the%structure%to%detune%the%potential%
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Ghost5free'Massive'Gravity'
!  Structure%of%mass%term%is%essential%to%avoid%BD%ghost%
%
%
%

! We%expect%the%structure%to%detune%the%potential%

CdR,%Heisenberg%&%Ribeiro,%1307.7169%

Ghost5free'Massive'Gravity'
!  Structure%of%mass%term%is%essential%to%avoid%BD%ghost%
%
%
%

! We%expect%the%structure%to%detune%the%potential%

CdR,%Heisenberg%&%Ribeiro,%1307.7169%
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15loop'Effec$ve'Ac$on'
! The%1&loop%effective%action%is%itself%redressed%
%
%
%
%

!  %The%detuning%of%the%potential%is%never%a%problem%at%
that%level%%
%

!  %Even%on%top%of%large%background%configurations%%
%

CdR,%Heisenberg%&%Ribeiro,%1307.7169%

Beyond'15loop…'

! At%higher%order%in%loops,%loops%can%mix%virtual%matter%
fields%and%graviton%fields%

Could%have%a%mixing % %which%could%be%fatal…%
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Ridding'on'Irrelevant'Operators'
! Consider%an%arbitrary%theory%
%

! The%theory%exhibits%the%Vainshtein%mechanism%%
if%%
%
%

Ridding'on'Irrelevant'Operators'
! Consider%an%arbitrary%theory%
%

! The%theory%exhibits%the%Vainshtein%mechanism%%
if%%
%
%

! Coupling%to%heavier%fields%with% % %%would%
naively%detune%the%theory…%%
at'least'perturbatively%%
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Ridding'on'Irrelevant'Operators'
! Consider%the%exact%Renormalization%Group%%equation%

Wetterich,%1993%

:%regulator%operator%

:%effective%average%action%
:%IR%regulator%

Ridding'on'Irrelevant'Operators'
! Consider%the%exact%Renormalization%Group%%equation%

%Deep%in%the%Vainshtein%Region,%%%

Fully%Non&perturbatively% CdR%&%Raquel%Ribeiro,%arXiv:1405.5213%
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Ridding'on'Irrelevant'Operators'
!  Suppressing%the%loops…%

Fully%Non&perturbatively%

Quantum%corrections%become%irrelevant%%
deep%in%the%Vainshtein%regime%

CdR%&%Raquel%Ribeiro,%arXiv:1405.5213%
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On'the'Strong'Coupling'Issue'
Q:% %At%what%scale%does%standard%perturbativity%%
% %break%down%?%
%
A:% %The%scale%is%environment&dependent.%
%
In%DGP,%(really%for%a%cubic%Galileon),%%
At%the%surface%of%the%Earth%from%the%mass%of%Earth%alone,%%
%

On'the'Strong'Coupling'Issue'
In%massive%Gravity,%(really%in%DL%or%for%a%quartic%Galileon),%%
Burrage,%Kaloper%&%Padilla%tried%to%answer%this%question%
PRL%111(2013)%021802,%arXiv:1211.6001%and%found,%
%
%
%
From%which%they%conclude%that%the%graviton%mass%ought%
to%be%bounded…'
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Do'it'right'!'
1)  Looked%at%a%solution%which%is%not'stable%and%does%

not%exhibit%the%Vainshtein%mechanism%in%the%first%
place%

In%arXiv:1211.6001:%

Do'it'right'!'
1)  Looked%at%a%solution%which%is%not'stable%and%does%

not%exhibit%the%Vainshtein%mechanism%in%the%first%
place%

2)  Identified%the%wrong'operator'

In%arXiv:1211.6001:%

Identified%the%strongly%coupled%operator%
dimension&9%operator%

Total%derivative%
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Do'it'right'!'
1)  Looked%at%a%solution%which%is%not'stable'and%does%

not%exhibit%the%Vainshtein%mechanism%in%the%first%
place%

2)  Identified%the%wrong'operator'
Identified%the%strongly%coupled%operator%
dimension&9%operator%

Total%derivative%

Instead%the%first%strongly%coupled%op%is%
dimension&7%operator%

Arise%at%a%higher%energy%scale%!%

In%arXiv:1211.6001:%

Do'it'right'!'
1)  Looked%at%a%solution%which%is%not'stable%and%does%

not%exhibit%the%Vainshtein%mechanism%in%the%first%
place%

2)  Identified%the%wrong'operator%
Same%thing%when%dealt%with%quartic%Galileon%

In%arXiv:1211.6001:%
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Do'it'right'!'
1)  Looked%at%a%solution%which%is%not'stable'and%does%

not%exhibit%the%Vainshtein%mechanism%in%the%first%

place%

2)  Identified%the%wrong%operator%

Same%thing%when%dealt%with%quartic%Galileon%

3)  Assumed%exact%STATIC%&%spherically%symmetric%

configuration%
Just%the%dipole%from%the%Earth%~%10&3%radically%change%their%result%

In%arXiv:1211.6001:%

Do'it'right'!'
1)  Looked%at%a%solution%which%is%not'stable%and%does%

not%exhibit%the%Vainshtein%mechanism%in%the%first%

place%

2)  Identified%the%wrong'operator%
Same%thing%when%dealt%with%quartic%Galileon%

3)  Assumed%exact%STATIC%&%spherically%symmetric%

configuration%

Correcting%for%all%these%errors%leads%to%%

Λ
*
~(10cm)

%&1
%rather%than%(1%km)

&1
%%

But%even%putting%these%errors%aside%the%reasoning%of%the%paper%is%unphysical%

In%arXiv:1211.6001:%
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Do'it'right'!'
4)  The%scale%that%comes%in%is%always%

%

%%%dimensionless,%non&renormalized%free%parameter%%
%
and%not%%%%%%alone % %cannot%put%a%bound%on%%
% % % % % %the%graviton%mass%itself%

Do'it'right'!'
4)  Cannot%identify%the%mass%parameter%from%that%DL%
5)  Even%if%all%the%previous%points%were%correct,%one%

CANNOT%use%the%%breaking%of%perturbativity%to%put%
a%bound%on%a%physical%parameter.%
%
All%it%means%is%that%in%this%variable%the%DL%
description%breaks%down%
%
From%the%Vainshtein%%mechanism%we%expect%to%
recover%GR%better%and%better%the%deeper%in%the%SC%
regime%we%are%



�204

Do'it'right'!'
4)  Cannot%identify%the%mass%parameter%from%that%DL%

%

5)  Even%if%all%the%previous%points%were%correct,%one%
CANNOT%use%the%%breaking%of%perturbativity%to%put%
a%bound%on%a%physical%parameter.%
%

6)  At%these%scales,%one%needs%to%take%into%account%the%
further%screening%from%the%experiment%itself%%
(local%energy%+%building,%people,%etc…)%

Do'it'right'!'
Finally…%%%
%
The%Galileon%Duality%suggests%of%a%way%(ways)%to%
repackage%infinite%number%of%loops%such%that%
perturbativity%in%the%new%variables%is%under%
control%up%to%a%much%larger%energy%scale.%%
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“Appearance of Boulware-Deser ghost in bigravity with 

doubly coupled matter”  

Yasuho Yamashita

[JGRG24(2014)111102] 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Appearance of  Boulware-Deser ghost 
in bigravity with doubly coupled matter 

YITP, Kyoto University 
Yasuho Yamashita 

!

in collaboration with A. De Felice and T. Tanaka

bigravity and Boulware-Deser ghost

This mode’s kinetic term  
has opposite sign!!

Boulware-Deser ghost
Boulware and Deser (1972)

In order to obtain healthy bigravity, we have to tune the interaction form 
                                                  so that the ghost mode is killed by constraints.

The interaction term breaks general covariance for g 
fix f

S =
M

2
g

2

Z
d

4
x

p
�g

h
R

(g) + 2m2
V (g, f)

i
+

M

2
f

2

Z
d

4
x

p
�fR

(f)

massive graviton

GR ( helicity-2 ) + 4 gauge breaking ( helicity-1, helicity-0, helicity-0 )  

bigravity : gravity which contains two interacting gravitons
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ghost-free bigravity

V =
4X

n=0

cn✏
µ1...µn
⌫1...⌫n

K⌫1
µ1

. . .K⌫n
µn

K⌫
µ =

p
g⌫⇢f⇢µ

Choosing the form of  the interaction as

de Rham, Gabadadze, Tolley 
                                      (2011)

Then Hamiltonian becomes linear in N, L, Li.

H = NC + LCL + LiCL
i . C, CL, CL

i are functions of

�
�ij , ⇡

ij , 3fij , p
ij
 

One of  the Hamiltonian constraints kills BD ghost.
Hassan and Rosen (2012)

conjugate momentum

ADM decomposition
N�2 = �g00 , Ni = g0i , �ij = gij ,

L�2 = �f00 , Li = f0i ,
3fij = fij .

define new shift-like vector        
and rewrite       with niN i

ni

Questions in ghost-free bigravity

What is the hidden metric f ?  

The form of  the interaction is derived technically and artificially.                                          

The cosmological solutions in ghost-free bigravity do not exist or 
become unstable at high energies. 

→ We want to extend bigravity to more fundamental theory.

We want to embed ghost-free bigravity  
                             to higher dimensional gravity.
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Correspondence between ghost-free bigravity and 
DGP 2-brane model with stabilization mechanism

two metrics two metrics induced on the two branes

graviton’s mass the mass of  the lowest massive mode

ghost-free bigravity DGP 2-brane model

When the two branes are almost flat and its separation is small, 

YY and Tanaka (2014)

It is natural to consider doubly coupled matter in ghost-free bigravity 
by introducing 5-dim matter field in braneworld model.

DGP 2-brane model is identical to ghost-free bigravity.

doubly coupled matter

Consider a free scalar field which couples to both metric: 

However, 

Lm =
p
�g

✓
�1

2
@µ�@

µ�

◆
+
p

�f

✓
�1

2
@µ�@

µ�

◆

matter

gµ⌫ fµ⌫

coupling through the matter  
generally detunes the ghost-free 
structure of  the interaction.

→ BD ghost?

conjugate momentum ⇡� ⇠
✓

1

N
+

1

L

◆
@t�

Hamiltonian H 3 NL

N + L
⇡2
� …nonlinear in the lapse fcns → BD ghost!
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Seeking for models with doubly coupled matter  
which have no BD ghost

Introduce a k-essence scalar field

Consider perturbation around FLRW and Bianchi type-1 spacetime

When                 ,  
 an extra d.o.f. exists.

detA 6= 0

Lm =
p
�g P (X,�) +

p
�f P̃ (X̃,�)

X = �1

2
g↵�@↵�@�� , X̃ = �1

2
f↵�@↵�@��

Result

BD ghost appears unless ˜P =

˜P (�) or P = P (�)

and evaluate the determinant and the eigenvalues of  the kinetic matrix A.

YY, De Felice and Tanaka (2014)

their signs clarify  
 whether the d.o.f. is a ghost mode or not.

Seeking for models with doubly coupled matter  
which have no BD ghost

The model of  doubly coupled matter is considerably restricted.

… inconsistent with the intuition in braneworld models.

another ghost-free model motivated by the quasi-dilaton massive gravity

S =

Z
d

4
x

p
�g

"
M

2
gR

(g)

2
+ 2m2

M

2
e↵

X

n

cnen

✓q
g

µ⌫(fµ⌫ + ↵@µ�@⌫�)

◆#

+

Z
d

4
x

p
�f

"
M

2
fR

(f)

2
� 1

2
f

µ⌫
@µ�@⌫�

#

matter which couples to an effective metric

This model has BD ghost, but it appears beyond the strong coupling scale.
de Rham, Heisenberg and Rebeiro (2014) 

ge↵µ⌫ = ↵2gµ⌫ + 2↵�gµ↵

q
g↵�f�⌫ + �2fµ⌫

YY, De Felice and Tanaka (2014)
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Summary

We want to derive the ghost-free bigravity from some more fundamental         
theory which is valid at high energies … higher dimensional gravity

This idea suggests that it is natural to consider doubly coupled matter  
     in the ghost-free bigravity, however, we found that doubly coupled matter  
     generally brings BD ghost. 

We obtain the ghost-free bigravity as 4-dim effective theory of  DGP 2-brane    
model with stabilization mechanism in the very limited low energy regime.



�211

How?

massless in 5-d

massive in 4-d

4-dim hypersurface

Consider 5-dim braneworld model sandwiched by two branes.

There is no BD ghost. 

two metrics induced on two branes ⇔ two metrics in bigravity  

5-dim massless graviton → 4-dim massive graviton on the branes.

`
4-d brane 4-d brane

extra dim
S =

M

3
5

2

Z
d

5
x

p
�g R + (boundary term)

Only one massive mode must have small mass 
   to reproduce bigravity as a low energy effective theory.

Dvali-Gabadadze-Poratti 2-brane model

However, such thin throat structure is unstable.

4-dim mass spectrum ~ eigenvalue problem in quantum mechanics

effective potential by gravity

high potential barrier
nearly degenerate two small mass

y+ y- y+ y-

`

can take its place

DGP model

M

3
5 rc

Z
d

4
x

p
�g

(4)
R

(4)

S =
M

3
5

2

Z
d

5
x

p
�g

 
5
R+

X

±
r

(±)
c �(y � y±)

4
R(±)

!

additional length-scale parameter

`�1
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Stabilization mechanism (Goldberger & Wise)

The distance between two branes are stabilized.

: fixed

@y ! 1 as `! 0

`

There is an extra scalar d.o.f. corresponding to the brane separation.

We introduce stabilization scalar field to fix the brane separation.

… We should remove it to reproduce bigravity !

graviton’s mass spectrum

the lowest massive mode

: hierarchy

massless mode always exists

y+ y-

lowest massive mode

massless mode

K(±)
µ⌫ = r(±)

c

✓
G±(4)

µ⌫ � 1

3
G±(4)gµ⌫

◆
junction condition:

m2
1 ' 1

rc`
⌧ 1

`2
' m2

2

For              , eigenfunctions become` ⌧ rc

gµ⌫/` ' rc⇤(4)gµ⌫ = rcm
2
1gµ⌫

` ⌧ rc
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stronger stabilization ( large       )                  large μ2             |H0|

                          make μ2 negative : tachyonic instability!

corresponds to the self  accelerating branch 
                                            : K.Izumi et al. (2007)

1⌥ 2r(±)
c H± < 0

mass spectrum (scalar mode)
stabilization mechanism → no massless mode 

If  stabilization is weak:                            ,  

H : 5-d curvature scale

µ2 ⇡
2

Z y�

y+

dy

a2
+
X

�

2r(�)c

a2�

1

1� �2r(�)c H�Z y�

y+

dy

a4(�H0)

the lowest mass becomes       

����
@yH
H2

���� ⇠
(@y )2

M3
5H2

⌧ 1

The model which reproduces bigravity

r(±)
c = 1.00⇥ 105 , ` = 1.00

M5 = 1.00

bigravity

µ2

cut off

m2

m2
0 = 0

m2
1 = 2.00⇥ 10�5

µ2
0 = 1.77

m2
2 = 9.87

graviton’s mass scalar mode’s mass

!
（brane separation l ） 
　  <<（strength of induced gravity rc(±) ）

0.3155 0.3160 0.3165 0.3170 0.3175 0.3180

3.5¥10-11

4.¥10-11

4.5¥10-11

5.¥10-11

 
 + �

0.3155 0.3160 0.3165 0.3170 0.3175 0.3180

2

4

6

8

10

 
 �  +

V(+) V(�)

parameters

potential of  scalar field
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ghost in DGP model

means 

 ghost never disappears : K.Izumi et. al. (2007)

: self-accelerating branch2rcH+ � 1 > 0

m2
i � 2H2 ! ±✏µ2

i + 4H2 ! ⌥✏

The same identity prohibits        &        from crossing their critical masses 
no ghost

: normal branch 2rcH+ � 1 < 0

m2
i µ2

i

2

 
X

i

u2
i (y+)

m2
i � 2H2

!
+

1

H2
+(2rcH+ � 1)

 
22

3H2
+(2rcH+ � 1)

 
X

i

v2i (y+)

µ2
i + 4H2

!
+H+

!
= 0

diverges as m2→2H2 : Higuchi bound diverges as μ2→-4H2  
: critical mass that scalar tachyon appears

the regularity on +brane imposes
H : 4-dim comoving curvature scale

Cosmological solution in ghost-free bigravity

⇢ no Higuchi ghost

Higuchi ghost

ω : ratio of  scale factors  
of  two metric 

no Higuchi ghost

gradient instability  
  in matter or rad dominated era.

⇢̄ s.t. H (⇢̄) � m
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Higuchi ghost in dRGT bigravity
In dRGT model, equation for the de Sitter solution insists

2
4

m2
⇢m =

c1
�!

+

✓
6c2
�

� c0

◆
+

✓
18c3
�

� 3c1

◆
! +

✓
24c4
�

� 6c2

◆
!2 � 6c3!

3 ⌘ f(!)

ω : ratio of  scale factor  
of  two metric effective mass for massive graviton 

For flat vacuum solution, H→0 as ω→ω0 where ρm(ω0)→0, 

this sign determines the ghost appearance

negative when Γ >0 i.e. meff2 >0

no Higuchi ghost

Higuchi ghost in dRGT bigravity
In dRGT model, equation for the de Sitter solution insists

2
4

m2
⇢m =

c1
�!

+

✓
6c2
�

� c0

◆
+

✓
18c3
�

� 3c1

◆
! +

✓
24c4
�

� 6c2

◆
!2 � 6c3!

3 ⌘ f(!)

ω : ratio of  scale factor  
of  two metric effective mass for massive graviton 

this sign determines 
 the ghost appearance

flat vacuum H = 0, ρ = 0

ω 

⇢

no Higuchi ghostHiguchi ghost

f 0 = 0

!0

...negative  
     when Γ >0 ⇔ meff2 > 0
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Higuchi ghost in dRGT bigravity

ω : ratio of  scale factor  
of  two metric 

⇢

⇢c

de Sitter solution does not exist above this critical density,  
and Higuchi ghost appears after crossing the critical ω.

Higuchi ghost appears
adding cosmological const. little by little

…no Higuchi ghost

choose the branch connected to the vacuum flat spacetime  
                                        with positive graviton mass 

!c

collapse of  the structure in DGP model

junction condition

must be satisfied to avoid scalar-mode instability

is assumed as very small

cause instability and break the structure

consider to add cosmological const.         on the brane
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“Cosmology in rotation-invariant massive gravity with non-

trivial fiducial metric”  

Atsushi Naruko

[JGRG24(2014)111103] 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Cosmology in rotation-invariant  
massive gravity  

with non-trivial fiducial metric

Atsushi NARUKO (TiTech) 
!

in collaboration with  
David Langlois (APC, Paris) 

Shinji Mukohyama (YITP)  Ryo Namba (KIPMU) 
!

based on : CQG. 31 (2014),  [arXiv : 1405.0358]

Introduction

probably, I can skip this page…
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Practical motivation
✓ We would like to consider the dRGT model which is  

  a (the ?) non-linear extension of Firez & Pauli theory.

✓ However, dRGT suffers from several issues : 
‣ no FLAT FLRW solution 
‣ new non-linear ghosts (← vanishing kinetic terms)

๏  abandon isotropy or homogeneity ?

๏  appropriate (doubly-coupled) matter coupling ???
๏  extend the theory ? introduce new d.o.f ??

Lorentz -> SO(3)
✓ The original dRGT model enjoys 4D Lorentz symmetry.

✓ ΦI among [Φ and ΦI] have SO(3) symmetry :
ΦI  → ΦI + CI  &  ΦI  → RI J ΦJ

✓ It might be natural to consider a massive gravity model  
　which only possesses a 3D maximal symmetry.

✓ Universe is expanding !! 
    →  Lorentz invariance is broken ! 
    →  respect only 3D rotation symmetry !!

�IJ@µ�
I@⌫�

J
　　⇔

�AB@µ�
A@⌫�

B
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covariant SO(3) gravity
✓ The theory enjoys 4D diffeomorphism invariance

eµ⌫ = �IJrµ�
Ir⌫�

J

✓ Let us introduce 10 scalar functions made of Φ and ΦI

N ⌘ 1p
�gµ⌫@µ�@⌫�

,

which reduce to ADM variables in unitary gauge, ΦA = xμ.

�IJ ⌘ (gµ⌫ + nµn⌫)@µ�
I@⌫�

J , (nµ = N gµ⌫@⌫�)

L =
1

2
R�m2V (gµ⌫ ,� ,rµ� , eµ⌫)

N I ⌘ Nnµ@µ�
I ,

SO(3) gravity w/o BD ghost
✓ No BD condition restricts the form of V as

V = U +
E � UI UIJ EJ

N
where U and E are free functions of Φ, ΓIJ and ξI (⇔ ni). 

✓ Φ can appear everywhere…   c.f. E = f(Φ) + g(Φ)ΓIJξIξJ + …

➡ impose a (dilaton-like) symmetry
　　Φ → Φ + C  &  ΦI → e-MC ΦI　⇔　

(Φ → Φ + C　⇔　b(Φ) → 1　  Comelli et al.)

Comelli et al. (2013)

c.f. U(�IJ � ⇠I⇠J , �IJ ,�) and E(�IJ , ⇠I , �IJ ,�)

E(�IJ , ⇠I , b(�)�IJ)
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background
✓ BG cosmology : ds2 = - N2(t) dt2 + a2(t) δij dxi dxj. 

‣ δ wrt N : 

‣ δ wrt a : 

‣ δ wrt Φ :

where ⇢g = M2
pl m

2 Ū(X) , Pg = M2
pl m

2
h
2U 0 � Ū + (2E 0 � Ē)/N

i
(X)

✓ H = 0 or 2 E’ - E = 0 in the case b = 1,  
➡ no interesting cosmology or E is constrained…　

c.f. Comelli et al. (2013)

X = b/a

3M2
pl H

2 = ⇢m + ⇢g(X) ,

M2
pl

⇣
2Ḣ/N + 3H2

⌘
= �Pm � Pg(X) ,

2U 0(ḃ/b) +H(2E 0 � Ē) = 0

perturbations
✓ We have studied 3-types of perturbations in a case 

without matter  where the mass term behaves like c.c. and 
hence the BG is described by a de-Sitter.

✓ At linear level (quadratic in the action), all types of 
perturbations have non-vanishing kinetic terms. 
　⇔ dRGT model (kinetic terms of S and V disappear)

✓ We have derived conditions for healthy perturbations 
　= no ghost instabilities & no gradient instabilities. 

　⇒ a broad parameter region those conditions are satisfied
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summary
✓ investigated a possible extension of the original dRGT 

model, i.e. SO(3) massive gravity model 

✓ studied background cosmology where the mass term 
has a non-trivial time-dependence in general 

✓ studied perturbations in a case without matter  
‣ non-vanishing kinetic terms for (S,V,T) perturbations 
‣ derived conditions for healthy perturbations 

➡ stability analysis of perturbations in a case with matter 
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“Stability of self-accelerating solutions in extended 

quasidilaton massive gravity”  

Hayato Motohashi

[JGRG24(2014)111104] 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Stability of self-accelerating solutions in 
extended quasidilaton massive gravity

Kavli Institute for Cosmological Physics
University of Chicago

HM and W. Hu, PRD90 104008, [arXiv:1408.4813]

Hayato Motohashi

Extension of dRGT massive gravity by employing scalar field σ 
which enjoys the global symmetry

The extended fiducial metric is dynamical through quasidilaton.

The theory has a flat FLRW solution with an effective 
cosmological constant induced by graviton mass term.

It was shown that this solution is stable in vacuum.

Is it also stable in the presence of matter?

The extended quasidilaton massive gravity

D’Amico et al, 1206.4253
De Felice and Mukohyama, 1306.5502

See also:

De Felice, Gumrukcuoglu and 
Mukohyama, 1309.3162

Mukohyama, 1410.1996 
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Total action
Extended quasidilaton massive gravity

Matter sector

Setup

Spatially flat FLRW cosmological background

Extended fiducial metric

Self-accelerating branch:                ,   

Background
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Friedmann equation with effective cosmological constant

For positive and       , 

Since

to keep Lorentzian signature for the fiducial metric,

Background

Working in the unitary gauge
Metric perturbations

Quasidilaton and matter field

Vacuum case: 2 dof
With matter:  3 dof

Scalar perturbations
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Integrating out nondynamical dof: ,      , 
Two dynamical dof:      , 
No-ghost condition

Consequently,

Note that        and     are constant for vacuum case.

Vacuum case

Integrating out nondymnamical dof:       ,      , 
Three dynamical dof: 
For

For

Necessary condition 

With matter HM and Hu, 1408.4813

Linear    comb.



�228

ΛCDM expansion history

Redshift

Stability condition for ΛCDM exp. history
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• We considered extended quasidilaton with matter and 
derived necessary conditions for stability:

• While these appear identical in the  form with vacuum case, 
they provide time-dependent constraint for model 
parameters. 

• There is model parameter region that is initially stable but 
evolves to an instability.

• More generally, there is nothing intrinsic to the dynamics of 
the fiducial metric that forbids an evolution from Lorentzian
to Euclidian signature. Backgrounds that evolves through such 
a transition develop a ghost instability.

Conclusions



�230

“Covariant Stueckelberg analysis of dRGT massive gravity 

with a general fiducial metric”  

Daisuke Yoshida

[JGRG24(2014)111105] 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Covariant Stueckelberg Analysis 
of dRGT massive gravity 
with a general fiducial metric 
 
Daisuke Yoshida (Tokyo Institute of Technology) 
 
based on arXiv:1409.3074 
CollaboratorsRX.Gao, T.Kobayashi, M.Yamaguchi 
 
�
�
�E.�

�(	
)�0.�.()��2��

�
,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 � 1/12 �

We extend the Stueckelberg analysis of dRGT 
massive gravity with FLAT fiducial metric 
to with a GENERAL fiducial metric. �

�:Introduction of massive gravity 
 
�:Stuckelberg analysis with flat fiducial metric 
 
 :Extension to GENERAL fiducial metric 

OUTLINE�

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

ABSTRACT 

2/12 �
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,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

�:Introduction of massive gravity 
 
�:Stuckelberg analysis with flat fiducial metric 
 
 :Extension to GENERAL fiducial metric 

OUTLINE�

Massive gravity �

Theoretically, can graviton have a mass? 
 
Can the graviton mass explain the accelerated 
universe?�

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

Motivation �

3/12 �

The action of nonlinear massive gravity is 
composed from Einstein-Hilbert action and mass 
potential of graviton.  
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Theoretical feature of massive gravity �

Even in nonlinear level, action include fiducial metric�

For simplicity, flat fiducial metric                   is often used. 
Theoretically, we can use any metric as fiducial metric. 

Feature 1. fiducial metric�

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

Feature 2. BD ghost�

4/12 �

Mass potential is constructed from the graviton 

Theoretical feature of massive gravity �

Even in nonlinear level, action include fiducial metric�

For simplicity, flat fiducial metric                   is often used. 
Theoretically, we can use any metric as fiducial metric. 

Feature 1. fiducial metric�

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

Feature 2. BD ghost�

4/12 �

Mass potential is constructed from the graviton 

The graviton have 6 d.o.f. in many theory of massive gravity. �
massive spin2 

5 d.o.f.�

BD ghost 
1 d.o.f�

+�
unphysical 
d.o.f.�

dRGT MG �de Rham,Gabadadze,Tolley (2011) �

Boulware,Deser (1972 ) �
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Theoretical feature of massive gravity �

Even in nonlinear level, action include fiducial metric�

For simplicity, flat fiducial metric                   is often used. 
Theoretically, we can use any metric as fiducial metric. 

Feature 1. fiducial metric�

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

Feature 2. BD ghost�

4/12 �

Mass potential is constructed from the graviton 

The graviton have 6 d.o.f. in many theory of massive gravity. �
massive spin2 

5 d.o.f.�

BD ghost 
1 d.o.f�

+�
unphysical 
d.o.f.�

dRGT MG �de Rham,Gabadadze,Tolley (2011) �

Stueckelberg formalism is very useful to see the presence of ghost. �

Boulware,Deser (1972 ) �

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

�:Introduction of massive gravity 
 
�:Stuckelberg analysis with flat fiducial metric 
 
 :Extension to GENERAL fiducial metric 

OUTLINE�
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STEP1. Stueckelberg trick �

STEP2. helicity decomposition �

STEP3. decoupling limit �
Omit the interaction term beyond the cut off scale. 
  In dRGT theory cut off scale is  �

Stueckelberg Analysis with flat fiducial metric�

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 � 5/12 �

helicity)2++++++++:2+d.o.f.+
helicity)1++++++++:2+d.o.f.+
helicity)0++++++++:1+1+d.o.f�

gauge fixing �

Additional d.o.f. appear when  
the e.o.m. have higher time derivative. �

Stueckelberg analysis occurs in 3step. �

Introduce the Stueckelberg fields �

dRGT massive gravity �

O does not have additional d.o.f, 
then theory is BD ghost free. �

dRGT  mass potential�

Equation of motion include only 2nd time derivative. �

de Rham, Gabadadze, Tolley (2011) �

decoupling limit 
unmixing, normalization 

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 � 6/12 �
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,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

�:Introduction of massive gravity 
 
�:Stuckelberg analysis with flat fiducial metric 
 
 :Extension to GENERAL fiducial metric 

OUTLINE�

X.Gao, T.Kobayashi, M.Yamaguchi, D.Y. arXiv:1409.3074 �

dRGT massive gravity with general fiducial metric�

•  Hamiltonian analysis shows this theory have 5 d.o.f. 

 
•  However Stueckelberg Analysis have not been constructed in general fiducial case. 

O���In the case of de Sitter fiducial metrirc 
O���In the case of FLRW fiducial metric 
 
�

PTo construct Stueckelberg formalism 
PTo confirm BD ghost free 
Oby Stueckelberg formalism�

BD ghost free� Hassan,Rosen (2012) 
Hassan,Rosen,Schmidt-May(2012) �

de Rham,Renaux-Petel (2013) 
Fasiello,Tolley(2013) �

Our Purpose�

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 � 7/12 �
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STEP1:Stueckelberg trick �

STEP2. Definition of Stueckelberg field �

STEP 3. decoupling limit�

Modification from the flat fiducial case�

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

geodesics �

�Omit the interaction beyond the cut off scale  �

Cut off scale remain �

8/12 �

is not covariant vector in curved space time. �is covariant vector ! �


�����������������������������	��������

There are new curvature correction terms ! �
,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 � 9/12 �
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Application 1:�Confirmation of BD ghost free�

These curvature correction produce at most 2nd derivative term 
in equation of motion. 
All higher derivative term are canceled due to the symmetric property 

We have confirmed this theory is BD ghost free4�
,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 � 10/12 �
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Application 2: Generalized Higuchi bound �

itself become ghost! �
T6Td.o.f �

ghost 

Generalized Higuchi bound �

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 � 11/12 �

In order to avoid such a ghost instability,  
curvature scale of fiducial metric is constraint  
by graviton mass scale. 

��������

We extend the Stueckelberg analysis of dRGT 
massive gravity with FLAT fiducial metric 
to with GENERAL fiducial metric �

,�$+JB ��E+@$�����$I �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 � 12/12 �

Especially, by  
Omodification 1�defining the Stueckelberg fields covariantally, 
�modification 2�generalizing decoupling limit, 
we can 
OResult�write down the action in Stueckelberg language  
                   up to 4th order. 
 
As an application of this formalism, we succeed to 
�App.���confirm the theory is free from BD ghost, 
�App.���generalize the Higuchi bound. 



�240

Stueckelberg Analysis �

Introduce+the+
Stuckelberg+fields		�

�)J$.�& DI�I@ EGM�
$D��$N G DI�"�J" �

massive+spin)2++++++�:+5+1+d.o.f.� massless+spin)2++++++++:2+d.o.f.+
massless+spin)1++++++++:2+d.o.f.+
massless+spin)0++++++++:1+1+d.o.f�

�@ � L$+I D� �E!��,�"@E+I�$+�G &�I ��4�1��

Original theory � Stueckelberg formalism �

,�$+JB ��E+@$������� �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

STEP2. Definition of Stueckelberg field �
Modification of Stueckelberg Analysis �

,�$+JB ��E+@$������� �@����yoshida@th.phys.titech.ac.jp  �arXiv:1409.3074 �

geodesics �

Flat case definition � new definition �

12/15 �
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“Dark matter in ghost-free bigravity theory”  

Katsuki Aoki

[JGRG24(2014)111106] 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Dark%ma'er%in%ghost0free%
bigravity%theory 

Waseda%University,9
Katsuki%Aoki9

Based%on%9
KA%and%K.%Maeda,%PRD%89,%064051%(2014).9
KA%and%K.%Maeda,%arXiv:%1409.%0202.9

JGRG24&
Nov.,,11th,,,2014@Kavli,IPMU�

Massless,graviton,or,massive,graviton?�

Can%the%modification%of%gravity%explain%the%biggest%problem9
in%modern%cosmology?9

Dark,Energy� Dark,MaEer�

68.3%�
26.8%�

4.9%�
Ordinary,MaEer�

! General%Relativity�
Massless%spin02%field�

!  dRGT%Massive%gravity%theory�
Massive%spin02%field�

!∼ 10↑−33 eV∼Gpc↑−1 ⇒%Dark%energy%�

!∼ 10↑−27 eV∼kpc↑−1 ⇒%Dark%ma'er?%�

! HR%Bigravity%gravity%theory�
Massless%spin02%and%Massive%spin02%fields�
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Bigravity%theory%contains%two%metrics.9

HassanNRosen,bigravity,theory�

Twin%ma'ers9 Doubly%coupled%ma'er9

Physical%ma'er9 Dark%ma'er?9

Can%we%interpret%another%ma'er%field%as%a%dark%ma'er?9

Reappearance%of%ghost?9

Homothetic,solution�

)↓+, = -↑2 .↓+, ,++-=/0123⇒%GR%solution9

If%two%metrics%are%proportional,%the%equation%of%motion9
is%exactly%same%as%GR%with%a%cosmological%constant.9

with9

Minkowski,%de%Si'er%and%Anti0de%Si'er%spacetimes%are%also9
vacuum%solutions%as%homothetic%solutions%in%bigravity.9
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Perturbation,around,homothetic,background�

)↓+, ≠ -↑2 .↓+, ++→++)↓+, ≈-↑2 .↓+, 9

The%homothetic%solution%is%obtained%as%an%a'ractor9
in%the%context%of%cosmology%(KA%and%K.%Maeda%14’).9

The%linear%perturbation%around%homothetic%background%can%9
be%decomposed%to%massless%and%massive%graviton%modes.9

Effective%mass9

Basic,idea�

scale�

Massless%mode%=%GR9

Massive%mode%=%FP%theory9

Massless%and%massive%modes%couple%to%both%twin%ma'ers.9
Our%spacetime%is%given%by%both%massive%and%massless%modes.9

The%massive%mode%decays.9
Only%the%massless%mode%survives.9

Both%massive%and%massless9
modes%survive.9
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Gravitational,potential,on,flat,background�
The%gravitational%potential%is%induced%by%)0ma'er%field%9
as%well%as%.0ma'er%field%through%the%interaction%terms.�

repulsive%force%in%9

vDVZ%discontinuity9

! Outside%Vainshtein%radius�

4�
4↓5 �

Screened9 A'ractive9
=%dark%ma'er9

Repulsive9

Rotation,curve,in,galaxy�

No%)0ma'er%(black)9

Vainshtein%radius:%�

(green)�

)0ma'er%produces%repulsive%force90ma'er%produces%repulsive%force9

⇒%Gravity%becomes%effectively%weak9
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Rotation,curve,in,galaxy�

No%)0ma'er%(black)9

Vainshtein%radius:%�

(red)� (blue)�

(green)�

Structure,formation�

The%evolutions%restore%to%GR%like%Vainshtein%screening�

The%)0ma'er%produces%repulsive%force�

The%)0ma'er%acts%as%ordinary%dark%ma'er�0ma'er%acts%as%ordinary%dark%ma'er�
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Growth,history,of,largeNscale,structure�

For%large%scale%perturbation,%the%evolution%of%physical%9
ma'er%perturbation%is%similar%to%CDM%model%in%GR.9

outside%Compton%length9

Background:9
dust%dominant%universe9

Growth,history,of,largeNscale,structure�

The%evolution%of% 6↓. %is%quite%different%due%to%the%massive%mode9

Background:9
dust%dominant%universe9



�248

Growth,history,of,largeNscale,structure�

The%evolution%of% 6↓. %is%quite%different%due%to%the%massive%mode9

Background:9
dust%dominant%universe9

)0ma'er%produces%repulsive%force90ma'er%produces%repulsive%force9

⇒%The%.0ma'er%accumulates%in%a%0ma'er%accumulates%in%a%

low0density%region%of%the%)0ma'er.90ma'er.9

Growth,history,of,largeNscale,structure�

The%evolution%of% 6↓. %is%quite%different%due%to%the%massive%mode9

Background:9
dust%dominant%universe9

)0ma'er%produces%a'ractive%force90ma'er%produces%a'ractive%force9

⇒%The%.0ma'er%accumulates%in%a%0ma'er%accumulates%in%a%

high0density%region%of%the%)0ma'er.90ma'er.9
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Summary�

! Another%one%of%twin%ma'ers%can%be%candidate%of%dark%
ma'er9

!≳ 10↑−27 eV∼kpc↑−1 ⇒%Dark%ma'er%�

!  There%are%two%important%scales:%9
%%%%%Compton%wavelength%and%Screening%scale9

The%phenomena%are%restored%to%GR%9
and%we%can%not%see%the%effect%of%)0ma'er.9

9
There%are%some%changes%from%GR.9

9
The%phenomena%of%bigravity%with%twin%
ma'ers%are%similar%to%GR%with%CDM.9

Screening%scale�

Compton%wavelength�

small9

large9
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Fierz0Pauli%massive%gravity%(1939)9

9physical%metric% .↓+, %=%background% 7↓+, %+%perturbation% ℎ↓+, 9

9↓.4:;<3= = 9↓>? (.)+ 9↓BC (7,ℎ)9

de%Rham0Gabadadze0Tolley%massive%gravity%(2011)9

9physical%metric% .↓+, %&%fiducial%metric% )↓+, 9
9↓.4:;<3= = 9↓>? (.)+ 9↓DE (.,))9

Hassan0Rosen%Bigravity%%(2011)9

9%physical%metric% .↓+, %&%another%dynamical%metric% )↓+, 9
9↓.4:;<3= = 9↓>? (.)+ 9↓>? ())+ 9↓DE (.,))9

Can,graviton,have,a,mass?�

Small,cosmological,constant,and,large,mass�

with9
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Scale,dependence,of,the,another,maEer,effect�

large%scale9

Galactic%disk9

The%)0ma'er%behaves%like%ordinary%dark%ma'er9

The%gravitational%force%becomes%effectively%weak9

The%gravity%is%produced%by%only%physical%ma'er9

small%scale9

Gravitational,potential,on,flat,background�
The%gravitational%potential%is%induced%by%)0ma'er%field%9
as%well%as%.0ma'er%field%through%the%interaction%terms.�

4�
4↓5 �

Screened9 A'ractive9
=%dark%ma'er9

Repulsive9

repulsive%force%in%9

vDVZ%discontinuity9

! Outside%Vainshtein%radius�

The%effect%of%)0ma'er%9
is%screened%inside%9
Vainshtein%radius.9

:%gravitational%force9
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Structure,formation�

The%evolutions%restore%to%GR%like%Vainshtein%screening�

The%)0ma'er%produces%repulsive%force�

The%)0ma'er%acts%as%ordinary%dark%ma'er�0ma'er%acts%as%ordinary%dark%ma'er�

The%effect%of%)0ma'er%9
is%screened%in%early9
universe.9:%gravitational%force9

The,origin,of,dark,maEer?&

Effective%Friedmann%equation%(linear%regime)9

The%)%ma'er%behaves%like%dark%ma'er%component%on% .↓+, .9

Dark,Energy� Dark,MaEer�

Ordinary,MaEer�

68.3%�
26.8%�

4.9%�

!↓eff ≫?↓.↑ 9
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“Tensor Spectrum in Bimetric Gravity”  

Yuki Sakakihara

[JGRG24(2014)111107] 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Tensor Spectrum in Bimetrc Gravity 

Yuki Sakakihara (Kyoto University)�

2014/11/11 JGRG24 @IPMU 11:45-12:00�

This research is collaborated with Jiro Soda (Kobe University)�

Massive graviton 

1 massless graviton 
+ 1 massive graviton 

�In order to realize 1/r gravitational force, 
  ��at least, one of them should be sufficiently light. 

Suppose there are two (or more) gravitons... 

We can realize such a theory 
with two metrics interacting with each other. 

 �

Does the graviton have its mass?  How many species does it have?   
                                                                 We know few about the graviton... 

2 interacting 
massless graviton 
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Bimetric Gravity�

In order that the theory has stable solutions, 
the form of the interaction terms are restricted. 
(They include five theoretical parameters.) 

(de Rham et. al., 2011, Hassan and Rosen, 2012)�

minimal bimetric model 

two metrics 
: physical metric 

:  the other metric 

If the other metric exists,  
do some problems happen?  
How can we see the effects on observations? 

For example, about inflation 

Can we construct inflating solutions with a 
inflaton as in the case of GR? 

Inflation in bimetric gravity�

Are they stable solutions? 

What is the feature of the gravitational waves 
generated during inflation? 

 
�

One branch of 
the solutions is 
guaranteed to 
be stable. 

 
�

Yes, we can. 

(YS et al 2013)�
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For example, about inflation 

Can we construct inflating solutions with a 
inflaton as in the case of GR? 

Inflation in bimetric gravity�

Are they stable solutions? 

What is the feature of the gravitational wave 
generated during inflation? 

 
�

One branch of 
the solutions is 
guaranteed to 
be stable. 

 
�

Yes, we can. 

Today’s topic 

(YS et al 2013)�

If the other metric exists,  
do some problems happen?  
How can we see the effects on observations? 

Bimetric gravity (+ inflaton) action�

interaction terms of the metrics kinetic terms of the other metric 

kinetic terms of physical metric scalar field (inflaton) 
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: the ratio of scale factors 

(1) Substitute the homogeneous isotropic ansatz into the action 

(2) Variational principle ����3 equations of motion and 2 constrains. 

Homogeneous isotropic solutions�

The time derivative of these constraints gives a relation between the lapse functions. 

: the ratio of expansion rates 

(3) We obtain several branches of the solutions	  

	 	 →	 The only one branch is stable, in which epsilon has the value from 0 to 1 .  

Slow-roll parameter 
,	  

Slow-roll approximation�

2.2 de Sitter limit

When we take the de Sitter limit, i.e. δζ = 0, ϵ =const. and m̃2
eff = m2

eff , then,

δ2L =
1

2
X ′2 +

1

2

( 2

η2
− k2

)
X2 +

1

2
Y ′2 +

1

2

(2 − m2
eff/H2

η2
− k2

)
Y 2 . (2.26)

canonical quantitation

δL =
1

2
X̂ ′2 +

1

2
Ŷ ′2 +

1

2

( 2

η2
− k2

)
X̂2 +

1

2

(2 − m2
eff/H2

η2
− k2

)
Ŷ 2 . (2.27)

Heisenberg equations

X̂ ′′ +
(
k2 − 2

η2

)
X̂ = 0 , Ŷ ′′ +

(
k2 − 2 − m2

eff/H2

η2

)
Ŷ = 0 . (2.28)

We change variables

X̂ = uX â + u∗
X â† , Ŷ = uY b̂ + u∗

Y b̂† (2.29)

where the functions obey

u′′
X +

(
k2 − 2

η2

)
uX = 0 , (2.30)

u′′
Y +

(
k2 − 2 − m2

eff/H2

η2

)
uY = 0 . (2.31)

Since we have found that m2
eff/H2 ≥ 2, uY rapidly decays. The solution of (2.30) is written as

X = c1

(
1 − i

kη

)
e−ikη + c2

(
1 +

i

kη

)
eikη (2.32)

Since a initial condition is given as

uX =
1√
2k

e−ikη , (2.33)

the solution is

uX =
1√
2k

(
1 − i

kη

)
e−ikη . (2.34)

When we take kη → −0 limit, the spectrum of X is

⟨X̂2⟩ =
4πk3

(2π)3
|uX |2 =

k3

2π2

1

2k

( 1

kη

)2

=
1

4π2η2
. (2.35)

Using the relation

v̂ =
sin aX̂ − cos aϵŶ

[sin2 a + cos2 aϵ2]1/2
, (2.36)

the tensor spectrum is calculated as

⟨q̂2⟩ =
4 cos2 a

e2α
⟨v̂2⟩ =

4 cos2 a

e2α

sin2 a⟨X̂2⟩ + cos2 aϵ2⟨Ŷ 2⟩
sin2 a + cos2 aϵ2

=
cos2 a sin2 a

[sin2 a + cos2 aϵ2]

1

π2e2αη2
(2.37)

5

is time dependent in this order. 

We neglect 

difference from GR 

=
κ2

κ2 + ϵ2

(
H0

πMg

)2

(−η)
−2s

2ϵ20(1−ϵ0)

κ20+ϵ20

(
k

2

)−2s
(
1+

2ϵ20(1−ϵ0)

κ20+ϵ20

)[Γ
(
3
2 + s(1 + 2ϵ20(1−ϵ0)

κ2
0+ϵ20

)
)

Γ(32)

]2(
1− 6sϵ20(1− ϵ0)

κ2
0 + ϵ20

)
.

(12)

nT = −2s
(
1 +

2ϵ20(1− ϵ0)

κ2
0 + ϵ20

)
(13)

∝ 1

e3α
(14)

ϵ = ϵ(m,Mg/Mf , ρϕ) (15)

ζ = 1 +
ϕ̇2

M2
g [m

2
eff − 2H2]

(16)

ζ = 1 + 2s(1− ϵ) (17)

m2
eff := m2

[
ϵ cos2 a+

1

ϵ
sin2 a

]
(3− 2ϵ) (18)

H := α̇ (19)

H := α′ (20)

δζ := ζ − 1 =
dβ

dα
− 1 =

d(β − α)

dα
=

d
dt(β − α)

d
dtα

=
ϵ̇/ϵ

H
= O(s) (21)

s ≪ 1 (22)

ṡ (23)

O(s2) (24)

2

= const.  

=
κ2

κ2 + ϵ2

(
H0

πMg

)2

(−η)
−2s

2ϵ20(1−ϵ0)

κ20+ϵ20

(
k

2

)−2s
(
1+

2ϵ20(1−ϵ0)

κ20+ϵ20

)[Γ
(
3
2 + s(1 + 2ϵ20(1−ϵ0)

κ2
0+ϵ20

)
)

Γ(32)

]2(
1− 6sϵ20(1− ϵ0)

κ2
0 + ϵ20

)
.

(12)

nT = −2s
(
1 +

2ϵ20(1− ϵ0)

κ2
0 + ϵ20

)
(13)

∝ 1

e3α
(14)

ϵ = ϵ(m,Mg/Mf , ρϕ) (15)

ζ = 1 +
ϕ̇2

M2
g [m

2
eff − 2H2]

(16)

ζ = 1 + 2s(1− ϵ) (17)

m2
eff := m2

[
ϵ cos2 a+

1

ϵ
sin2 a

]
(3− 2ϵ) (18)

H := α̇ (19)

H := α′ (20)

δζ := ζ − 1 =
dβ

dα
− 1 =

d(β − α)

dα
=

d
dt(β − α)

d
dtα

=
ϵ̇/ϵ

H
= O(s) (21)

s ≪ 1 (22)

ṡ (23)

O(s2) (24)

2

2.2 de Sitter limit

When we take the de Sitter limit, i.e. δζ = 0, ϵ =const. and m̃2
eff = m2

eff , then,

δ2L =
1

2
X ′2 +

1

2

( 2

η2
− k2

)
X2 +

1

2
Y ′2 +

1

2

(2 − m2
eff/H2

η2
− k2

)
Y 2 . (2.26)

canonical quantitation

δL =
1

2
X̂ ′2 +

1

2
Ŷ ′2 +

1

2

( 2

η2
− k2

)
X̂2 +

1

2

(2 − m2
eff/H2

η2
− k2

)
Ŷ 2 . (2.27)

Heisenberg equations

X̂ ′′ +
(
k2 − 2

η2

)
X̂ = 0 , Ŷ ′′ +

(
k2 − 2 − m2

eff/H2

η2

)
Ŷ = 0 . (2.28)

We change variables

X̂ = uX â + u∗
X â† , Ŷ = uY b̂ + u∗

Y b̂† (2.29)

where the functions obey

u′′
X +

(
k2 − 2

η2

)
uX = 0 , (2.30)

u′′
Y +

(
k2 − 2 − m2

eff/H2

η2

)
uY = 0 . (2.31)

Since we have found that m2
eff/H2 ≥ 2, uY rapidly decays. The solution of (2.30) is written as

X = c1

(
1 − i

kη

)
e−ikη + c2

(
1 +

i

kη

)
eikη (2.32)

Since a initial condition is given as

uX =
1√
2k

e−ikη , (2.33)

the solution is

uX =
1√
2k

(
1 − i

kη

)
e−ikη . (2.34)

When we take kη → −0 limit, the spectrum of X is

⟨X̂2⟩ =
4πk3

(2π)3
|uX |2 =

k3

2π2

1

2k

( 1

kη

)2

=
1

4π2η2
. (2.35)

Using the relation

v̂ =
sin aX̂ − cos aϵŶ

[sin2 a + cos2 aϵ2]1/2
, (2.36)

the tensor spectrum is calculated as

⟨q̂2⟩ =
4 cos2 a

e2α
⟨v̂2⟩ =

4 cos2 a

e2α

sin2 a⟨X̂2⟩ + cos2 aϵ2⟨Ŷ 2⟩
sin2 a + cos2 aϵ2

=
cos2 a sin2 a

[sin2 a + cos2 aϵ2]

1

π2e2αη2
(2.37)

5

= const.  

(1) Slow-roll limit (de Sitter) 

(2) The first order of slow-roll approximation 

ϕ̇2 = 2M2
g sH2

(
1 +

Mfϵ2(3 − 2ϵ)

Mf

)
(1)

κ :=

√
ζMg

Mf
(2)

κ :=
√

ζMg/Mf (3)

⟨qq⟩ = ⟨qp⟩ = ⟨pp⟩

=
4

M2
g e2α

κ2

κ2 + ϵ2
⟨XX⟩ + O(η)

=
κ2

κ2 + ϵ2

(
H0

πMg

)2

(−H0η)−2s 2ϵ2(1−ϵ)

κ2+ϵ2

(
k

2H0

)−2s(1+ 2ϵ2(1−ϵ)

κ2+ϵ2
)(Γ(νX)

Γ(3
2)

)2(
1 − 6sϵ2(1 − ϵ)

κ2 + ϵ2

)
.

(4)

一方で

dϵ

ϵ(1 − ϵ)
= 2sdα (5)

ϵ =
ϵ̄e2s(α−ᾱ)

1 − ϵ̄ + ϵ̄e2s(α−ᾱ)
(6)

1
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Tensor perturbation�

where

γ :=
M

N
(1.12)

From eq(1.7) and eq(1.10) (or eq(1.8) and eq(1.11)), we can obtain the following relaion

M = ζϵ (1.13)

where

ζ :=
dβ

dα
. (1.14)

Therefore γ = ζϵ. Using eq(1.13), eq(1.10) and eq(1.11) reduce to a constraint:

λfϵ
2 + ξ(1 − ag)

1 − ϵ

ϵ
= λg + ξag(−ϵ2 + 3ϵ − 2) +

ag

3

[1

2

( ϕ̇

N

)2

+ V (ϕ)
]

. (1.15)

Eq(1.7) is written as

1

N

( α̇

N

)·
= ξag

(3

2
− ϵ

)
ϵ(ζ − 1) − ag

2

( ϕ̇

N

)2

, (1.16)

From eq(1.7) and eq(1.8), we can also obtain

ζ − 1 =
ϵ̇

α̇ϵ
=

ag(
ϕ̇
N )2

m2
eff(ϵ) − 2( α̇

N )2
(1.17)

where

m2
eff(ϵ) := ξ

[
agϵ + (1 − ag)

1

ϵ

]
(3 − 2ϵ) . (1.18)

2 Tensor perturbations

We consider perturbations such as

δgij = qij , δfij = pij (2.1)

which satisfy the following conditions:

qi
j|i = 0 , qi

i = 0 , pi
j|i = 0 , pi

i = 0 . (2.2)

Then the Lagrangian becomes

δ2L =
1

4ag
Ne3α

[1

2

q̇2

N2
− 1

2

k2

e2α
q2 +

[
−3

( α̇

N

)2

− 2

N

( α̇

N

)·]
q2

]

+
1

4(1 − ag)
Me3β

[1

2

ṗ2

M2
− 1

2

k2

e2β
p2 +

[
−3

( β̇

M

)2

− 2

M

( β̇

M

)·]
p2

]

−1

4
Ne3α

[1

2

( ϕ̇

N

)2

− V (ϕ)
]
q2

+
1

4
ξNe3α

[
(−6γ + 9ϵ + 3γ − 3ϵ2 − 3γϵ)q2 + (6ϵ − 4ϵ2 − 2γϵ)q(p − q)

+
(
−3

2
ϵ − 3

2
ϵ2 − 1

2
γϵ

)
(p − q)2

]
. (2.3)

Using backgraound equations, then we obtain

δ2L =
1

4ag
Ne3α

[1

2

q̇2

N2
− 1

2

k2

e2α
q2

]
+

1

4(1 − ag)
Me3β

[1

2

ṗ2

M2
− 1

2

k2

e2β
p2

]

+
1

4
ξNe3α

(
−3

2
ϵ +

1

2
ϵ2 +

1

2
γϵ

)
(p − q)2 (2.4)

2

where

γ :=
M

N
(1.12)

From eq(1.7) and eq(1.10) (or eq(1.8) and eq(1.11)), we can obtain the following relaion

M = ζϵ (1.13)

where

ζ :=
dβ

dα
. (1.14)

Therefore γ = ζϵ. Using eq(1.13), eq(1.10) and eq(1.11) reduce to a constraint:

λfϵ
2 + ξ(1 − ag)

1 − ϵ

ϵ
= λg + ξag(−ϵ2 + 3ϵ − 2) +

ag

3

[1

2

( ϕ̇

N

)2

+ V (ϕ)
]

. (1.15)

Eq(1.7) is written as

1

N

( α̇

N

)·
= ξag

(3

2
− ϵ

)
ϵ(ζ − 1) − ag

2

( ϕ̇

N

)2

, (1.16)

From eq(1.7) and eq(1.8), we can also obtain

ζ − 1 =
ϵ̇

α̇ϵ
=

ag(
ϕ̇
N )2

m2
eff(ϵ) − 2( α̇

N )2
(1.17)

where

m2
eff(ϵ) := ξ

[
agϵ + (1 − ag)

1

ϵ

]
(3 − 2ϵ) . (1.18)

2 Tensor perturbations

We consider perturbations such as

δgij = qij , δfij = pij (2.1)

which satisfy the following conditions:

qi
j|i = 0 , qi

i = 0 , pi
j|i = 0 , pi

i = 0 . (2.2)

Then the Lagrangian becomes

δ2L =
1

4ag
Ne3α

[1

2

q̇2

N2
− 1

2

k2

e2α
q2 +

[
−3

( α̇

N

)2

− 2

N

( α̇

N

)·]
q2

]

+
1

4(1 − ag)
Me3β

[1

2

ṗ2

M2
− 1

2

k2

e2β
p2 +

[
−3

( β̇

M

)2

− 2

M

( β̇

M

)·]
p2

]

−1

4
Ne3α

[1

2

( ϕ̇

N

)2

− V (ϕ)
]
q2

+
1

4
ξNe3α

[
(−6γ + 9ϵ + 3γ − 3ϵ2 − 3γϵ)q2 + (6ϵ − 4ϵ2 − 2γϵ)q(p − q)

+
(
−3

2
ϵ − 3

2
ϵ2 − 1

2
γϵ

)
(p − q)2

]
. (2.3)

Using backgraound equations, then we obtain

δ2L =
1

4ag
Ne3α

[1

2

q̇2

N2
− 1

2

k2

e2α
q2

]
+

1

4(1 − ag)
Me3β

[1

2

ṗ2

M2
− 1

2

k2

e2β
p2

]

+
1

4
ξNe3α

(
−3

2
ϵ +

1

2
ϵ2 +

1

2
γϵ

)
(p − q)2 (2.4)

2

Flavor eigen state (g and f) 

satisfy TT conditions: 

where

γ :=
M

N
(1.12)

From eq(1.7) and eq(1.10) (or eq(1.8) and eq(1.11)), we can obtain the following relaion

M = ζϵ (1.13)

where

ζ :=
dβ

dα
. (1.14)

Therefore γ = ζϵ. Using eq(1.13), eq(1.10) and eq(1.11) reduce to a constraint:

λfϵ
2 + ξ(1 − ag)

1 − ϵ

ϵ
= λg + ξag(−ϵ2 + 3ϵ − 2) +

ag

3

[1

2

( ϕ̇

N

)2

+ V (ϕ)
]

. (1.15)

Eq(1.7) is written as

1

N

( α̇

N

)·
= ξag

(3

2
− ϵ

)
ϵ(ζ − 1) − ag

2

( ϕ̇

N

)2

, (1.16)

From eq(1.7) and eq(1.8), we can also obtain

ζ − 1 =
ϵ̇

α̇ϵ
=

ag(
ϕ̇
N )2

m2
eff(ϵ) − 2( α̇

N )2
(1.17)

where

m2
eff(ϵ) := ξ

[
agϵ + (1 − ag)

1

ϵ

]
(3 − 2ϵ) . (1.18)

2 Tensor perturbations

We consider perturbations such as

δgij = qij , δfij = pij (2.1)

which satisfy the following conditions:

qi
j|i = 0 , qi

i = 0 , pi
j|i = 0 , pi

i = 0 . (2.2)

Then the Lagrangian becomes

δ2L =
1

4ag
Ne3α

[1

2

q̇2

N2
− 1

2

k2

e2α
q2 +

[
−3

( α̇

N

)2

− 2

N

( α̇

N

)·]
q2

]

+
1

4(1 − ag)
Me3β

[1

2

ṗ2

M2
− 1

2

k2

e2β
p2 +

[
−3

( β̇

M

)2

− 2

M

( β̇

M

)·]
p2

]

−1

4
Ne3α

[1

2

( ϕ̇

N

)2

− V (ϕ)
]
q2

+
1

4
ξNe3α

[
(−6γ + 9ϵ + 3γ − 3ϵ2 − 3γϵ)q2 + (6ϵ − 4ϵ2 − 2γϵ)q(p − q)

+
(
−3

2
ϵ − 3

2
ϵ2 − 1

2
γϵ

)
(p − q)2

]
. (2.3)

Using backgraound equations, then we obtain

δ2L =
1

4ag
Ne3α

[1

2

q̇2

N2
− 1

2

k2

e2α
q2

]
+

1

4(1 − ag)
Me3β

[1

2

ṗ2

M2
− 1

2

k2

e2β
p2

]

+
1

4
ξNe3α

(
−3

2
ϵ +

1

2
ϵ2 +

1

2
γϵ

)
(p − q)2 (2.4)

2

Rotation 

Mass eigen state (x and y) 

do not vanish in the slow-roll limit. 

Cross terms vanish in the slow-roll limit. 

massless part (x)  +  massive part (y)  +  order s cross terms  

We can obtain analytic solutions in the slow-roll limit  
and construct higher order solutions order by order. �

where 

κ :=

√
ζMg

Mf
(1)

κ :=
√

ζMg/Mf (2)

⟨qq⟩ = ⟨qp⟩ = ⟨pp⟩

=
4

M2
g e2α

κ2

κ2 + ϵ2
⟨XX⟩ + O(η)

=
κ2

κ2 + ϵ2

(
H0

πMg

)2

(−H0η)−2s 2ϵ2(1−ϵ)

κ2+ϵ2

(
k

2H0

)−2s(1+ 2ϵ2(1−ϵ)

κ2+ϵ2
)(Γ(νX)

Γ(3
2)

)2(
1 − 6sϵ2(1 − ϵ)

κ2 + ϵ2

)
.

(3)

一方で

dϵ

ϵ(1 − ϵ)
= 2sdα (4)

ϵ =
ϵ̄e2s(α−ᾱ)

1 − ϵ̄ + ϵ̄e2s(α−ᾱ)
(5)

1

x: orthogonal to y y: proportional to (p-q) 

Tensor Spectra in the mass eigen state�

where�

In the first order of the slow-roll parameter, …�

→  0�

→  0�

ϕ̇2 = 2M2
g sH2

(
1 +

ϵ2(3 − 2ϵ)

tan2 a

)
(0.1)

νX =
3

2
+ s

(
1 +

2ϵ2
0(1 − ϵ0)

κ2
0 + ϵ2

0

)
(0.2)

1

Subscripts 0 mean the values 
in the slow-roll limit.�

1 Background soluition with a homegeneous scalar field

1.1 Action and Ansatz

We consider bimetric action including a scalar field coupled to the physical metric.

S =
M2

g

2

∫
d4x

√
−gR[gµν ]F2[K

µ
ν ] = [K]2 − [K2] ,

ϕ = ϕ(t) . (1)

Then the Lagrangian is written as

(2)

H2 = m2 cos2 a(−2 + 3ϵ − ϵ2) +
1

3M2
g

[
1

2
ϕ2 + V (ϕ)

]
(3)

m2 sin2 a
1 − ϵ

ϵ
= m2 cos2 a(−2 + 3ϵ − ϵ2) +

1

3M2
g

[
1

2
ϕ2 + V (ϕ)

]
(4)

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0 (5)

Ḣ = m2 cos2 a
(3

2
− ϵ

)
(ζ − 1)ϵ − 1

2M2
g

ϕ̇2 (6)

m2
eff > 2H2 (7)

ϵ > 0 (8)

H2 > 0 (9)

H2
0s (10)

=
κ2

κ2 + ϵ2

(
H0

πMg

)2

H2s
0 (−η)

−2s
2ϵ20(1−ϵ0)

κ2
0+ϵ20

(
k

2

)−2s
(
1+

2ϵ20(1−ϵ0)

κ2
0+ϵ20

)[Γ
(

3
2 + s

(
1 + 2ϵ20(1−ϵ0)

κ2
0+ϵ20

))

Γ(3
2)

]2(
1 − 6sϵ2

0(1 − ϵ0)

κ2
0 + ϵ2

0

)
.

(11)

1

They are negligible compared with�

~ const.�
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Tensor Spectra in the flavor eigen state�

From the relation                                                                   ,  � where 

κ :=

√
ζMg

Mf
(1)

κ :=
√

ζMg/Mf (2)

⟨qq⟩ = ⟨qp⟩ = ⟨pp⟩

=
4

M2
g e2α

κ2

κ2 + ϵ2
⟨XX⟩ + O(η)

=
κ2

κ2 + ϵ2

(
H0

πMg

)2

(−H0η)−2s 2ϵ2(1−ϵ)

κ2+ϵ2

(
k

2H0

)−2s(1+ 2ϵ2(1−ϵ)

κ2+ϵ2
)(Γ(νX)

Γ(3
2)

)2(
1 − 6sϵ2(1 − ϵ)

κ2 + ϵ2

)
.

(3)

一方で

dϵ

ϵ(1 − ϵ)
= 2sdα (4)

ϵ =
ϵ̄e2s(α−ᾱ)

1 − ϵ̄ + ϵ̄e2s(α−ᾱ)
(5)

1

Tensor Spectra in the flavor eigen state�

Features 

From the relation                                                                   ,  �

��Tensor amplitudes are suppressed due to the mixing in the flavor eigen state.�

��spectral index�

(in the lowest order)�

��The amplitudes are conserved in the first order of slow-roll approx..�

where 

κ :=

√
ζMg

Mf
(1)

κ :=
√

ζMg/Mf (2)

⟨qq⟩ = ⟨qp⟩ = ⟨pp⟩

=
4

M2
g e2α

κ2

κ2 + ϵ2
⟨XX⟩ + O(η)

=
κ2

κ2 + ϵ2

(
H0

πMg

)2

(−H0η)−2s 2ϵ2(1−ϵ)

κ2+ϵ2

(
k

2H0

)−2s(1+ 2ϵ2(1−ϵ)

κ2+ϵ2
)(Γ(νX)

Γ(3
2)

)2(
1 − 6sϵ2(1 − ϵ)

κ2 + ϵ2

)
.

(3)

一方で

dϵ

ϵ(1 − ϵ)
= 2sdα (4)

ϵ =
ϵ̄e2s(α−ᾱ)

1 − ϵ̄ + ϵ̄e2s(α−ᾱ)
(5)

1
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Future work�

Calculation of scalar perturbations 

The tensor perturbations of the other metric couple to the scalar field 
through      and     . 

Enhancement of the physical tensor amplitude  
though the mixing terms 

Relation to observational values …How about the scalar tensor ratio? 

Parametric resonance may happen in the preheating era.  

If we consider                         situation,  

1 Background soluition with a homegeneous scalar field

1.1 Action and Ansatz

We consider bimetric action including a scalar field coupled to the physical metric.

S =
M2

g

2

∫
d4x

√
−gR[gµν ]F2[K

µ
ν ] = [K]2 − [K2] ,

ϕ = ϕ(t) . (1)

Then the Lagrangian is written as

(2)

H2 = m2 cos2 a(−2 + 3ϵ − ϵ2) +
1

3M2
g

[
1

2
ϕ2 + V (ϕ)

]
(3)

m2 sin2 a
1 − ϵ

ϵ
= m2 cos2 a(−2 + 3ϵ − ϵ2) +

1

3M2
g

[
1

2
ϕ2 + V (ϕ)

]
(4)

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0 (5)

Ḣ = m2 cos2 a
(3

2
− ϵ

)
(ζ − 1)ϵ − 1

2M2
g

ϕ̇2 (6)

m2
eff > 2H2 (7)

ϵ > 0 (8)

H2 > 0 (9)

H2
0s (10)

=
κ2

κ2 + ϵ2

(
H0

πMg

)2

H2s
0 (−η)

−2s
2ϵ20(1−ϵ0)

κ2
0+ϵ20

(
k

2

)−2s
(
1+

2ϵ20(1−ϵ0)

κ2
0+ϵ20

)[Γ
(

3
2 + s

(
1 + 2ϵ20(1−ϵ0)

κ2
0+ϵ20

))

Γ(3
2)

]2(
1 − 6sϵ2

0(1 − ϵ0)

κ2
0 + ϵ2

0

)
.

(11)

ϵ0 (12)

m2 ≫ V/3M2
g (13)

m2 ≪ V/3M2
g (14)

1

this solution will suffer gradient instability in the radiation dominant era.   

Since we have thought only about a minimal bimetric model, 
the extension to more general model may circumvent this instability. 

(de Felice et al, 2014)  

2.2 de Sitter limit

When we take the de Sitter limit, i.e. δζ = 0, ϵ =const. and m̃2
eff = m2

eff , then,

δ2L =
1

2
X ′2 +

1

2

( 2

η2
− k2

)
X2 +

1

2
Y ′2 +

1

2

(2 − m2
eff/H2

η2
− k2

)
Y 2 . (2.26)

canonical quantitation

δL =
1

2
X̂ ′2 +

1

2
Ŷ ′2 +

1

2

( 2

η2
− k2

)
X̂2 +

1

2

(2 − m2
eff/H2

η2
− k2

)
Ŷ 2 . (2.27)

Heisenberg equations

X̂ ′′ +
(
k2 − 2

η2

)
X̂ = 0 , Ŷ ′′ +

(
k2 − 2 − m2

eff/H2

η2

)
Ŷ = 0 . (2.28)

We change variables

X̂ = uX â + u∗
X â† , Ŷ = uY b̂ + u∗

Y b̂† (2.29)

where the functions obey

u′′
X +

(
k2 − 2

η2

)
uX = 0 , (2.30)

u′′
Y +

(
k2 − 2 − m2

eff/H2

η2

)
uY = 0 . (2.31)

Since we have found that m2
eff/H2 ≥ 2, uY rapidly decays. The solution of (2.30) is written as

X = c1

(
1 − i

kη

)
e−ikη + c2

(
1 +

i

kη

)
eikη (2.32)

Since a initial condition is given as

uX =
1√
2k

e−ikη , (2.33)

the solution is

uX =
1√
2k

(
1 − i

kη

)
e−ikη . (2.34)

When we take kη → −0 limit, the spectrum of X is

⟨X̂2⟩ =
4πk3

(2π)3
|uX |2 =

k3

2π2

1

2k

( 1

kη

)2

=
1

4π2η2
. (2.35)

Using the relation

v̂ =
sin aX̂ − cos aϵŶ

[sin2 a + cos2 aϵ2]1/2
, (2.36)

the tensor spectrum is calculated as

⟨q̂2⟩ =
4 cos2 a

e2α
⟨v̂2⟩ =

4 cos2 a

e2α

sin2 a⟨X̂2⟩ + cos2 aϵ2⟨Ŷ 2⟩
sin2 a + cos2 aϵ2

=
cos2 a sin2 a

[sin2 a + cos2 aϵ2]

1

π2e2αη2
(2.37)

5
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Detectability of bi-gravity with 

graviton oscillations using 

gravitational wave observations
Tatsuya Narikawa (Osaka U)

with
K. Ueno, H. Tagoshi, T. Tanaka, N. Kanda, T. Nakamura 

JGRG24, Nov 11, 2014

Outline
  I) Graviton oscillations
 II) Bayesian model selection for GW
III) A detectable region of bi-gravity 

1

``Data Analysis'' sub-group in ``Grant-in-Aid for Scientific Research on 
Innovative Area - New Developments in Astrophysics Through Multi-
Messenger Observation of Gravitational Waves Sources-''

2
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Gravitational waves will be 
detected within a few years. 

3

The advanced ground-based laser interferometers, 
such as aLIGO, aVirgo, KAGRA will be full operation. 

http://www.nature.com/news/physics-wave-of-the-future-1.15561

KAGRA

[Flaminio will review it.]

(1)

Gravitational waves will be 
detected within a few years. 

4

Predicted event rate of GWs from compact binaries 
is ~10 events a year, within ~ a few 100Mpc.

Physics, Astrophysics and Cosmology with Gravitational Waves 43

tion (66), it is easy to shown that for a stationary noise process background

ñ(f)ñ⇥(f ⇤) =
1
2
Sh(f)�(f � f ⇤), (67)

where ñ⇥(f) denotes the complex conjugate of ñ(f). The above equation justifies the name PSD
given to Sh(f).

It is obvious that Sh(f) has dimensions of time but it is conventional to use the dimensions
of Hz�1, since it is a quantity defined in the frequency domain. The square root of Sh(f) is
the noise amplitude,

�
Sh(f), and has dimensions of Hz�1/2. Both noise PSD and noise am-

plitude measure the noise in a linear frequency bin. It is often useful to define the power per
logarithmic bin h2

n(f) ⇥ fSh(f), where hn(f) is called the e�ective gravitational-wave noise, and
it is a dimensionless quantity. In gravitational-wave–interferometer literature one also comes across
gravitational-wave displacement noise or gravitational-wave strain noise defined as h�(f) ⇥ ⇥hn(f),
and the corresponding noise spectrum S�(f) ⇥ ⇥2Sh(f), where ⇥ is the arm length of the inter-
ferometer. The displacement noise gives the smallest strain �⇥/⇥ in the arms of an interferometer
that can be measured at a given frequency.
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Figure 5: The right panel plots the noise amplitude spectrum,
p

fSh(f), in three generations of ground-
based interferometers. For the sake of clarity, we have only plotted initial and advanced LIGO and a
possible third generation detector sensitivities. VIRGO has similar sensitivity to LIGO at the initial and
advanced stages, and may surpass it at lower frequencies. Also shown are the expected amplitude spectrum
of various narrow and broad-band astrophysical sources. The left panel is the same as the right except for
the LISA detector. The SMBH sources are assumed to lie at a redshift of z = 1, but LISA can detect these
sources with a good SNR practically anywhere in the universe. The curve labelled “Galactic WDBs” is
the confusion background from the unresolvable Galactic population of white dwarf binaries.

4.5.1 Noise power spectral density in interferometers

As mentioned earlier, the performance of a gravitational wave detector is characterized by the
one-sided noise PSD. The noise PSD plays an important role in signal analysis. In this review we
will only discuss the PSDs of interferometric gravitational-wave detectors.

The sensitivity of ground based detectors is limited at frequencies less than a Hertz by the time-
varying local gravitational field caused by a variety of di�erent noise sources, e.g., low frequency
seismic vibrations, density variation in the atmosphere due to winds, etc. Thus, for data analysis
purposes, the noise PSD is assumed to be essentially infinite below a certain lower cuto� fs. Above

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

[Sathyaprakash & 

Schutz (2009)]

Sensitivity band
10Hz<f<1000Hz

(2)
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5

Once a detection candidate of GW will be 
identified, the next step is to extract full 
information of the source parameters.

Parameter estimation and Model selection

[mass, distance, time, sky location, spin, ...]

Testing gravity is also one of important themes.

GWs will be powerful probes of strong-field, 
dynamical aspect of gravity.

✏ ⌘ v2

c2
=

2GM

Rc2
⇠ 1 v/c~1

[model selection: Modified gravity (MG) vs GR]

Why alternative theories of gravity?

6

!" 

#$$%&%'()*+,�

-%$%&%'()*+,�

!" 

!./!-01!2 

!"#$#%&'!"#$%&''(()*+,-.)/ 

as an alternative to dark energy

Observations of the SNe, the CMB, and the BAO consistently 
suggest the current cosmic acceleration. 

However, the origin is unknown.

!"#$"%&&'( 
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Why Bi-gravity?

7

[de Rham’s review]
[Mukohyama-san’s 
review JGRG22]Can graviton have mass?

May lead to acceleration without dark energy

Massive gravity

Consistent theory found in 2010 [dRGT] but does 
not have a suitable FLRW background solution.

In the case of bi-gravity, we have two gravitons.
[Hassan & Rosen 2011]
[Comelli, et al. 2011]The double spatially flat FLRW background

Owing to the Vainshtein screening, almost the same 
prediction as GR in the weak filed.
However, the gravitational waveforms differ from 

those of GR, due to graviton oscillations.

mg~H0?

assuming matter interacts only with g

Motivation

8

To investigate the detectability of the 
corrections to gravitational waveforms 

from compact binaries due to 
graviton oscillations.
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9

Propagation of the GWs in bi-gravity

ḧ�⇥h+m2�c(h� h̃) = 0

¨̃h� c̃2⇥h̃+
m2�cc̃

�⇥2c
(h̃� h) = 0

Short wavelength approximation (k>>m>>H)
[Comelli, et al. 2012]

h(f) = A(f)ei�(f)
h
B1e

i��1(f) +B2e
i��2(f)

iInspiral waveform [De Falice, Nakamura, Tanaka, 2014]

h and ¥tilde h interfere during propagation.: Graviton oscillations

In this talk, we do not consider the relation between c-1 and μ.

Propagation modes: h1 and h2.

The observed signal in the frequency-domain

Effect of Bi-gravity on GW

The GWs differ from those of GR, due to graviton oscillations.
Waveforms:

where Phase corrections:

Degrees of mixing:

[De Felice, Nakamura, Tanaka, 1304.3920]

10

h(f) = hGR(f)
h
B1e

i��1(f) +B2e
i��2(f)

i

��1,2 = �µdL

p
c̃� 1

2
p
2x

 
1 + x⌥

s

1 + 2x
1� ⇠
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1 + ⇠

2
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+ x
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B1 = cos ✓g(cos ✓g +
p
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p
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x~1 @peaks
|h| is enhanced at x~1.
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2
p
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1� ⇠

2
c

1 + ⇠
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c
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2
μ: effective graviton mass
c-1: speed of h~ ~
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Bayes’ theorem posterior∝prior×likelihood

H: hypothesis (GW signal embedded in data)
d: data (d=h+n)

Results using 

LALInference

described above. In Appendix A we present 90% credible
intervals obtained using the waveform models in Table I
for each injection in Table II.

A. Nonspinning hardware injections

1. Binary black hole

We first describe the analysis of a hardware injection
corresponding to a binary black hole with nonspinning
4:91M! and 4:02M! components, injected at a network
SNR of 13 (SNRs of 8.7 in the Hanford and Livingston
detectors and 4.4 in the Virgo detector). This injection

was made with effective one-body numerical relativity
(EOBNR) waveforms, using the EOBNRv1 version as
described in Ref. [54].
Figure 1 shows a comparison of the posterior PDF of the

mass parameters for different models. The chirp mass has a
low statistical uncertainty of "1%, with the greatest sta-
tistical uncertainty claimed by models that allow for non-
zero spin magnitudes due to interparameter degeneracies.
The 90% credible intervals on the chirp mass obtained with
TaylorF2 templates just exclude the true value, an indica-
tion of the systematic bias due to the waveform differences
between the injected EOBNR waveform and these

FIG. 1 (color online). (Left) Posterior probability distributions for the chirp mass M of the nonspinning BBH hardware injection
(Sec. III A 1) for the seven signal models considered. The injected value is marked with a vertical red line. (Right) Overlay of 90%
probability regions for the joint posterior distribution on the component masses m1, m2 of the binary. The true value is marked by the
blue star. Models which allow for nonzero spins find wider PDFs for the coupled mass parameters.

FIG. 2 (color online). Joint posterior probability regions for the location and inclination angle of the nonspinning BBH hardware
injection (Sec. III A 1) for the seven signal models considered. (Left) The binary is constrained to two neighboring regions of the
sky. (Right) The distance and inclination, like the sky location, are estimated with a similar accuracy in models that include or
exclude spins.

J. AASI et al. PHYSICAL REVIEW D 88, 062001 (2013)

062001-10

GW waveform of non-spinning CBC with 9 parameters

[LIGO-Virgo, 
PRD88 

(2013) 062001 

[arXiv:
1304.1775]]

~✓ = {M, ⌘, ◆, dL, tc,�c,↵, �, }

Parameter Estimation of GWs using Bayesian statistics

p(✓|d,H) =
p(✓|H)p(d|✓, H)

p(d|H)

Bayesian model selection

12

Which model better describes the data?

The Bayes factor is the ratio of marginalized likelihoods of hypotheses.

OMG,GR =
p(MG|d)
p(GR|d) =

p(MG)

p(GR)

p(d|MG)

p(d|GR)
⌘ p(MG)

p(GR)
BMG,GR

is computationally expensive

In GW data analysis, the integrand is the 
noise weighted integral of the data and 

the model waveform given θ

The marginalized likelihood:

p(d|✓, H) / exp[�(d� h(✓)|d� h(✓))/2]

p(d|H) ⌘
Z

d✓p(d|✓, H)p(✓|H) “confidence” levels of BXY

[Cornish & Littenberg 0704.1808]

position in the parameter space ~y. This new position is
determined by drawing from some proposal distribution
q! ~xj ~y". The choice of whether or not to adopt the new
position ~y is made by calculating the Hastings ratio (tran-
sition probability)

 ! # min
!
1;
p! ~y"p!sj ~y"q! ~yj ~x"
p! ~x"p!sj ~x"q! ~xj ~y"

"
(9)

and comparing ! to a random number " taken from a
uniform draw in the interval [0:1]. If ! exceeds " then the
chain adopts ~y as the new position. This process is repeated
until some convergence criterion is satisfied. The MCMC
differs from a Metropolis extremization by forbidding
proposal distributions that depend on the past history of
the chain. This ensures that the progress of the chain is
Markovian and therefore statistically unbiased. Once the
chain has stabilized in the neighborhood of the best fit
parameters all previous steps of the chain are excluded
from the statistical analysis (these early steps are referred
to as the ‘‘burn in’’ phase of the chain) and henceforth the
number of iterations the chain spends at different parame-
ter values can be used to infer the PDF.

The power of the MCMC is twofold: Because the algo-
rithm has a finite probability of moving away from a
favorable location in the parameter space it can avoid
getting trapped by local features of the likelihood surface.
Meanwhile, the absence of any ‘‘memory’’ within the
chain of past parameter values allows the algorithm to
blindly, statistically, explore the region in the neighbor-
hood of the global maximum. It is then rigorously proven
that an MCMC will (eventually) perfectly map out the
PDF, completely removing the need for user input to
determine parameter uncertainties or thresholds.

The parameter vector that maximizes the posterior dis-
tribution is stored as the maximum a posteriori (MAP)
value and is considered to be the best estimate of the source
parameters. Note that because of the prior weighting in the
definition of the PDF this is not necessarily the ~# that
yields the greatest likelihood. Upon obtaining the MAP
value for a particular model X the PDF, now written as
p!#; ~Xjs", can be employed to solve the model selection
problem.

II. BAYES FACTOR ESTIMATES

The Bayes factor BXY [15] is a comparison of the
evidence for two competing models, X and Y, where

 pX!s" #
Z

d ~#p! ~#; Xjs" (10)

is the marginal likelihood, or evidence, for model X. The
Bayes factor can then be calculated by

 BXY!s" #
pX!s"
pY!s"

: (11)

The Bayes factor has been described as the holy grail of
model selection: It is a powerful entity that is very difficult
to find. The quantity BXY can be thought of as the odds ratio
for a preference of model X over model Y (see Table I).
Apart from carefully concocted toy problems, direct cal-
culation of the evidence, and therefore BXY , is impractical.
To determine BXY the integral required to compute pX
cannot generally be solved analytically and for high di-
mension models Monte-Carlo integration proves to be
inefficient. To employ this powerful statistical tool various
estimates for the Bayes factor have been developed that
have different levels of accuracy and computational cost
[1,2]. We have chosen to focus on four such methods:
reverse jump Markov chain Monte Carlo and Savage-
Dickie density ratios, which directly estimate the Bayes
factor, and the Schwarz-Bayes information criterion (BIC)
and Laplace approximations of the model evidence.

A. RJMCMC

Reverse jump Markov chain Monte Carlo (RJMCMC)
algorithms are a class of MCMC algorithms which admit
‘‘transdimensional’’ moves between models of different
dimension [3,16,17]. For the transdimensional implemen-
tation applicable to the LISA data analysis problem the
choice of model parameters becomes one of the search
parameters. The algorithm proposes parameter ‘‘birth’’ or
‘‘death’’ moves [proposing to include or discard the ‘‘ex-
tra’’ parameter(s)] while holding all other parameters fixed.
The priors in the RJMCMC Hastings ratio

 ! # min
!
1;
p! ~#Y"p!sj ~#Y"g! ~uY"
p! ~#X"p!sj ~#X"g! ~uX"

jJj
"

(12)

automatically penalizes the posterior density of the higher
dimensional model, which compensates for its generically
higher likelihood, serving as a built-in ‘‘Occam Factor.’’
The g! ~u" which appears in (12) is the distribution from
which the random numbers ~u are drawn and jJj is the
Jacobian

 jJj $
########
@! ~#Y; ~uY"
@! ~#X; ~uX"

########: (13)

The chain will tend to spend more iterations using the
model most appropriately describing the data, making the

TABLE I. BXY ‘‘confidence’’ levels taken from [1].

BXY 2 logBXY Evidence for model X
 < 1 <0 Negative (supports model Y)

1 to 3 0 to 2 Not worth more than a bare mention
3 to 12 2 to 5 Positive
12 to 150 5 to 10 Strong
>150 >10 Very Strong

TESTS OF BAYESIAN MODEL SELECTION TECHNIQUES . . . PHYSICAL REVIEW D 76, 083006 (2007)

083006-3

The odds ratio and the Bayes factor are useful for model selection.
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A unified model-selection based on Bayesian inference
[Cornish+, 1105.2088; Vallisneri, 1207.4759; Del Pozzo+, 1408.2356]

Assumptions: large SNR, FF~1,...

11

deviation, provided the deviation is strong enough to be
detectable in the first case.

IV. DETECTABILITY OF SCALAR-TENSOR
DEVIATIONS THROUGH AN EFFECTIVE

CYCLES APPROACH

In this section, we carry out the first of a two-part
data analysis investigation to determine the detectability
of ST deviations in GWs emitted during the late inspi-
ral of NS binaries. We first construct a new, computa-
tionally inexpensive data analysis measure to determine
when a GR deviation is sufficiently loud for detection
with aLIGO-type detectors. We then use this measure on
ST signals and ppE signals to estimate their detectability.

A. Useful and Effective Cycles of Phase

Model hypothesis testing, i.e. the determination of
whether model A or B is better supported by some data,
usually requires a detailed Bayesian analysis through
MCMC techniques that map the likelihood surface and
the posterior distributions of template parameters in or-
der to calculate BFs1. Such studies are computationally
expensive, and it is therefore desirable to construct a sim-
ple and computationally inexpensive measure for accom-
plishing similar goals. The construction of this measure
is the topic of this section.
We first describe a quantity that has been used in the

literature as a stand-in for the importance of a particular
GW phase term [23]: the useful cycles, Nu. This quantity
is defined in [23] as

Nu =

(

∫ Fmax

Fmin

d ln f
a2(f)

Sn(f)

dφ

2πdf

)

×
(

∫ Fmax

Fmin

d ln f
a2(f)

fSn(f)

)−1

, (49)

which is essentially a noise-weighted measure of the total
number of cycles of phase due to any particular term
in the phase evolution. In Eq. (49), a(f) is defined

1 The BF, assuming equal priors for the two competing theories,
is the odds that one theory is favored by the data over another
theory. For instance, a BF of 100 in favor of GR means that
there is a 100:1 “betting odds” that GR is the correct theory
given the data. In this paper, we are considering only nested
models. For example, GR is recovered from ppE templates when
the strength parameter βppE = 0. In this case, the BF can be
calculated from the Savage-Dickey density ratio, which compares
the prior weight at βppE = 0 to the posterior weight at that value.
The BF is then calculated via BF = p(βppE = 0|d)/p(βppE = 0).
If there is more posterior weight at this point than prior weight,
the model selection process favors GR.

by |h̃(f)|2 = Ã2(f) = N(f)a2(f)/f2, with N(f) =
(1/2π)(dφ/d lnF ) = F 2/(dF/dt). The expression for Nu

can be re-expressed in terms of the characteristic strain
hc(f) =

√
fÃ(f) as

Nu = SNR2

(

∫ Fmax

Fmin

h2
c(f)

Sn(f)

1

N(f)
d ln f

)−1

. (50)

Thus, the number of useful cycles is equal to the har-
monic mean of N(f), with a weighting factor equal
to the SNR squared per logarithmic frequency interval,
∆SNR2(f) = h2

c(f)/Sn(f).
The difference in the number of useful cycles between

waveform models is sometimes used as a proxy for the
detectability of the difference in the models (see eg.
Ref. [24–26]). One must be very careful when doing this
for two reasons. The first is made clear by re-writing
Eq. (49) in the form of Eq. (50). This re-casting of the
useful cycles shows that it is not permissible to simply re-
placeN(f) with ∆N(f), where∆N(f) is the change that
is introduced by a particular modification to the phase.
In order to calculate Nu due to a change in the phase
evolution, it is necessary to calculate both Nu from the
original phase and from the changed phase, and then take
the difference. This is not a problem, per se - it is simply
an issue that must be kept in mind when calculating Nu

for a particular phase term.
A larger issue with Nu as a measure of detectability

is the murkiness of its connection with quantities such
as the BF, which are directly related to model selection.
The logarithm of the BF, as derived in Ref. [56], satisfies

logBF ∼ 1

2
(1− FF2)SNR2 +O[(1 − FF2)2] . (51)

We can use the following expression for the fitting factor,
FF, given two waveforms with the same amplitude Ã(f),
but with phases that differ by ∆Ψ(f):

FF = SNR−2 max
λa

(
∫

h2
c(f) cos(∆Ψ(f))

Sn(f)
d ln f

)

,

(52)
where the maximization is done over all system param-
eters λa. In the limit FF ∼ 1, i.e. for small deviations
from GR, these expressions can be combined to give

logBF ∼ 1

2
min
λa

∫

h2
c(f)∆Ψ2(f)

Sn(f)
d ln f +O(∆Ψ4) .

(53)

Given the above expression for the BF, a natural def-
inition for a new and computationally inexpensive data
analysis measure presents itself, the effective cycles of
phase:

Ne = min
∆t,∆φ

[

1

2πSNR

(
∫

h2
c(f)∆Φ2(f)

Sn(f)
d ln f

)1/2
]

,

(54)
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The amplitude of the peaks are determined by Eq.(16).
The phase difference at the highest peak, which occurs
at x ≈ 1, becomes,

∆δΦ ∼
√
2µ

√
c̃− 1DL√

1 + κξ2c
. (20)

For the bi-gravity parameters in Fig. 1, ∆δΦ and B1B2

in Eq.(16) take same values. Thus, there is no difference
of the hight of the highest peak caused by the bi-gravity
effect. The difference in Fig. 1 is just caused by the
difference of A(fpeak).

In Figs. 3 and 4, we compare the waveforms with
different values of κξ2c in the case of (µ2, c̃ − 1) =
(10−33 cm−2, 10−18). As can be seen in Eq.(18), fpeak
does not depend on κξ2c . Thus, the peak frequency does
not change at all in Figs. 3 and 4. On the other hand,
we find in Figs. 3 and 4 that the deviation of the bi-
gravity waveforms is larger for larger κξ2c . This can be
understood as a consequence of larger value of |B1B2| for
larger κξ2c in Eq. (16).

III. ANALYSIS METHODS FOR TESTING
MODIFIED GRAVITY THEORY

In this section, we briefly review the methods to test
the MG theories. Vallisneri [32] has proposed a model
comparison analysis of simple MG, and derived a formula
that characterize the possibility to detect the effects of
MG on gravitational waves.

First, we define the noise-weighted inner product of
signals hA and hB by

(hA|hB) ≡ 4Re

∫ fmax

fmin

hA(f)hB(f)

Sn(f)
df, (21)

where Sn(f) is the one-sided noise power spectrum den-
sity of a detector.

The limits of integration fmin and fmax are taken to
be fmin = flow and fmax = fISCO where flow is the
lower cutoff frequency which is defined for each indi-
vidual detector, while fISCO is the frequency at the in-
nermost stable circular orbit of the binary defined as
fISCO ≡ (63/2πMt)−1.

The signal-to-noise ratio for a given signal h is its norm
defined as

SNR = |h| =
√
(h|h). (22)

We also define the fitting factor (FF) [38] which are
used to characterize the deviation of a MG waveform
from the GR waveform. The FF is defined as

FF(θMG) = max
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(hGR(θGR)|hMG(θMG))

|hGR(θGR)||hMG(θMG)|
, (23)

where hGR(θGR) and hMG(θMG) are the GR and MG
waveforms, θGR are the source parameters in GR, and
θMG are the parameters in the MG theory.
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where Sn(f) is the one-sided noise power spectrum den-
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The limits of integration fmin and fmax are taken to
be fmin = flow and fmax = fISCO where flow is the
lower cutoff frequency which is defined for each indi-
vidual detector, while fISCO is the frequency at the in-
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The signal-to-noise ratio for a given signal h is its norm
defined as
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used to characterize the deviation of a MG waveform
from the GR waveform. The FF is defined as

FF(θMG) = max
θGR

(hGR(θGR)|hMG(θMG))

|hGR(θGR)||hMG(θMG)|
, (23)
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effect. The difference in Fig. 1 is just caused by the
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not change at all in Figs. 3 and 4. On the other hand,
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understood as a consequence of larger value of |B1B2| for
larger κξ2c in Eq. (16).
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Detectable region of the Bi-gravity corrections 
to the GR waveforms
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[TN, Ueno, Tagoshi, Tanaka, 
Kanda, Nakamura, in prep.]

Detectable region There is a detectable region!

Source: 
NS-NS (1.4Msun-1.4Msun)
dL=200Mpc
sensitivity curve: aLIGO, ZDHP
κξc2=100

15

SNR>SNRreq

FAP=10-4
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effective mass: μ>10-17cm-1

propagation speed: c-1>10-19~

Conclusion

• GW will be detected soon.

• Testing gravity theory with GW

• Investigate the detectability of bi-gravity 
with graviton oscillations with KAGRA

• Bayesian model selection for GW

• There is a detectabile region: μ>10-17cm-1, c-1>10-19

• GWs can be powerful probe of bi-gravity.

16

~
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“Improvement of energy-momentum tensor and non-

Gaussianities in holographic cosmology”

Shinsuke Kawai

[JGRG24(2014)111109] 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Overview
Inflation is good. Maybe too good. 

UV theory? — holography: inflationary spacetime ⟺ 3d QFT 

Holographic description of inflation — immature 

What is the dual 3d QFT? 

Universality of CFT  — model independent feature: Tμν 

Conformal invariant or scale invariant? 

Our results: Breaking of conf. invariance  ⟺ non-Gaussianity

Improvement of energy-momentum 
tensor and non-Gaussianities in 
holographic cosmology 

Shinsuke Kawai (SKKU, South Korea)

Based on arXiv:1403.6220 
with Yu Nakayama

JGRG24 @IPMU, 11 November 2014
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Holographic cosmology

dS/CFT proposal [Witten] [Strominger] 

Inflation as dS holography with RG flow [Larsen, van der 
Schaar, Leigh (2002)] [Maldacena (2002)] [many others] 

Power spectrum and bispectrum, assuming particular 
field content in the 3d QFT [McFadden, Skenderis] 

Power spectrum and bispectrum, including effects of RG 
flow [Bzowski, McFadden, Skenderis, Garriga, Urakawa, 
others]

(A)dS/CFT
Strongly coupled/weakly coupled duality 

A tool to compute strongly coupled dynamics using Einstein 
gravity, or quantum gravitational dynamics using perturbative QFT 

Dictionary: boundary value of metric = source of EM tensor in the 
boundary theory 

Metric fluctuations ⟺ correlators of the boundary EM tensor

 dS[gij(x), g
I(x)] = ZCFT[gij(x), g

I(x)]

boundary conditions sources of T

ij(x),OI(x)
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Is the CMB conformal invariant,  
or just scale invariant?
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4d (approximate)  
de Sitter spacetime

De Sitter group is SO(4,1):  
rotations in the ambient spacetime.

Isomorphic to 3d conformal group

Conformal transformation on 
inflationary spacetime

FRW metric: 

   : translation in 3d space (homogeneity) 

     : rotation in 3d space (isotropy) 

   : simultaneous scaling 

   : nonlinear transformation 

Pi

Mij

D
⌧ ! �⌧, x

i ! �x

i

Ki ⌧ ! ⌧ + 2(b · x)⌧,

x

i ! x

i + (⌧ 2 � x

2)bi + 2(b · x)xi

(➔ scale invariance)

(➔ ?)

ds2 =
�d⌧2 + (dxi)2

H2⌧2
, �1 < ⌧ < 0
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Observables

Scale invariance: 7 parameters 

Conformal invariance: 10 parameters 

Conformal invariance impose strong constraints on 
correlation functions (power spectrum, bispectrum, 
trispectrum, etc.) of primordial fluctuations 

Gravitons and curvatons: conformal 

Inflaton fluctuations: only scale invariant
[Maldacena Pimentel 2011] [Creminelli 2011] 

(Pi,Mij , D)

(Pi,Mij , D,Ki)

Correlation functions 
for quasi-primary field of dimension Δ

�(x) ! �

0(x0) =

����
@x

0

@x

����
��/d

�(x)

Poincaré + scaling Conformal

2pt correlators

3pt correlators

h�1(x1)�2(x2)i =
C12

|x1 � x2|�1+�2

h�1(x1)�2(x2)i =
C12

|x1 � x2|2�1
(�1 = �2)

= 0 (�1 6= �2)

h�1(x1)�2(x2)�3(x3)i =
C123

x

a
12x

b
23x

c
31

h�1(x1)�2(x2)�3(x3)i

=
C123

x

�1+�2��3
12 x

�2+�3��1
23 x

�3+�1��2
31

xij = |xi � xj |, a+ b+ c = �1 +�2 +�3
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Energy-momentum tensor

EM tensor: conserved current of translation 

In presence of rotation (or Lorentz) symmetry, EM 
tensor can be made symmetric (Belinfante tensor) 

If in addition scaling current conserved and Virial               
exists, EM tensor can be made traceless 

Traceless EM tensor ➔ classical conformal symmetry 
(invariance of the action)

V j = @iL
ij

�S =

Z
d

d
xT

ij
@i✏j =

1

2

Z
d

d
xT

ij(@i✏j + @j✏i) =
1

d

Z
d

d
xT

i
i@j✏

j

�gij = @i✏j + @j✏i =
2

d
gij@k✏

k
x

i ! x

i + ✏

i

EM tensor and symmetries

Poincaré = translation + rotation 

Scaling symmetry + virial  

T ij = T ij
c + @kB

kij +
1

2
@k@`X

k`ij

V j = @iL
ij

conserved current
improvement term

Symmetric and traceless EM tensor

Trace identity (local Callan-Symanzik equation): 

T i
i = �IOI + @iJ

i + ↵⇤O↵
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Holographic cosmology with EM tensor improvement 

Recall the trace identity: 

Action:  

The improvement term affects the observables 

Computed power spectrum and bispectrum including 
the improvement term in exact dS

T i
i = �IOI + @iJ

i + ↵⇤O↵

=0 in exact dS
improvement term

Our work

S =
1

2

Z
d

3
x

p
g

⇣
g

ij
@i�

I
@j�

I + ⇠R(�I)2
⌘

I = 1, 2, · · · , N⇠

ξ=0: minimal coupling; ξ=⅛: conformal coupling

Power spectra

Holographic computation 

Scalar power spectrum 

Tensor power spectrum 

Tensor/scalar ratio 

Observation  

[Planck (2013)]  

[BICEP2 (2014)]

r ⌘ �2
T(k)

�2
S(k)

= 32(1� 8⇠)2

�2
T(k) =

k3

2⇡2
hh�⇤

ij(k)�
ij(�k)ii = 512

⇡2N⇠

�2
S(k) =

k3

2⇡2
hh⇣(k)⇣(�k)ii = 16

⇡2N⇠(1� 8⇠)2

�2
S(k0) = 2.215⇥ 10�9 k0 = 0.05 Mpc�1

r = 0.20+0.07
�0.05

����⇠ �
1

8

���� ⇡ 10�2N⇠ � 1,

Central charge of the holographic universe [Larsen Strominger]: CT =
3

32

N⇠

⇡2
⇡ 109.
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Non-Gaussianities

Holographic computation with improvement term 

Observation [Planck 2013] 

Holographic computation is consistent with observational 
constraint (but hopeless to detect in near future) 

Similar to in-in formalism sub-horizon computation of NG

f local

NL

= 2.7± 5.8, f equil

NL

= �42± 75, fortho

NL

= �25± 39

f local

NL

= 0, f equil

NL

=
5

36
(1 + 24⇠), fortho

NL

= �10

9
⇠

hh⇣k1⇣k2⇣k3ii = f local

NL

Blocal

⇣ + f equil

NL

Bequil

⇣ + fortho

NL

Bortho

⇣

[Bzowski, McFadden, Skenderis (2009-2013)]: f local

NL

= fortho

NL

= 0, f equil

NL

=
5

36
bosons, fermions, gauge fields (ξ = 0, ⅛)

Summary

Holography may help us understand the primordial 
fluctuations better. 

Improvement of EM tensor — scale invariant but not 
necessarily conformal invariant density fluctuations 

Equilateral and orthogonal type non-Gaussianities of 
O(1) predicted (but no local type)
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Thank you for your attention.
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“Current status of the AdS (in)stability”

Andrzej Rostworowski [Invited]

[JGRG24(2014)111110] 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Current status of the AdS (in)stability

Andrzej Rostworowski

Jagiellonian University

joint work with Piotr Bizoń, Joanna Ja lmużna and Maciej Maliborski

JGRG24, 11th Nov. 2014

Anti-de Sitter spacetime in d+ 1 dimensions

Anti-de Sitter spacetime is the maximally symmetric solution of the vacuum
Einstein equations

R

↵�

� 1

2

g

↵�

R+ ⇤g

↵�

= 0 ,

with negative cosmological constant ⇤ < 0.
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Peculiar causal structure of AdS

ds

2
=

`

2

(cosx)

2

h
�dt

2
+ dx

2
+ (sinx)

2
d⌦

2
S

d�1

i
, �1 < t < 1, 0  x <

⇡

2

solves R
↵�

� 1

2

g

↵�

R+ ⇤g

↵�

= 0 for ⇤ = �d(d� 1)/(2`

2
)

Conformal infinity x = ⇡/2 is the timelike hypersurface I = R⇥ S

d�1 with the
boundary metric ds

2
I = �dt

2
+ d⌦

2
S

d�1

Null geodesics get to infinity in finite time
(but infinite a�ne length)

AdS is not globally hyperbolic -
to make sense of evolution one needs to
choose boundary conditions at I
Asymptotically AdS spacetimes by
definition have the same conformal
boundary as AdS

?t

x = 0

x =

⇡
2

Is AdS stable?

By the positive energy theorem AdS space is the ground state among
asymptotically AdS spacetimes (much as Minkowski space is the ground state
among asymptotically flat spacetimes)

Minkowski spacetime was proved to be asymptotically stable by
[Christodoulou&Klainerman, 1993]

Key di↵erence between Minkowski and AdS: the mechanism of stability of
Minkowski - dissipation of energy by dispersion - is absent in AdS (for
no-flux boundary conditions I acts as a mirror)

The problem of stability of AdS has not been explored until recently; notable
exceptions: proof of local well-posedness by [Friedrich, 1995], proof of rigidity
of AdS [Anderson, 2006]
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Two kinds of stability

Consider a nonlinear evolution equation
du

dt

= A(u) and its equilibrium

solution � (that is A(�) = 0). Let u = �+ w.
The equilibrium � is (nonlinearly) stable if

kw(0)k1 is small ) kw(t)k2 is small for all t > 0

Consider the linear equation
dv

dt

= Lv, where L = A

0
(�).

The equilibrium � is linearly stable if

kv(0)k1 is small ) kv(t)k2 is small for all t > 0

Key idea of linearization: as long as w(t) remains small, the nonlinear part in
A(u) = Lw +N(w) is negligible.

Linear stability does not imply stability!

The equilibrium � is unstable/linearly unstable if it is not stable/linearly
stable.

In case of instability there arises a question: what happens as t ! 1?

Model for nonlinear dynamics

The problem seems tractable only in 1 + 1 dimensions
) spherical symmetry ) need matter to generate dynamics

Simple matter model: massless scalar field � in d+1 dimensions

G

↵�

+ ⇤ g

↵�

= 8⇡G

✓
@

↵

�@

�

�� 1

2

g

↵�

@

µ

�@

µ

�

◆
, ⇤ = �d(d� 1)/(2`

2
),

g

↵�r
↵

r
�

� = 0

In the asymptotically flat case (⇤ = 0) this model has led to important
insights (proof of the weak cosmic censorship by [Christodoulou, 1986-1999]

and the discovery of critical phenomena at the threshold for black hole
formation by [Choptuik, 1993])

Remark: For even d � 4 there is a way to bypass Birkho↵’s theorem
(cohomogeneity-two Bianchi IX ansatz, [Bizoń,Chmaj&Schmidt, 2005])
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Model

The line element for asymptotically AdS spacetimes at spherical symmetry

ds

2
=

`

2

cos

2
x

��Ae

�2�
dt

2
+A

�1
dx

2
+ sin

2
x d⌦

2
S

d�1

�
,

(t, x) 2 R⇥ [0,⇡/2).

Field equations (units 8⇡G = d� 1)

�

0
= � sin 2x

2

�
�

2
+⇧

2
�
, A

0
= 2(1�A)

d� 1� cos 2x

sin 2x

�A�

0
,

˙

⇧ =

1

tan

d�1
x

�
tan

d�1
xAe

��

�

�0
,

˙

� =

�
Ae

��

⇧

�0
, .

Auxiliary variables (0 = @

x

, ˙= @

t

): ⇧ = A

�1
e

�

˙

� and � = �

0 .

AdS space: � ⌘ 0, A ⌘ 1, � ⌘ const.

Boundary conditions

Smoothness at the center enforces parity conditions on the fields at x = 0

(where ⇤ is irrelevant)

Mass function and asymptotic mass:

m(t, x) = (1�A(t, x)) sec

2
x tan

d�2
x

M = lim

x!⇡/2
m(t, x) =

⇡/2Z

0

�
A�

2
+A⇧

2
�
(tanx)

d�1
dx

Smoothness at spatial infinity and the demand for the total mass M to be
finite put reflecting boundary conditions on � at x = ⇡/2,
in particular (using z = ⇡/2� x)

�(t, x) = f1(t) z

d

+O �
z

d+2
�
,

A(t, x) = 1�Mz

d

+O �
z

d+2
�
, �

0
(t, x) = O �

z

2d�1
�
.

For this model there is no freedom in prescribing boundary data

The problem is locally well-posed [Friedrich, 1995], [Holzegel&Smulevici, 2011]

Animation
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Key evidence for instability
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Spectral properties

Linearized equation [Ishibashi&Wald, 2004]

¨

�+ L� = 0 , L = � 1

tan

d�1
x

@

x

�
tan

d�1
x @

x

�
,

With the above boundary conditions L is essentially self-adjoint on
L

2
([0,⇡/2]; tan

d�1
x dx)

Eigenvalues and eigenvectors (oscillons) of L read (j = 0, 1, . . .)

!

2
j

= (d+ 2j)

2
, e

j

(x) = N

j

cos

d

xP

(d/2�1,d/2)
j

(cos 2x) ,

It follows that AdS is linearly stable, linear solution

�(t, x) =

X

j�0

↵

j

cos(!

j

t+ �

j

) e

j

(x) ,

with amplitudes ↵
j

and phases �
j

determined by the initial data.

The spectrum is fully resonant and nondispersive (!): d!
j

/dj = ±2

Energy spectrum in 3 + 1 dimensions

Spectral decomposition of the total energy

M =

⇡/2Z

0

�
A�

2
+A⇧

2
�
tan

2
x dx =

1X

j=0

E

j

(t)

where E

j

:= (e

j

,

p
A⇧)

2
+ !

�2
j

(e

0
j

,

p
A�)

2

Energy spectrum (E
j

as a function of j) is an important characteristic of
turbulent dynamics
Animation

Just before collapse E

j

⇠ j

�↵ with ↵ ⇡ 1.2 (6/5??)
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Remarks

Weakly turbulent behavior seems to be common for (non-integrable)
nonlinear wave equations on bounded domains (e.g. NLS on torus,
[Colliander&Keel, 2008], [Sta�lani,Takaoka&Tao, 2008], [Carles&Faou, 2010])
and our work shows that Einstein’s equations are not an exception.

For Einstein’s equations the transfer of energy to high frequencies cannot
proceed forever because concentration of energy on smaller and smaller scales
inevitably leads to the formation of a black hole.

The role of negative cosmological constant seems to be purely kinematical,
that is the only role of ⇤ is to confine the evolution in an e↵ectively bounded
domain. Similar turbulent dynamics has been observed for small
perturbations of Minkowski in a box [Maliborski, 2012]

Generalizations: di↵erent matter models (complex scalar field
[Buchel,Lehner&Liebling, 2012], Yang-Mills [Maliborski, PhD Thesis 2014]),
relaxing symmetry (pure gravity [Dias,Horowitz&Santos, 2011],
[Bantilan,Pretorius&Gubser, 2012]), instability of AdS2+1 [Bizoń&Ja lmużna,

2013]

Regular, stable asymptotically AdS solutions

Anti-de Sitter space is unstable against the formation of a black hole under a

large class of arbitrarily small generic perturbations...

(also in higher dimensions [Ja lmużna,R&Bizoń, 2011], [Buchel,Lehner&Liebling,

2012])

... but there are also initial data that may stay close to AdS solution;

Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

[Bizoń&R, 2011]

Analogous conjecture for vacuum Einstein’s equations – existence of geons
[Dias,Horowitz&Santos, 2011], [Dias,Horowitz,Marolf&Santos, 2012].

aAdS time-periodic solutions with scalar field (massless: [Maliborski&R, 2013],
massive: [Kim, arXiv:1411.1633])

Boson stars (standing waves) in AdS [Buchel,Liebling&Lehner, 2013]
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Time-periodic asymptotically AdS solutions. Perturbative
construction.

We search for solutions of the form

� = " cos(!

�

t)e

�

(x)/e

�

(0) +O("

3
) ,

with one dominant mode, " (the amplitude �(0, 0)) is a small parameter.

We rescale the time variable

⌧ = ⌦

�

t, ⌦

�

= !

�

+

X

even ��2

"

�

!

�,�

and expand the fields perturbatively "

�= " cos(⌧)e

�

(x) +

X

odd ��3

"

�

�

�

(⌧, x),

�=

X

even ��2

"

�

�

�

(⌧, x), 1�A =

X

even ��2

"

�

A

�

(⌧, x),

Time-periodic asymptotically AdS solutions. Numerical
construction.

�=

X

0j<K

f

j

(⌧)e

j

(x) =

X

0i<N

X

0j<K

f

i,j

cos((2i+ 1)⌧)e

j

(x) ,

⇧=

X

0j<K

p

j

(⌧)e

j

(x) =

X

0i<N

X

0j<K

p

i,j

sin((2i+ 1)⌧)e

j

(x) .

Find the solution by determining
2⇥K ⇥N + 1 numbers

Set the equations on a numerical
grid of K ⇥N collocation points

Add one equation for the
normalization condition

X

0i<N

X

0j<K

f

i,j

e

j

(0) = " 0 Π!2

Π!2

x

Τ

"xk, Τn#

Highly nonlinear system solved with the Newton-Raphson algorithm.
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Time-periodic asymptotically AdS solutions (d=4).
Results & consistency.

4

6

8

10

12

⌦

0 1 2

0 0.5 1

"

0

0.05

0.1

M

0

0.05

0.1

0.15

M

perturbative

resumation

numerics

0 0.5 1

"

10

�15

10

�10

10

�5

1

� � M
�
[
8
/
8
]

M

� �

From [Maliborski, PhD Thesis 2014]

Non-linear stability (d = 4, � = 0, " = 0.01)
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Closed curves on the
slices of phase space
– strong evidence

for the non-linear
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j

(t)e
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[Animation (from

M. Maliborski)]
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Remarks

There exist (non-linearly) stable time-periodic solutions in Einstein
AdS–massless scalar field system.

Cosmological constant confines the evolution in an e↵ectively bounded
domain – the possibility of the existence of time-periodic solutions (in
contrast to asymptotically flat case)

Time-periodic solutions in pure vacuum case
I in the cohomogeneity – two Bianchi IX ansatz ([Bizoń,Chmaj&Schmidt,

2005]): [Maliborski, PhD Thesis 2014]
I with helical Killing field [Horowitz&Santos, 2014]

The existence of time-periodic solutions of (non-linear) wave equations on
compact domains seems to be common [Maliborski, PhD Thesis 2014]

How to bypass Birkho↵ in five dimensions to study the
vacuum case

Odd-dimensional spheres admit non-round homogeneous metrics

Homogeneous metric on S

3

g

S

3
= e

2B
�

2
1 + e

2C
�

2
2 + e

2D
�

2
3 ,

where �k are left-invariant one-forms on SU(2)

�1 + i�2 = ei (cos ✓ d�+ i d✓), �3 = d � sin ✓ d�.

I B = C = D: round metric with SO(4) symmetry
I B 6= C 6= D: anisotropic metric with SU(2) symmetry (squashed S3)

[Bizoń,Chmaj&Schmidt, 2005]: use g

S

3 as an angular part of the five
dimensional metric (cohomogeneity-two triaxial Bianchi IX ansatz). For
AdS4+1, with B = C (the biaxial case):

ds

2
=

`

2

cos

2
x

✓
�Ae

�2�
dt

2
+A

�1
dx

2
+

1

4

sin

2
x

�
e

2B
(�

2
1 + �

2
2) + e

�4B
�

2
3

�◆
,

where A, �, B are functions of (t, x).
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Blowup of the Kretschmann scalar
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Conjecture

Within the cohomogeneity-two Bianchi IX ansatz AdS5 is unstable against black

hole formation under arbitrarily small gravitational perturbations
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Spectrum of energy
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Universal power–law exponent: ↵ ⇡ �1.67 (-5/3?)

Weak turbulent instability of AdS
2+1

In 2 + 1 dimension there is a mass-gap for a black hole formation: if M < 1 black
hole can not form. Two options for the end state of evolution for small initial data
0 < M << 1: naked (conical) singularity or global-in-time regularity
[Bizoń&Ja lmużna, 2013], [Ja lmużna, 2014].
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V. Balasubramanian et al., Holographic Thermalization,
stability of AdS, and the Fermi-Pasta-Ulam-Tsingou
paradox, PRL113, 071601 (2014)

Two-modes initial data and the inverse cascade.
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N. Deppe et al., Stability of AdS in Einstein Gauss Bonnet
Gravity, arXiv:1410.1869

Including Gauss–Bonnet term (in 4+1):

S =

Z
d5x

p
�g

⇢
1

2

h
R� 2⇤+

↵

2

⇣
R2 � 4Rµ⌫R

µ⌫
+Rµ⌫↵�R

µ⌫↵�
⌘i

� 1

2

rµ�rµ�

�

with ⇤ = �(6/`2)(1� ↵/`2)

Threshold for a black hole formation: ↵/2

↵ = 0

↵/`

2
= 0.002

Conclusions

Dynamics of asymptotically AdS spacetimes is an exceptional meeting point
of fundamental problems in general relativity, PDE theory, theory of
turbulence, and high energy physics. Understanding of these connections is at
its infancy.

From numerical explorations of Einstein’s equations there can grow
understanding, conjectures, and roads to proofs and phenomena that would
not have been imaginable in the pre-computer era. The role of computation
in general relativity seems destined to expand in future.
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“Higher-dimensional extremal Reissner-Nordström black 

holes are fragile”

Masashi Kimura

[JGRG24(2014)111111] 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Masashi Kimura 

��G �3&I����	��1�5�����	�

Higher-dimensional extremal 
 Reissner-Nordström BHs 

are fragile 

w/ K.Tanabe (KEK)      in preparation  
(DAMTP, University of Cambridge) 

���	�

:92R74PSN8;�

0BG(&�H9G!&B�7B��
6H$$7(J��
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0BG(&�H9G!&B�
Why extremal RN black hole?�
�Supersymmetric BHs�

�Construction of toy models�
e.g. multi-BHs, coalescing BHs, 

 Kaluza-Klein BHs, etc…�

	��	�

6H$$7(J�
Stationary perturbation around 
extremal RN BHs behaves�

�integer power�
�fractional power�
     ���������is broken �
������	��������	�����

�	���
	�	�	�� if �
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horizon radius: �

extremal horizon �
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4�(GH(87G!&B�7(&HB��53��/)�

Hereafter, we mainly focus on tensor 
perturbations for simplicity�

Vector/scalar modes have qualitatively 
same features�

By using Ishibashi & Kodama formalism, 
we can separately discuss tensor/vector/ 
scalar perturbation around RN BHs�

��	�
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3�7(� &(!.&B�8� 7I!&(�
non-extremal case�

extremal case�

This is due to the difference  
of the boundary condition at the horizon�
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�perturbed metric vanishes at the horizon�
horizon is locally spherically symmetric �

�If  , the power can be fractional �
horizon is not �����

          ������	����p.p. 
����	������	���
	�	�	�� if�
However they are relatively mild�

����	�

�7)J�G&�8��8(&"�B�&(�B&G�
�If a generic stationary perturbation 
 always causes ill-behaved curvature    
 singularity, we should say �not easy to 
 be broken ��

�Now, our solutions are physically 
 acceptable 
 horizon (smoothness) is �easy to be     
 broken� against stationary perturbations�

However, it is not the case now�
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6H$$7(J�

�vector/scalar modes and 
 AdS/dS cases have qualitatively 
 same features�

�Horizon is not smooth for generic 
  stationary perturbations around 
 higher dim extremal RN BHs�

�	��	�

-‐‑‒!)9H))!&B)�
�Near horizon geometry�

�BF bound and instability�

�Physical interpretation 
 in AdS/CFT context �
�non existence of �regular�  
 multi BHs in �
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Thank you 
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“Toward constructing ghost-free scalar-tensor theories 

beyond Horndeski” 

Ryo Namba

[JGRG24(2014)111112] 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Toward constructing ghost-free scalar-tensor
theories beyond Horndeski

Ryo Namba

Kavli IPMU

The 24th Workshop on General Relativity and Gravitation (JGRG24)
November 11, 2014

C. Lin, S. Mukohyama, RN and R. Saitou, JCAP 10(2014)071, [arXiv:1408.0670]
S. Mukohyama, RN and R. Saitou, in progress

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 1 / 11

Introduction
Q: What is the most general healthy scalar-tensor theory?

⇧ Cosmological applications: accelerating expansion of the universe

⇧ Adding one scalar is a minimal extension of GR

⇧ Testing GR ⇠ modifying GR

Horndeski (generalized Galileon) theory
Horndeski ’74, Nicolis et al & Deffayet et al ’09

⇧ Most general scalar-tensor theory with 2nd-order field equations
. Higher-order equations would increase the dimension of phase space

. Ostrogradski’s theorem:
A linear instability in the system with a Lagrangian which genuinely depends
on more than one time derivative

⇧ Rather fine-tuned combination of coupling constants
. in general de-tuned by quantum loops

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 2 / 11
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GLPV Theory
Gleyzes, Langlois, Piazza & Vernizzi ’14

⇧ A class of theories larger than the Horndeski

⇧ Higher-order equations of motion

⇧ Still, the true propagating d.o.f. are 3, the same as Horndeski

⇧ Their analysis of Hamiltonian structure was not complete

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 3 / 11

Bottom line of the talk

1 There are scalar-tensor theories beyond the Horndeski

. Still only 3 physical d.o.f.

. Ghost free

2 Non-trivial constraint structure

. Eliminates potentially dangerous extra d.o.f.

3 An explicit example by studying the GLPV theory

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 4 / 11
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The GLPV Action

S =

Z
d4x

p�g
5X

n=2

Ln

L2 = P , L3 = �G3 ⇤�

L4 = G4 R(4) + [G4X + XF4]
h
(⇤�)2 � �µ⌫�

µ⌫
i

+F4 �
µ�⌫ (⇤��µ⌫ � �µ⇢�

⇢
⌫)

L5 = G5 G(4)
µ⌫�

µ⌫ +
1
6
(4XF5 � G5X )

h
(⇤�)3 � 3⇤��µ

⌫�
⌫
µ + 2�µ

⌫�
⌫
⇢�

⇢
µ

i

+F5 �
µ�⌫

h
(⇤�)2 �µ⌫ � �⇢

��
�
⇢�µ⌫ + 2��

µ�
⇢
��⌫⇢ � 2⇤��⇢

µ�⌫⇢

i

. �µ ⌘ rµ�, �µ⌫ ⌘ r⌫rµ�, ⇤� ⌘ rµrµ� , . . . , X ⌘ � 1
2rµ�rµ�

. Arbitrary functions: P = P(�,X ), Gn = Gn(�,X ), Fn = Fn(�,X )

. Contains the Horndeski theory
⇧ For F4 = F5 = 0

. Contains the original Galileon theory
⇧ For G4 = G5 = 0, F4 6= 0, F5 6= 0

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 5 / 11

The GLPV Action in the Unitary Gauge
Unitary gauge: � = t , X = 1/(2N2)

ADM decomposition: ds2 = �N2dt2 + hij
�
dxi + Nidt

� �
dxj + Njdt

�

The GLPV action reduces to

S =

Z
dt d3x N

p
h

5X

n=2

Ln ,

L2 = A2 , L3 = A3 K , L4 = A4

⇣
K 2 � K i

jK
j
i

⌘
+ B4R(3) ,

L5 = A5

⇣
K 3 � 3KK ijKij + 2K i

jK
j
k K k

i

⌘
+ B5 K ijG(3)

ij ,

. Extrinsic curvature: Kij =
1

2N

⇣
ḣij � (3)DiNj � (3)DjNi

⌘
, K ⌘ K i

i

. Arbitrary functions: An = An(t ,N), Bn = Bn(t ,N)

. Broken time diffeomorphism, preserved spatial diffeomorphism

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 6 / 11
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Hamiltonian structure
Goal: to understand the Hamiltonian structure and count the d.o.f.

20-dimensional phase space:

(N,⇡N) ,
�
Ni ,⇡i

�
,

�
hij ,⇡

ij�

No Ṅ or Ṅ i in the Lagrangian

=) ⇡N = 0 , ⇡i = 0

Hamiltonian takes the form

H ⌘
Z

d3x

"
⇡ij ḣij � N

p
h

5X

n=2

Ln

#

=

Z
d3x

⇥H(t ,N, hij ,⇡
ij) + Ni Hi(hij ,⇡

ij)
⇤

Poisson brackets:

{F ,G}P ⌘ �F
�N

�G
�⇡N

� �F
�⇡N

�G
�N

+
�F
�Ni

�G
�⇡i

� �F
�⇡i

�G
�Ni +

�F
�hij

�G
�⇡ij �

�F
�⇡ij

�G
�hij

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 7 / 11

Nature of constraints

Constraints
Primary constraints:

⇡N ⇡ 0 , ⇡i ⇡ 0

Secondary constraints:

d
dt

⇡N ⇡ {⇡N ,H}P ⇡ �@H
@N

⌘ C ⇡ 0 ,
d
dt

⇡i ⇡ {⇡i ,H}P ⇡ �Hi ⇡ 0

⇧ Weak equality “⇡” holds on the constraint surface

⇧ All the Poisson brackets with ⇡i vanish:

=) {⇡i ,⇡j}P ⇡ {⇡i ,⇡N}P ⇡ {⇡i ,Hj}P ⇡ {⇡i , C}P ⇡ 0

⇧ Spatial diffeomorphism is in fact reflected by the linear combination

H̃i ⌘ Hi+⇡N@iN

=) �H̃i ,⇡j
 

P ⇡ �H̃i ,⇡N
 

P ⇡ �H̃i , H̃j
 

P ⇡ �H̃i , C P ⇡ 0

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 8 / 11
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Nature of constraints
First-class constraints:

⇡i ⇡ 0 , H̃i ⌘ Hi + ⇡N @iN ⇡ 0

Second-class constraints:

⇡N ⇡ 0 , C ⇡ 0

The “total” Hamiltonian takes the form

Htot =

Z
d3x

⇥H+ NiHi + �i⇡i + �N⇡N + niH̃i + �CC
⇤

- " " %
Lagrange multipliers

Second-class constraints =) �C & �N are determined by the consistency
d
dt

⇡N ⇡ {⇡N ,Htot}P ⇡ � @C
@N

�C ⇡ 0

d
dt

C ⇡ {C,Htot}P ⇡ {C,H}P + Ni {C,Hi}P + {C,⇡N}P �N ⇡ 0

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 9 / 11

Gauge fixing
First-class constraints =) �i & ni are yet to be determined.

Introduce gauge-fixing conditions

F i ⇡ 0 , G i ⇡ 0

⇧ Require: det
✓ �F i ,⇡j P

�G i ,⇡j
 

P�F i , H̃j
 

P

�G i , H̃j
 

P

◆
6⇡ 0

Hamiltonian with gauge-fixing terms

H 0
tot =

Z
d3x

⇥H+ NiHi + �i⇡i + �N⇡N + niH̃i + �CC + �F
i F i + �G

i G i⇤

⇧ Total 14 second-class constraints

⇡i ⇡ 0 , ⇡N ⇡ 0 , H̃i ⇡ 0 , C ⇡ 0 , F i ⇡ 0 , G i ⇡ 0

⇧ (20 � 14) = 6-dimensional phase space = 3 degrees of freedom!

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 10 / 11
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Concluding Remarks

Scalar-tensor theories beyond Horndeski

⇧ An example: GLPV theory

⇧ We performed the Hamiltonian analysis in the unitary gauge

Constraint structure is essential

⇧ Reduces the dimension of the phase space

⇧ Eliminates the ghost-like d.o.f.

⇧ The Horndeski theories do not take such constraints into account

Remaining questions:

⇧ Understanding of the GLPV theory in the general gauge
. Discussions on this issue come next by Rio Saitou

⇧ General framework to remove pathological d.o.f.

Ryo Namba (Kavli IPMU) beyond Horndeski JGRG24 11 / 11
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“Structure of constraints of the theory beyond Horndeski”

Rio Saitou

[JGRG24(2014)111113] 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Structure of Constraints  
for the Theory  
Beyond Horndeski�

Rio Saitou 
(YITP, Kyoto Univ. / KIPMU, Tokyo Univ.) 

Collaboration with Chunshan Lin, Shinji Mukohyama and Ryo 
Namba 
Based on the work in progress and JCAP10(2014)071 
JGRG24@KIPMU 2014/11/11 

T�

Scalar-Tensor theory for Gravitation�

General 
Relativity�

Possible 
Theoretical 
Extension�

Inflation/Dark Energy/…?�

Scalar-tensor theory without ghost 
instability  
ex. Horndeski theory �
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The GLPV theory beyond Horndeski �

• �UNITARY GAUGE (Φ = t) Action in ADM form�
�

Gleyzes, Langlois, Piazza and Vernizzi (2014) 
Lin, Mukohyama, Namba, RS (2014) 

�

NO EXTRA DEGREES OF FREEDOM !�

The GLPV theory beyond Horndeski �

•  �GENERAL GAUGE Action in Covariant form�

NO EXTRA DEGREES OF FREEDOM !�NO EXTRA DEGREES OF FREEDOM ??�

Gleyzes, Langlois, Piazza and Vernizzi (2014) 
Lin, Mukohyama, Namba, RS (2014) 

�
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The GLPV theory in GENERAL GAUGE�
• The degrees of freedom (dof) should be the same as in

the unitary gauge, that is, 6 dof.
• How do constraints enter in the theory?

• Studying general gauge tells us richer information of the
theory, which we can not get from the unitary gauge.  �

ex. Static case  , Decoupling limit (Minkowski limit) and etc..�

GENERAL GAUGE�UNITARY GAUGE�

The GLPV theory in GENERAL GAUGE�
• The degrees of freedom (dof) should be the same as in

the unitary gauge, that is, 6 dof.
• How do constraints enter in the theory?

• Studying general gauge tells us richer information of the
theory, which we can not get from the unitary gauge.  �

ex. Static case  , Decoupling limit (Minkowski limit) and etc..�

GENERAL GAUGE�UNITARY GAUGE�

Let’s study general gauge!�
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�

1.  Introduction
2.  Convenient form of the Lagrangian
3.  Hamiltonian in general gauge
4.  Minkowski limit and flat FLRW case
5.  Summary�

�

• I omit the remaining section because it’s a preliminary
result. Thank you. �
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“Spatially covariant gravity and unifying framework for 

scalar-tensor theories of gravity”

Xian Gao

[JGRG24(2014)111114] 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Spatially covariant gravity and 
unifying framework for scalar-tensor theories

Xian�Gao�（⾼�顯）
Tokyo Institute of Technology

November 11, 2014
Kavli IPMU, the University of Tokyo

JGRG 24

X. Gao, Phys.Rev. D 90 (2014) 081501(R), [arXiv:1406.0822]
X. Gao, Phys.Rev. D 90 (2014) in press, [arXiv:1409.6708]
X. Gao, [arXiv:141x.xxxx]

Scalar-tensor theory?

Inflation, dark energy and dark matter have been strong 
motivations for alternative gravity theories beyond 
Einstein’s general relativity.

→ Scalar-tensor theory: 
 scalar modes in addition to the tensor modes of GR.

→ How to introduce these extra degrees of freedom?
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From k-essence to Horndeski

Over the years, k-essence was studied as the most general 
theory for a single scalar field, which involves at most first 
derivatives of the field in the Lagrangian.

Higher derivatives  →  Extra unwantted mode(s)?

The most straightforward way: 
to add gravity with extra scalar field(s), covariantly.

k-essence:

From k-essence to Horndeski
The most general single scalar-tensor theory: 

• of which the Lagrangian involves second derivatives,

• the equations of motion stay at the second order in derivatives
→ only one scalar degree of freedom beyond GR

[G. W. Horndeski, Int.J.Theor.Phys. 10, 363 (1974)]
[C. Deffayet, X. Gao, D. Steer, and G. Zahariade, Phys.Rev.D84, 064039 (2011)]

[Dvali, Gabadadze and Porrati, Phys.Lett.B485, 208(2000)]



�319

Beyond Horndeski?

• Even higher (≧3) order derivatives?

• Degrees of freedom unchanged (2 tensor + 1 scalar)?

This "straightforward and covariant" approach 
can only bring us so far... 

Alternative approach?

Additional degree(s) of freedom may arise when symmetries 
are reduced:

• Massive gravity:  2t + 2v + 1s  breaks spacetime diff.

• Massive vector:   2v + 1s  breaks U(1)

• Scalar-tensor theory:  2t + 1s spacetime diff.

spatial diff.
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Cosmological backgrounds breaks the full spacetime symmetries by 
choosing a preferred time direction or preferred spatial sclices.

The Lagrangian respects unbroken spatial diffs of the FRW background.

The basic ingredients are just perturbative ADM variables:

[Cheung, Creminelli, Fitzpatrick, Kaplan, and Senatore, JHEP 0803, 014 (2008)]

Example 1: EFT of inflation

lapse function  extrinsic curvature

Example 2: Hořava gravity

[P. Horava, Phys.Rev. D79, 084008 (2009)]

Hořava gravity:

[Blas, Pujolas & Sibiryakov, JHEP 0910, 029 (2009)]

Healthy extensions:

→  N enters the Hamiltonian "nonlinearly"!
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Example 3: Horndeski in ADM form

Horndeski in the ADM form:
[Gleyzes, Langlois, Piazza & Vernizzi, arXiv:1304.4840]

Fixing the unitary (uniform scalar field) gauge:

Example 3: Horndeski in ADM form

Horndeski in the ADM form:
[Gleyzes, Langlois, Piazza & Vernizzi, arXiv:1304.4840]

Fixing the unitary (uniform scalar field) gauge:

functions of 
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Beyond Horndeski

GLPV model (deformed Horndeski):
[Gleyzes, Langlois, Piazza & Vernizzi, arXiv:1404.6495]

Fixing the unitary (uniform scalar field) gauge:

Landscape of theories

Horndeski theory

k-essence DGP

EFT of inflation

Hořava 
Ghost
Cond.

Gauge recovering (Stückelberg trick)

Gauge fixing (unitary gauge)
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Landscape of theories

Horndeski theory

k-essence DGP

EFT of inflation

Hořava     
Ghost
Cond.

Horndeski in ADM form

GLPV [1305.6346]

Gauge recovering (Stückelberg trick)

Gauge fixing (unitary gauge)

Landscape of theories

Horndeski theory

k-essence DGP

EFT of inflation

Hořava     
Ghost
Cond.

Horndeski in ADM formGLPV model

GLPV [1404.6495]

Gauge recovering (Stückelberg trick)

Gauge fixing (unitary gauge)
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Spatially Covariant Gravity

Landscape of theories

Horndeski theory

k-essence DGP

EFT of inflation

Hořava     
Ghost
Cond.

Horndeski in ADM formGLPV model

GLPV [1404.6495]

Gauge recovering (Stückelberg trick)

Gauge fixing (unitary gauge)

?

Scalar-tensor theories
beyond HorndeskiSpatially Covariant Gravity

Landscape of theories

Horndeski theory

k-essence DGP

EFT of inflation

Hořava     
Ghost
Cond.

Horndeski in ADM formGLPV model

GLPV [1404.6495]

Gauge recovering (Stückelberg trick)

Gauge fixing (unitary gauge)

? ?
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A general class of Lagrangians that respect the spatial diffeomorphism:

where  are functions of

"Translating" to the covariant language (Stueckelberg trick) 

All terms can be written covariantly in terms of ϕ and its derivatives.

→ A more general class of scalar-tensor theories beyond Horndeski, which 
propagate 2 tensor + 1 scalar dofs, although the equations of motion are 
generally higher order.

Spatially covariant gravity

"kinetic terms" "potential terms"

[X. Gao, 
Phys.Rev. D 90 
(2014) 081501]

Constraint analysis

4 primary constraints:

Extended Hamiltonian:

4 secondary constraints:

N appears nonlinearly in the Hamiltonian, as the space-dependent time 
reparametrization invariance is broken.
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Degrees of freedom
Poisson brackets among all 8 constraints:

Eigenvalues: 6 zero, 2 non-zero:

→ Among (linearly independent combinations of) 8 constraints:
6 are first class,  2 are second class

→ Number of degrees of freedom:

X. Gao, 
[arXiv:1409.6708]

Main message

• Single-field scalar-tensor theories can be written as theories
of spatially covariant gravity.

• We propose a very general framework for the spatially
covariant gravity theories.

• When restoring general covariance, such spatially covariant
gravity theories yield single-field scalar-tensor theories with 
higher order equations of motion.
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Thank you for your attention!
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“Effective field theory approach to modified gravity 

including Horndeski theory and Horava-Lifshitz gravity”

Ryotaro Kase

[JGRG24(2014)111115] 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.3(19).3,��463)*70.�8-*46<�&3)��46&:&��.+7-.8=�,6&:.8<�
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“JGRG24,” IPMU in Tokyo, 11th Nov. 2014.  

In 1998, the discovery of late-time cosmic acceleration based on Type Ia 
supernovae is reported. The source for this acceleration is named dark energy. 

!  Discovery of late-time cosmic acceleration!

Dark energy problem may imply some  
modification of gravity on large scales. 

w � P/�

Condition for acceleration : 

w < �1/3

The equation of state defined below 
characterizes dark energy. 

>Planck+WP+SNLS 

w = �1.13+0.13
�0.14 (95%CL)

Planck collaboration arXiv:1303.5076 [astro-ph.CO]  

�-CDM!

1�Introduction�!
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• Horava-Lifshitz gravity"

GLPV theories"

…
!

• Brans-Dicke gravity"
• Gauss-Bonnet gravity"
• F(R) gravity"
• Galileon gravity"…

!

Horndeski theories"

!  Models based on Modified gravity !

Effective field theory of modified gravity �EFT�!

1�Introduction�!

����

hab

ds Ndt

xa

xa + dxa

xa �Nadt

nµ

�t

�t+dt

ds2 = �N2dt2 + hab(dxa + Nadt)(dxb + N bdt)

����1*<=*7������&3,14.7������.&==&��&3)����$*63.==.�������	������
�	
�	���

A scalar field     associated with the modification of gravity is 
absorbed into the constant time hypersurfaces. "

Kµ� = h�
µn�;�

Rµ� = (3)Rµ�

Under the unitary gauge                , 

constant time hypersurfaces 

�
uniform     hypersurfaces 

!  EFT on the cosmological background !

(�� = 0)

� = �(t)

nµ = ��;
µ/
�
�X

�

�

1�Introduction�!

X = �;
µ�;µ
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ds2 = �N2dt2 + hab(dxa + Nadt)(dxb + N bdt)

����1*<=*7������&3,14.7������.&==&��&3)����$*63.==.�������	������
�	
�	���

S =
�

d4x
�
�gL(N,K,S,R,Z,U ; t)

K � Kµ
µ , S � Kµ�Kµ� , R � Rµ

µ , Z � Rµ�Rµ� , U � Rµ�Kµ� .

����

hab

ds Ndt

xa

xa + dxa

xa �Nadt

nµ

�t

�t+dt

Kµ� = h�
µn�;�

Rµ� = (3)Rµ�

!  EFT on the cosmological background !

Under the unitary gauge                , 

constant time hypersurfaces 

�
uniform     hypersurfaces 

(�� = 0)

� = �(t)

nµ = ��;
µ/
�
�X

�

1�Introduction�!

S =
�

d4x
�
�gL(N,K,S,R,Z,U ; t)

K � Kµ
µ , S � Kµ�Kµ� , R � Rµ

µ , Z � Rµ�Rµ� , U � Rµ�Kµ� .

... 

... 

L = A2(N, t) + A3(N, t)K + A4(N, t)(K2 � S) + B4(N, t)R
+ A5(N, t)K3 + B5(N, t) (U �KR/2) ,

�
K3 = 3H(2H2 � 2KH + K2 � S) + O(3)

�

The Horndeski theory is a subclass of the EFT of modified gravity."

!  Horndeski Lagrangians in the EFT language!

nµ = ��;
µ/
�
�X

1�Introduction�!

A4 = 2XB4,X �B4 A5 = �XB5,X/3with"

G2(�, X)� G2(N, t)
�
X = ��̇2/N2

�
,

G3(�, X)��� 2(�X)3/2F3,XK �XF3,� (G3 = F3 + 2XF3,X) ,
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In order to include the Horava gravity and its extension in "
the EFT framework, we need to add extra terms to the EFT Lagrangian."

Gao’s talk! %���&4��-<7�� *:������	
�	�����	�	��

!  Projectable Horava-Lifshitz gravity!

L =
M2

pl

2

�
S � �K2 +R�M�2

pl

�
g2R2 + g3Z

�
�M�4

pl (g4Z1 + g5Z2)
�

(�N = 0)

�
Z � Rµ�Rµ� , Z1 � �iR�iR , Z2 � �iRjk�iRjk

�

The terms               allow the             scaling characterized by "
the transformation              and               ."

Z1 , Z2 z = 3
xi � cxi

The theory is power-counting renormalizable.!

However, in this theory, the no-ghost condition and the condition to 
avoid a Laplacian instability cannot be satisfied at the same time."

Moreover there is the strong coupling problem in the deep IR regime."

!  Horava gravity in the EFT language!

t� czt

1�Introduction�!

: 3D covariant derivative"�i

!  Non-projectable Horava-Lifshitz gravity!(�N �= 0)

In the non-projectable extended version of the Horava gravity, "
the acceleration vector                                       does not vanish. "
In this case one can consider the Lagrangian"

a� = n�n�;� = �� lnN

LV3 = � 1
2M2

pl

(g4Z1 + g5Z2 + �4�4 + �5�5 + · · · ) ,

LV2 = �1
2

�
g2R2 + g3Z + �2�2 + �3�3 + · · ·

�
,

LV1 =
M2

pl

2
(R+ �1�1) ,

�1 � aia
i , �2 � ai�ai , �3 � R�ia

i ,

�4 � ai�2ai , �5 � �R�ia
i ,

LV3 , LV2 , LV1 are invariant under                     rescaling, respectively."z = 3, 2, 1

1�Introduction�!

����1&7������9/41&7�&3)�!��!.'.6<&04:���	
�	���
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K � Kµ
µ , S � Kµ�Kµ� , R � Rµ

µ , Z � Rµ�Rµ� ,

U � Rµ�Kµ� ,Z1 � �iR�iR , Z2 � �iRjk�iRjk ,

�1 � aia
i , �2 � ai�ai , �3 � R�ia

i , �4 � ai�2ai , �5 � �R�ia
i ,

Other terms such, e.g.                , can be taken into account, "
but they are irrelevant to scalar linear perturbations on the flat "
FLRW background. "

Rj
iR

k
jRi

k

RK and S. Tsujikawa, arXiv:1409.1984 

S =
�

d4x
�
�g L (N,K,S,R,Z,U ,Z1,Z2,�1, · · · ,�5; t)

!  EFT Lagrangian including Horndeski theories and Horava gravity!
1�Introduction�!

2�Background Equations�!

S =
�

d4x
�
�g L (N,K,S,R,Z,U ,Z1,Z2,�1, · · · ,�5; t)

ds2 = �(1 + 2�N)dt2 + 2�i�dxidt + a2(t)(1 + 2�)�ijdxidxj ,

L = L̄ + L,N�N + L,K�K + L,S�S + L,R�R+ L,Z�Z + L,U�U + O(2) ,

Expanding the Lagrangian up to linear order as "

expressing ADM variables in terms of metric variables, 
e.g.                                                           , we obtain the following "
background equations of motion."

Kij = (�thij ��iNj ��jNi) /(2N)

e.g. L,N = �L/�N

EN = L̄ + L,N � 3HF = 0 ,

Eh = L̄� Ḟ � 3HF = 0 .
(F � L,K + 2HL,S)

S1 =
�

d4x
�
�ḡ

�
EN�N + Eh�

�
h
�

,
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3�Second order perturbations�!

S =
�

d4x
�
�g L (N,K,S,R,Z,U ,Z1,Z2,�1, · · · ,�5; t)

ds2 = �(1 + 2�N)dt2 + 2�i�dxidt + a2(t)(1 + 2�)�ijdxidxj ,

Expanding the Lagrangian up to second order as "

L = L̄� Ḟ � 3HF + (Ḟ + L,N )�N + E�1R

+
�

1
2
L,NN � Ḟ

�
�N2 +

1
2
A�K2 + B�K�N + C�K�1R+D�N�1R+ E�2R+

1
2
G�1R2

+ L,S�Kµ
� �K�

µ + L,Z�Rµ
� �R�

µ +
2�

i=1

L,Zi�Zi +
5�

i=1

L,�i��i + O(3) ,

e.g. A = L,KK + 4HL,SK + 4H2L,SS ,

Varying with respect to       and       , we obtain evolution equations as"�N ��

Using these equations the second order Lagrangian "
is expressed in terms of a single variable    ."�

(2L,N + ...) �N � 2L,�1��N � 2L,�2�
2�N � 2L,�4�

3�N �W�� = 3W �̇ + ... ,

W�N � (A+ 2L,S)�� = �(3A+ 2L,S)�̇ + 4C��

3�Second order perturbations�!

S =
�

d4x
�
�g L (N,K,S,R,Z,U ,Z1,Z2,�1, · · · ,�5; t)

ds2 = �(1 + 2�N)dt2 + 2�i�dxidt + a2(t)(1 + 2�)�ijdxidxj ,

!  In the absence of higher order spatial derivatives!

L2 = a3Qs

�
�̇2 � c2

s

a2
(��)2

�
.

(C = 0 , 4G + 3L,Z = 0 , A + 2L,S = 0 , 8L,Z1 + 3L,Z2 = 0 , L,�1 = L,�2 = · · · = L,�5 = 0 .)

Stability conditions"

Qs > 0 and c2
s > 0 .

Qs �
2L,S
W2

�
3W2 + 4L,S(2L,N + L,NN � 6HW + 12H2L,S)

�
,

c2
s �

2
Qs

�
Ṁ+ HM� E

�
,

M � 4L,S
W

�
L,R + L,NR + HL,NU +

3
2
HL,U

�
,

W � L,KN + H (2L,NS � 3LKK � 2L,S)� 12H2L,KS � 12H3L,SS .
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4�Application to Horndeski and GLPV 

L = A2(N, t) + A3(N, t)K + A4(N, t)(K2 � S) + B4(N, t)R
+ A5(N, t)K3 + B5(N, t) (U �KR/2) ,

Horndeski theories correspond to 

A4 = 2XB4,X �B4 A5 = �XB5,X/3

!  Stability conditions!

Condition to avoid ghost instability 

Qs > 0� 9W2 + 8L,Sw > 0

����1*<=*7������&3,14.7������.&==&�&3)����$*63.==.��&6%.:�	��������

W = A3,N + 4HA4,N + 6H2A5,N � 4HA4 � 12H2A5 ,

w = 18H2(A4 + 3HA5) + 3(A2,N � 6H2A4,N � 12H3A5,N )

+ 2(A2,NN + 3HA3,NN + 6H2A4,NN + 6H3A5,NN )/3 .

4�Application to Horndeski and GLPV 

L = A2(N, t) + A3(N, t)K + A4(N, t)(K2 � S) + B4(N, t)R
+ A5(N, t)K3 + B5(N, t) (U �KR/2) ,

Horndeski theories correspond to"

A4 = 2XB4,X �B4 A5 = �XB5,X/3

!  Stability conditions!

Condition to avoid Laplacian instability"

c2
s > 0� Ṁ+ HM� E > 0

M = � 4(A4 + 3HA5)(B4 + B4,N �HB5,N/2)
A3,N + 4HA4,N + 6H2A5,N � 4HA4 � 12H2A5

,

E = B4 + Ḃ5/2 .

����1*<=*7������&3,14.7������.&==&�&3)����$*63.==.��&6%.:�	��������



�336

4�Application to Horndeski and GLPV 
!  Dark energy in the presence of matter!

S =
�

d4x
�
�g [L(N,K,S,R,U ; t) + P (�, Y )] .

 �����!(-*66*6�	
�����
radiation"

P (�, Y ) = b1Y
2 P (�, Y ) = b2(Y � Y0)2

w = 1/3
(when Y � Y0)

w =
Y � Y0

3Y � Y0
� 0

(Y = �;
µ�;µ)

non-relativistic matter"

Sound speeds squared"
�
c2
s � c2

sH1

� �
c2
s � c2

sH2

�
=

16L2
,S

QsW2

�
MW
4L2

,S
� 1

�
�̇2P,Y

�
2c2

s � c2
sH2

�
MW
4L2

,S
+ 1

��
.

c2
sH1 =

1
Qs

�
2(Ṁ+ HM� E) +

�
4L,S �̇

W

�2

P,Y

�
,

c2
sH2 =

P,Y

P,Y � 2�̇2P,Y Y
.

Dark energy:"

Matter:"

In the Horndeski limit this term vanishes and we obtain"

However, outside the Horndeski domain, both sound speeds should be modified. "

4�Application to Horndeski and GLPV 
!  Dark energy in the presence of matter!

S =
�

d4x
�
�g [L(N,K,S,R,U ; t) + P (�, Y )] .

 �����!(-*66*6�	
�����
radiation"

P (�, Y ) = b1Y
2 P (�, Y ) = b2(Y � Y0)2

w = 1/3
(when Y � Y0)

w =
Y � Y0

3Y � Y0
� 0

(Y = �;
µ�;µ)

non-relativistic matter"

Sound speeds squared"
�
c2
s � c2

sH1

� �
c2
s � c2

sH2

�
=

16L2
,S

QsW2

�
MW
4L2

,S
� 1

�
�̇2P,Y

�
2c2

s � c2
sH2

�
MW
4L2

,S
+ 1

��
.

c2
sH1 =

1
Qs

�
2(Ṁ+ HM� E) +

�
4L,S �̇

W

�2

P,Y

�
,

c2
sH2 =

P,Y

P,Y � 2�̇2P,Y Y
.

Dark energy:"

Matter:"

In the Horndeski limit this term vanishes and we obtain"

However, outside the Horndeski domain, both sound speeds should be modified. "

Please see also "
RK and S. Tsujikawa, Phys. Rev. D90 (2014) 044073  "

• detailed calculation"
• evolution of sound speeds

during the cosmological history"
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L =
M2

pl

2

�
S � �K2 +R�M�2

pl

�
g2R2 + g3Z

�
�M�4

pl (g4Z1 + g5Z2)
�

L2 = M2
pla

3

�
3�� 1
�� 1

�̇2 � �O�

�

O � � +
�2

M2
2

� �3

M4
3

, � � �i�i , M2
2 �M2

pl(8g2 + 3g3)�1 , M4
3 �M4

pl(8g4 + 3g5)�1 .

which coincides with the results in"
K. Koyama and F. Arroja, JHEP 1003, 061 (2010),"
S. Mukohyama, Class. Quant. Grav. 27, 223101 (2010)."

(�N = 0)

5�Application to Horava gravity 
!  Projectable Horava-Lifshitz gravity!

Conditions to avoid ghost and Laplacian instability "
can not  be satisfied at the same time."

5�Application to Horava gravity 
!  Non-projectable Horava-Lifshitz gravity! (�N �= 0)

which coincides with the results in"
D. Blas, O. Pujolas and S. Sibiryakov, "
Phys. Rev. Lett. 104, 181302 (2010)"

In the IR regime, on the Minkowski BG, 

L2 = M2
pl

3�� 1
�� 1

�
�̇2 � c2

s(��)2
� �

c2
s =

�� 1
3�� 1

2� �1

�1

�

L =
M2

pl

2

�
S � �K2 +R+ �1�1 �M�2

pl

�
g2R2 + g3Z + �2�2 + �3�3

�

�M�4
pl (g4Z1 + g5Z2 + �4�4 + �5�5)

�
.
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!  We studied the EFT approach to modified gravity including Horndeski 
theories and Horava-Lifshitz gravity on the flat isotropic cosmological BG. 

!  Expanding the action up to second order, we derived the background 
equations of motion, equations of motion for linear perturbations and 
stability conditions.  

!  We applied our general results to Horndeski theories, its generalization 
(GLPV theories), Horava gravity and its healthy extension. 

!  In the presence of matter components, sound speeds squared are 
nontrivially modified in GLPV theories. We showed that Horndeski theories 
and GLPV theories can be distinguished from each other by the scalar  
propagation speeds     . 

!  We showed that our general results conveniently recover stability 
conditions of Horava gravity and its healthy extension already derived in 
the literature. 

6�Conclusions 

c2
s

4�Application to Horndeski and GLPV 

L = A2(N, t) + A3(N, t)K + A4(N, t)(K2 � S) + B4(N, t)R
+ A5(N, t)K3 + B5(N, t) (U �KR/2) ,

�
K3 = 3H(2H2 � 2KH + K2 � S) + O(3)

�

Horndeski theories correspond to 

A4 = 2XB4,X �B4 A5 = �XB5,X/3

!  Tensor perturbations!

S(h)
2 =

�
d4x

a3

4

�
L,S �̇2

ij �
E
a2

(�k�ij)2
�

.

hij = a2(t)(�ij + �ij +
1
2
�ik�kj)

Stability conditions 

L,S = �A4 � 3HA5 > 0 ,

E = B4 + Ḃ5/2 > 0 .
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4�Application to Horndeski and GLPV 
!  The inflationary power spectra of curvature and tensor 

perturbations!
In the case where slow-roll parameters"
are much smaller than unity,"

� � �Ḣ/H2 , �Qs � Q̇s/(HQs) , �cs � ċs/(Hcs)

L2 = a3Qs

�
�̇2 � c2

s

a2
(��)2

�
.

ns � 1 � �2�� �Qs � 3�cs .

S(h)
2 =

�

�=+,�

�
d4x a3Qt

�
ḣ2

� �
c2
t

a2
(�h�)2

�
,

r = 4
Qsc3

s

Qtc3
t

,

Qt �
L,S
2

, c2
t �

E
L,S

.

• Scalar perturbation"

• Tensor perturbation"

4�Application to Horndeski and GLPV 
!  Covariantized Galileon!
Covariant Galileon : Covariantized Minkowski Galileon + Gravitational counter term"

A. Nicolis, et al. (2009)"
C. Deffayet, et al. (2009)"

Since EOMs remain second order in general BG,"
it is inside the Horndeski domain."

Covariantized Galileon : Covariantized Minkowski Galileon"

Higher order derivatives may appear in general BG."
Thus it is outside the Horndeski domain."

However, due to the symmetry of the FRW space-time,"
BG EOMs in two models become same. At the level of "
second order perturbations differences appear."

A2 =
c2

2
X , A3 =

c3

3M3
(�X)3/2 , A4 = �

M2
pl

2
� 3c4

4M6
X2 , A5 =

c5

2M9
(�X)5/2 ,

B4 =
M2

pl

2
� c4

4M6
X2 , B5 = � 3c5

5M9
(�X)5/2 .

A2 =
c2

2
X , A3 =

c3

3M3
(�X)3/2 , A4 = �

M2
pl

2
� 3c4

4M6
X2 , A5 =

c5

2M9
(�X)5/2 ,

B4 =
M2

pl

2
, B5 = 0 .
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tracker"

late-time"
tracking"

!  BG evolution!

r1 �
�̇dSHdS

�̇H
, r2 �

H

HdS

�
�̇

�̇dS

�5

,

• There is the dS point at "r1 = r2 = 1 .

• The tracker solution              is 
in tension with the observational data."

(r1 = 1)

• The late-time tracking solution 
is consistent with the observational data.  "

(rini
1 � 1)

!���*77*6.7������*��*1.(*�&3)�!��"79/.0&;&���-<7�� *:�����
��	
����	
�	���

4�Application to Horndeski and GLPV 

!  Evolution of the propagation speed along the late-time tracking !

(A) Covariant Galileon!

����*��*1.(*�&3)�!��"79/.0&;&���-<7�� *:���*88��	���			��	�	
�	����

Under the no-ghost conditions, "

the above propagation speed of sound is positive in any regime."

c2x
2
dS = 6 + 9�� 12�

c3x
3
dS = 2 + 9�� 9�

LS > 0
g2 > 0

� > 0
� 2 < 3(�� 2�) < 2

c2
s1 =

�
�������

�������

1
40

(�r + 1) [(i) r1 � 1, r2 � 1] ,

8 + 10�� 9� + �r(2 + 3�� 3�)
3(2� 3� + 6�)

[(ii) r1 = 1, r2 � 1] ,

(�� 2�)(4 + 15�2 � 48�� + 36�2)
2(2 + 3�� 6�)(2� 3� + 6�)

[(iii) r1 = 1, r2 = 1] .

4�Application to Horndeski and GLPV 
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!  Evolution of the propagation speed along the late-time tracking !

(B) Covariantized Galileon!

c2
s1 =

�
�������

�������

1
40

(3�r � 1) [(i) r1 � 1, r2 � 1] ,

16� 15(�� 2�) + �r(4� 3� + 6�)
6(2� 3� + 6�)

[(ii) r1 = 1, r2 � 1] ,

�� 2�

2 + 3�� 6�
[(iii) r1 = 1, r2 = 1] .

In the regime (i), the propagation speed become negative !
during the matter dominated epoch!!!

4�Application to Horndeski and GLPV!

(B) Covariantized Galileon!
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4�Application to Horndeski and GLPV 
!  Evolution of the propagation speed along the late-time tracking !



�342

“The Relation Between Tree Unitarity and 

Renormalizability in Lifshitz Scalar Theory”

Tomotaka Kitamura

[JGRG24(2014)111116] 



�343

The Relation between Renormalizability and 
Tree Unitarity in Lifshitz Scalar Theory

in collaboration with  Takeo Inami (National Taiwan U)

Tomotaka Kitamura (Waseda U)

Keisuke Izumi (Le CosPA)

Our final goal is to check the renormalizability 
of Horava-Lifshtiz gravity via tree unitarity

We have faced some problems in HL gravity

Purpose 

but

In this work, we try to check the relation 
between renormalizability and tree unitarity in 

Lifshtiz scalar theory as a toy model for 
understanding the problems of HL gravity



�344

Contents

1.Introduction

2.Unitarity and Optical theorem 

3.Tree unitarity in Lifshitz scalar theory

4.One loop calculation in Lifshitz scalar theory

5.Summary

1.Introduction
Important problem in Hořava gravity

z=3　(1+3) dim P.Hořava ’09

(i, j, k = 1, 2, 3)

SHL =
�

dtd3x
�

gN{Mp

2
�
KijK

ij � �K2
�

+
�
�1�iRjk�iRjk + �2�iR�iR + · · ·

�
}

Horava proposed Power-counting renormalizable gravity theory 
for solving non-renormalizable problem in Einstein gravity

But no proof of renormalizability in HL gravity 

then, we are trying to check the renormalizability of HL gravity using the 
equivalence between renormalizability and tree unitarity
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1.Introduction

Tree unitarity

an scattering amplitude does not grow as 

Energy in center of mass-

E ��� (� � 0)

amplitude

E �

E

E ��
M

M
if -

Suggestion by  Llewellyn Smith
 the equivalence between renomalizability and tree unitarity

C.H.Llewellyn Smith ’73

�tree unitarity renormalizability

� � 0 , theory has tree unitarity

(e.g) Yang-Mills theory
Einstein gravity 
Weinberg-Salam model

1.Introduction

M � k6

M � k2

Einstein gravity

Horava gravity High-energy behavior of scattering 
amplitude is more worse ??

 Higher spatial derivative in Horava 
gravity improves UV behavior

but

How should we interpret 
this worse behavior ??

Differentiation of high-energy behavior between Einstein gravity and HL gravity

P � 1
k2 PHL �

1
�2 � k6
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Which should we take high energy limit ??!

1.Introduction
 Questions about the work in tree unitarity of HL gravity

1) Is the equivalence held for Lifshitz-type model?

2) How should we take high-energy limit
because of Lorentz violation ?

3) How should we interpret the power of scattering
amplitude in HL gravity?

anisotropic scaling of space and time

In relativistic theory, any system → CM system tanks to Lorentz sym
In non-rela theory, all systems are independent

� k6 ??

� kis from time derivative is from spacial derivative

�x �� b�x

t �� bzt

b

z dynamical critical exponent

[x] = �1 [t] = �z in mass dim

arbitrary number

Lifshitz scaling

z degree of anisotropy between space and time

L = Lfree + Lint

z=3 (1+3)dim 

Lfree =
1
2
�̇2 +

1
2
��3�

L3 = �1(�2�)(�i�)2 + �2(��)3
Lint = L3 + L4 + L5 + L6

with shift sym

...

�� � + c c = const

We try to check renormalizability and tree unitarity in Lifshtiz 
scalar theory for answering the questions of HL gravity

Lifshitz scalar theory

1.Introduction

 this Lifshtz scalar is constructed  of 
most  general 6th derivative term with 

shift sym
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2. Unitarity and Optical theorem

S†S = 1

this theorem limits scattering amplitude using a value

(a)Unitarity of S-matrix
(b)Optical theorem ImMnn = ���n� | Mn�n |2

Optical theorem is derivated from Unitarity of S-matrix  

→ | Mnn | �
1
�

Im�f | T | i� = �
�

d3k1

�1
· · · d3kn

�n
�4(�iki � p)

��k1 · · · kn | T | i���k1 · · · kn | T | i�

(1)

(2)

Remark; “n” is some information of external line

(1) ＆(2) determine a power of energy in scattering  amplitude of high-energy

For answering the Questions, we check the origin of tree unitary  

cross section

| Mnn | � Im | Mnn | � � | Mnn |2

2. Unitarity and Optical theorem
Optical theorem

Im�f | T | i� = �
�

d3k1

�1
· · · d3kn

�n
�4(�iki � p)

��k1 · · · kn | T | i���k1 · · · kn | T | i�

more detail to how to determine the value

[Im�2 | T | 2�] = k�2

[�k1 · · · kn | T | i�] = k�n

[
d3kn

�n
] = k0

[�3(�iki � p)] = k�3

[�(�i�i � E)] = k�3

In the case of Lifshitz type theory �2 = �k6

�2 � 6

Dimension of RHS and LHS lead to the following inequality
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2. Unitarity and Optical theorem
(i) Theory with Lorentz symmetry

�n | T | 2� � k�n

�2 | T | 2� � k�2 �2 � 0

�n � 2� n

(a) 2-n scattering

amplitude

amplitude

(b) 2-2 scattering

tree unitarity

tree unitarity

(e.g 1) �4

M � � (� k0)

M � k2

theory

(e.g 2) Einstein gravity

tree unitarity

tree unitarity �

�2 = �k3

2. Unitarity and Optical theorem
(ii) Theory without Lorentz symmetry

�2 | T | 2� � k�2

�n | T | 2� � k�namplitude

amplitude

(a) 2-n scattering

(b) 2-n scattering

�n � 6

�2 � 6

tree unitarity

tree unitarity

(e.g ) Horava gravity ( a part of diagram)

M � k6 tree unitarity is ??

At least, we can understand the behavior of the 
power in high-energy scattering amplitude 

Origin of differentiation is dispersion relation �2 � k6

�2 = �k6
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M � k6

3. Tree Unitarity in Lifshitz scalar theory

(e.g)4-point function

M = + +

k�� tree unitarity

(cf)
 Propagator 

i

�2 � k6

 Vertex 

��1[(k2 · k3)(k1)4 + · · · ]

�1(�2�)(�i�)2

4. One loop calculation in Lifshitz scalar

�1(�2�)(�i�)2
(e.g)

Vertex

One loop graph"
M =

�
d�d3k ��n

kapb

(�2 + k6)n

b � 6

M � (
�

dE E1� b
3 )pb

!
if , E��

!
no divergence  in

!
even if ,b � 6

 but we can renormalize using counter term

there are divergence

this Lifshitz scalar is finite!! and b=6 is critical value!!

 b=6 is same value of the power of high-energy limit !!

!
extracting the property of leading order, we 

find the following property
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1.

We almostly confirmed the equivalence between
renormalizability and tree unitarity in Lifshitz scalar theory

checking the power of the high energy limit in Lifshitz scalar

Summary

2.

the power is independent on the way to take the high-energy limit 

(e.g)

�,k1,k2, and,k3, or, the combination of them O.K.
we can take the high energy limit

We can use the equivalence for checking 
renormalizability of Horava gravity!!

Thank you!




