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Perturbation of Black Hole Space-Time and Gravitational Waves

Yasufumi Kojima

Department of Physics, Tokyo Melropolitan Universily,
Hachioji, Tokyo 192-03, Japan

Abstract

The perturbations of black hole space-time are reviewed in this paper. Much
attention is paid to the gravitational perturbation. To solve this problem, two
approaches are possible. One way is to use metric perturbations. The other is to
use the Newman-Penrose quantities. Both methods are briefly reviewed. As for
this topic, comprehensive reviews[1,2] are available. The mathematical structure is
exhaustively studied in Ref.[1], while the application is its main subject of Ref.[2].
These books may be too comprehensive for the most non-experts. The essential

points are introduced here.

1. Overview

The perturbation of black hole space-time has a long history. In 1957, Regge
and Wheeler(3] first attacked this problem. Their concern was the stability of the
black hole space-time. If the space-time is unstable against the modes coupled
to the gravitational waves, the black holes never exist. They derived the basic
equation governing non-spherical perturbations of ”odd” parity-modes, which is a
second-order system of differential equations. They showed that the Schwarzschild
space-time is stable for such perturbations.

Subsequently, discoveries of pulsars and QSOs in 1960’s let lots of astrophysi-
cists draw attention to neutron stars and black holes. Thorne and his collaborators
[4] wrote a series of the papers concerning non-radial pulsations of neutron stars.

Inside the stars, the non-radial oscillations coupled to density perturbations are
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“even” parity-modes. These modes are associated with gravitational waves out-
side the stars. In their second paper, they derived the basic equation describing
the gravitational waves outside the stars. The equation also corresponds to the
perturbation equation for the Schwarzschild black hole, because the unperturbed
space-time outside the non-rotating star is the Schwarzschild space-time { Birkhoff
theorem). They at first derived a third-order system of differential equations for
the "even” parity-modes. However, Zerilli [5] showed the basic equation for the
"even” parity-modes is also a second-order system, because there is one algebraic
identity among the variables and the reduction is possible. Both "even” and "odd”
parity-modes can be expressed as a single differential equation of second order, but
have different potential terms. Sce eqs.(18)-(20) in the next section. But this dif-
ference is not significant. Chandrasekhar [6] showed both equations are related to
each other by a certain transformation. It is also possible to use another function
different from Regge-Wheeler or Zerilli functions.

As for the perturbation of the rotating black hole, different technique, that
is, Newman-Penrose formalism [7] is necessary. Teukolsky [8] showed gravitational
perturbation is described by a single master equation and showed that the sepa-
ration of variables is possible. Since the background space-time is stationary and
axially symmetric, the separation for the variables, ¢ and ¢ is manifestly possible.
In addition, the separation for the variable 8 is also possible in terms by spheroidal
harmonics for the Kerr space-time. Thus, the basic equation governing the gravi-
tational perturbations is a second-order differential equation. He also derived the
similar master equations for the perturbations for different fields such as scalar,
electron-magnetic and spinor fields. These equations were studied for the super-
radiance, that is, over-reflection of waves [8]. This is one of the ways to extract
energy from the rotating black hole by putting waves. The amplification factor
increases with the spin of the fields except the spinor.

The basic equation of gravitational perturbation can be described by a second-
order differential equation. There are two independent wave solutions near the
horizon and infinity. Two solutions correspond to the ingoing and outgoing waves.
We impose purely outgoing waves at infinity and purely ingoing waves at the horizon.
Thus, only a certain class of solutions satisfies this boundary condition and the
resultant eigen-values are called quasi-normal modes. This concept of the quasi-
normal modes was first introduced in Ref. [9]. The quasi-normal frequency is

a complex number. The real part corresponds to the oscillation frequency and
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the imaginary part to the decay ( or growth ) rate. The ecigen-value thus gives a
criterion for the stability of the black hole space-time. Some quasi-normal modes
are numerically calculated in several methods [10]. The results show most of black
holes are stable, though some instabilitics may set in near the extreme Kerr limit
[11]. See also e.g., Ref.[12] for the stability.

These quasi-normal frequencies are also the characteristic frequencies of the
gravitational waves radiated when the space-time is perturbed. Using the linear
perturbation equations, Davis et al. [13] calculated gravitational radiation induced
by a small particle falling into a Schwarzschild black hole. In 1977, Smarr [14] first
performed fully relativistic non-linear simulation for the collision of two black hole
and calculated gravitational waves emitted there. Surprising fact is that the wave
form and the efficiency coincide with the estimate from the extrapolation of the
linear calculations by Davis et al.. After this remarkable fact was confirmed, a lot
of works were done for the estimate of the gravitational radiation [15]. In 1985, Stark
and Piran [16] simulated fully relativistic axisymmetric collapse and calculated the
gravitational waves. Their results also coincide with the extrapolation of the results
based on the linear perturbation.

Recently, cosmological constant revives. Some physicists are interested in the
Schwarzschild-deSitter space-time, that is, a black hole solution with non-zero cos-
mological constant. Several authors [17] examined the perturbation and the quasi-

normal modes for the space-time and showed that the space-time is stable.

2. Perturbations of a Schwarzschild black hole
In this section, we shall consider metric perturbations of spherical symmetric

space-time as
Juv = g;(g) + by, (1)
where g,(g,) is the unperturbed metric. We assume h,, is a small quantity so that

we linearize the Einstein tensor as
—26GIW = huu;a;u - (hua;a;u + hun;a;y) + 2Rauﬂuh0ﬁ + haa;p;u

—(R*  hya + R® yhya) + guv(hog® = h% 5°) + Rhyy = gy R hag, (2)

where R"”ﬂ”, R and R are Riemann, Ricci and scalar curvatures calculated by the
background metric gfg,). If we consider Schwarzschild space-time, R*? = R =0. It

is straightforward but very tedious to write down the basic equations e.g., 8G,, =0
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for vacuum. Algebraic computer software such as Reduce or Mathematica is helpful.
We can furthermore simplify the calculation by the followings.

It is convenient to use tensor harmonics for the angular parts in the calculations.
Suppose we solve the Schrddinger equation for the energy levels in the spherical
symmetric potential, we expand the function by the spherical harmonics Y3, (6, 8).
This technique is useful because the angular part can be separated. The wave

function is a scalar under the rotation of 2 dimensional sphere
ds? = v;;dz'da’ = d? + sin® 9d¢?, (3)

so that it is natural to expand the wave function in terms by scalar harmonics. For
the metric perturbation, we need another kind of harmonics, because we have to
deal with tensors. The spherical harmonic Vi, (#, 4) is a scalar with parity (—1)* .
Using this, we can make two kinds of vectors. One is obtained by taking a gradient

of the scalar;
ViYim = [06Yim, 0Yim]- (4)

The other is obtained by taking a rotation of the scalar;
erkY;m = [—04Yim [ sin 0,sin 809 Yipm], (%)

where ej’-‘ is an anti-symmetric tensor. These vectors are valid only for / > 1 and the
vectors (4) and (5) have parity of (=1)} and (—1)"*!. As for the tensor, we have a
tensor ;; with parity of (—1)' ;

™ 0
71JYlm - ( 0 y}m sinz 9) . (6)

Taking a gradient of the vector (4), we have V;V;Yi,,. Combining (6), we use
traceless form as

(7)

(2v.-v,-+1(1+1)-f.-,-mm=(me Xim )

X:m —VV:,-,, sin2 0
where X;,, and W}, are functions of § and ¢, defined as

1
sin® @

Taking a rotation of the vector (4) and symmetrizing, we have

Xim = 204(0p — cot 8)Yim, Wiy = (87 — cot 88, —

0%)Yim. (8)

kg k. , _ [ —Xim/sin8 Wy,sind
2(6" VJV]:'*'GJ'V,V];)}]," —( W,msinﬂ lesing .
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Tensors (7) and (9) are valid for [ > 2 and their parity is (—1)! and (—1)"!.

Since U, tr rr components are scalars, we can expand these components as

h!l = Z ['Io,lmylm;hlr =hrt = Z I'[l,lmylm,hrr = Z II?,ImYImy (10)

1>0,m 120.m 1>0,m

where Hy, ;n(n =0, 1, 2) are functions of ¢ and ». Next we consider the vector parts,
that is, tj or rj(j = 8, 8) components. These components can be written as follows

with Cy im, by im(n = 0, 1), some functions of ¢ and r,

hlj = hjl = Z [C'O,Imvj Ylm + hO,lmf)l‘cvk Ylm]:

>21,m
hrj = Il_,'r = Z [C],lmvjylm + hl,lmekaylm]- (11)
>1,m
Finally, ij(i,j = 8, ¢) components are summation of the three tensors;
hiz=hji= Y KimYim + Y Fm(2ViV; + 11+ 1)75)¥im
1>0,m i>2,m
1
+ Y d,,,,[g(efv,-vk + ViV Yim). (12)

>2m

Thus a four-dimensional tensor can be expressed by arbitrary ten functions for
a specific {, m. Among the ten functions, kg i, hy im and dy,,, have parity of (—1)'+1,
while remaining seven functions have parity of (—1)!. We call the former set ”odd”

parity-mode and the latter “even” parity-mode.

There are four degrees of gauze freedom, i.e.,
Ry, — h:“, =hy =€ — &by (¥ — 2 =2" + £4). (13)

It is easily understood that we can generally write down as

& = Z AO,lelma £r = Z Al,lelm (14)

{>0,m >0,m

and j(j = 6, ¢) components,

&= Y [UmV;Yim + timet ViVin]. (15)
i21,m



The functions Ap tm(n = 0,1), Ui belong to the "even” parity-mode, while u,
belongs to the "odd” parity-mode. Using these functions, we below show how we
can reduce the unknowns.

1) | = 0 case.

All quantities for "odd” party-mode vanish. As for "even” parity-mode, there
are four functions Hg, H1, H, and K. By a suitable choice of Ag and A,, we can set
Hy; = K = 0. For the radial oscillation of a star, this coordinate system is usually
used. For the black hole perturbation, the solution of this mode corresponds to the
change of the black hole mass.

2) I =1 case.

Now we discuss the ”odd” parity-mode first. The non-vanishing components
are hg and hy. By a suitable choice of u, we can set hy = 0. The solution for hg is
related to the change of the angular momentum.

Next, we turn to the "even” parity-mode. We have six functions Hg, Hy, Hj,
Co, C; and K and three degrees of frecedom Ag, A; and U, so that we can set Cp =
Ci = K = 0. This coordinate system is used for the study of dipole oscillations of a
star [18]. For the black hole perturbation, the solution is the gauge mode, that is,
we can eliminate it by a certain coordinate transformation. This means the dipole
oscillations of the star never disturb the external gravitational field.

3) I > 2 case.

In this case, there is a degree of freedom for the gravitational waves. The
analysis is more complicated. We have one degree of freedom for the "odd” parity-
mode and three degrees of freedom for the "even” parity-mode. Using this fact,

Regge and Wheeler chose the gauge as
Coim = Ciim = Fim = diyy = 0. (16)
This gauge condition is normally used. On the other hand, Chandrasekhar chose as
Hyim = Com = Crim = dim = 0. (17)

This gauge specification sometimes simplifies the calculation for axisymmetric per-
turbation, that is, m = 0, because X;p = 0 and the non-zero components are
diagonal for ”even” parity-mode. Instead of the gauge specifications, it is possible

to use a set of gauge-invariant geometrical objects. See Ref. [19).
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Now, we solve ten components of 6G,,, = 0 for vacuum. We can also decompose
6G ., by the tensor harmonics. Then we have three equations for ”odd” parity-mode
and seven equations for "even” parity-mode. The set of ”even” parity-mode is more
complicated than that of "odd” parity-mode. This is the reason why it took longer
time to complete the basic equation for the ”even” parity-mode.

We assume the form e~*! for the perturbation and the basic equation can

eventually be written as

[e-,\_(_;l;'_e—)\%+w?_1/(i)] z3*) =g, (18)
where
V(=) = oA (1(17‘;21)_ 6:_1’[) (19)
and

e *2n%(n + 1)r3 + 6n°Mr? + 180 M?r + 18M3)

v+ =
(nr + 3M)%r3 ’

(20)

where n = (I = 1)(I + 2)/2, e™* = 1 — 2M/r and (%) means the "even” and "odd”
parity-modes.
If we consider the perturbation of energy-momentum tensor §7%” due to a

small particle, it should satisfy the Bianchi identity,
——1 6GH: , = 86TH =0 21
8« i # ' (21)

This condition is satisfied for the particle which moves on the geodesics of the
background space-time. We can easily include such effect, which results in the

source term in the right hand side of eq.(18).

3. Perturbations of a Kerr black hole
In this section, we shall review the perturbation of the Kerr space-time. The
essential difference from the previous section is to use the Newman-Penrose formal-

ism. In the formalism, we use four null-vectors i#, n# m* m* where [* and n* are

real vectors, m* is a complex vector and m* its complex conjugate. The metric can

be expressed as

Juv = —lun,, —_ n,,l,, + m,,ﬁl,, + ﬁlpmw (22)
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When we derive the basic equation for the gravitational perturbations, we use
only following equations among lots of the Newman-Penrose equations; one com-

ponent of the Riemann tensor (23) and two equations for the Bianchi identities

(24),(28);

Ad=bv=—(p+ja+37-Nr+Ba+B+7—Fv— 1V, (23)

— (D +4e— p)Uq + (6 + 47 + 20)¥;3 — 3AT,
= AD + \U + m)\ - mwxvemo - A% +2a — wmvewp - wteyo - Weww + w\/e—f Aw,c

(6—74+48)¥4 — (A + 2y + 4p)¥3 + vV,
= Tw -7+ 20+ vaeuw - AD + .N\lh + w.«v@w— + 20®,, + 1Py — 20Dy, Awmv

where D, A and § are directional derivatives along {#, n* and m*, a, B, 7, €, A, i, v,
7, p, o are spin coefficients, ¥; is a component of Weyle tensor and &;; is a compo-
nent of Ricci tensors. These exact definitions are omitted here. The Ricci tensors
can be replaced by the some combinations of the energy momentum tensors through
Einstein equation.

The essential point to derive the vo;_:vwsg,.m of Kerr black hole is its spe-
cial character of the space-time. The Kerr space-time as well as Schwarzschild
space-time belong to the type D space-time in the Petrov classification. Only
non-vanishing components is ¥, among five complex Weyle tensors. Due to the
Goldberg-Sachs theorem, some spin coefficients can be set to zero. We have for the

background space-time,
Z"Q”Q"\/"@so"ewuew”ea”e&.”cu Awmv

Now we shall perturb as e.g., I# = {(A)# 4 [(B)s = p(4) 4 y(B) §, = emé +
etc., where (A) and (B) mean the unperturbed and perturbed quantities. From
eqs.(23)-(25), we can easily observe v(B) A(B) eﬁumﬂ GMS and emwu are decomposed

from other perturbed quantities. We furthermore assume vacuum case emwv =0

u(?)

or Omwv are given a priori for the test particle case. Eliminating v(8), X(B) and
(B)
a

GMS from eqs.(23)-(25), we have an equation for ¥, ’. The solution for the basic

equation can be separated as
EMS = (r — iacos 3153.&?VEE_EAE@L?TSS_ (27)
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where Sy, o (8) is a spin-weighted spheroidal function. The quantity ¥4 corresponds
to two polarization modes of outgoing gravitational waves, hy and hy for large
radius. 1t is therefore sufficient to know the behavior 1113”’. if the information for
gravitational perturbations is necessary.

In a similar way, we can derive the basic equation governing ‘P&B), which rep-
resents ingoing gravitational waves.

The basic equation governing Ry, . is not reduced to the Regge-Wheeler or
Zerilli equations in Schwarzschild limit. But, we can transform it to different form,

which is reduced to Regge-Wheeler equation or others [1,2].

4. Concluding remarks

Two methods, perturbations of the metric and those of the Newman-Penrose
equations have been reviewed here. The former has succeeded only for spherical
black hole. The extension to the rotating black hole seems to be possible in principle,
but practically difficult. Instead, we can extended to include the matter, that is,
we can discuss the oscillations of a spherical star in a similar manner. Recently, the
non-radial oscillations of a slowly rotating star are studied [20], where the rotation
velocity is assumed to be small and the effects are treated perturbatively. Even in
such approximation, the basic equation becomes complicated enough. On the other
hand, the latter technique is valid for Schwarzschild and Kerr black holes. But, it

seems to be difficult to deal with matter. Further studies are indispensable.
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Gravitational Wave Burst Produced by the Merging of Black Holes

Toshikazu Ebisuzaki and Toshiyuki Fukushige

Department of Earth Science and Astronomy, College of Arts and Sciences,
University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153

Abstract

When galaxies merge, the central black holes rapidly sink towards the center and make
a binary. The orbit of the black holes become highly eccentric and the apocenter distance
rapidly decreases. Eventually, gravitational wave emission is significant and the black
holes merge. This merging of black holes produce an intense burst of the gravitational
wave. We investigated the nature of this gravitational wave bursts and found that the
nondimensional amplitude at the earth is as high as 107!® if black holes with the mass of
108 Mg merges at the distance of 2 Gpc. We estimated that the mean time between burst is
about 2 yr assuming that the elliptical galaxies are the remnants of the merging of galaxies
with central black holes. This assumption is well explained the origin of isothermal core
of ellipticals and the positive correlation between core-radius and luminosity.
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1. Introduction

When galaxies merge, the central black holes rapidly sink toward the common center
of the merger remnant due to the dynamical friction of the field star. Eventually, these
two black holes make a binary at the center of the parent galaxy. Begelman, Bladford
and Rees (1980) and Rees (1990) investigated the orbital decay of this black hole binary
at the galactic center. Assuming the orbit of the black holes is circular, they showed that
the orbital decay of the black holes slows down because of the depletion of the nearby
stars as orbit shrinks. According to them, the life time of the central black hole binary is
comparable with Hubble time (~ 10'%yr). Roos (1981) performed three-body scattering
experiment of the interaction between black holes and field stars and obtained similar
results.

However, Ebisuzaki, Makino, Okumura (1991) pointed that the orbit of the black
holes become highly eccentric within the core where the mass density of star is nearly
uniform. The black holes lose their angular momentum rather than their energy since the
dynamical friction is most effective at the apocenter at which black holes have the slowest
orbital velocity. In other words, the pericentric distance decreases more rapidly than the
apocentric distance. The pericentric distance can become very small because apocentric
distance is still large and therefore black hole can interact with a lot of particles at their
apocenter.

Fukushige, Ebisuzaki, and Makino (1992) investigated the orbital decay of the black
holes in the uniform distribution of the field star. They found that the the orbital angular



momentum exponentially decreases while binding energy does not so much. As angular
momentum decreases, the pericentric distance decreases. Eventually, the pericentric dis-
tance becomes so small that the energy loss due to the gravitational wave emission is
significant. After that two black holes quickly merge due to the energy loss caused by the
gravitational wave emission. They concluded that the central black holes merges at most
after several dynamical time scale (~ 107yr) of the parent core of the parent galaxy.

This merging of massive black holes produces an intense burst of gravitational wave.
In the present paper, we investigate the expected character of this gravitational wave
bursts. We found that the mean time between burst is in the range of 2 and 20 yr if we
assume elliptical galaxies are the merger remnants of galaxies with the central black holes.
This mean time between bursts is consistent with the estimate of Thorne and Braginsky
(1976) who used the number of quasars in the universe. The nondimensional amplitude of
gravitational wave is as high as 10~'% at the earth when black holes with mass of 103Mg
merges at the 2 Gpc distance (Thorne and Braginsky 1976). This level of gravitational
wave can be detected by the Doppler tracking of spacecraft (Thorne and Braginsky 1976;
Hellings 1979).

In section 2, we figure out the expected character of gravitational wave burst produced
by the merging of central black holes. In section 3, we estimate the mean time between
bursts assuming that elliptical galaxies are produced by galaxies with central black holes.
In section 4, we briefly discuss the detectablity of this bursts.

2. Expected Character of Burst

When two black holes merged, a'significant fraction of the rest mass energy is converted
into gravitational wave, i.e.,
Eqw =M e,

where M is the mass of black holes, c is the light velocity, and ¢ is the efficiency of the
energy release. The efficiency ¢ is estimated as about 0.05 by Nakimura, Oohara and
Kojima (1987). The period, P, of the emitted gravitational wave is

_ 6mV/3GM _ af M
P=—7F—=268x10 (108Mo)

(Press 1971). Thorne and Braginsky (1976) estimated the dimensionless amplitude, < & >,
of the gravitational wave as

e (e V(- -
<h>=45x10 “"(0%) (1"—0) 1(10314\49) (23106) :

where R is the distance to the source, n is the number of waves included in one burst.
Here we assume that universe is flat. Analytical discussion (Press 1971) and numerical
simulations (Ohara and Nakamura 1989) suggests that n is about 10.

3. Mean time between bursts



The mean time between gravitational wave bursts, , are calculated as

1
" 4w R?enN

R\ /N\! n -1
~ 20 (QGPC) (ﬁ) (3_7 X 10—3(,\,[’,0-3)) (yr),

where R and n are, respectively, the distance and the number density of the burst sources,
and N is the average number of bursts from each burst source. We estimate these pa-
rameters based on the merger hypothesis (Toomre and Toomre 1972; Toomre 1977) that
most of elliptical galaxies are formed by the merging of galaxies. This merger hypothesis
is strongly supported by recent observations (Schweizer 1982; Bergvall, Ronnbeck, and Jo-
hansson 1989; Wright 1990). N-body simulations have shown that merging of two galaxies
produces elliptical galaxies (e.g. Barnes 1988; Okumura, Ebisuzaki, and Makino 1991).

The typical distance to the burst sources (merger) is expected to about 2 Gpc. The
merging of galaxies is suggested to trigger of quasar activities (Stockton 1990). The dis-
tribution of quasars has a peak at around Z=2.7, which corresponds 2 Gpc if we assume
the universe is flat and the Hy = 100kms~!'Mpc~!. The number of quasars is consistent
with the number density of elliptical galaxies.

We assume that the number density of burst sources is equal to the the number density
of the elliptical galaxies. This assumption is justified since merging of two galaxies, which
produces an elliptical galaxy, associate with a gravitational wave burst as described as
follows.

Elliptical galaxies are strongly suggested to be produced by the merging of galaxies
with central black holes. Ebisuzaki, Makino, and Okumura (1991) showed that the core
radius expands through merging due to the gravitational encrgy release of the black hole
binary, which is formed after the mergings of parent galaxies. This expansion explains the
positive correlation between core radius and absolute luminosity observed in the elliptical
galaxies. The core radius dose not increase through merging of galaxies without black holes
and is suggested to destroy the positive correlation between core radius and luminosity
(Carlberg 1986).

Black hole binary also produces an isothermal core in the merger remnants (Ebisuzaki,
Makino, and Okumura 1991). The isothermal core, which is nearly free from the smaller
structure, is one of the main characters of the elliptical galaxies. The black hole binary
destroys any smaller structure than themselves around the core and make them solved into
one isothermal core.

Black holes formed at the center of merger remnant are expected to merge within
107 years as described bellow. In the core with nearly uniform density distribution, black
holes binary become highly eccentric because the dynamical friction is strongest at the
apocenter at which the orbital velocity is slowest (Ebisuzaki, Makino, and Okumura 1991).
In other words, the pericentric distance of the black hole binary decreases more rapidly
than the apocentric distance. The pericentric distance can become very small because
black holes can interacts with a lot of particles at the apocenter which is far from the
center. Fukushige, Ebisuzaki, and Makino (1991) performed numerical simulations and
the confirmed the results of Ebisuzaki, Makino, and Okumura (1991). According to their
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numerical simulation black holes merges at most several dynamical time of the parent
galaxies. Therefore, a mergings of galaxies, which produces an elliptical galaxies, associates
with a gravitational wave burst. Begelman, Blandford, and Rees (1989) and Rees (1990)
estimated the life time of the central black holes binary. However, they overestimated by
a large factor it since they assume the orbit of black holes to be circular.

The number density of ellipticals are estimated as 3.7 x 10~3Mpc=3 using the data
from CfA survey (Huchra, Gellar and de Lapparent 1990). They made acomplete sample
of galaxies within z =3 x 10~2 in a solid angle of #/13. The number of elliptical galaxies
in this sample is about 300.

In the present paper, we assume that burst sources are elliptical galaxies. The elliptical
galaxies produces one gravitational wave burst, when it merges with another galaxies. In
the case of most brightest ellipticals are expected to experience merging events 100 times
since they are typically 100 times massive than the typical ellipticals. Fainter ellipticals
probably have probably one or two experiences of merging events. Therefore, we can
expected that ellipticals experience 10 times of mergings in average. In other words,
N ~10.

4. Discussion

The merger hypothesis of ellipticals and the theory of active galactic nuclei suggests
that one gravitational wave burst with the nondimensional amplitude, %, of 10='% arrives
the earth every two years. The detection of this burst is a direct evidence of merger
hypothesis of elliptical galaxies.

Since the period and wave length of the gravitational wave are, respectively, as long
as 1000 sec and 2 AU, this bursts are detectable by the Doppler tracking of interplanetary
space craft (Thorne and Braginsky 1976; Hellings 1979). Using Voyerger I, Hellingth
et al.(1981) performed one observation of 500 second long and obtain an upper limit of
gravitational wave as 3 x 10~!%. It may be easy to reduce the upper limit down to 10~16
if we take into account the progress of technology in this decade. Continuous observations
are important.

On the other hand, the detection limit of ground-based detectors already is as small as
10~13, which is 1000 times smaller than the expected amplitude of the gravitational wave
produce by the black hole mergings. However, these detectors is not sensitive enough to
detect gravitational wave with a period of about 1000 s. The improvement of the detection
limit of ground based detector at the longer period also quite important.

We thank Junichiro Makino, Daiichiro Sugimoto, Yoshiharu Eriguchi for helpful dis-
cussions.
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ABSTRACT

Boson star is a gravitationally bound state of complex scalar field. We consider a
generalization of the boson star where the scalar field couples to a non-abelian gauge
field. We find a way to introduce the time-dependence in the scalar as well as gauge
field keeping the staticity of the stress-energy tensor and the space-time metric. This
sort of time-dependence seems essential to have a gravitationally bound state. However

some difficulties are found to construct the boson star in this case.

§1. Introduction

In cosmology and astrophysics scalar fields play important roles in various situations.
For example, a scalar field is used in the inflationary universe scenario which solves the
fundamental problems in the standard model. There are also suggestions that the dark
matter could be made up of scalar particles. Another interesting suggestion is the
possibility of a star-like configuration by scalar field which is now called as the boson

star.

The simplest model of boson star is made up of complex scalar ficld only. The
equilibrium configuration is given by a static and spherically equilibrium solution of

U8B 14 s found that there is a critical mass

the Einstein Klein-Gordon equations.
and particle number. These are Merit = 0.633(1/Gym) and Nerie = 0.653(1/6’/\'1722) at
berit(0) = 0.271(1//8=Gy). [Here ¢(0) is a value at the center and m is the mass of the
scalar particle.] The stability for these configurations against the radial perturbations
has been studied by Gleiser and Watkins' | Lee and Pang“l and Seidel and Suen."
They showed that equilibrium configuration with ¢(0) < @cri1(0) are stable while the

configurations with ¢(0) > @crit(0) are unstable.



~ This model is invariant under a global U(1) phase transformation. Jetzer and Bij"
extended the analysis to a system of complex scalar field coupled to a U(1) gauge ficlds.
They constructed a series of the static, spherically symmetric solution of the Einstein-
Maxwell-Klein-Gordon equations and called them as the charged boson stars. In their
treatment the gauge field has only the electric part. The total mass and particle number
increases with § = W until a critical value of § given by §erit = /1/2.
Here q is the gauge coupling constant. If § > §erit, there is no bounded state because
the Coulomb repulsion between two particles becomes larger than the gravitational

attraction.

We shall extend their work to a non-abelian case, namely, we study a static spher-
ically symmetric equilibrium configuration of Einstein-Yang-Mills-Higgs system with
gauge group SU(2). We found a way to introduce a time-dependence in the gauge and
Higgs field without destroying the staticity of the stress-enegy tensor as well as the
space-time metric. This kind of time-dependence seems essental to have a bound sys-
tem. However we find some difficulties integration the basic equilibrium and so far we

are not able to constract the desined boson star.

§2. The model and the basic equations

As the most simple example of the non-ablian theory we take the following Einstein-

Yang-Mills-Higgs system.

5= [ dev=i(gomem - $r(Ba ) - DUV D®) - V@D, (1)

167G N

with
Fuy = 8, W, — 8,W, — ég[W,,, W, ()
D% = (Y, - %gW,,)‘I) (3)
v@te) = m2afe (4)

The W), and @ are SU(2) vector potential and Higgs doublet, respectively. Herc and after

we use i = ¢ = 1 unit. This action is invariant under a local SU(2) gauge transformation.



By varying the action with respect to g*¥, W, and ®, we obtain Einstein equations
G“y = 87I'GNT,“, ' (5)
with

T = (Du®)1(D,®) + (D,8) (D48) - 9ud(D° @) (Da®) + v(2 @)
1
+tr(FuaF, %) - Zguvtr(FaﬂFOﬁ) (6)
and the equations of motion for W, and @,

1
V=g

Ou(V=gF*") - ég[W,,,F’"’] - %g[éfrA(D"Q) - (Dl‘@)ﬁ"@]m =0 (7

D,D"® - m?® =0 (8)

We would like to find a static spherically symmetric solution of the above set of

equations. Thus the space-time metric can be taken as follows.

ds? = —e2?r) g 4 2Mhr) g2 o r'z(da2 + sin® Gd(pz) (9)

The general spherically symmetric ansatz which yields spherically symmetric distri-
bution of the energy takes the following form:"

Wo = C(t,r)U (10a)
W, = G(t,r)U (10b)
Wy = [B(t,r)AsU + (A(t,r) - 1)%] (10¢)
W, = [B(t,r)8,U - (A(t,r) — 1)sin8,U] (10d)
& = [H(t,r) +iK(t,r) U] [[1) l (10¢)
A 0sf  sinfe=i®
0L (ot s ) 0

where 74 is the Pauli matrices.



The above ansatz preserves a U(1) gauge subgroup of the original SU(2) which given

by
C C (4,7
- + f(tr) (11a)
G G fl(t,r)
A+iB - /(4 4iB) (11b)
H+iK — ef/WD(H +iK) (11c)

Here, dot and prime denote &y and 8, respectively.

It is found that if we take the following time-dependence in the gauge and Higgs

field, the metric functions and stress-energy tensor are independent of time.

A(t,r) + iB(t,r) = €“!(a(r) + ib(r)) (12a)
H(t,r) +iK(t,r) = T (h(r) + ik(r)) (12b)

Furthermore we can impose the radial gauge condition: G = 0. The basic cquations

is then given by the two of the Einstein equations
gAle—L\ + _]_'_(1 _ e—2z\) = 871G {_1_ -2 C 2 2
" 7 = 887Gy 46 (C-w)+m
L 2,42 2, 12y, =22, a2y, 19 gar 2
+F(a +b6° - DR+ k) + e (h +k")+za(k'—h')—ﬁbhk
1

1 1
+ ?{_2_6-24\—21'012 + r_ze—2V(C _ w)2(02 + b2)

1 =2\, 12 12 1 2 2 2
+ e " (a" + b )+F(a + 5" - 1)°}

(13a)
2, -a_1 -2y _ 1o 2 _ 2
~ve rz(l—c )=8rGy {46 (C-w) -m
L@ 8 1WA ED) e AR 4 K — Lk~ By e 2 b
= 53(@ + 6 - IR+ E) + e R +K7) - a(k - K%Y + Sbhk
+l2{_le—24\—2|’cl2 +ize—2V(C_w)2(a2 +b2)
g 2 r
1 _2a, 2, g2 1 2
+ e (d +b')—ﬁ(a + b -1)%)
(13b)



and the six of the equations of motion for gauge and Higgs fields.

2
¢+ G- - X)C' - 2O - Wi (@ + )+ LW+ =0 (140)

2
a'b—ba+ %ﬂ(h’k —Khy=0 (145)
d+ (/- N)d - -l-ez‘\(a2 + 5% - 1)a
r
. (14c¢)
+ e (0 - w)a- SNB + o+ k- 1} =0
B 4 () = N = 2ePN(@® + B - 1)b
r \ (14d)
+ (0 = Wb = TN + K)o — 20k} = 0
B (g + = ,\l)hl - -1—262'\{(0 - 1)2 + bz}h + iz-enbk
r 2r . r (14e)
+ ez’\{ze_z"(C —w) -m?}h =0
B G - N - g (a4 1) + B+ P
" 2 " (14f)

+ ez’\{%e.'”(C —w) —m?k =0

All the equations are not independent. In fact, Eq. (14b) is the integration of Eqs.
(14c)-(14f). The total mass M is defined by

o0
M= 41r/pr2dr (15)
0
where the energy density p is the right hand side of Eq. (13a) divided by 8aGx.

§3. Some difficulties

We wish to solve the above equations numerically. For this we need the boudary
conditions at the origin as well as at the infinity. Some of them are obtained by the
regularity conditions at the origin. Namely the relevant fuctions may be expanded near

the origin in the following way.
a= 1+ar’ (16a)



gz
b=-— Fhok,r3 (16b)

h= ho+ %mzhorz (16¢)
k= kyr + kyr® (16d)
C=w+ar+car’ (16¢)
A= Aot (16£)
v=w+wr, (169)
with
1 ..
k3 =E{2(V2 -3X) - 2a - Fho - m*°}k (17a)
1 2
e =35{2z +3%e) + 4o+ %h%}cl (17b)
1 1.1
w =87rGN[—-6-m2hg + ?(Ze—mfoc% + 012)] (176)
1 1 1.1
A2 =81rGN[Em2hﬁ + 51:% + g—z(ze-”oc% +a?)) (17d)

Thus a, ¢, ho and k) are the free parameter to be specified at the origin. g is
determined by the boundary condition at infinity where the space-time becomes flat.

The eigenvalue w appears in the constant part of C.

Since the space-time is approximately flat near infinity, [i.c. v ~ 0, A ~ 0, V' ~
0, X' ~0atr— o], Eq. (14a) reduces to (rC)" ~ 0. This is obtained by rewriting Eq.
(14a) as C — rC,h — rh,k — rk and by ingnoring order of 1/r. Thus C behaves as
Cn~ $+6 where @ and § are the real integration constants. In the same approximation,

Eqgs. (14c)-(14f) are written as

(a+1b) + (6 — w)?(a+ib) ~ 0
(rh+irk)" + {‘-1(5 —w) = m2(rh + irk) ~ 0

Therefore Eqs. (14) shows that the fields at the infinity behave as follows.

c~$+a (18a)



a+ib~ Belt=¥) (18b)
htik ~ LemVmi-(6-wP/ar (18¢)
r

Here B and + are complex numbers. We take a minus sign of exponential factor of
Eq. (18c) to consider a bound state of the scalar field for m? > (6 — w)’/4. [For
m? < (6 — w)?/4, the scalar field oscilates, and do not become the bound state. Sce,

however, Seidel and Suen® |.

In order that the total mass have a finite value, the integland of Eq. (15) must
converge to zero at infinity. Thus by substituting Eqs. (18) into the expression for p

n

and using the fact that e converges to zero faster than r™", we get

pr? ~ (8- w)IB =0, T — oo

If we take § = w, the effect merely lift the value of C' by w. Then Eqgs. (13) and
Egs. (14) becomes purely static system by choosing C — C + w. In this case, it scems
that these configurations are unstable because there will be no dispersion effect which is
needed to support the star-like configuration. Thus we have to take |8] = 0 at infinity
as a physical requirement. For |8| = 0 at infinity, the 8,  conponents of gauge field
do not vanish at the infinity.

For any value of §, Eq. (16c) shows that h dose not take a maximum value at the
origin because the first and the second term in the Eq. (16c) can not have diffcrent
sign for any value of hp > 0. It might be still possible that the scalar field takes a
maximum value at some finite distance and gose to zero at a latge distance. If we take
ho = 0, then it may be shown that A vanishes identidcally. Since there might be a
configuration where takes a maximum values at some finite distance. Thus in any case,
if the non-abelian charged boson star exist, its structure would be rather different from
the abelian' charged boson star. We hope to study its structures more detail in near

future.
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ABSTRACT

We shall investigate the non-radial pulsation of a boson star and the associated
graviational waves. As the first step we here formulate the linearized perturbations
around an equilibrium boson star in general relativity using the tensor harmonics and
derive the perturbation equations for odd and even parity modes. It is found that
the perturbations with odd parity do not couple with gravitational waves and the sct
of equations for even parity perturbations reduces to sixth-order system of differential

equations.



1. Introduction

There is a growing interest for scalar fields in cosmology. For example, many models
of the inflationary universe scenario assume the existence of a scalar field called inflaton

whose energy density generates the inflationary cxpansion.m

If the scalar fields exist in nature, it is interesting to ask the question if they formn
gravitationally bound state which is now called as the boson star. This question was an-
swered affirmatively by Ruffini and Bonazzola.” They solved the semi-classical Einstein
equation and found a gravitationally bound state of the scalar field. Later the boson
stars were investigated by many authers."” " * They considered a complex scalar field
coupled with gravity and found the equilibrium configuration under the condition that
the metric quantities be static, but the complex field ¢ must have a time dependent
phase factor as ¢(r,t) = @o(r)e™**. The self-gravity is supported by the dispersion

effect due to the wave character of the scalar field.

So far the stability is concerned, the attention is mainly focused to the stability
against the radial perturbations around the equilibrium state.” However, the detailed
study of the non-radial perturbations has not yet done. The detailed information of
the emitted gravitational waves is obtained only by such a study. Morcover the grav-
itational wave observatories are expected to operate in near future and thus it seems
very important to predict the detailed features of gravitational waves from various as-
trophysical sources. In this respect it seems urgent to study the non-radial pulsation of

a boson star and the gravitational waves emitted from the pulsation.

As the first step we here present the formulations of the non-radial pulsation of a
boson star in the framework of general relativity. The problems of the non-radial pul-
sations of general relativistic stellar model were studied by Thorne and his coworkers."
Here we follow them and the work done by one of us.”” The perturbations are analyzed
in terms of the spherical tensor harmonics and are decomposed into odd and even parity
modes."” The formulation of the odd parity perturbation for the boson star goes almost
the same as that in the perfect fluid star. The difference appears in the treatment of

the even parity perturbations.”



2. Equilibrium configurations of the boson star

We first review an equilibrium configuration of a boson star. The static and spherical
symmetric metric which describes the geometry of an equilibrium boson star can be

written as
ds? = —e*dt? + e dr? + r?(d6? + sin®8dy?) . (2.1)
In this paper, we use the following units.
c=h=1.

We take the following seli-interacting complex scalar field coupled with Einstein gravity

as our model.

L= V75 (=" b = milal? - 1) (22)
Then the stress-energy tensor and the scalar field equation are given by
Tuw = $ub + b — [g“” bads +mllel + %wr‘] , (2:3)
and
by — 9~ 31026 =0 (24)

As the quilibrium configuration we shall write the scalar field as follows
¢ = do(r)e . (2.5)

Note that we have anisotropic pressure, pr # pi, where p, = Ti! and p; = T»%. This is

clear contrast to the perfect fluid source.

Using the above quantities the independent set of equations is chosen as follows

1 oy 1
;-Z-(re ’\) _ﬁ=_87er’ (2.6)
- V' 1 1 9
— — —— u7
e (r+r2) — = 8nGpr (2.7)
w2 V=X _ A
$o (—+”2 )¢o—e*(m2—e”w2+§¢§)¢o=0, (2.8)
where p = -Tp".



It is convenient to introduce the mass function M (r) as follows

e =1- —2@;!(") : (2.9)

where G is the Newton’s gravitational constant.

These equations are numerically integrated under the following boundary conditions;
Mr=0)=0,é(r=0)=¢0), ¢ (r=0)=0, ¢(cc) =0 . (2.10)

The equilibrium configuration is obtained only when w?e=*("=%) takes a particular value.

Numerical calculation is straightforward and we shall not show any detail here.

The total mass M is mathematically defined as follows
o o}
M= 47r/ pridr . (2.11)
0

For large r, the metric should coincide with the Schwarzschild metric of the mass defined
by M = M(c0).
2GM

e =er=1- . (2.12)
r

v(r = 0) is determined by this relation.

3. Perturbations

The perturbations of static spherical symmetric stars are decomposed by the tensor
harmonics for the angular variables 8, ¢ and the Fourier components for the time
variable t. Thus the normal modes are characterized by harmonics index I,m, parity

and frequency 0. The metric perturbations in the Regge-Wheeler gauge"” are given
by

ds® = dsg + ds2yy + ds2,,, (3.1)

dsgdd =2hy (—%Ylmvdtde + sinBY;,,,'gdtdcp) P



+2hy (—ﬁl’;m&drda + sinOY;m_gdrd(p) ot (3.2)

dsten =5”H0Ylme_i“dt2 - 2iorH, Ylme_'.”‘dtdr + e'\szlme—iatdr?
+r2K Yzme"i‘"(de2 + sin29dcp2) , (3.3)

where ds, ds?;; and dsZ,., correspond to the unperturbed metric, the perturbed met-
ric of "odd parity” and that of "even parity”, respectively. The coefficients ko, 1, Ho,
Hy, H> and K are functions of only the radial coordinate r. Here Yin, (8,¢) is the usual

spherical harmonics.

The perturbation of the scalar field has only "even parity” mode which we take the

following form;

5¢ = poe~H{g1(r) +i(—ioga(r))}e " Yim (34)

88" = poe! {$1(r) — i(—ioda(r))}e " Yim , (35)

where ¢) and ¢2 are functions of only r.

The above expressions are used to calculate the perturbed Einstein equations;

5G‘;y = 87"G6pr . (3.6)

The perturbation for T}, is given by

6Ty = 68" b + ¢5u000 +68%,8,p + 63,66,u + Guwdpt + hpwpr (3.7)

where g,y is the unperturbed metric, k. is the perturbed metric and p; is the unper-
turbed tangential pressure. By equating each coefficients of the same type of the tensor
harmonics in both hand side of (3.6), we obtain the perturbation equations for odd and

even parity modes.



1. Perturbation equations for odd parity modes

Since the perturbation of the scalar field may not be expressed by the harmonics
with odd parity, we have 6¢ = 0. Following the usual treatment, we introduce a new
variable X by

hy = 33V X) | (3.8)

e%("-")zd;(r)() . (3.9)

i
ho = —
(22

Then the perturbed equations (3.6) reduces to the following second-order equation for

X
S-n 4 (e%(v—k)i X)
dr

dr

(1+1 M
+ [az-e"{ (:; )_6(:'3 —4#G(pr—p)}]z\’=0.

’

(3.10)

This equation is our basic equation for odd parity modes. It shows that the perturba-
tions for odd parity modes do not couple to gravitational wave. This is the same as
the stellar pulsation of perfect fluid." Thus it expresses the propagation of the gravita-
tional wave through the star. Eq.(3.10) reduces to the Regge-Wheeler equation if the
background is the Schwarzschild metric in which p, = p =0, ¢” = ¢™* =1 - 2GM/r.

2. Perturbation equations for even parity modes

Now we turn to more interesting situation where the perturbations couple to the

gravitational degrees of freedom. Namely we consider the even parity perturbations.

It is straightforward to calculate each component of the perturbed Einstein equation
(3.6). We follow the procedure taken in the case of perfect fluid star™ as close as possible

and obtain the following set of equations for our basic equations in even parity case.

A
H =K' - 2G76‘—2(47rp,r3 + M)Hy —- a’re”"H, +4F' ¢, , (3.11)
, e & 11 » W oA
H, =TA +TH0 +r 47I'G(p—p,-)—ﬁ e Hl—S;-Fc ¢, (3.12)
ole v (47per® + M)

(wFe ¢y — K + H)) + G K'

2F 2F"r?



A A

€ . e
- szl +1) = 2K = o {87G(p + 2 = pr)r* = {1+ 1)y
+2re”}Ho - %{F +4nGe r(p, — %d)o“)}m : (3.13)

1 ' et 3 1
2 __%FK 4wr2F(41errr +3GM - r)K 4wrFH0
1 2 F!
+m{167rGr (p+p) -1+ 1)}H1 +§w_F¢l ) (3.14)

A
K'=-0%"K + i—2{47rG(p —pe)r =20 + 2G1’VI}K'

A
2
+{I(1+1)- 2}:—2K - 5{4nG(p+ pr)re* ~ 1}Ho

+ -‘-:-{21:" — 4xGreMp - pr + §¢04)}¢1 , (3.15)

where F = 47G¢o® and we have used the following relation obtained from the 2-3

component of the unperturbed Einstein equations; Ho = Hs.

o

The above equations are the sixth-order system of differential equations. ' This is

clear contrast to the case of perfect fluid in which basic equations reduce to fourth-order
system of equations. The reason for the difference would be that both real and imaginary
part of the perturbed scalar field are dynamical degrees of freedom of the material source.
It is simple matter to show that the above equations reduce to the Zerilli equation if the

background is the Schwarzschild metric in which p, = p =0, ¢ = er=1-2GM /r.[”l
3. Boundary conditions of even parity modes

These perturbed functions have two independent solutions near the center, due to

the regularity condition of the center.

It may be shown that the background configuration ¢¢ behaves the following way

near infinity;

doxe ¥ >0, asr— 00,

where Kk = V1 — w?.



The functions will then take the following forms at infinity,

(Ho, Hy, K)~ Agexzp(tior), (3.16)
Byexp(tsir)

. o) ~ : 3.17

(¢1, ¢2) Caezp(£rar) (3.17)

where k12 = 1= (0 - w)?, K2’ =1-(0+w)*.
é1 and ¢2 have the following behaviors for three possible ranges of o at infinity.
( Here we have restricted the range of o to the positive value.)
)0<o<l—w
All solutions of perturbed scalar fields behave exponentially. The solutions corre-
sponding to B4 and C4 are physically unacceptable, therefore By = 0 and Cy = 0.
i) l-w<o<ltw

Two out of the four independent solutions will behave exponentially and the oth-
ers will have wave-like behavior. The solution corresponding to By is unacceptable,

therefore By = 0.
i) o> 1+w

All solutions will have wave-like behavior.

4. Conclusion

As the first step for the study of non-radial pulsation of a boson star and of its
associated gravitational waves, we formulated the linearized perturbation around an
equilibrium boson star in terms of spherical tensor harmonics. We wrote down the

basic perturbation equations for odd and even parity mode.

The perturbations with odd parity mode do not couple to gravitational waves in the
Schwarzschild and perfect fluid star backgrounds. This is also the case in our situation
since the perturbations of the scalar field may be expressed only by the spherical har-
monics of even parity, thus it cannot change the star’s density or pressure distributions.

In this sense the odd parity mode is trivial.



On the other hand the even parity perturbations do couple with the gravitational
waves. We obtained the perturbation equations for even parity which become sixth-
order system of differential equations, while they are fourth-order system of differential
equations in the perfect fluid star. The difference comes from the fact that the deriva-
tives of both ¢; and ¢ appear in the perturbation of the stress-energy tensor of the
scalar field. Thus both fields are the dynamical degrees of freedom for the material

source.

In the future we shall use the derived set of equations to calculate numerically the
gravitational waves emitted by the boson star and its quasi-normal modes. It should be

interesting to see how they are different from that of the perfect fluid star™ " ™ and

black hole,™ ¥

Then in analogy with the quantum mechanical problem we will be able to calculate
coefficients of superposition of solutions for all ¢ at infinity; As, Bx, Cx, once the
boundary conditions specified. Therefore we will consider the scattering of gravitational
radiation by a boson star in similar way done by Vishveshwara for a Schwarzschild black

hole." (for 0 <o <1-w)

Since the boson star does not have a surface, which is clear difference to the ordinary
stars, this system of differential equations have a scalar wave solutions at infinity (for
o > 1 ~w). Thus we may also have the following possibility. A scalar wave coming
from spatial infinity (the incoming scalar wave) is reflected by the boson star and there
is no incoming gravitational wave, thus we will have the outgoing gravitational and the
outgoing scalar wave. There will be also the case where an incoming gravitational wave

is scattered by the boson star and there is no incoming scalar wave.

We hope to investigate these posibility in detail near future.
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Curvature-Driven Perturbations in

Inhomogeneous Cosmological Models
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ABSTRACT

So far the behaviors of inhomogeneities in the Universe have been described
using an approximate model consisting of a homogeneous model plus its linear
perturbations. Here we treat the nonlinear inhomogeneities driven by the irregular
spatial curvature, which are independent of the usual adiabatic linear perturbations.
They have the growth factor being a square of that of the adiabatic perturbations, so
that they will have interesting influences upon the problem of structure formation,

if they are dominant.



1. Introduction

To describe the inhomogeneities in the Universe, we use usually the linear
perturbation theory in which the first-order density perturbations are associated
with the first-order spatial curvatures. It habeen fully studied and they can be
easily trecated. However their amplitudes necessary for structure formation are
confronted with the difficult problems such as severe upper limit of temperature

anisotropy of CBR, while high redshift quasars and galaxies are often found on the
other hand.

Here we consider another type of perturbations driven by the irregular spatial
curvatures, which may appear owing to general-relativistic nonlinearity in the early
stage of the Universe. First we show them in the anti-Newtonian formulation, which
will be explained in §2, and find the behaviors of the density perturbations in the
gauge-invariant treatment in §3. There we show that they appear also in the exact
inhomogeneous cosmological models. The characteristic behavior of this curvature-
driven density perturbations is that the growth factor is a square of that of the
usual adiabatic perturbations, so that they will have interesting influences upon

the problem of structure formation, if they are dominant.

2. Anti-Newtonian Approximation
In the synchronous coordinate condition we can express the line-element as
ds? = —dt* + 'yijdx‘da:f, (2.1)

and the Einstein equations for perfect fluid are expressed as

1, 1 .. 1 a
ki + galny = —5(e+3p) — (e + p)(x")* - 1], (2.2)
N‘};‘. - I{‘:;J. = 2(e + p)uoui, (2.3)
| : o
2P + W(ﬁnf) = 2(e + p)uu’ + 6] (e — p), (2.4)

where the units ¢ = 871G = 1 are used, P'.j are components of the Ricci tensor in



the three-dimensional space with metric di* = 'y'.jda:"da:j , rc{ is defined by 'yj"‘/“,
a dot denotes the derivative with respect to ¢, 4 is the determinant |‘y‘.j|, and the
four velocity u”(u = 0 — 3) satisfies u,u” = —(%)1 - B, (v)?/(u")?) = -1.

Now approximate inhomogeneous cosmological models are derived using the
anti-Newtonian approximation. This approximation consists of the following two

steps:

(1) The Einstein equations are solved neglecting the spatial curvature P':i (compared
with the terms =~ 1/(ct)?) and the squares of the spatial components of the four

velocity (compared with unity).
(2) The solutions of first-order with respect to the spatial curvature are derived.

It holds at the early stages of the cosmic evolution, such that main inhomogeneities

have curvature radii larger than the horizon size.

In the first step the inhomogeneous models are derived, which start with the
generalized Kasner models and evolve to the isotropic Friedmann models. Here it is
to be noticed that Pij are expressed by the use of the generalized Christoffel symbols
corresponding to the above inhomogeneous models and Pij(= gij,-’) change slowly
with time, so that they may be nearly constani at the isotropized stage. In the
second step the various perturbations caused by the spatial curvature are derived.

Their details are shown in Ref. 1" (see also the previous papersl’l B 1 )-

3. Density perturbations in the gauge-invariant treatment

In this section we assume that the Universe has already been isotropized suffi-
ciently and derive the density perturbations in the second step. In order to derive
them unambiguously, we shall treat the perturbations in the gauge-invariant form.™
™ Then Pl.j play a role of the source terms and are included into the components

(ch: ) of the energy-momentum tensor, like
Pi =TJ - 6iT, (3.1)



or
T = 811, + 11,7, (3.2)

where II, and HT{ are the trace and traceless parts defined by

1,

| -

P, (3.3)

: N
J=_p)y=§p!
l=-P+ 36iP,, (3.4)
where HT{ are divided into the non-transverse part and the transverse part in the

following.

If we put attention only to density perturbations (non-transverse part) in flat

space, these are expanded as

I, = /n',)Qdk, (3.5)

n#=/%WQ&, (3.6)

where @ = exp(ikx), Q{ = (k'.kj/kg—%éf)Q and k% = E?___l(kl)z. They play similar
roles to the isothermal and anisotropic stress appearing in Bardeen’s paper.[e' By
use of his formulas the equation for the gauge-invariant density perturbations A is

given by

(ea®A)" + (1 +3(c, ) fa)(ea®A) + [F(c,)? = 5(¢ + plal(ea’)

2

= kgas(gﬂ',r(o) - 17,,) + 2(w - Cs'z)(fas)(agw'r(o)) - 20,'((1-777.(0)),’ (37)

where primes denote derivatives with respect to the conformal time 7 defined by
dt = ad7 and it should be noticed that the definition of Tr0) and m, is different from
Bardeen’s one by the factor of the background pressure. For the gauge-invariant

velocity perturbations v, we have
3 3 2
(e + p)a*kv, = —(ea’A) — 2a a'wT(n)' (3.8)

After we get A solving Eq.(3.7), we can derive v, from Eq.(3.8).
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Let us express =, and Troy 3 T = (,( (k/a)? and o) = Cplk/a a)?, where Cy
and (. are constant dimensionless :o_._:m:xz:o: factors. Since e(at)® = we

obtain from Eq.(3.10)

A~(l+ .NS,_:.JN_W,Q- %ﬁw__n — ¢,)(k7)? + const] (3.12)
and the spatial average of A?
2 o (kP B L e eyt const/(kr) R, (3.13)
67 ‘325 _1°7 %
From the velocity we obtain from Eq.(3.11)
vy = =38(8+ 1)7 (1 +29) " kr[367 Nww__ Cp — Co)(kT)? + const] — wh
(3.14)

In Ref. 2 the density perturbations in inhomogeneous models were analyzed
using the exact solutions with plane symmetry and spherical symmetry. In a situa-
tion where the spatial curvature radii are larger than the horizon size, it was found
that they consist of homogeneous perturbations (o 72) and curvature driven per-
turbations (e 74), and that the latter can be regarded as part of the second-order
nonlinear perturbations. This curvature driven perturbations are consistent with

" the above perturbations caused by the spatial curvature inhomogeneity.

Now let us assume simply that the distribution of irregularities are so random
that the occurrence of the irregularities with different k has the same probability
at the same interval dk/k. Then we obtain the n = 5 spectrum from the term
o (k7)8. Of course this spectrum is not unique and the spectra with other powers
can be considered. It is regarded as a representative one, which corresponds to the
Harrison-Zeldovich spectrum, because the amplitudes are the same at the horizon
crossing time for all &. Here it should be noticed that A is proportional to (k)4
rather than (k7)2. From the second term in Eq.(3.13) we may have the n = 1 and
2 spectra because of the terms o< (k1) and (k7)%, if const in Eq.(3.12) has no

dependence on k.



4. Concluding remarks

In this report we showed compactly the derivation of curvature-driven density
perturbations, which grow with the growth factor equal to a square of that of usual
adiabatic density perturbations. It is expected that the temperature anisotropy
of CBR brought by the curvature-driven perturbations are comparatively smaller,
when they are normalized in appropriate manner. In a separate work it is being

analyzed quantitatively.

In order to treat the clustering of galaxies associated with this type of per-
turbations, moreover, it is important to clarify the behaviors of this perturbations
from the standpoint of post-Newtonian formalism. The general-relativistic nonlin-
ear behaviors of the perturbations will be appear in the post-Newtonian effect in

this case. This problem also will be studied in near future.
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Abstract

Quantum-classical transition of density fluctuation in an inflationary model is
studied. As the environment, short wave length mode of the scalar field is taken.
We derived the master equation for the reduced density matrix which describes
quantum mechanical time evolution of long wave fluctuation of the scalar field. We
show that quantum coherence is lost and classical correlation in phase space appears.
Relation to the stochastic treatment of inflation is also discussed.

1 Introduction

The structure of our universe has evolved from small inhomogeneities in the early universe.
Inflation is a candidate for explaining the origin of this inhomogeneities. In this model,
initial small inhomogeneities are erased out by the de-Sitter expansion in classical level.
However, spontaneous quantum fluctuation of inflaton field in the de-Sitter space-time
becomes the seed of the structure of our universe. In this scenario, one conceptual problem
arises. How does quantum fluctuation change to “classical” fluctuation? The wave length
of generated quantum density fluctuation is stretched by de-Sitter expansion and when
it exceeds the horizon length, the fluctuation is expected to become “classical” because
microscopic interaction is switched off outside of the horizon scale and the coherence of
the system is lost.

To formulate such quantum-classical transition, the standard method is to prepare an
environment which interacts with the system. Then by tracing out the freedom of the en-
vironment, we get the reduced density matrix which describe non-unitary evolution of the
system. The system loses its quantum coherence by the interaction with an environment,
and macroscopic classical variables appear. To say that the system is “classical”, two
conditions must be satisfied: the first one is the decoherence of the system. This means
that quantum interference becomes negligible and the macroscopic variable appears. In
other words, the off-diagonal part of the reduced density matrix becomes zero. The sec-
ond condition is the establishment of classical correlation on phase space. This means



that strong correlation between canonical variables appear and classical orbit emerges on
phase space.

Several authors have already discussed quantum-classical transition of density fluctuation(1}.
They introduce an external scalar field which interacts with the inflaton field. Then trac-
ing out the redundant external field, they calculate reduced density matrix. They conclude
that the off-diagonal part of the reduced density matrix rapidly becomes zero when the
wave length of the scalar field exceeds the Hubble horizon scale. This result implies
that microscopic quantum fluctuation becomes macroscopic classical fluctuation when it
crosses the Hubble horizon in the de-Sitter space.

In the stochastic approach to inflation[2}, the role of the Hubble horizon is vital. The
long wave mode of the scalar field is treated as classical variable and the short wave mode
is replaced by stochastic noise. This approach suggests that the Hubble horizon scale is
a natural boundary between quantum and classical(microscopic and macroscopic) in the
inflationary model.

In this paper, we consider the problem of classicalization of quantum fluctuation with-
out introducing the external scalar field. We identify the short wave length mode(k > aH)
of the scalar field with the freedom of an environment as suggested by stochastic approach.
We derive the master equation of reduced density matrix for the long wave length mode,
and investigate how quantum to classical transition occurs in the inflationary model.

The plan of the paper is as follows. In §2, we derive the master equation which de-
scribes the time evolution of the reduced density matrix. In §3, by solving the master
equation, we discuss how quantum-classical transition of density fluctuation occurs. Fur-
thermore we discuss the relation to the stochastic approach to inflation. §4 is devoted to
discussion.

2 Master Equation
We use the minimally coupled scalar field on de-Sitter space. The equation of motion is
¢+ 3Hl,b—-a—2-V'<p+m2<p=0, (1)

where we assume the metric is given by the spatially flat FRW form and the scale factor
a « exp(Ht). As mentioned in the introduction, we consider the short wave length
mode of the scalar field as an environment. For this purpose we start from the following
projection procedure, which separates each k-mode of the scalar field to the long and the
short wave length parts by using the step function:

¢ = pto,
¢ = v+u,, (2)
where
d*k 7
Py = W&(k - CaH)(}SkC'k f,
— &k b ik
v, = / Wg(k bd 60H)¢k6 . (3)



The parameter ¢ defines the scale of an environment and assumed to be smaller than
unity. Then the equation of motion for the long wave mode (¢, v) becomes

¢ = v+o,
1 _,
v = =3Hv+ ;V‘(,D—rn2<p+ T, (4)

where
d*k k2
r o= (GHZ/W(S(k—eaH)d)ke ,
&k

o = eal? W&(k—ea!f):ﬁke"'f. (5)

The above projection is exact in classical level. The Hamiltonian which derives Eq.(4) is
1 3
H(P,Q)= /dsz [3(1—3P2 + ‘%szz +(oP - a*rQ)|. (6)

Here we defined the phase space variables (P,Q) as P = a®»,Q = ¢ and the classical
equation of motion becomes

1

Q = EP'{-U,

P = -a*m?Q + o®r, (7
where we have neglected the spatial derivative term of the long wave variables. Qur

purpose is to quantize the above dynamical system and obtain a reduced density matrix
by tracing out the freedom of short wave length mode(environment):

p=Trgpror. (8)

We follow the method of Unruh and Zurek and use (A, K')-representation of reduced
density matrix[5):

p(K.8) = [dQeRp(Q - A/2,Q + A/2), (9)
where p(Q — A/2,Q + A/2) is “position” representation of density matrix. In this repre-
sentation, the density matrix of “position” reperesentation is diagonalized if the dispersion
of A becomes zero, and the density matrix of “momentum” representation is diagonalized

if the dispersion of K becomes zero. Then the reduced density matrix at any time can be
expressed as

P8, K) = [dgTes(Q - q)ePa2perral
= Trexp (i/dsz(l{~Q+A~P)) Po, (10)

where Q(t), P(t) are Heisenberg operators that are the solution of Eq.(7), po is the initial
total density matrix which is product of system and the environment: Po = pospoe. The



symbol Tr means the trace is taken both the system and the environment. To calculate
the time derivative of this quantity, we use the formula

mxs = \ LA f(1)1-NA0), (11)
1]

The time derivative of the density matrix is then given by
b="Trpo \OH dheir ] #stkasap) [i [ #atic-Q+a- P da-nSasticaran (1)
Using Eq.(7),
K-Q+A -P= Wa&u - a®m?A-Q + (Ko + a*Ar). (13)

Therefore we get the following expression by using the formula (11) again:

p = 3 W. -m| 3,02 )
where
D(t) = iTrpo _m.»m..i P3(K-Q+A-P)
0

x [[ #atico + a*a- ) -] satrearen) (15)

In Eq.(14), the first and the second term correspond to the ordinary Liouville term and
the third term D(t) causes the non-unitary evolution of the system. We evaluate this
term in detail. To this end we calculate

K-Q+A-P = >‘+9qu Q -ad’Ac

= So(Po, Qo)+ KFy + 4 \ dud®r (16)
= So+ S,

where we have written the solution of Eq.(7) as Q() = Fo(Qo, Po,t) + Fi(o, 7) and Sp is
the contribution of the term which does not contain “noise” g, 7 and

= P ‘ _ =3H(t—u) -HI 3 )
Fit2) = 5 [ du(l - =B (r(u, 2) + (@o(w2))). (17)
Then
. 1 . 3
.UQV = mqﬁﬁbomm.mov.ﬁnbcm.\o a;a.».\.a x5
X \ d’z Q«q + D%& £i1-2) [ =51

= p(k, DV%«._: Trpog axln.\%a A.m._ + a(ka + Daulz (18)

a=0



To proceed further we use the formula

: L, 2
Trpog exp(:Of) = exp [-—;lrpog(Of)“] , (19)

which is valid for an arbitrary linear operator O and Gaussian density matrix pog. Then

7] 1
D(t) p(k,A)%]nexp[—gTrpog{/ d*z8(0, 7,1)

+a/d31(1\'a + Aa’r)})

a=0

= —pTrpoe [//daxdsys,(a, UKo+ Aa3r)] . (20)
Inserting the explicit form of S, and after some manipulation, we get

D(t)

—pTrpog [/ Pad’y /Ot du (1,-{(6—31“ — M) J3H 4 o} + Arz31')
x(KNo + Aa%)]

] /0 ' du [ 2K Ko - a) + Ko -a'r)
+AR (- o) + AA(ar - a®r)}], (21)

where the symbol {A4) means tracing over the environment(shot wave length mode), i.c.,
Tr(pgA). We can calculate the correlation function of “noise” o, 7 assuming the de-Sitter
invariant vacuum state for the short wave length mode:

HS
<0|02) ~ E(zm”s”z)4[7]'0(6(11!1‘)6(!]—tz),

2
(nm) =~ @B m +é Lﬁjo(calir)é(h — 1) (22)
- 3H? 472 -7
1 » 2 2 N HY
3(01r_» + 1o)== —2m? R (% + c') 472]0(eaHr)6(t| — 1),

where r = |Z) — £5]. Then the final expression of D(t) to the leading order of ¢ becomes

H? @emipan?y f 3.3 - . a2, M
D(t) = gt /d sdyjo(call|f = ) |K(z) - Ha¥(€ + ) A=)
, 3 2 m?

Here we discuss about the value of parameter ¢. ¢-dependence disappears in Eq.(23) if we
take the value

exp(=3H?*/m?) « € <« m*/ 11> (24)

This value nearly corresponds to the Compton wave length of the scalar field 1/m. Taking
the appropriate value of ¢, we get the final form of the master equation which does not



contain the parameter e¢:

e _ 1. ) 2 )
K, A) = /ds.t [;131\(I)5A(2:) —a’m A(z)m] p

am

3 3,,4,2 37 2
1 sttty (K(2) - Sma(a)) (1) - o) £29)

3 Classicalization of Quantum Fluctuation

In this section, we discuss the behavior of quantum decoherence by solving master equation
(25) for reduced density matrix. For simplicity, we consider the case of ¢ — 0 limit which
means that the long wave length mode is considered to be homogeneous. We can take
this limit provided that the condition (24) holds.

(K, D) = (—131(-3— - asmzAi) p
a

oA oK
HY (.. m?d® 2
= (I\ ~3F A) p. (26)

This equation can be solved by assuming Gaussian form of the density matrix
p(K,A) = exp(—a(t)A? = v(t)? - 2B()AR), (27)

where a, 3, v satisfies

H3 (m?d®
= 943 2 -
* amﬁ+87r2(3ﬂ)'
. 2 H?
7= SPtga (28)
. 1 5 o H® (m?d®
g = SFa—am —4?(311 . (29)

As mentioned in the introduction, we must check the two conditions: quantum decoher-
ence and classical correlation. To discuss the decoherence, it is convenient to use the
“position” representation of density matrix

p(Q-0,Q+4) = / di e~ KQp(K, A)

2 B 1 "

ox exp |—(a - —)A? +i=AQ - —Q°| . 30

p|-ta-Drar+ a0 1o (30)

To measure the degree of decoherence, we use the ratio of the dispersion in A and the
dispersion in Q[6}:

Sqp = (ay = B2 (31)

If this ratio becomes small, it means the off-diagonal part of the density matrix becomes

small and quantum coherence is lost. Using the asymptotic solution of Eq.(28) for large



t, we can show that 8gp ~ e3#!. Therefore quantum coherence of the long wave mode
is rapidly lost and we can treat it as classical variable. To discuss quantum-classical
transition, classical correlation in phase space is the other indicator to judge whether the
system is classical. For this purpose, we use the Wigner representation of the density
matrix:

W(PQ) = [dacipQ-4,Q+4)

1OP+AQ 1

4y ay-p? 47Q- ) (32)

o exp [—
To measure the degree of classical correlation, we use the ratio of the dispersion in mo-
mentum P and the average value of P:

bcc = B
R

Using the asymptotic solution of Eq.(28), this ratio also becomes small as o ~ e3¢,
Therefore Q and P have strong correlation in phase space and the peak of the correlation
corresponds to classical solution of the system. We can show that the peak appears at
P= —%a:‘Q and this corresponds to the slow rolling version of the classical trajectory.

Now we comment on the relation between master equation (26) and Fokker-Planck
equation that appears in the stochastic treatment of inflation. We first transform the
master equation (26) to the Winger representation:

(33)

. P 9 0
"V(P,Q) = (—a—:‘%‘l'fnzang}—))W
H [ 8 m2a® 9\’
vi (o0 + 5 2p) ™ (34

Changing the variable to v = P/a® and defining the new distribution function P(v,Q) =
a®W(P,Q) to preserve normalization, we get the FP equation for P(v,Q)[4]):

P(“’Q) = (—iv + %(3Hv + 1n2Q)) P

0Q
H {8 m?a\°
+8_1r2‘ (('TQ— + m%) P. (35)

Under the situation of “slow rolling” v =~ —m2Q/(3H), we can eliminate the velocity
variable v by integrating over v and get the following equation

: m 9 _ H ()
P(Q) = (ﬁ'a—é + 877 ('a—Q") ) P. (36)
This is nothing but the basic equation of the stochastic approach. Here realization of

the slow rolling condition is equivalent to the appearance of classical correlation in phase
space.



4 Discussion

In the inflationary model, the Hubble horizon is a natural scale which defines the environ-
ment. On larger distance scales, causal contact is switched off and quantum fluctuation
loses its coherence. The stochastic approach is a naive application of this fact, but the
relation to the usual field theoretical approach is not clear. We have derived the master
equation of the reduced density matrix for the long wave length mode by treating the
short wave mode as an environment. We show that the quantum coherence of the long
wave mode is lost by solving the master equation. The short wave length mode acts as
random noise and the long wave mode loses its coherence through the interaction with
the short wave mode. At the same time, classical correlation of the long wave length
mode is established. This is because the de-Sitter expansion of the universe “squeezes”
the quantum state of the scalar field and the strong correlation which corresponds to
classical trajectory appears on the phase space. In this sense, we can say that quantum
fluctuation whose wave length is greater than the Hubble horizon becomes classical. After
the establishment of classical correlation, the master equation of the long wave mode is
essentially equivalent to the basic equation of the stochastic approach.

In this paper we have neglected the freedom of metric perturbations. But to under-
stand the quantum state of the inflation correctly, it is important to include the metric
fluctuation because back reaction of the scalar field to the metric becomes significant for
the scale greater than Hubble horizon[3). Furthermore it is interesting to discuss the origin
of the master equation for the long wave length mode in the context of quantum cosmol-
ogy. It is possible to extend our master equation to the arbitrary expansion law of the
universe with metric perturbation. So we can analyze the effects of the inhomogeneiety
to the classicalization of the universe. This is our future problem to be explored.
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Abstract
The properties of the evolution of global textures are studied in the expanding
universe. The energy density of textures is investigated by clustering analysis. The
spectrum of the energy density perturbation is found to be almost scale invariant.

The evolution equation of a texture field is solved numerically and the effect of cosmic
expansion is explicitly introduced.

1 Introduction

People have made many attempts to clarify the law of physics for ages. Whereas the
instruments for high energy experiments cannot produce sufficiently large energy. The
universe, therefore, has come to be a very useful laboratory since a standard big bang
model predicts our universe must have experienced a high temperature stage. Actually
the recent progress of cosmological obscrvations unveils several remarkable features of the
universe.

The idea of spontaneous symmetry breaking is essential to unified theories of elemen-
tary interactions. Above the unification energy scale, this symmetry is restored due to the
high-temperature correction to the potential of a Higgs field. Standard big bang cosmology
enables such a high energy density condition in the early universe. In the course of cosmic
evolution, symmetries have been broken and various types of phase transitions should have
occurred. Some of these phase transitions may have produced topological defects such as
monopoles, cosmic strings or domain walls[1]. These defects have cosmological significance.
Particularly cosmic strings can play an important role in constructing various structures
in the universe, that is galaxies, clusters of galaxies and so on. Global textures are also
generated at the symmetry breaking phase transition G — H, when a vacuum manifold
M = G/H has a non-shrinkable three-sphere, that is m3(M) # 1. For example, when
global SU(2) is broken this condition is achieved. Textures are the differential energy con-
centration, which is called a "knot”. Unlike other low-dimensional defects, textures are
topologically unstable so that they vanish liberating their energy when an event horizon
extends enough. This process is called "unwinding” of knots. The spectrum of their dis-
tribution is scale-invariant if the unwinding rate of knots is constant in time[2]. Then the



energy density fluctuation caused by knot collapse can be sources of the large-scale struc-
tures of the universe. We have calculated numerically the evolution equation of a ficld for
global textures. The result shows that this scenario can be valid.

2 Model and method

We considered the simplest global texture model, G = O(4) and H = O(3). In this case
w3(M) = Z and global textures are possible. We take a real scalar fourplet ¢ with a
Lagrangian:

1 1
L=3(9¢) - V(é), V(¢)= G (1)
The evolution equation of ¢ in a flat Robertson-Walker universe is written in the form:
¢ da| 19¢ 2 14
o 2 E]ZE‘V¢"“ 96 @

where a = a(t) is a scale factor and 7 is conformal time.

When the time evolution of ¢ is followed with Eq.(2), a factor a? of the right-hand term
prevent us from calculating for an arbitrary long period. The lattice spacing of a simulation
box is of constant comoving size. On the other hand, the characteristic length scale of a
texture is of constant physical size. Thus with the cosmic expansion, the spatial scale of a
texture comes to be smaller than one grid length so as to break the further calculation. To
avoid this difficulty, Spergel et al. modified the evolution equationf3]. We, however, use an
original equation and follow the time evolution for scveral expansion times, which is enough
to know the dynamical feature of global textures in the expanding universe.

A staggered leapfrog algorithm of second-order accuracy[4] was employed with Eq.(2).
The equations are expressed by

¢n+l ¢n - 1
. AT . - ¢ﬂ ’ (3)
¢n+l ¢:x da l¢n+l+¢n _ 2, _ zav
AT +2[—d'r a3 - Vg @

where a suffix denotes the number of time steps. Right-hand side terms of Eq.(4) at (z,y, z)
are calculated by

¢z+l.y.z "' 2¢z.y.= + ¢z-l.v,= ¢=.v+l.= - 2¢=.u.z + ¢r.v—l.=

2 —
V ¢r,y,z - A.’B2 '|" Ay2
?ﬂl.zﬂ — 2¢:.y.z + ¢z,y,z—l
+ s ; ()
av _ 2 2
(a‘ﬁ)x'y'z = ’\¢au (I¢nv| v ) ’ (6)
1

¢uv = ‘6‘ (¢=+l.v.= + ¢z—l.v.= + ¢:.v+1.z + ¢r.y—l.= + ¢z.y.z+l + ¢:.y.z-l) . (7)

We set the lattice spacing equal to 1, that is Az = Ay = Az =1 in simulations.



3 Dynamical evolution of global textures

We carried simulations on a three-dimensional cubic lattice with 50% grids; the values of ¢
are assigned to cach lattice point. The length scale of the lattice spacing is equal to the
energy scale of the phase transition i.e., v. Initial values of the field are determined under
the condition, |#| = v. Thus the initial time of calculations is the time when the phase
transition occurs and ¢ sits on the true vacuum. Phases at cach point are random because
unit cells correspond to the regions whose sizes are the horizon scale over which there is
no causal relation. An expansion law is that in the radiation dominated universe. Hence
the scale factor depends on the conformal time such as a(7) « 7. Boundary condition is
periodic. At last we set A = 1.
The energy of ¢ at (x,y,z), E(z,y, z) is defined:

)
%(c?d»)i_y', +V ($enee) - (8)

Figure 1 shows the evolution of an averaged energy over the simulation box, the maximum
energy in the box and the median for all the points. As time passes, the median encrgy
remains constant and the maximum one grows larger. This shows the points which have an
great amount of energy increase, though the total energy in the simulation box is unchanged.
Hence a clustering of cnergy is implied.

The next figures are those for the relative amplitudes of potential and differential en-
ergy to total energy or that of time-differential and space-differential energy. Figure 2 shows

E(z,y,z) =
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Figure 1  The evolution of energy Eq.(8). A solid line is an cnergy average.
A dotted line is an energy maximum. A broken line is an energy median.
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Figure 2 A solid line is the ratio of differential energy to total energy. A broken line is that of
potential energy.
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Figure 3 A solid line is the ratio of the time part of differential energy to the total differential
energy. A broken line is that of spacial part.



that the differential energy is dominant. This agrees with the fact that textures are clumps
of differential energy. Figure 3 indicates the collapses of knots according to the cosmic
expansion should take place. The dominance of space-differential energy corresponds to
the concentration of energy, i.e., the knot. The increase of time-differential energy is the
evidence of radical motion of ¢, i.e., the unwinding. These are repeated alternately. Thus
the growth of causal horizon causes the continuous creation and collapse of knots.

4 The spectrum of energy clustering

To know more detailed properties of cnergy distribution, we simulated the case that the
texture energy scale v is half of that in §3. This change in parameter enables us to follow
the time evolution for more than twenty expansion times. For the purpose of the direct
determination of a texture’s position, the phases of ¢ are cvaluated at each point. At all
sides of each ccll, it is checked if the sign of the ¢ field changes. The cells whick have the side
where four components of ¢ changes their signs are counted for topological singularity. The
time evolution of the number of these cells is shown in Figure 4. The decrease of texture
point, i.e., tha knot corresponds to the energy concentration mentioned in the previous
section. After 7 = 5, the number of knots turns to be almost stable value, 10 ~ 100. In this
region, the rate of knot collapse is frozen.

For the investigation of the energy spectrum of knots, the threshold energy is defined.
If the energy of a certain point is larger than the value of the threshold, this point is regarded

10°

10

103

102

10!

conformal time

Figure 4 The evolution of the number of knots.
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Figure 5 The size distribution of the two-dimensional cluster consisting of the points whose energy
is larger than the median value. r = 3.0. The index of power fitting equals —2.2. The

vertical axis is the sum over 10 simulations.
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Figure 6 The same figure as Figure 5 at 7 = 6.0. The power index is —1.6.
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Figure 7 The spatial energy distribution of global textures at the plane z = 25. 7 = 3.0.
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Figure 8 r=26.0.

as a high energy point. Then the neighboring high energy points belong to the same energy
cluster and the size distribution in two-dimensional plain is examined. Figure 5 and 6
describe the result when the threshold equals the median. We performed the same analysis
at various time slices and have found that the power index of fitting line to the cluster



~t

distribution become constant value after r = 5. This has a good agreement with the
above prediction about knot collapse. Consequently energy perturbation produced by global
textures is found to have a power law profile.

In addition, the decrease of the index number corresponds to the growth of energy cluster.
This again implies the energy concentration process. Figure 7 and Figure 8 also confirm
this interpretation. These figures show the two-dimensional spatial distribution of texture
energy at 7 = 3.0 and 7 = 6.0. In the former one, the energy of ¢ distributes randomly
owing to the initial condition. The figure at later time, however, indicates that clusters of
energy develop. This fact agrees well with the implication of Figure 1. Hence the energy
concentration is verified in this numerical simulation.

We have made sure that the above results show the true topological properties of ¢.
When the effect of time-differential energy is removed, only the spatial-differential energy
of ¢, i.e,, V3¢ will be left and pure topological structure should be revealed. To this
end, we have introduced a dissipating term to the equation of motion. The ¢ configuration
at a certain time was evolved using this equation so that the dissipated ¢ at this time
was calculated. These simulations reproduced the same figure as Figure 4 about the knot
number evolution. The index of power fitting also approaches constant value after 7 2 5.
This is consistent with the result without the artificial dissipation.

5 Conclusion

We have calculated the time evolution of global textures in a radiation dominated universe.
The distribution of differential energy depicts the creation and collapse of knots. The change
of dominant energy implies the unwinding process. Thus the dynamical process of textures
can be characterized by the evolution of knots. About the spectrum of knots, the energy
cluster distribution of ¢ is scale invariant; the power index of the distribution comes to be
constant when the knot formation process proves to be stable after a few expansion time
from the phase transition. Hence global textures generate energy perturbations in various
scales. They can be a seed for large-scale 'structures in our universe. At all events the
spontaneous symmetry breaking is inevitable when the universe evolves from an unification
state. The texture must be a peculiar defect and is worth further study.
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Abstract

We consider the density fluctuation in a non-minimally coupled scalar field dom-
inated universe. To avoid technical difficulties, we use the conformal transformation
from the non-minimal frame into the minimal one. The evolution of the density
fluctuation is the same as the minimal scalar case over the Jeans scale, but its
amplitude is enhanced within the Jeans scale. It is regarded as a parametric am-
plification caused by an oscillating Hubble parameter. We find the characteristic

Hy L
scale %~ €175 g7(5)3 appears.

1 Introduction

The recent galaxy redshift surveys have shown the existence of the large scale struc-
tures. The observations over a hundred Mpc reveal the void structure and the deeper
pencil beam survey suggests the 128h~!Mpc periodicity in the galaxy distribution,
which is the largest structure as ever known. But it is difficult to explain these
structures in the standard scenario of the structure formation which is based on
the gravitational instability. One difficulty is that the existence of these non-linear
structures causes larger CMB anisotropy than the observed one. Another one is
that we do not have the idea to account for the 128h~!Mpc periodicity.

In order to explain these problems, a model with the oscillating expansion rate
has been investigated[1). This model explains the 1282~'Mpc periodicity as an
apparent structure caused by the oscillation of the Hubble parameter. To realize
such an oscillation, the non-minimally coupled scalar field is investigated. Owing
to the coupling between the spacetime curvature and the scalar field, the Hubble
parameter oscillates and the periodic structure is explained as apparent effect. But
in this model the homogeneous scalar field is assumed and the real structure or
the density fluctnation is not investigated. It is only suggested that the density
fluctuation may be amplified by the oscillating Hubble parameter.

A minimal coupling model has been well investigated in the context of the
cold dark matter scenario[2]. The time evolution of the universe and the density



fluctuation is similar to that of the dust dominated model and it can not explain
the large scale structures because of the same difficulties as the standard model.

In this paper, we investigate the density fluctuation in the non-minimally cou-
pled scalar field dominated universe. By using the conformal transformation, we
avoid the technical difficulties caused by the coupling between the spacetime cur-
vature and the scalar field. Our purpose is to understand the evolution law of the
density fluctuation in this model, and discuss the real periodic structure is explained
by the oscillating Hubble parameter.

2 Conformal transformation

We consider the scalar field coupled non-minimally to gravity. The action is
1 1 5.
5= [d1/=g [55 - S8R~ 0000000 - 3mie?]. (1)

where k2 = 87G and ¢ is the coupling constant. The special case { = 0 and
€ = 1/6 are called minimal and conformal coupling, respectively. We assume that
the metric of the Universe can be described by a spatially homogeneous and isotropic
background metric plus small fluctuation. As for the fluctuation, for convenience,
we choose a Newtonian gauge. Hence the metric takes the form

$? = —(1 4 2¥)dt? + *(1)(1 + 29), (2)

where ¥ and & are the Newtonian potential and the intrinsic spatial curvature
perturbation, respectively. The perturbed scalar field is decomposed as follows,

#(x,1) = ¢o(t) + 66(x,1). (3)

We would like to know the time evolution of the density fluctuation in this model,
but it is difficult to solve it analytically because of the coupling. In the case of the
minimal coupling, however, we can solve it analytically within suitable approxima-
tions. By using the conformal technique, we can transform the non-minimal model
into the minimal one and we can deal with this model easily[3]. The transformation
is as follows:

ds® = Q*(¢)ds°,

dg = [1- €1 - 6)x%¢?|" 749, (4)

where Q2(¢) = 1 - £x2$2. Within the range of the scalar field 1 > Ex2¢2, we get
approximately

Q1~1
d¢ ~ d¢, (5)
and the action(1) reduces to
4 ]—ab Py 1 222
S~ /d z ST°40.308 - zm8’ . (6)




The relations between the geometrical quantities in each frame are

- 6N —
Qodt = dt, — 4+ ¥ =V,
Qo
Qa=7, Die=7, (7)
Qo

where the conformal factor  is decomposed as follows

Qo) = Qo(do) + 6Q(do, 69). (8)

3 Minimal coupling frame

In this section we summarize the case of the minimal coupling, but the bar is
omitted from each quantity. The Einstein equations and the evolution equation for
background quantities become

d 2 9 87 ]'2 1 2 2
" E”'=TG0, p= ~¢p+ -m ¢o”,

) 2
. 1. 1
H = —4zG(p + p), p= 54’3 - 5"124502, (9)

do + 3Hdo + m2¢o® = 0.

For late time mt > 1, eq.(9) have the approximate solution which is consistent with
the condition 1> §x2¢? provided that ¢ < I:

1 sin(mt + u)

%o = VisG mt

H

-
where 4 is an integral constant, and we put u equal zero in the following. The time
evolution of H is the same as that of the dust dominated universe.

To solve the equations for the fluctuating part, we Fourier-expand ¥ , & and
6¢. Then the Einstein equations for the fluctuating part are

(10)

3H¥ - 3H® - (5)% = —47Gép,

HY — & = 47Gdés,
&+ V=0,
6p = ¢6d + m2 b — W2, (11)

The first equation is the time-time component, the second one is the time-space
component and the third one is the traceless part of the space-space component.
We do not need the trace part. The evolution equation for é¢ is

6b+ 3H6¢ + [m? + (2)2] é¢ = (¥ — 3B) — 2m340. (12)



Up to now we assume only 1/m <« 1/H (ie. mt > 1). Now, furthermore,
we restrict our attention to the fluctuation whose wavelengths satisfy following
inequalities,

2 > ! and ! > g 13
k- m M T E (13)
Under these approximations, we can write the solution of b¢ as
1
6¢ ~ m [A(t) sin(mt) + B(t) cos(mt)], (14)
where s 3
~ ~ 2%
A~ 5y’ B~ 2I{(k)6. (15)

And the evolution equation for the density fluctuation of the scalar field is

6+2HE+

1 k512 3,
—(=)| —=H*| 6~
5] -3 0, (16)
where 6 = 6p/p. Eq.(16) is a Bessel equation and the solution is given by
6~ a':'Jié(z), 2= —( Ev ot (17)

The time evolution of & is shown fig.1. From the form of Jiz (2), we find the Jeans

scale is given by z ~ 1, that is
)|

a

T~ = 18

ko VmH (18)

Using these solutions, we readily obtain
SO DU s . I
Qo =~ —Ex°Podo = g sin(2mt),
-2 dd

60 ~ —¢xobd = ﬁ [1 - cos(2mt)] 6 + sin(2mt)d—z] . (19)

4 Time evolution of density fluctuation

In order to find the time evolution of the density fluctuation in the non-minimal
frame, we need the relation between each frame’s quantities. We obtain the following -
relation by the conformal transformation:

QT = Gf - 2™ [0a0.1nQ - T2,0,in0]

+2629% [00.n2 — T4, 0,100
+ 2¢%(0,In0)8In0 + 629%¢(841n0),InQ, (20)

where G? is the Einstein tensor.

For the background quantities, the time-time component of eq.(20) becomes
— 1
= [H + o] (21)
Q0

Q



Therefore the Hubble parameter behaves as follows,

2
”_524'3

3 sin(2mt), (22)

where we put ¢t = t. This solution coincides with the result of the direct calculations
without the conformal technique. Using the Einstein equations, we get the relation
of energy density in both frames:

s 2 dQ
~ Q7|1 = =———1|. 23
g °p[ Qo df (23)

For the fluctuating part, in a similar manner, we get from eq.(20)
Qo° k
bp~ Q26— — [s’i‘ +2= ] 9. (24)
According to these relations, we get

6~

/i | = T - -
1+ f;{i?[] - cos(2mt)]] 5+ [6{-’]-717 cos(2mt) + f%'z'sin@mt)] 5, (25)
1

where a prime denotes derivative with respect to z.

We analyze eq.(25) for following two cases distinguished by z, separately. Since
t =1 in our approximations, the bars are omitted from the all quantities except 6
in the minimal frame.

a) For z > 1(i.e. within the Jeans scale), eq.(25) becomes approximately

)

R

H =, H . -
-_— - 2 —_z
1+ fm z[1 = cos(2mt))| 6 + Em zsin(2mt)é

. H .
sin = + 2£—z sin(mt) cos(z — mt), (26)

w here we set § = sin z. This solution consists of slowly oscillating part(time scale~
—,—m) plus rapidly oscillating part(~ m™!). If we pay attention to the time scale
larger than m~!, we can average the rapidly oscillating part over the time scale
~ m~'. By integrating eq.(26) with respect to t from —7/m to 7/m, we get

6~ [1 + f%z} 8. (27)

The term §(H /m)z goes to zero as time goes on, then we can see that the amplitude
of §att=1tgis (I +£—lz,)'l times greater than that of & if the initial amplitude at
t = t; is the same. Thls amplification may be caused by the coherent oscillation of
the expansion rate. We can regard it as a kind of parametric resonance. For ¢ < 0,
6 is enhanced and for £ > 0, § is suppressed.

b) For z € 1, eq.(25) becomes

- H
6~8+ sfn—lcos(zmz)E'. (28)

Unlike the case(a), this solution consists of the growing or decaying mode plus
oscillation around it. Taking the same average as in the case (a), we get

6 ~ 6. (29)



Therefore in this range of = the amplitude is not affected by the oscillation. Using
these solutions, we can discuss about the spectrum of the density fluctuation at
t = 9. The initial valueof § at z =2z, > 1 is

H 1-
6l = —z| 6.
6 = [[1+ 6525 8] (30)
The value of § at t = tg is
léo] = [bo]- (31)

Then the wave number dependence of §; becomes

o[#) [a]_| o

e[ (]

and we get fig.2. The characteristic scale 1/ kn appears:

o~

m
For this scale, the parametric ampllﬁcatlon works effectively. We can also get this
scale by the dimensional analysis. By equating the timescale of the sound velocity
within the Jeans scale to that of the Hubbel oscillation, we get

bo| _
61

=05, (33)

z; = mit,. (34)
Rewriting eq.(34) yields
1 1 Ho 1
—_— —(—)7 5
kn Ho m ) (35)

where we have assumed ¢ is O(1) parameter. The larger scale than this scale is not
affected by the oscillation, because the timescale of the sound velocity is shorter
than that of the Hubbel oscillation.

5 Conclusion

We have investigated the time evolution of the density fluctuation in the non-
minimally coupled scalar field dominated universe, under the condition 1/m <«
a/k < 1/H. Averaging over the time scale m™!, for z > 1, the amplitude of the
fluctuation is enhanced by the factor (1+¢ ,ﬂnizi)" compared to the minimal coupling
case, but for z € 1, the evolution is the same as the minimal case. This is a kind
of parametric amplification caused by the oscillation of the expansxon rate. Wlth
respect to the spectrum, we have found the characteristic scale ~ €78 -% l —9-)3
appears. The larger scale than this scale is not affected by the osc11]at10n If we put
m™~! equal 128K~ Mpc, it yields 1/k,, ~ 1000Mpc. It is larger than the observed
scale. For this scale eq.(27) reduces to § ~ (1 + £)4.

The amplification factor (1+¢ %:.' )~!is not large enough to explain the structure
formation problems. But it is important that the density fluctuation can grow
within the Jeans scale by the parametric amplification. This is completely different
from the gravitational instability. In the range of our treatment (i.e. 1/m € afk <
1/ H), this factor is not large. But if we give attention to other ranges for which
this factor is large ( for example in the early universe), this mechanism may play an
important role, and we may be able to explain the characteristic scale of the large
scale structures. This is our future problem.
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Checkered (ichimatsu—figured) universe

Masatoshi Yamazaki

Department of Physics, Kanazawa University, Kanazawa 920

A scenario is suggested that in the early universe, at
first, the gluon radiation inevitably has the checkered
(ichimatsu—figured) structure with the side 10-27cm just after

the end of grand unification and, secondly, the scale factor

8 25

grows by the factor of 102 and 10 during the subsequent

inflation and adiabatic standard phase, respectively. This
may yield the observed regularity in the galaxy distribution,

the great wall and void, where the size of void is 1026cm =

=27 8 25

107%7cm x 10%%x 10

Geller and Huchral) mapped about 10-5 of the volume of
the visible universe, found that maps of the galaxy distribution
in the nearby universe reveal large coherent structure, and
detected the great wall where many galaxies lie. Récent surveys
by Broadhurst, Ellis, Koo, and Szalayz) revealed a regularity
in the galaxy distribution with a characteristic length scale

of 128 Mpc. They compared this regular pattern in the large—

scale distribution of galaxies to the picket fence in universe.



3)all)

Energy densities in great walls and in voids are 5 and

1/5 times the mean density u respectivelyl). A typical

thickness of the wall is less than 5Mpcl).

Volumes of the
great wall and of the void are 1/6 and 5/6 times the volume
(128Mpc)3, respectively. And energies in the great wall and
in the void are 5/6 and 1/6 times the energy um(IZBMpc)3,
respectively. More than 90% of the matter in great walls
appears to be dark. This result is called the dark matter
problem. The voids are full of dark matter. The anisotropy
of 3K microwave background is tS'I‘/T<10_5 12),

By means of what scenario grows up this large—scale
structure in the universe or the great wall .and void, where
the size of void is as large as the hundredth of the size of
visible universe ? A possible scenario proposed in the present
paper, which may yield the large—scale structure, is summarized
as follows ((1l)~(5)):
(1) The checkered (ichimatsu—figured ) structure is a three-—
dimensional arrayal of black cube, white cube, black cube, white
cube, and so on with an identical side length. The gluon

configuration distinguishes a black cube from a white cube.

The structure constants of SU(3) gluon fields are not uniform



in size in contrast with those of SU(2) fields where fabc=1 for
abc=123. This fact is the reason why the gluon radiation has
the checkered configuration. A higher energy density is
provided on the boundary, which will become the great wall, of
two adjacent cubes than inside each cube, which will become the
void. Of course the black cube and the white cube yield to an
identical energy density. Therefore it is inevitable that the
gluon radiation has the checkered configuration, because the
free energy of which is lower than that of the admixed—at—random
configuration.

(2) 1In the early universe at temperature 1014Gev the checkered
(ichimatsu-figured) structure for gluon radiation, with a

27cm (=hc/1014Gev),

characteristic Compton length scale of 10
inevitably begins to appear just after the first step, the
quantum tunnelling phase, of the phase transition which results
in the end of grand unification. The scale factor grows by the
factor of 1028 during the subsequent second step of phase
transition, the de Sitter phase of exponential expansion and by

1025

during the adiabatic standard phase. Thus inevitable is
the formation of the large-scale structure observed today or

the formation of the great walls and voids with a characteristic



length scale of 0.4 G lt-yr or lOzscm.

(3) At the epoch of the decoupling of matter and radiation the
glueball matter, which is a candidate for the dark matter in
the present scenario, constitutes the great walls and voids
with a characteristic length scale of 1023cm. After the
decoupling at temperature 1 ev the baryonic matter begins to

fall into the potential wells provided by the glueball matter .

in the great walls. The falling time is of the order of 108

3

years (=lO2 cm/3 x 107cm/sec).

(4) One of two kinds of glueballs gb (1) and gb (2), or GR*G

GG-’BGB‘R and GG*RGR‘BGB*G, is a candidate for the dark matter

in the present scenario. The gluoniums GR+GGG*R, GR*BGB’R,
G*B_B*G

and G G have decayed out after the quark-hadron transition.

It is hypothesized that the number of glueballs diminished by
the factor of ~3 x 10_8 after the quark-hadron transition.

This is nothing but an analogué of a well-known baryon asymmetry
phenomenon. Thus, for every 3 x 107 glueballs gb (2) there
were 3 x 107+l glueballs gb (1).

(5) Firstly the large—scale structure or the great wall and

void, which is composed of the glueball matter, grows continu-

ously from the guark—hadron transition till the matter



domination or till the decoupling of matter and radiation.
In other words grows a remarkable contrast of the energy density
between the great wall and the void. Secondly the baryonic
matter, which is pulled by photons, cannot or can fall into the
potential wells provided by the glueball matter dwelling at the
great wall in the epoch of radiation domination or of matter
domination, respectively.

Some words are complemented to make clear the proposed
scheme about the inflation and the glueball dark matter.

The following parameters for the inflationary universe are

significant : 1014 Gevrthe critical temperature for the end of

-34

grand unification ; 10 secvthe expansion time scale ;

3 23

(2/3)x10 3%gecnthe period of exponential expansion ; 10 ““cm

the pre-inflation size of a small causally coherent patch ; and
105cm~§he post—inflation size of the patch which is still
causally coherent. During the de Sitter phase of exponential

expansion the scale factor grows by the factor of exp ((2/3)x

=32 -34 28

10 )=exp(65)=10"". - During the adiabatic standard phase

/10

after the reheating process the scale factor grows by the factor
25 26

of 1077, The present size of void 10“°cm stems from the pre—

inflation size 10—27cm and the post—inflation size 10cm, both



of which are of course causally coherent. The number of gluon

27

in a volume (10~ cm)3 is of the order of one at temperature

1014Gev. While the size of checkered structure grows up from

a tiny little patch 10—27cm at a much higher temperature of the

order of 1014Gev to the size of cell 1014cm at temperature

1 Gev, the coupling constant of gluon field gz/hc also grows up
from gz/hc~0.02 to gz/ﬁcml. We reasonably assume that
initially eight gluon number densities were eqﬁal to the photon
number density. Just before the quark to hadron transition
tuok place, the energy density and the size of the universe

3 and'lolscm, respectively. After the transition

were-1017qm/Cm
the gluonium decayed out to red-shifting photons and one of two
kinds of glueball bgcame.the dark matter, the masseés of which
were no more red—shifting away. With the present scenario it
is reasonahly understood that the amount of dark matter is not
as much as million times, but of the order of ten times the
amount of baryonic matter.

Next we will deduce the scheme of the gluon checkered
(ichimatsu—figured) structure. For no net flow of gluon

radiation we suppose the following conditions:

1) Everywhere the color neutrality holds.



2) Everywhere the total number density of various gluons is
equal, and
3) Everywhere the gluon energy density is equal except some
minor region with small measure, namely except the boundary
layer between black and white cubes.
R,G, and B mean red, green, and blue, respectively, and the
notation is as follows : A red quark emits a gluon GR+G and
becomes a green quark. The energy density u of the gluon
radiation is
u=2'1(laa|2+|Ea|2)=A+gL+gZQ, and A=(8n2/15)T4.
Here L and Q are linear and quadratic with respect to the
coupling constant g, respectively. We use the approximation

Gi=naG for a=1,2,3,+++,8 and u=1,2,3,4, where nl=n2=nR*C=nC*R,

n4=n5=nR*B=nB*R, and n®=n7=nC*B.B*G, na; a=1,2,3,°**,8, are
the partial number densities of eight gluons. On the analogy
of the electromagnetic field the gluon field G: may have the
double summation over the wave vector and the polarization
vector. The first summation yields G:mna G and the second

2

2 x 6%.6°. Under this approximation vanishes the contribution

G
both from all terms in L and from all crossed terms in Q; and

remains only the contribution from all squared terms in Q.



The gluon configuration in black and white cubes is
represented by three parameters x,y, and z and the conseguent
energy density is calculated. Three parameters x,y, and z
under the conditions 22x,y,220 and 32x+221 determine the

possible configurations in black and white cubes :

B R

1) The black cube has xN/8 gluons c**B ana GB*

¢+ 2N/8 gluons

G*B

G and GB*G

R+G

,» (3-%-z)N/8 gluons G and GG*R, yN/8

uncolored gluons Gq,ggﬁd (2-y)N/8 uncolored gluons GB.

B

2) The white cube has (2-x)N/8 gluons GR* and GB*R, (2-2z)N/8

B B+G G R

gluons c®"® and ¢ + (x+z-1)N/8 gluons cR*€ ang 6°* ’
(2-y)N/8 uncolored gluons G3, and yN/8 uncolored gluons G8

Here N is the total number of gluons in one black cube or in

one white cube. The boundary layer between a black cube and

an adjacent white cﬁbe has the configuration with x=y=z=1.

The black and the white cubes have an equal energy density when

the condition

(y-1)[ (x-l)2+(z-l)2+4(x-1) (z-1) J+9(x+2-2) (x-1) (2-1)=0 (1)

is satisfied. The third term gZQ in the equation of the

energy density u can be written into gZQ=gqu‘, where

0°=6+4 (y-1)2[ (x-1)2+(2-1)2+(x-1) (z-1)+(3/2) ]-12(y-1) (x+2-2)

~[(x-1)24(2-1)2) [ (x+2-2) 248]-(x-1) (z-1) [ (x-1) (z-1)+8]  (2)



and qu4 is a common constant factor. The minimuﬁ value of

Eq.(2) in which we are mostly,interested is sought under the

condition (1). Since it is a hard task to obtain the minimum

value of Q° by analytic ways, we study only several cases.

The result is that the configurations with 1) xél,z=2, and y=1,

with 2) x=1, 2=0, and y=1, with 3) x=0, z=2, and y=1, and with

4) x=2, z=0, and y=1 yield Q°=6-9, while the configuration x=y

=z=]1 yields Q“=6. More generally, the Helmholtz energy density

f=u-Ts must be minimized. The entropy density can be written

as s=sA(T)+sB(x,y,2), where 5A=(32 2/45)T3 and Sp is the entropy

of mixing. In this procedure, more elaborated calculations,

namely estimates of the common constant factor g, are necessary

so that we can obtain the true minimum of the free energy

density £.
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Magnitude-Number Count Relation of Galaxies in an Inhomoge-
neous Universe -Gravitational Lens Effect-

Kazuya Watanabe

Uji Rescarch Center. Yukawa Institute for Theoretical Physics, Gokasho Uji 611 Jap;mT

1. Introduction

Among the fundamental problems in the astrophysics, the determination of cosmolog-
ical parameters, ¢.g., the lHubble parameter, Hy, density parameter, Q,, and cosmological
constant, A, is the most important subject because they play a crucial role in discussing
the origin and evolution of large scale structures of the universe, but their values have not
yet been settled.” The crucial difficulty has lain in the limitation in our observational strat-
cgy. Namely, in order to determine these parameters, accurate observations at high redshift,

= R 1, are required. which have heen almost impossible for a long time.

However, owing 1o the recent rapid progress in relevant technologies, observational cos-
mology is, now. being more hopeful and interesting. Especially, the development of charge-
coupled device (CCD) detectors has made it possible to observe faint objects (~ 27 mag),"!
which means that the redshift of typical galaxies corresponding to this limiting magnitude
is greater than unity. For the determination of the cosmological parameters, the standard
homogeneous and isotropic model universe, i.c., the Friedmann model, has leen usually as-
sumed, and the light propagation in such a simple model universe has been solved. On the
other hand, many authors have pointed out the importance of cosmological inhomogeneities,
¢.g., galaxies and clusters of galaxies, in interpreting the observational data.” ™™

On the basis of the previous theoretical works concerning the light propagation, the
observational implication of gravitational lens effect has been discussed by many authors.™
Recently, Omote and Yoshida (1990) investigated the gravitational lens effect on the number
count-redshift (N-z) relation of galaxies," and they showed that the gravitational lens effect
much affect the N-z relation. We therefore investigate the effects of cosmological inhomo-
gencities on the m-N relation of galaxies.

2. Amplification probability

Since the amplification probability, P(yt) (y is the amplification factor) plays an impor-
tant role in statistically discussing the realistic m-N relation, in this section we first derive

t On leave of absence from Faculty of Science, Hiroshima University, Japan



the analytic formula for P(;r) on the basis of the work by Futamase and Sasaki.'™ We then
examine the validity of the formula by comparing it with the corresponding numerical results.

The basic equation to derive the probability is the distance-redshift relation in an in-
homogeneous universe derived by Sasaki (1987). The most important term, which is also
concerned with the gravitational amplification, is given by™"

I=éd /d

= —/ L\\mh\/.‘i_’\ (coth V—=EX = coth vV=FkA )A'If, )

where I is the perturbation of the luminosity distance, d 1+ k=0, £1is a curvature signature
of space, ¥ is the Newtonian potential generated by inhomogeneities, and A is the usual
conformal affine parameter given by

142

H,a, / dy A2), (2)
1+ (1= Q= Ayt +

in the Friedmann model. The potential, W, is related to inhomogeneities of the density, p,
by the Poisson equation given by

AV = 4zGa(p - p,), (3)

where p, is the background density and A is the covariant Laplacian with respect to the
spatial metric in the Robertson-Walker spacetime.

Futamase and Sasaki derived the amplification probability on the basis of the equation
(1) in the Einstein-de Sitter background universe (9 = 1,2, =0). i Following their work,
we extend their formmla in the more general cases, whcre Q + Ay < 1. Let us represent
inhomogencities by homogeneous spheres whose physical radlus and present mean separation
are, respectively, R, and R, and let us D and D be, respectively, the angular diameter
distance in a Fncdm'mn model and in the corresponding Dyer-Roeder model. The analytic



formula then becomes

(T(; 2) = 1,(2))”
2/(=)

Pip) = PO(:)“—EI.'! exp [—

where

f) = {(1 - &)} (R3H,/10R?) X3 k=0,

(1—&)°Q3 (3R3H/8RI) (1= Q) = A)71h(2) k=1,

T2 = ﬁ(}—) —1, i) = (/D)

1,(z) = =1 (exp(g(s)) - n-, I,(2) = D/D -1,
3 (1 - e":‘) +2A (1 + e 4 e":‘)

CE

3R2 /l (1+:)?
(= IR"H T ox(x)

W) = fg(T4 2P 4+ -8y =31+ 2P+,

h(z) =

and Py(z) is a normalization factor of the probability function so that

/P(;l)d;: =1.
1

(4)

(6)

The parameter, &, is a smoothness parameter which was introduced by Dyer and Roeder™

and is defined by

a= l_pL/pb’

(7)

where p, is the mean density of lens objects. The physical meaning of i is the amplification
of a Friedmann model relative to the corresponding Dyer-Roeder model. Throughout this



paper, we only discuss the case of & = 0, and the angular diameter distance in the Dyer-
1 . . -
Roeder model™ is then given by

™ PR ,_l f fl:'
06 = 115" [ty ®
0

We now examine the validity of our probability function by comparing P(j¢) with the
corresponding numerical results. For simplicity, we assume, for a while, the spatially flat
dust filled background universe, where inhomogencities are represented by the Newtonian
Potential,

-Gm
12
12 + [2)

where m and { are, respectively, mass and size of lens objects, a(1) is the cosmic scale factor,
and the index, k. denotes each lens object.

Y, t) =
; (a(!)zl:l: -

(9
k

Though our model universe contains two independent parameters, m and (, it is well
known that the combination of these parameters are more convenient and fundamental,
. 32
which are defined as (Futamase 1988)"”

E=CGmll, x= HyL. (10)

Since { ~ R, and Gm ~ HFR3, the dispersion of P(y) is characterized by only one pa-
rameter. €2/x. We therefore define the strength of gravitational lensing by €*/x. Some
details about this characterization are found in Watanabe and Sasaki (1990)"" and Watan-
abe, Sasaki and Tomita (1991)." We then numerically solved optical equations and null
geodesics to get the realistic amplification probability.

In figure 1, we compare the analytic formula with corresponding numerical results. We
also show the probality function, P S( jt), derived by Ehlers and Schneider™" for comparison.
We found that the analytic formula well fits the numerical results for ¢2/x < 0.5, and that
Ppg cannot. On the other hand, for €2/« > 0.5, our probability function deviates from the
numerical results. It is because that the optical depth of lensing becomes smaller so that
the asumption macle by Futamase and Sasaki is invalid in these cases. In this paper we use
P(p) (also Pp(1) for comparison) when we calculate the realistic m-N relation.



3. Basic formula for the m-N relation

The number of galaxies per unit solid angle whose fluxes are larger than [ is given by
(Kasai and Sasaki 1987)"!

v(:F)

N> = / / n(v, L) ywde. (1
0Ly

where d  is the angular diameter distance along light rays, n(v, L) is the number density
of galaxies with the intrinsic luminosity, L, v is the affine parameter, =, is the redshift
corresponding to the epoch when galaxies are formed, and w = —k%u, is the frequency of a
photon from galaxies measured by the observer whose 4-velocity is u®. The flux, {, is related
to the luminosity, L. in a redshift dependent manner and given by { = L/ (dzd?), where
d, is the luminosity distance along light rays, and the important relation, d, = (1 + :)"’dA.

holds in any spacetime (Ellis 1971)."¢

Since the distances, d | and d;, may be affected by inhomogeneities along light paths,
we must solve the equations of null geodesics and optical scalars (Sachs 1961)"™ in order to
obtain the realistic m-N relation. However, the equation (11) is too complicated to be easily
analyzed in an inhomogeneous universe because the effect of inhomogeneities also appears in
the argument, L = dwld}, of the luminosity function due to the gravitational amplification
of flux, I. We must therefore approximate the equation (11) under the suitable assumptions
about light propagation whose validity is to be carefully investigated.

Our assumptions are

(1) The correlation between inhomogeneities in galaxy distribution and the gravitational
amplification of luminosity of galaxies is neglected.

(2) Since the count of galaxies is large. the gravitational amplification of luminosity is
taken into account in a statistical manner.

(3) If the surveying area is large, the angular diameter distance in the equation (11) can
be replaced by that in a Friedmann model.

(4) Perturbations of the affine parameter and frequency of photons are negligible.

The validity of the first assumption has not yet verified, and actually, there may be some
correlations because the galaxies to be counted also play the role of lens objects in causing
the gravitational amplification. In this paper we therefore use this assumption as a working



hypothesis. This assumption was also implicitly adopted in Omote and Yoshida. [t is noted
that the second assumption is the consequence of the first one. Assuming the Schechter
function for the luminosity fnction,"” we can, in a straightlorward manner. extend the
formula by Omote and Yoshida to get the realistic m-N relation under the assumptions
described above.

The formula becomes

3 2 - A T
N(<m)= [d;%)_./dpp(:,p)l‘[a-*- 1, z(m;=)/n], (12)
0 1

where x(z) is defined in the equation (5), and the Schechter function, ®(z, L), is parametrized

D(z, L)L = (1+ 26" exp (—Li) (LA) ! (‘LL‘) ! (19

and z(m; =) is defined by (1 + =) D(z)? 1010'_*0"“(‘"“’"), and M, is the absolute magnitude
corresponding to L*. The function, ['(«, z), is the incomplete gamma function defined by

o0

Ma,z) = /d! exp(=0)1*~L. (14)

X

We now examine the validity of our last two assumptions. In order to do that, we calcu-
late the averaged angular distance as a function of size of a surveying area, 8. We simulated
400 rays for several values of 62, and found that the averaged distance, d{‘>, coincides with
the distance in a Friedmann model for §Q = 0.1, 1, 5 degree, where inhomogeneities are
represented by galaxies with the radius, { = 50h~'kpc, and the mass, m = 3.4 x 1012M o
i.e., €/ = 0.2. We also found that the dispersion in the distance, o, is small, which is
consistent with the previous works (sce Table 1). We also numerically found that the induced
error in the m-N relation due to the last assumption is less than 0.1%, which is negligibly
small.



z 02| 02]02]05] 05| 05|10 10f10] 20} 20] 20

§Q(deg)| 0.1 1 51 01 1 5101 1 5 1 01 1 5

<H0d4> 0.146] 0.145] 0.145! 0.246] 0.245[ 0.244] 0.293] 0.2931 0.292 0.281] 0.282( 0.281

o, |0.001 0.001/ 0.001| 0.06]0.006] 0.006 0.016} 0.015| 0.015{ 0.025

0.025 0.025
H,D 10.145 0.145 0.145 0.245] 0.245( 0.245| 0.293] 0.293] 0.293] 0.282 0.282| 0.282
0

HOD 0.146] 0.146] 0.146] 0.255 0.255] 0.255{ 0.329] 0.329| 0.329; 0.374] 0.374{ 0.374

Table 1 The averaged distances compared with the distances in the Einstein-de Sitter
universe (D) and the corresponding Dyer-Roeder model (D).

4. Results and discussion

In this section we discuss the m-N relation taking into account the gravitational lens
effect. In order to do that, we need to specily the model parameters of luminosity function,
lens model, and background cosmological model. For the luminosity function, we adopt the
same parameters with those in Fukugita et al !

a=—-111, M, = -19.3, and ¢, = 0.0156/°/Mpc®, (15)

and the Hubble parameter is & = 1. It must be noted that the values of these parameters
are irrelevant for us until we compare the theoretical prediction with observational data. We
also ignore the K-correction, and assume that y = 0.

We first summarize the expected changes in the m-N relation due to the gravitational
lens effect. Since all galaxies are, in a statistical sense, always amplified relative to the
Friedmann model, we will have excess of galaxy counts for all m. However, most of galaxies
corresponding to small m(S 20) are nearby galaxies, and the amplification effect for them
is very small. On the other hand, galaxies corresponding to larger m(< 20) may be affected
much more than nearby galaxies. We therefore expect that we may have much excess of
galaxy count for m R 20, while the count for S 20 remains unchanged. If we are ignorant
of the cosmological inhomogeneities, and the gravitational lens effect plays an important
role in amplification, we will underestimate Q, or interpret that we have a non-vanishing
cosmological term, because the evaluated comoving volume is larger. If this is the true case,
the universe with Q ~ 1, A, ~ 0 may be consistent with the present observational data.



To calculate the m-N relation, we must also specify the parameters of a lens model.
The probability function, P(z), contains only one parameters, €2/, as was described in
the previous section. However we must specify another parameter, z ., which specify the
initial time when the first generation of galaxies were formed. We investigated the cases of

- - i}
F=35 and 7, changing other parameters, € /x, Q@ and A,

In figure 2, we show the m-N relation for €*/x = 0.5, = r = 7, where the bin of apparent
magnitude is 0.5. We also show, for comparison. the gravitational lensed m-N relation in
which we adopted the probability function of Ehlers and Schneider in the cases of Ay =0,
where D can be analytically integrated. We found that for both choice of the probability
function, f.e., P(p) and Pps(p1), and for any value of (Q, A), the gravitational lens effect
on the relation is very weak. It must be noted that our choice of €2/« is marginally realistic
and therefore provides us with the upper limit of lensing. We can then conclude that the
gravitational lens effect does not affect the m-N relation for m S 30. These results are. how-
ever, not discouraging but rather encouraging us because they prove that the m-N relation
is a comparatively “good” test to determine the cosmological parameters in the sense that
the relation is hardly affected by cosmological inhomogeneities.

We also calculate the N-z relation in which we do not integrate over the magnitude,
m, but calculate the relation as a function of m, where we examine the cases of m = 20,
22 and 28. The bin of m and In(l + z) are, respectively, 0.5 and In(1 + 3)/20 ~ 0.07,
and plot the z — In N relation for €2/x = 0.2, 0.5 in figure 3, where we assume zp
2. We found that for @, = 1, /\0 = 0, the dependence of the relation on ¢*/x appears
at the “intermediate magnitude” (m, ~ 22). and the relation seems to be sensitive to
inhomogeneities, namely, larger ¢* /&, larger deviation of the relation from that in a smooth
universe we have. Furthermore, we empirically found that the results obtained by Omate
and Yoshida arc almost the same as our results in the cases of ¢2/x = 0.2, and confirmed
that the N-z relation is comparatively much affected by inhomogeneities, as was pointed out

by Omote and Yoshida."™

It must be noted that the characteristic magnitude of galaxies, m_, varies as a function of
Q, and A,. It is simply because the luminosity distance depends on these parameter, and we
have larger m, in an open universe. We therefore expect that, if the recently reported large
scale structures™ really exist in the universe, the comparison of the sensitive and insensitive
observational relations, namely the N-z and m-N relations, may enable us to “detect” the
structures in an indirect manner. It also he noted that by determining m,, we can reassure
the values of Qo and ’\0' which are obtained by the m-N relation. The close comparison with
observational data is, however, left in future work.

It must be noted that when €2/ approaches to unity, the standard Newtonian metric”"
PP



may be modified by the back-reaction due to inhomogeneities. In that case, the global
expansion factor, a({), given by the Friedmann equation has no meaning in discussing light
propagation in an inhomogeneous universe. This means that the picture of amplification
given by Futamase and Sasaki may be broken down hecause the fundamental assumptions
to derive it become invalid. However, it must be noted that if this is an actual case in our
universe, the notion of “global” cosmological parameters, i.c., Hj, Q. etc., no longer have
the well-defined meaning, at least, on the scale compared with the size of the large scale
inhomogeneities. These issues are left to be carefully investigated in future work.
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Figure captions

Fig. 1 The amplification probability, P(x), is compared with the numerical results in the

Fig. 2

background universe with €, = 1, A, = 0. The comparison with Py () is also made.

The realistic m-N relation in an inhomogeneous universe is compared with the standard
m-N formula, where z, =7, €' /x = 0.5, and the model parameters of inhomogeneities
and background cosmological models are shown in the figures.

Fig. 3 The realistic N-z relation is-calculated as a function of the redshift and magnitude.

The model parameters are shown in the figures.
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Abstract

When Weyl curvature is present in a cosmological model, images of spherical
extended light sources have elliptical, rather than circular outlines. This paper
shows how the electric and magnetic parts of the Wey| curvature each contribute to
this distortion effect. ‘I'he key result is that only the magnetic part—a field with no
Newtonian analog whose inertial frame-dragging effects have yet to be detected in
the solar system—contributes any antipodal asymmetry to the distortion effect. It
is therefore posible that further observations like those of Tyson, Valdes, and Wenk
may reveal cosmological magnetic Weyl curvature in our Universe.

1 Introduction

In 1966, Kristian and Sachs [1] pointed out that Weyl curvature in a cosmologi-
cal model has a characteristic observational signature: the distortion effect. “In any
anisotropic model,” they wrote. ~all distant objects in a particular direction on the ce-
lestial sphere may appear distorted, with a definite preferential direction for their longest
dimension.” Using a well-defined and physically reasonable approximation scheme, they
computed for a general Weyl curvature the induced image distortion as a function of
source area distance and position on the celestial sphere.

Now. more than twenty-five vears later. observational evidence for Kristian and Sachs’s
distortion effect is mounting. Particularly strong support comes from the recent observa-
tions of Tyson, Valdes, and Wenk [2], which show systematic alignments in the images of

faint background galaxies centered on rich foreground galaxy clusters. Since these faint
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background galaxies seem to be at high redshift (z > 1). the observed distortion in their
images points to the presence of Weyl curvature in our Universe over cosmological scales.

Now, in cosmology, the isotropy of the microwave hackground radiation determines a
preferred frame of reference, and from the point of view of an observer who adopts this
frame of reference, there are exactly two kinds of Weyl curvature: electric and magnetic.
Electric Weyl curvature has a straightforward Newtonian analog in the tensor field formed
by removing the trace from the second derivative of the gravitational potential. Magnetic
Weyl curvature, on the other hand, has no Newtonian analog whatever. Its inertial frame-
dragging effects, presumably present in the solar system, have yet to be detected.

In Section 2 of this paper. I discuss how the electric and magnetic parts of the Weyl
curvature each contribute to the overall distortion effect. My discussion relies on Kristian
and Sachs’s approximation scheme, which expresses the distortion effect as a power series
in a small parameter (essentially the area distance to the source, measured in Hubble
units.) Since the coefficients in this power series are all simply tensors in the tangent space
to spacetime at the present moment in our history, Kristian and Sachs’s approximation
scheme effectively reduces the study of cosmological image distortions to a problem in
4-dimensional Lorentzian linear algebra. Adding to this scheme a preferred 4-velocity,
t%, representing the frame of reference in which the microwave background is isotropic
simplifies the problem still further, so that it involves only the 3-dimensional Euclidean
lincar algebra of vectors and tensors orthogonal to {*. It is in this familiar context, and
with this background in mind. that I present my discussion of the role of the electric and
magnetic parts in the distortion effect.

The key result of this discussion is that only the magnetic part of the Weyl curvature
contributes to the antipodal asymmetry of the distortion effect. I touch briefly on the
propects for observing such an asymmetry in Section 3, which also contains my concluding

remarks.

2 The Electric and Magnetic Parts of the Weyl Cur-
vature and the Distortion Effect

In this section. a small number of simple mathematical objects play an important role.
The first of these. and the most basic, is a real, 4-dimensional vector space, V. Physically,
V is just the tangent space to the spacetime we inhabit, at the present moment of our

history. As such, it is of course home to a Lorentz-signature inner product, g.,,—the second



object on our list. The third object is a timelike unit vector, ¢, which, as I mentioned in
the previous section, represents the frame of reference in which the microwave background
radiation is isotropic. The fourth and final object may not seem so simple at first glance.
It is a tensor C,, ¢ over V that satisfies

Clasye 0. (2.1)
C"[abc]d = 0, (22)
Cu® = 0, and (2.3)
Cap(c"9ne = 0. (2.4)

This tensor of course represents the Weyl curvature of spacetime at our current location. I
shall try to show by the end of this section that despite the complicated index permutation
symmetry and trace conditions 2.1~ 2.4 to which it is subject, the local Weyl curvature is
indeed a simple mathematical object—and one with a beautiful physical interpretation.

To achieve this goal, however, [ must first define from the members of the quadruple
(V, gabs 1, Cpc?) a variety of related vector spaces and tensors. Let me begin with those
that involve only V, g4, and #°. First, because ¢° is timelike and unit, T,% := —¢,t® and
8, =68} —T,b are both projection operators. The range of 5,°, a 3-dimensional vector
space S C V, consists precisely of those vectors in V that are orthogonal to t*. Tensors
over S, when viewed as tensors over V, satisfy

Rebogo. . gbgp. . gapmn, (25)°

m T preg !

I shall call such tensors spatial. An example of a spatial tensor is S, itself. Two further

examples are

hab Yab + Laly, and (26)

€abe — t:-ubcdtdt (27)

(Here €apeq = €labed) iS the volume clement determined by gu.) The first of these two
tensors is the spatial metric; the second is the volume element it determines.
Now let me bring C,,.! into the picture. This [ do by setting

Enw = C.T,™, and (2.8)
Bﬂb = * amb"Tnm’ (2‘9)

where *Cabcd = 1/26abnmcv

suggests, Ii,, and By, are the electric and magnelic parts of C,y,

wnc: denotes the dual of the Weyl curvature. As the notation

4. It is easy to check that



E. and By, are both spatial tensors. and that taken together they completely determine
Case’s Eab = Buy = 0 if and only if Cp. ! = 0. This makes it possible to re-express in

terms of Eqp and B, the full content of the conditions 2.1- 2.4 on C,,.¢:

Ey = 0. (2.10)
Eah® = 0. (2.11)
By = 0, and (2.12)
Baph® = 0. (2.13)

The upshot of all this is that the quadruple (V, ga, %, C,,.%) has now outlived its
usefulness. Everything there is to be said about Weyl curvature can now be said in terms
of the simpler quadruple (S, hus, Eqp, Bay), in which S is a real, 3-dimensional vector space,
has is a positive-definite inner product on S, and E,,. B,y are trace-free, symmetric tensors
over 5. From now on. therefore, I shall work entirely within this simpler context (e.g., all
tensors will now be tensors over S, /i,y will be used exclusively to raise and lower indices,
etc.)

Physically, the vector space S represents the instantaneous rest space of an observer
at our current spacetime location who sees no anisotropy in the cosmic microwave back-
ground radiation. A unit vector r* € § therefore represents a direction in which such an
observer might point his telescope to investigate cosmological image distortions. The set
of all such unit vectors is simply his celestial sphere. The tangent space to this sphere at
the point r*, which I shall call .. is the plane of the sky in the direction r°; it consists
precisely of those vectors +* € 5 that are orthogonal to r®.

Now of course the inner product kg, on S defines an inner product sgp := hgy — 747y
on F. But even more importantly, it defines a linear mapping J,°, as follows:

J =t (2.14)

a ca

It is easy to check that this mapping preserves s,;, and so represents a rotation in the
plane of the sky. It is also easy to check that

JJb = (o) = rart). (2.15)

This equation shws that J,* is a complex structure on the plane of the sky. J,b lets us

define complex multiples of vectors 2® € P,, according to the formula

(m +in)z® = ma® + nJ, 2, (2.16)



J,% also plays a crucial role in the formation of the tensor
Wy 2= 2(eay — J, o) (2.17)

from the trace-free, symmetric 2-tensors e, and b, in the plane of the sky. These 2-
tensors are simply the trace-free parts of the projections of %, and B, into the plane of
the sky:

eab = (6,7 = rar™ W8 — 1" ) By + 1/ 254(r™ " Epin), (2.18)
boy 1= (8," — rar™ )8 — 157" ) Buin + 1/280(r™ 7" Byan ). (2.19)

It turns out that W, is also trace-free and symmetric as a 2-tensor in the plane of the
sky, and the calculation that establishes this reveals an interesting fact: the tensor J® also
defines a complex structure on the vector space of trace-free, symmetric 2-tensors on the

plane of the sky. The formula for making complex multiples of these tensors parallels 2.16:
(m + in)agy = may + nd, 2. (2.20)

W, is therefore an element of a 1-dimensional complex vector space—essentially just a
single complex number—and the tensors 2e,;, —2b,; are just its real and imaginary parts.

Now, the tensor WW,; is important for two reasons, one mathematical and one physical.
Let me give the mathematical reason first: Wy, = 0 if and only if the vector r* points
in what is called a principal null direction of the Weyl curvature. (For a proof, see (3].)
For a non-zero Weyl curvature, there can be at most four such directions, so if W,;, =0
for, all * in the celestial sphere, then £, = By, = 0. This shows that the tensor fleld
% 5 Wy(r®) determines the Weyl curvature uniquely.

Now let me give the physical reason. Kristian and Sachs have shown that the function
e(i®) := *i*W,, (2.21)

achieves its maximum exactly when the unit vector i* in the plane of the sky points in
the direction of maximum Weyl curvature-induced image distortion. This fact, together
with the decomposition 2.17 of W, into its electric and magnetic parts, enables us to see
casily how each of these parts contributes to the overall distortion effect.

For my purposes here, one simple fact is crucial: under the replacement r® s —r®,
the tensor Ja” picks up a minus sign, while both ey, and by remain unchanged. From this
it follows that the ‘magnetic term’ in W, is antipodally asymmetric, while the ‘electric
term’ introduces no antipodal asymmetry whatever. | conclude that if the direction of
maximum Wey! curvature-induced image distortion differs at any pair of antipodal points

on the celestial sphere, the B, must be non-zero.



3 Discussion

Let me make just two short remarks, one mathematical and one observational, before
[ close.

First, the mathematical remark. Although it mmay not have been obvious, I needed
for the analysis of the Weyl curvature C, ¢ that 1 presented in the previous section
only two of the various mathematical structures I ascribed to V. These two essential
structures were the 1-dimensional timelike vector space T C V to which ¢* belongs, and
the conformal equivalence class [g,4) to which g, belongs. This equivalence class makes
possible the construction of the tensor field »* = W, (%), while the subspace T underlies
its decomposition into ‘real and imaginary parts." For further details, see [3].

Second, the observational remark. I have learned in a recent conversation with Pro-
fessor James E. Gunn of Princeton that the telescopes needed to conduct the image
distortion observations of Tyson, Valdes, and Wenk are available in both hemispheres, so
that a direct check for antipodal asymmetry in the distortion cffect seems possible. Pro-
fessor Gunn emphasized, however, that the observations of Tyson et al. are very difficult,
and that their analysis requires the separation of a very small signal from a very noisy
background. The deduction of non-zero magnetic Weyl curvature from such observations

might therefore remain controversial for some time.

Acknowledgements

I should like to thank Professor Kei-ichi Maeda of Waseda University for inviting me
to speak at this conference, and for agreeing to act as my sponsor under the terms of a
fellowship from the Japan Society for the Promotion of Science, whose support I gratefully
acknowledge.

References

[1] Kristian, J., and Sachs, R. K., “Observations in Cosmology,” Ap. J. 143(1966),
pp.379-99.

[2) Tyson, J. A., Valdes, I., and Wenk, R. A., “Detection of Systematic Gravitational

Lens Galaxy Image Alignments: Mapping Dark Matter in Galaxy Clusters,” Ap. J.
349(1990), pp.L1-4.



[3] Gunnarsen, L. D., “Electric and Magnetic Parts of the Weyl Curvature and Principal
Null Directions,” in preparation.



Topology Changing Solutions of (2+1)-Dimensional
Einstein- Yang-Mills Equation

Akio HOSOYA !

Department of Physics, Tokyo Insiitute of
Technology, Oh-Okayama Meguroku, Tokyo 152, Japan

ABSTRACT

We present an explicit Riemannian solution of classical field equations in the
(241)-dimensional Einstein-Yang-Mills model with zero or positive cosmological
constant. From this solution we can construct various examples of topology

changing processes by quantum tunneling in the WKB approximation.
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1. Introduction

In the previous worksl, we have demonstrated explicit examples of topol-
ogy changing processes by quantum tunneling in the (2+1)-dimensional Einstein

gravity with negative cosmological constant in the WKB approximation.

There the tunneling is assumed to be described by a transition between Eu-
clidean and Lorentzian signature regions. Using the hyperbolic geometry we
have constructed 3-geometries of Euclidean signature which has totally geodesic
boundaries with various topologies. Many Lorentzian signature universes are
smoothly glued at the boundaries of the Euclidean signature manifold. The uni-
verses are actually Riemann surfaces of genus larger than or equal to two. In
the semi-classical picture, this exhibits topology changes and/or branchings of

universes.

As shown by Gibbons and Hartlez, topology change by semi-classical tunnel-
ing is impossible if the Euclidean energy-momentum tensor satisfies the positive
energy condition. In this sense, our previous model is an extreme case; the en-
ergy density is everywhere negative. In this paper we are going to consider gauge
fields instead of cosmological constant as an ingredient which drives topology
changes, since gauge fields can generally give negative energy density in the Eu-
clidean signature space-time. There the cosmological constant can be either zero

or positive.

In contrast with the previous model we have a continuous degrees of freedom
for each isospin component of gauge fields, which represents an isotriplet massless

mode. In this work we will just put it equal to zero to seek a particular solution.



2. The Model

Our model is the (2+1)-dimensional Einstein-Yang-Mills theory described by

the Euclidean action:

1 1
SE = -—m (R - 21\)\/_(7 d3m + Z /g”ugpaF:nga\/g dam' (1)

with G and A being the Newton constant and the cosmological constant, respec-
tively, in the (2+1)-dimensional space-time. R denotes the scalar curvature and

the field strength Fj, is given by
Fp, = 0,45 — 8, A5 + ec®™ A A5, (2)

in terms of the SO(3) gauge field A} with e and €% being the gauge coupling
constant and the structure constant of SO(3), respectively. The gauge group can
be trivially generalized to any compact Lie groups, which contains SO(3) as a

subgroup.

Upon varying the action (1), we obtain the Einstein equation:

1
le - EgnuR = SWGT;:V - Aglws

1
Ty = F‘;zpF(:'p = ZgFV(F':w)z

(3)
and the Yang-Mills equation:

D', =9, (4)



3. Solution

We make an ansatz for the metric and the field strength as

G = Dby, (5)

Fl:w = e f, (6)

where 0 and f are functions of * = (2')? +(22)? + (2*)? only. Then the energy-

momentum tensor becomes
| PRI
T;w = 59 f Snu- (7)

We demand the energy-momentum tensor T',, be proportional to the metric
tensor gy, since we want a constant curvature space as in the previous work.

Namely we set
A1 Al

— c—— Y e— 2
Ty = 8xGIH 811'G'Q Suv ®)

Comparing the above two expressions for the energy-momentum tensor (7) and

(8) we obtain
A
f=\ae® ®

provided that A is positive. Later we will confirm that this is indeed the case
when the parameter A’ is determined by the gauge coupling constant e and the

bare cosmological constant A.

The Einstein equation now reduces to

1 -
Rpu - ’igpuR = _Aguu (10)
with
A=A-N



. Under the ansatz (5) the solution is given by the Poincaré metric

2
iy v (11)

provided that A is negative. We will find such a solution in due course.

Let us recall that the Lorentzian energy-momentum tensor is minus of the
Wick rotation of the Euclidean energy-momentum tensor. So our solution corre-
sponds to the negative energy density as we can recognize this from the signs in

front of A7 and A in the expression for the effective cosmological constant.

We are now going to attack the Yang-Mills equation (4). For the vector
potential A} we make an ansatz:
Al = equaz’ K (r?). (12)
The field strength F,, becomes
P, = =2eau (K + 1P K1) + €u,2°2” (2K1 + eK?). (13)

Comparing (6) (11) and (13), we have 2K+ eK? = 0 and obtain the solution
for K and then f as

K= c_‘zr2 (14)
f= (—C—LE;T)Q, (15)

where ¢ is an integration constant. Note that ¢ > 0 for the negative effective
cosmological constant A as can be seen from FA (11) and (15). The Yang-Mills

equation (3) now reduces to
§°°D,F%, = earuz(f1 + €K f) (16)

The right-hand-side of (16) automatically vanishes because of (14) and (15).



Consistency of Egs.(9) and (15) gives following relations between the param-

eters A/ and ¢ in our solution as

—efc=A=A-N\ (17)

1/e= \/4:—:}. (18)

The effective cosmological constant is now given by

A=—a—/(A+a)? - A? (19)

with @ = €¢?/87G. We have chosen the branch of the square root so that the
effective cosmological constant A is negative. If we take the other branch, the
effective cosmological constant would be positive which we do not want, because
such a positive cosmological constant space-time cannol exhibit any topology
change as previously remarked. Note also that the bare cosmological constant A

should be positive in order for the inside of the square root to be positive.

Qur solution is summarized as

/ A (-2)
a —4 v — —
Au = ™\ 1261 + Ar? (21)

(20)

A 4
a —_— _
F[JU ea[ul 47{'G(1 +A1'2)2’ (22)
where
Ar=A+a+/(A+a)2-A (23)

with a = ¢*/8zG.
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4. Construction of 3-manifold

Having found that our Euclidean signature space-time is hyperbolic, we can
construct a 3-manifold with totally geodesic boundary in the exactly same way
as in the previous works. There we used regular truncated polyhedra as building

blocks and glued them together at the faces by a certain gluing rule.

Here we show the simplest example for an illustration which represents the

birth of a double torus universe from nothing4.

We construct this by appropriately gluing two regular truncated tetrahedra
together which are embedded in the Kleinian model®. In the Kleian model any
geodesic is a Euclidean straight line. Next we truncate each vertex of the tetra-
hedron . It can be verified that there is a unique 2-plane which is perpendicular
to all of the three faces with the vertex in common. We cut the four vertices of
the tetrahedron along these planes to get a regular truncated tetrahedron em-
bedded completely in the Kleinian model. This embedding induces a metric on

the regular truncated tetrahedron.

We prepare two such regular truncated tetrahedra . Then we identify each
pair of the faces so as to match the arrows indicated in the Figure and identify all

the edges. This gives a topological 3-manifold with a boundary of double torus.

The metric g,, is perfectly regular everywhere. The field strength contracted

with dreibeins e; = §5Q!

A

Fa = el‘ellFa =¢ o
be b abe 4G

ct pv (24)
is a constant tensor with an isospin index (a)and two frame indices (b,c). The
observable quantity F}, is invariant under the simultaneous local rotation of the
frame and the isospin. Therefore in the gluing procedure the identification of
faces of the polyhedra can be achieved by a suitable isometry transformation

together with gauge transformation.
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This completes the construction.

As is well known, such a Euclidean signaturc manifold can be interpreted
as a quantum tunneling in the WKB approximation in quantum gravity. The

tunneling amplitude is calculated as

14 1Al
T =N exp (——+"—V). (25)

4rG+/|A|

with V being the hyperbolic volume of the 3-manifold in the unit |A| = 1. The
minus of the exponent is the Euclidean classical action calculated from our in-
stanton solution. The second term in the exponent represents the effect of the
gauge fields, which also modifies the value of the effective cosmological constant

as we have already seen.

5. Summary and Discussions

We have obtained a Euclidean classical solution in the (2+1)-dimensional
Einstein- Yang-Mills system, which exhibits topology changing processes by quan-

tum tunneling in the WKB approximation.

One will naturally ask; what kind of universes can emerge after tunneling in
the Lorentzian signature region? As we previously remarked the boundary surface
of the hyperbolic 3-manifold is an initial surface from which the real universe
evolves in our picture. the issue is : what is the initial gauge configuration when

the universe gets out of the tunnel?

As a final remark, we would like to point out that our present solution is in
a sense a three dimensional analogue of the wormhole instanton solution in the

Einstein- Yang-Mills system5 .
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1. Introduction

241 dimensional pure gravity as reformulated by E. Witten [1] provides a
computable model for quantum gravity. Witten also shows how his formalism
extends to cope with topology changing amplitudes [2]. We show that these
amplitudes vanish for certain combinations of 2-space topologies in initial and

final states if we require them to be spacelike [3].

Gravity in Witten’s formulation, or Witten gravity, is almost identical with
(2+1)-dimensional Einstein gravity. Formally the action for Witten gravity is
the Einstein-Hilbert action written in terms of dreibein e® and spin connection
[

Wab = TEapc¥

1
S= [ ¢(dwat 5€ascw")- (1.1)

The main difference from the Einstein theory is that the dreibein e® is neither
restricted to one orientation nor required to be non-degenerate. The action (1.1)
with the extended domain of variables has a greater symmetry than the formally
identical Einstein-Hilbert action has. These peculiarities will be generally ignored

in the following sections for the sake of simplicity.

A basic assumption to be made in order to deal with topology change is that
the amplitude is obtained by taking an appropriate compact orientable manifold
M with boundary and performing a path integral, or by summing such integrals.

Let closed orientable surfaces £ ,... X be the connected components of the
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boundary of M. The amplitude for the transition among the 2-spaces Sj via M

is given by the path integral

1""’“’N)=/ Dw/De expiS. (1.2)
w=wj on ¥;

The w, are connections on EJ., by which we have set boundary conditions for
the w integrated over. This corresponds to taking a representation in which
boundary states are given as functionals of the restriction of w to the boundary.

The integral over e can easily be done to give,
IM(wl""’wN)z_/_ | nv.Dw §[dw + ww), (1.3)
W—U, o] -~y

where the delta functional has its support on flat w. This shows that the am-
plitude is non-zero for some (w,,...,wy) il and only if there exists a flat w over
M. However, any M admits flat w. It follows that there are processes with non-
vanishing amplitudes for an arbitrary combination of closed orientable 2-spaces.

Topology change is quite arbitrary at this level.

The situation alters if we require Z 5 to represent an amplitude for transition
among space-times with spacelike slices. We shall see that under this condition,
the range for (e, w) can be non-empty only for restricted combinations of 2-space
topologies: The Euler characteristics X; of the 2-spaces Zj must admit some sign

assignment ¢ = % such that they obey the relation

N 0
Zj:l €;x; =0. (1.4)
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2. The space condition

First we note that any dreibein-spin connection pair (e,w) comes with a
principal bundle P of the (24+1)-dimensional Lorentz group. That is to say, w and
w+e are connections in P. To be precise, in this work we take the structure group
to be the maximal connected subgroup G of the Lorentz group; G is the group

. . . . . . *
of the Lorentz transformations that preserve orientation and time orientation.

So P is the G bundle over M associated with (e,w). Let X be a closed ori-
entable surface (of genus g) embedded in M. Suppose the dreibein e is spacelike.
That is, the dreibein e is non-degenerate on ¥ and induces a positive definite
metric on the surface. Then the Euler class of the portion P|g of P over & 15

given by

eul(P|;) = £xg, (2.1)

where xg =2 —2g is the Euler characteristic of X. In fact, by the assumption we
can choose local sections of P|g, so that ¢? is a normal 1-form to ¥. This implies
that P|; reduces to the bundle of oriented orthonormal tangent frames to X,
which has Euler class £y (the sign depending on the orientation of the tangent

frames). Hence eq.(2.1).

We call eq.(2.1) the space condition on L. Obviously, ¥ being spacelike
will mean there are other (infinitely many) spacelike slices of the space-time
around ¥. Here is a related fact on the space condition. Let N be an arbitrary
neighbourhood N of £ diffeomorphic to I x £ with {t} x £ at some t of the
interval I identified with ¥ C M. The portion of P over N is determined by PIE,
and its basic structure is invariably the same over different slices of the cylinder
N. If the space condition is satisfied on a slice then the condition is satisfied on

any other slice of N.

% This is a non-trivial assumption. In particular it implies that e defines a time-oriented
metric on the (necessarily orientable) submanifold obtained by excluding the points at
which e is degenerate.
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3. The selection rule

We propose to impose the space condition on each EJ. in eq.(1.2). This will
be necessarily satisfied for any amplitude of transitions among space-times with
spacelike slices. Therefore the range of (e,w) for such an amplitude has to be
restricted at least to those belonging to G bundles obeying the space condition
(2.1) for every boundary 2-space Ej. We assert that (1.4) holds if the range is

non-empty.

Suppose there exists a G bundle P over M that satisfies the space conditions

on the boundary and denote P] = P|,... We can reduce P to an SO(2) =~ U(1)
=~

bundle @. Picking an arbitrary U(1) connection v in @ and using the Gauss-

Bonnet formula on the boundary components, we obtain

Af

S ()= [ dv=0. (3.1)
=1 IT2m Jom

We used the orientation of 2_,‘ induced from A for convenience. Eq.(1.4) follows

from eq.(3.1) with the space condition euI(PJ.) = :txj.

4. Comments

We have shown that if there is a topology change involving at initial and
final ends only space-times with spacelike slices, then the 2-space topologies at
the ends must satisfy the rule (1.4) with some sign assignment € = +. Surely
this selection rule is non-trivial. For example, it forbids two genus one surfaces
(x; = x, = 0) turning into a genus two surface (x, = —2). A generalization of
this example is given by EJ. of genus 9; 21, withg, =g,+g,+-- +gy_ N 23
Then |x | > Zjv:’ll |xj|, so eq.(1.4) cannot be satisfied.

The selection rule does not eliminate the possibility of topology altogether.
There are also an infinite number of combinations of surface topologies that

satisfy eq.(1.4). Moreover, ref.[3] shows that for any such combinations one can
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construct a connected M bounded by the surfaces and a flat G connection w on
M.

In deriving the selection rule we made no essential use of the form of the
action or other peculiarities of Witten gravity. The validity of our rule extends
to other Lorentzian theories of (2+1)-dimensional gravity. In particular, the
relation (1.4) constitutes part of the selection rule of Sorkin (4], which assumes

Lorentzian cobordism as the mechanism for topology change.

Finally we note that although we talked about transitions, we did not dis-
tinguished between initial 2-spaces and final ones. Perhaps we should integrate
over different ranges of (e,w) depending on what way 2-spaces are divided into
initial and final sets. It is not clear if such a distinction can be consistently
made in Witten gravity because degenerate dreibeins form an integral part of

the formalism.
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The Perturbation of the Higher Genus
Spatial Surface in (2+41)-Dimensional Gravity

Takashi Okamura
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Hideki Ishihara
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The dynamics of spatial surface with genus g > 2 in (2+1)-dimensional pure Einstein gravity is studied
by the perturbation analysis around the static moduli solution. We find that the action of the perturbed
Teichmiiller parameters has a harmonic oscillator form with time dependent mass and frequency. It is also

shown that the set of the static moduli solutions is an attractor of nearby solutions.

1. Introduction

Many physicists have been interested in a spacetime with a non-trivial topology. For
understanding the spacetime as a whole, we must study not only local but also global
structure of the spacetime. In usual studies of general relativity, the local structure is
analyzed while the global structure is fixed. Here, we would like to shed light on the

dynamics of the global structure in this paper.

We study, as a toy model, the vacuum Einstein theory in 3-dimensional spacetime
that has no Weyl tensor, i.e., no local dynamical degrees of freedom but finite number
(depending on the genus of closed spatial 2-surface) of global degrees of freedom. This
fact reduces the technical difficulty. We hope that the global structure in 3-dimensional
spacetime mimics the same one in 4 dimensional spacetime essentially. And we will use
the conventional ADM approach (1 which is applicable to any dimension and has the clear
geometrical meanings. Hosoya and N akao™ P derived the global deformations of torus-
like spatial 2-surface in 3-dimensional pure gravity by the ADM approach. In this case,
the Teichmiiller parameters move along the geodesics of the Weil-Petersson metric that is

naturally defined on the Teichmiiller space.
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In the higher genus cases, g > 2, though it is known that there exists the unique

) we have not derived the global degrees of freedom yet. The

solution of constraints,
reason is as follows: To derive finite global degrees of freedom from infinite variables,
we must solve momentum and Hamiltonian constraints. However, we cannot generally
solve Hamiltonian constraint analytically. 216 pq only exception, we have homogeneous

3]

expansion solutions without global deformations, static moduli solutions.

In this paper, for the first step to investigate the dynamics of spatial 2-surface with
g > 2, we perform the perturbation analysis around the static moduli solutions. We find
that the second order perturbed action for the Teichmuller parameters has a harmonic
oscillator form with time dependent mass and frequency. By solving the equation of
motion derived from the action, it will be shown that the set of the static moduli solution

is an attractor of nearby solutions. This fact is quite different from vacuum torus case.

2. The static moduli solution

The spacetime metric of the static moduli solutions is as follows;

ds® = —N2%dt® + a(2)%dl? , (2.1)
4(dr? + r2dg? s
di? = (('1_—:2)2) = yjdzidzl | (2.2)
a——g nd th—id (2.3)
= 7 a = 1'2 T. .

Eq.(2.2)is the line element of Poincaré disk, which is the negative constant curvature space

and the covering space of arbitrary genus (g > 2) closed surface with any moduli.

The spacetime with Eq.(2.1)is nothing but the Milne universe. The closed Riemann
surface with an arbitrary genus is obtained by identifying the points in Poincaré disk by
Fuchsian group acting on the disk. The comoving coordinate values of the identified points
do not change in time. Therefore the spatial 2-surface is stretched by a(¢) and the moduli
does not change in time. Thus, we call these solutions static moduli solutions. The moduli

is determined by the choice of Fuchsian group.
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3. The Perturbation Analysis

As seen in the previous section we can construct static moduli solutions easily in the
case of the higher genus case (g > 2) with arbitrary moduli. We perform the perturbation

analysis around these solutions.

We divide the variables into background and perturbation parts as

N=N+n, N;=1\7;+n;,

) o (3.1)
hi; = a*(t)(vi; + Qij) , 7 = a(t)(#Y + PY).

Hereafter we assign “hat” to the background quantities.

Because the background spacetime is spatially homogeneous and isotropic, we can
deal with scalar, vector and tensor perturbation separately. ) So we can derive the part of
tensor perturbation, which includes the informations of the global modes, from the total

perturbed action;

Sped = / Pa(PEQT ~ HS), (3.2)
N P PTT a’ﬁ H
red i 2
H(ze) = (== ﬁ Q% Qfp — 2 Ty, (3.3)
TIJ Qu ) (3.4)
Piri=Qppi =0, (3.5)

where indices are raised or lowered by v;; and the stroke is the covariant derivative with

respect to v;;.

It is worthwhile to note that in the action Eq.(3.2), the perturbation of spatial curva-
ture term in the full Hamiltonian does not contribute because N is spatially constant.!]
Therefore the dynamics of the perturbation is fully determined by the kinetic term of the

full Hamiltonian, i.e., the structure of the superspace.
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It is known that any TT-tensor on the closed orientable 2-surface with genus g(> 2)
is expanded by finite basis {¢(®);a = 1,2,...,69 — 6}.

P = V7Y Pay()8@i(z)/2V (3.6)
Qir = Y Gy @ ()" ¥i(z), (3.7

where V = [d?z,/7. And
) = / 278 $ v 2V
is the Weil-Petersson metric of the background Teichmiiller parameters about v;;, which

are independent of time. Finally, we obtain the action of the perturbed Teichmiiller pa-

rameters;

R o
S5ed = / [P @ — o OB ) Py + 2V 780y )@ VQ

—4a2V£P(a)Q(")}] : (3.8)
N
The equations of motion are
1d Q0 LH ey, 2o@ -
F;H(_N— + 2FQ )+ =@ =0, (3.9)

_ and its solution in the proper time gauge (N=1)is

(a)
Q1) = A 4 _Bt , (3.10)

where A(®) and B(®) are arbitrary constants. If the scale factor a(t) were constant, the

above action (3.8) is just the harmonic oscillator form, but due to the background expansion
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a(t) = t, the solution approaches to a constant value asymptotically. In other words, every
perturbed solution around a static moduli solution evolves towards another static moduli
solution. In the framework of the perturbation of the static moduli solutions, it is found
that the set of the static moduli solutions is an attractor of nearby solutions because of

rapid background expansion. In torus case with a positive cosmological constant, we can

(8)

find the similar behavior, unlike in vacuum torus case.
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Interaction of Tachyons and Discrete
States in ¢ = 1 2-D Quantum Gravity
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Abstract

The two-dimensional (2-D) quantum gravity coupled to the conformal matter
with ¢ = 1 is studied. We obtain all the three point couplings involving tachyons
and/or discrete states via operator product expansion. We find that cocycle
factors are necessary and construct them explicitly. We obtain an effective action
for these three point couplings. This is a brief summary of our study of couplings
of tachyons and discrete states, reported at the workshop in Tokyo Metropolitan
University, December 4-6, 1991.

—-114-—



Recently the understanding of two-dimensional (2-D) quantum gravity has
advanced significantly. There are two main motivations to study the 2-D quan-
tum gravity coupled to matter. Firstly, it is precisely a string theory when the
2-D space-time is regarded as the world sheet for the string. Secondly, it pro-
vides a toy model for the quantum gravity in four dimensions. There are two
approaches to study the 2-D quantum gravity: the matrix model as a discretized
theory and the Liouville theory as a continuum theory [1, 2]. The former can pro-
vide a nonperturbative treatment, but is sometimes less transparent in physical
terms since it is not in the usual continuum language. In spite of the nonlinear
dynamics of the Liouville theory, a method based on conformal field theory has
now been sufficiently developed to understand the results of the matrix model and
to offer in some cases a more powerful method in computing various quantities.
In particular, we can calculate not only partition functions but also correlation

functions by using the procedure of the analytic continuation (3, 4].

So far only conformal field theories with central charge ¢ < 1 have been suc-
cessfully coupled to quantum gravity. The ¢ = 1 model is the richest and the most
interesting, and it is in some sense the most easily soluble. From the viewpoint
of the string theory, the ¢ = 1 model has at least one (continuous) dimension of
target space in which strings are embedded. Hence, we can discuss the space-
time interpretation in the usual sense in the ¢ = 1 model. Since the Liouville
(conformal) mode plays a dynamical role if the dimensions of the target space
is different from the usual critical dimensions, the theory is called “noncritical”

string theory.

It has been observed that the ¢ = 1 quantum gravity can be regarded effec-
tively as a critical string theory in two dimensions, since the Liouville field zero
mode provides an additional “time-like” dimension besides the obvious single
spatial dimension given by the zero mode of the ¢ = 1 matter [5]. We have a
physical scalar particle corresponding to the center of mass motion of the string.
Though it is massless, it is still referred to as a “tachyon” following the usual

terminology borrowed from the critical string theory. Since there are no trans-
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verse directions, the continuous (field) degrees of {freedom are exhausted by the
tachyon field. The partition function for the torus topology was computed in the
Liouville theory, and was found to give precisely the same partition function as
the tachyon field alone. However, it has been noted that there exist other discrete
degrees of freedom in the ¢ = 1 matter coupled to the 2-D quantum gravity [6-
8]. It has been pointed out that the symmetry group relevant to the dynamics
of these discrete states in the ¢ = 1 quantum gravity is the area preserving dif-
feomorphisms whose generators fall into representations of SU(2) [9]. Exploiting
the SU(2) symmetry, Klebanov and Polyakov have recently worked out the three
point interactions of the discrete states and have proposed an effective action for

these discrete states [10).

This paper is a brief report on our study of the interaction of tachyons and
discrete states in the ¢ = 1 quantum gravity [11]. We have obtained all the
possible three point couplings completely including both tachyons and discrete
states by using the operator product expansion (OPE) of vertex operators. We
have also found that the so-called cocycle factor is needed to obtain the operator

product expansion with the proper analytic behaviour.

Let us consider the c=1 conformal matter realized by a single bosonic field
X coupled to the 2-D quantum gravity. After fixing the conformal gauge g,5 =
e¢§aﬁ using the Liouville field ¢, the ¢ = 1 quantum gravity can be described by

the following action on a surface with a boundary [1, 2, 12]

e 1 of s - s L S b
Sig, X, 9] = m/d%\/g(g 0. X05X + §°°0.9036 — 2V R$
+ 4a'u e"wlﬁ) + \}_I./ds“ (—l‘ch + Vo' e"'ﬂ‘/‘?) ,

™V

where o' is the Regge slope parameter, R the scalar curvature, k the geodesic
curvature along the boundary and d$ the line element of the boundaries with
respect to the reference metric g,3. We have rescaled the Liouville field ¢. In

this paper we will consider only the bulk (or resonant) correlation functions [7],
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for which the “energy” and the momentum conjugate to ¢ and X respectively
are conserved. For such correlation functions we can use the action without the

cosmological terms by putting g = A = 0.

There are two types of physical operators. The open string vertex operators
are given by line integrals of primary fields with boundary conformal weight one
along the boundary, while the closed string vertex operators are given by surface
integrals of primary fields with conformal weight (1,1). It is convenient to set
o' =4 (1) when we discuss the closed (open) string vertex operators. With this
convention the integrands of the closed string vertex operators can be constructed
by combining the holomorphic operator and the anti-holomorphic operator, both
of which have the same form as those of the open string vertex operators. The

holomorphic part of the energy-momentum tensor for a' = 4 is given by

| 1
T(:) = = 5(0X)* - 1(09)" - 0%, 2)
From the action, we have correlation functions of X and ¢ for closed string
(X(z,2)X (w, @) = (¢(z, 2)¢(w, w)) = —2In|z — w|*. (3)

in accord with the convention of Klebanov and Polyakov [10].

Let us first consider the holomorphic part of the vertex operator correspond-
ing to the open string vertex operators. They must be a line integral of a primary
field of unit conformal weight. The simplest field for such operators is the tachyon

vertex operator

‘P;i)(z) = iPX(2) o(Ep-1)4(2) (4)

for an arbitrary real momentum p. For higher levels there are non-trivial primary
fields only when the momentum is an integer or a half odd integer. They are

primary fields for the “discrete states” [6, 7]. They form SU(2) multiplets and
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can be constructed as [9, 10]

vt (o) = 1/(2;‘)]!:]'.’_’);)! f d';;‘i'" H_(u,_m)---f%ﬂ_(ul)w‘f)(z), (5)

where J = 0, %,l,--- sm=-J,-J+1,---,J and \I!fli)(:) is the tachyon op-

erator (4) with the momentum p = J. The integrals are along closed contours
surrounding a point z with |u;| > |uj| for i > j. The field H_(z) corresponds
to the lowering operator of the SU(2) quantum numbers and is one of the SU(2)

currents

1 X (2 1, 1
Hy(z) = %0 = 29(0,(2), Hale) = 3i0X(2) = -z ¥TE). - (©)

The quantum numbers J and m correspond to the “spin” and the magnetic
quantum number in SU(2). Actually, the fields \Ilsi")‘ with m = +J are not
higher level operators but tachyon operators (4) at integer or half odd integer

momenta +J.

In ref. [10] the OPEs of the fields for discrete states (5) were obtained using
the SU(2) symmetry. Here we make a remark on the analytic property of the
OPEs. The OPE of two vertex operators gives a coefficient different in sign
depending on the ordering of the two vertex operators. Even if we use the radial
ordering of the two vertex operators as usual in conformal field theory, the OPE
is not analytic at |z| = |w|. It is desirable to obtain the analytic OPEs since
the techniques of conformal field theories make full use of the analyticity. One
should multiply the vertex operator (5) by a correction factor as in the vertex

operator construction of the affine Kac-Moody algebra [13].

We have succeeded in constructing the necessary correction factor to recover
the analyticity. After some lengthy argument using the knowledge of integral

cubic lattice, we arrive at the following choice of the cocycle factor [11]
glay, o) = (=1)=me=) o = V(i - 1), =12 (7)

The sign of J in the cocycle factor should be changed according to the sign of J
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in the two-vector o corresponding to the (=) type. It is easy to see that eq. (7)
indeed satisfies the cocycle conditions. With this cocycle the correction factor is

constructed as [13]

ca= ele f)1B) (Al (8)

BeA

where |B) is an eigenstate of the energy and the momentum with an eigenvalue

B. Then the corrected operators

V2(m,J=1) for s =+
v = 08) (e, a= ’ (9)
m i V2(m,—J 1) for s=—

satisfy the OPEs which are analytic in the complex z plane.

We find that after an appropriate rescaling the corrected operators (9) satisfy

the same OPEs as those given in ref. [10]. The non-trivial OPEs are given by

’(+) (z )‘I,JE:') (w)~

J‘ ™ z— (szl = Jima) ‘I’JH-JZ m1+mz(w)’
+ 1 i}
S NEIE 2 PN (") P Z_w(—Jlnua-Jaml)w}a_,ls(w).
(10)
Other OPEs have no singular term. We have used rescaled fields
VM) = B, m) ¥D(z),
(11)
¥)(2) = (<1)7@I-D+- '"[NJm] vi)(z),
- 7 (J +m)(J —m)1?
N = _ ! hdl - . - 1 2
(Jym) =(2J - 1) \/;N(J,m), N(J,m) [ @7 = 1) ] (12)

We shall now generalize these results of the OPEs to include tachyon operator
(4). We have succeeded to generalize the cocycle operator to the tachyon case,
but we merely refer our paper [11] for the full account of the construction and

write down only the OPE without the cocycle factors because of lack of space.
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From the conservation of the energy and the momentum we find that only four

non-trivial OPEs are possible:

1
WD) W w) v R W) (5= —pr—p2+1),

¥ U ()~ —— L ¥ (0) (a=pitp+1), -

1
ST).II—I(Z) T (w) ~ ;_—t;G(JT,L ¥ (w) (ps=di—14p),

wG( ) ‘1’ Nw) (p3=1-J1+p2)

1
(+) Jl(z)q, (w)N — i

The coefficient in' the third and fourth OPE in eq. (13) can be obtained by using
the representation (5) for \I!H') _y or the similar expression for m =1 - J and

directly evaluating the OPE

G(+) — r(l - 21)2) - (_1 2 -1 ﬁ(P:hPs)

ar = oM (—2pa) N(ps,p2) (14)
&) _(_I)Jl(z.l,—l)r_(l_'*'?ﬂ_)_:(_ )Jx("J:—l)_N(p"’_'p") 3
1p2 2T(2p3) N(p3,p3)

where N(p, p) = 3T(1+42p). To obtain the coefficient of the first OPE in eq. (13),

we apply the operator f —(u) to both hand sides of the equation, where the

271
integration contour surrounds both of z and w. The coefficient of the second

OPE in eq. (13) can be obtained similarly by applying § 5% 21"H.|.(u) We find

+) _ LA —2p1) _ 5 N -l wpips
Fppy = 5T2p) N(pi, ;) (pa,pz)] Tem(2rpy)’ (15)
—1) - T(1+2 2 . . _
(_1)J3(2J3 I)FFSIP)2 = _2—(I‘(T:12)) ;N(pl,pl)N(pg,?g)Slﬂ(?ﬂ’pl).

The coefficients of the OPE determine the three-point correlation functions
of the physical operators, which can be summarized by the effective action. In-

troducing a variable g J) (s = £) for each discrete state, the cubic terms of the
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effective action for discrete states determined by the OPEs (10) are [10]

53 = Z (J'.?Tn‘l - Jlmz)fABCg.(]:liifg—l,—ml —mgg.(]-:,)ff]g.(]:,)fg; /d¢’ (16)

Jymy,Jama

(30 B

where we have introduced the Chan-Paton index A in the adjoint representation

of some Lie algebra and have factored out the Liouville volume [ d¢.

In ref. [10] it was shown that the terms in the cubic interaction (16) which
depend only on the integer modes g.(,f,): (J, m € Z) can be written in a compact

form by introducing a scalar field on R x S?

Bo(d,0,0) = Y. TAGSNAM (I, m)Do(i,6,00e-%.  (17)
s, AJm

Here, T4 are the representation matrices of the the Lie algebra, D/, are com-
ponents of the SU(2) rotation matrix [14] and M*(J, m) are the normalization

factor

D2, (0,6, 8) = (Jm]| emi¢ =i o=i%: | J), (18)

J,m)N(J,0)
J )

(=™ J(2T +1)

_ M _
M*(J,m) = M=Um) = = N, m)N(J,0)°

(19)
The effective action can be written in terms of the field ®y using z* = (8, )

(1) _ 24 i 9%0 029
st /d¢e /52 d0dyp e 'n(@o ). (20)

We have succeeded to generalize this construction to the terms containing

half odd integer modes as well as integer modes. We introduce two spinor fields
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Q% and <I>__% on R x S? for half odd integer modes g.(;,): (J,meZ+1)

3 s - 1
B0.00)= T TAGRMO D000 % (u=2l), (1
s,A,Jm
where
N IN(J & —1ym+s

T+1 i N(J,m)N(J,3)

Note that ® ! and ®_ ! have the same coeflicients g_(,",): and are not indepen-
dent. In order to write down the effective action in terms of these fields we need

covariant derivatives on S? acting on spinor fields ®,. They are given by
Vi=7F0 ! (i8 cos f) (23)
2T TN T Sng e T H -
when acting on ®,. The effective action can be written as

s = /d¢ e2¢f52 d()dt,osin()Tr(CI)o [v,rq»_%,v_@%]). (24)

The sum of eqs. (20) and (24) gives the complete cubic terms for the discrete
states (16).

Apart from the special case of the compact boson X with the self-dual ra-
dius, we have tachyons with momenta other than integer or half odd integer
which should be included in the effective action. The OPE results (13) can be
summarized as two types of terms in the effective action involving tachyons: two
tachyons with the same chirality (+) or (=) couple to the single discrete state
of the (+) type. We have succeeded to write down the local effective action

involving tachyons, for which we refer our paper [11].
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Abstract

The Fock-Papapetrou (FP) method is applied to the motion of spinning test
particles moving in the Riemann-Cartan (RC) spacetime. With the aid of the
WKB method, we can then derive the equations of world line and spin precession
due to torsion for particles with arbitrary spin. The world line is the geodesics
of the metric, while the intrinsic spin is not Fermi-Walker transported along the
world line relative either to the nonsymmetric connection or to the symmetric

connection.

§1 Introduction

In general relativity, the problem of motion of extended bodies was first been
studied by Fock!) and developed by Papapetrou,z) who derived the equations of
world line and spin for spinning test particles moving in a background gravita-
tional field.®) According to their result, test particles behave in the single-pole
approximation like spinless mass points, while the world line deviates in the pole-
dipole approximation from the geodesics of the metric due to the spin-curvature

coupling.

In this paper we apply the FP method to the motion of test bodies moving
in a background RC spacetime.!) The torsion of spacetime, if it exists, is coupled
to intrinsic spin of matter fields like the fundamental fields with spin 1/2, thus
giving rise to nontrivial and observable effects on the motion of particles with
intrinsic spin. It has been suggested by Adamovicz and Trautman®) using a spin-

fluid model® that intrinsic spin is Fermi-Walker trahsported along the world
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line relative to the nonsymmetric connection. The result obtained by the WKB
method does not agree with theirs, however.”) It seems highly desirable to apply

the FP method to spinning test particles moving in the RC spacetime.

The resultant equations of spin and world line for spinning test particles are
found to involve a quantity N#** which we call the spin-current. For wave packets
of fields with arbitrary spin, the spin current can be calculated with the aid of
the WKB method. Using the resut for N*** in the equations derived by the FP
method, we can then get the equations of world line and spin for particles with

arbitrary spin.

Throughout this paper we use the same notation and convention as Refs.4),
7) and 8).

§2 The FP method applied to test particles in RC spacetime

The starting point of the FP method is the response equations of the energy-
momentum tensor density T#¥ and the spin tensor density S™"" of matter fields

in the background RC spacetime.!) Using Noether’s theorem, we can get

VT — K" T + %F’"’"‘”Smnu =0, (2.1)

9,S™ 4+ Amkusknu + Ankusmku _ (Tmn _ Tnm) =0, (22)
where T#” and S™" are defined by

_ 6Ly
- 66,“,

8L s

TH
6Amrw

er”, S = .9

(2.3)

with Ljs being the Lagrangian density of matter fields under consideration. Ac-

cordingly, we shall adopt (2.1) and (2.2) as the basic response equations.

An extended body sweeps a world tube in spacetime. Inside the tube we
take an arbitrarily chosen, timelike world line L which will ‘represent’ the motion

of the body as a whole. The coordinates of the points on L will be denoted
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by X#(r) with 7 being the proper time on L. Putting éz* = z# — X#(7) with
6z° = 2% — XO(7) = 0, we define the total spin of the body by

JH = / (6z#T*° — 62T 4 S#0) d°¢, (2.4)

and the spin-current by
N#A = g0 / st die, (2.5)
where U# denotes the four-velocity, U# = dX¥(r)/dr, and the integration is

carried out over the three-dimensional space with z =constant. The intrinsic

spin tensor S#¥ is given by SF = N[,

If the dimensions of the extended body are very small, all integrals with one or
more factors of §z” should be also very small. Then the single-pole approximation

is characterized by ,
/ T d%z £0  but / sz’ TH d3z =0,---. (2.6)
and the pole-dipole approximation by

/ 5z T d%z # 0 but / 62?8z T d°x =0, --. (2.7)

The main results can be summarized as follows.*)

Single-pole approximation

In the single-pole approximation for T#¥ and S™"¥, intrinsic spin is Fermi-
Walker transported along the world line relative to the nonsymmetric connection,
and the world-line equation has a spin-curvature coupling similar to that in gen-

eral relativity.
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However, the validity of the single-pole approximation seems doubtful because
of the following reasons. Firstly, the spin equation does not agree with that for
elementary particles with spin 1/2 and 1 derived by the WKB method. Secondly
and more seriously, it turns out that the Dirac particle behaves like a spinless
point particle because S*” vanishes in this approximation. Thus, higher-order
approximation is indispensable in order to treat the intrinsic spin of fundamental

particles.

Pole-dipole approximation

Assuming the pole-dipole approximation for T#" and the single-pole approx-

imation for S#¥*, we can obtain the covariant equation of spin;

VJ# vuY vU# 1 ) .
2 (U“ vr v* vr ) v = 56“”0[]" (QI‘P*TNGAT + I‘ATPNM") (2.8)

with J# = -;-e""""U,,J,,,,. In the present approximation the total spin J#¥ and the
spin-current N#”* are tensors under general coordinate transformations, which
implies that S#” is also a tensor. We have also used the fact that the constraint
J#¥U, = 0 can be imposed by appropriately choosing the world line L. It is
physically reasonable to assume another constraint S#U, = 0, which ensures

that the intrinsic spin has only three independent components.

The covariant equation of world line is, on the other hand,

VPY 1 1
r—— + —RpU””Jany - 5

YT 92 (V”I{p‘w) Npau =0, (29)

where the four-vector P* stands for

- py
Ph = mU* — UV(VéT

+ K* NV — KV g N7
Lo (2.10)
+ SKpa NP = Ko N9°),
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and the scalar m is

~ JOpUa ) NOpa 1. NpaO
M= =P+ UG o+ Ul o = 5K U5 oy
= _‘ﬁyUy

with P* being given by P* = [T#%d®z. Here R?°* denotes the Riemann-

Christoffel curvature tensor formed of the metric.

It should be noticed that (2.8) and (2.9) involve the spin-current N #** coupled

to the torsion of spacetime.

§3 The semiclassical particles with arbitrary spin in the RC spacetime

Let us now apply the result obtained above to the motion of wave packets with
arbitrary intrinsic spin.®) Theory of higher-spin fields was initiated by Dirac,
Fierz, and Fierz and Pauli. The Lagrangian formulation for massive fields with
spin higher than 2 was later constructed by Singh and Hagen,®) and its massless
limit was investigated by Fronsdal and Fang.!%) A first-order formalism for boson
fields with arbitrary spin was also formulated,?) which allows us to introduce the
electromagnetic interaction and other gauge couplings unambiguously: Thus, the
Poincaré gauge invariant Lagrangian for higher-spin fields can be derived in an

unambiguous manner both for the boson and fermion cases.

Fields with half-interger spin

Consider first a spin-s fermion field described by the Dirac-Rarita-Schwinger
symmetric tensor-spinor 'l’(")ll--‘lu ofrankn=s-1/2(n=0,1,2,--) satisfying
the spinor-trace condition,') A 1/)(")11 .4, = 0. The Lagrangian given by Singh and
Hagen®) takes a complicated form involving many auxiliary fields pr=1 L (0

and x(* %), ..., x(®), which are also Dirac-Rarita-Schwinger tensor-spinors. The

+) This condition implies the tracelessness with respect to Lorentz indices.
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Lagrangian density in the RC spacetime can be obtained by the minimal pre-

scription as follows:

Ly =e [%E(")u-dn (ih7ka - m) PpMhle e,
(3.1)

+ (terms involving the auxiliary ﬁelds)} ,

where the terms of the auxiliary fields are chosen so that all the auxiliary fields
automatically vanishes for the free field case, and the covariant derivative D;
operates on both spinor and tensor indices. The field equation derived from (3.1)

is very complicated.

Now let us look for a WKB solution of the form

¥4y (2) = AP,y (2) exp(iS(z)/h). (3.2)

In the lowest onder of &, it can be shown that all the A®)(z) corresponding to

the auxiliary fields are vanishing, and that the A(®) satisfies
(YOS + m)A™, i (2) =0,  (8"S)A™, . (z)=0. (3.3)

The first equation implies that the function S obeys the Hamilton-Jacobi equa-
tion, g#*(2)8,5 8,5 + m? = 0 : As is well known, the complete solution of the
equation has three independent parameters o; (i = 1,2,3) besides an additive
constant. We shall denote the solution as S(z,a). In conformity with this, we
shall write the corresponding solutions as A(n)h~~~lu (z,a) and 1,/)(")11...1” (z, ). We

form a wave-packet solution by superposing ¥(z,a) over a small region in the

a-space:
P () = /daa W(a—&) ™. 4, (2, )

~ A (2, F) / Bo W(a — ) exp(iS(z, a)/h) (3:4)
= A" 4 (z,3) =, 7),

where W(a — @) is a weight function peaked at o; = @; (i = 1,2,3) so sharply
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that A™) ;. (z,a) can be approximated by A 1 (z,@), and the last equa-
tion defines (z,@). Because |S| > &, the integrand oscillates rapidly in the
integrals of (3.4), and therefore compensation takes place almost everywhere in
the spacetime: The only exception is a thin tube around the world line satisfying
8S(z,@)/0c; = 0. Thus ¥ 4 () of (3.4) indeed represents a wave packet.
The world line X#(7) defined above satisfies

dX#(7) _

Ur(r) = ) = om(x(2)8,5(X (), 3, (3.5

and hence obeys the geodesic equation, VU#/V T = 0.

Since e;” and A(")[l...ln are assumed to be slowly varying over the size of the
wave packet, they can be approximated by e;”(X(7)) and A(")h.‘.l,,(X(r),E),

respectively.

If we use Uy = e*(X(7))Uu(7), (3.3) can be rewritten as

(VUL + 1)AM™, 1 (X (7),®) =0, vhA™, (X (7),®) = 0. (3.6)

Now we are ready to calculate the spin-current N#** for the wave packet:

The final result is

NHA = _guvpA _ %U[u gvir (3.7)

with
SH = N#AU,
3.8
= 2ish A h-lrg(m), ] (—U" / |Q|2ed3-’ﬂ) : (39)

where s = n+ % stands for the spin of the particle under consideration. It should
be noticed that S#*U, = 0 holds owing to (3.6). We can also show that the

rotational spin L#¥ = J#* — S#¥ is negligibly small for the wave packet solution.
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Now let us turn to the boson case. The Lagrangian density can be obtained
by applying the minimal prescription to that in the Minkowski spacetime. Since
we start from the first-order formalism of Singh and Hagen, no ambiguity arises
in replacing ordinary derivative 8; by the covariant one Dj. Then the spin-
current can be calculated for wave packets in the same manner as in the fermion
case: The result is precisely the same as (3.7) with S#” now being given by an

appropriate expression in terms of the boson field:®) The $#* is shown to satisfy
Sy, =0.

Using the above results for the spin-current in (2.8), we arrive at the equation

of spin precession due to torsion:
VS vuy vu#
=[y» U
vVr (U \% 4 v vr ) Sy
+ f1e"P°U yag S, + fo (U,,t”['“’] - 3U[“t”]""U,,Ua) Sy,

(3.9)

where f; and f, are dimensionless, spin-dependent parameters defined by

1 1 4 1
fl="§(1+;), f2=§<1—~'2—3), (3.10)

and a, and ¢?#¥ are the axial-vector part and the tensor part of the torsion ten-
sor, respectively. The equation (3.9) agrees with our previous result for spin 1/2
and 1 derived by the WKB method alone. Furthermore, since it is impossible to
have both fi; = 0 and f, = 0 at the same time, the intrinsic spin vector is not
Fermi-Walker transported along the world line with respect to the ordinary, sym-
metric connection. Thus, the intrinsic spin necessarily precesses due to torsion

irrespective of the spin value. We also note that S#S,, is a constant of motion.

We can rewrite (3.9) into an alternative form in terms of the covariant deriva-

tive D/ D+ with respect to the nonsymmetric connection:

DS# DUY Du#
={u* —U”
Dr (U Dr v Dr ) Sy

1 (3.11))

2
— 520,008, - = (v, - 3ube¥ep,p, ) s,
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This equation shows that the intrinsic spin vector is not Fermi-Walker trans-
ported along the world line relative to the nonsymmetric connection: We notice,
however, that the Fermi-Walker transport is realized in the limiting case s — oo.
It should also be emphasized that the equation of spin precession due to torsion

depends on the spin s.

Finally, we briefly comment on the world line equation derived by the FP
method. The intrinsic spin S#¥ is of the first-order in &, and hence its magnitude
is negligible in the semiclassical limit - — 0: According to (3.7), this means
that the spin-current N#*¥? is also negligibly small. Thus, the world line equation
(2.9) is reduced to the geodesic one with respect to the Christoffel symbol. This
result is consistent with the Hamilton-Jacobi equation, since the latter equation

is derived by the WKB method in the lowest order in A.

§4 Summary

We have applied the FP method developed in general relativity to the motion
of extended bodies in the RC spacetime. The resultant equations of motion are
found to involve the spin-current N#“* coupled to torsion. We have then calcu-
lated the spin current for semiclassical particles with arbitrary spin represented
by wave packet with the aid of the WKB method. Combining the above results,
we have obtained the equations of world lined and spin precession for semiclas-
sical particles with arbitrary spin. The world line is the geodesics of the metric,

while the equation of spin precession has two spin-dependent parameters.
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Numerical Relativity

KEN-ICHI OOHARA
National Laboratory for High Energy Physics
Oho, Tsukuba, Ibaraki 305, Japan

1. Introduction

Any theory of physics should be proven by experimental and observational
facts. In order to compare a theory with experiment or observation, we should solve
cquations, which are in general complicated and non-linear partial differential equa-
tions. Such equations cannot be solved by analytical means without any approxima-
tion. For example, we assume some symmetry, spatial and/or temporal, or introduce
some small quantity and expand the equation into its power series. Many of important
problems, however, does not have such symmetry or a small quantity. Many of prob-
lems in classical relativity force to solve Einstein equations for strong gravitational
field and/or dynamical and asymmetric space-time. If you consider the formation of
a black hole or the gravitational radiation from the coalescence of a binary system,
we should solve equations for highly dynamical and general relativistic space-time.
Furthermore an asymmetric process is very important since the gravitational instabil-
ity causes fragmentation of matter and a lot of gravitational waves are emitted from
an asymmetric system. For these problems, we should solve Einstein equations (and
hydrodynamic equations) by numerical means; that is numerical relativity.

Numerical relativity involves the application of advanced computer technology
and modern computational algorithms. The condition is severer for general relativity
than for Newtonian gravity. For self-gravitating system in both cases, we should solve
Poisson equations, or more generally elliptic partial differential equations, which are
usually the most time-consuming in view of numerical calculation. In Newtonian
gravity, we have only to solve a Poisson equation for the gravitational potential 4. But
in general relativity, we need calculate the metric tensor g,,,,, for which we should often
solve more than one eclliptic equation in connection with the singularity avoidance.
Numerical relativity usually requires more memory of a computer not only because
there are more variables, the potential ¥ vs. the metric tensor g, for example, but
also because the gravitational radiation should be calculated at the region sufficiently
far from the source.

In this article, I will review approaches of numerical relativity. For more
detailed, see reviews of Smarr!, Piran? and Nakamura, Oohara and Kojima.? For
the frontiers of numerical relativity after the mid-seventies, see an informal series for
numerical relativity published by Cambridge University Press.® * ¢
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2. Progress in Numerical Relativity

Before explaining the method of numerical relativity, I show a brief history of
numerical relativity. For more details, see the review of Hobill and Smarr.”

May and White® succeeded in numerical calculation for collapse of a spheri-
cally symmetric star in the mid-sixties for the first time. In the same era, Hann and
Lindquist® tried to study collision of two black holes. However both groups obliged to
face the singularity formation. A singularity appeared soon after calculations started
unless a black hole was never formed, and then they could not continue numerical cal-
culation. Subsequently the modern technique for numerical relativity, including appli-
cation of ADM-formalisin, was developed and numerical relativity gained momentum
only in the mid-seventies when Smarr, Cadez, DeWitt and Eppley solved head-on
collision of two black holes.’® The computer they used was CDC 6600 and CDC 7600,
whose performance (the theoretical peak speed) was TMFLOPS and 30MFLOPS, re-
spectively, and the available memory was 256Kbytes and 512Kbytes. Note that such
performance can be achieved on a workstation now and the memory for them is less
than that for a present personal computer. In 1980, Nakamura, Maecda, Miyama
and Sasaki published their success in numerical simulation of the axially symmet-
ric collapse of a rotating star.!' A modern supercomputer CRAY-1 was shipped in
1976. By the mid-eighties, supercomputers, CRAY-1, CRAY-XMP, FACOM VP-
series, HITAC S810 and NEC SX-series became available for researchers in physics
including numerical relativity. The peak performance and the maximum memory of
these supercomputers is several hundred MFLOPS and a few hundred Mbytes. In
this time, Bardeen and Piran developed an axisymmetric general relativistic code!?
and Stark and Piran calculated axisymmetric collapse and the resulting gravitational
wave emission’ on a CRAY supercomputer. Subsequently, the rapid progress was
made in supercomputers; the peak speed and the maximum memory increased to
more than 1GFLOPS and 1Gbytes. As the first step to three-dimensional numeri-
cal relativity, Oohara and Nakamura solved the coalescence of binary ncutron star
systems using a three-dimensional post-Newtonian code'* on HITAC S820/80, whose
performance is 3GFLOPS and 512Mbytes. To complete the study of the coalescence
of binary black hole or neutron star systems and the resulting gravitational radia-
tion, we need a three-dimensional gencral relativistic code. In order to perform fully
general rclativistic simulation of collapse of a star or coalescence of binary neutron
star systems with good accuracy, we may need more powerful supercomputers such
as machines on the order of 100’s of GFLOPS and 10’s of GFLOPS. They might be

available in the mid- or late-nineties.

3. General Formalism
Numerical relativity is a method of numerical solutions to Einstein equatious

as Cauchy problems. It yiclds an approximate solution to Einstein equations. Like in
perturbation calculation, it requires an expansion parameter. The crucial difference
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between numerical calculation and other approximation methods is the nature of the
expansion parameter. The numerical expansion parameter is not a physical parameter
of the problem. For the finite difference method, it is the grid spacing divided by the
typical length scale of the system and for the (smoothed) particle method the mass of
each particle divided the total mass of the system. Since the expansion parameter is
not physical, numerical methods can be applied for strong field, non-lincar problems
cven when all natural expansion parameter are large.
Einstein equations in the form

G = 871T,,. (1)

is not suitable for numerical solution, since there are six equations of second order in
time as well as four first order equations. To construct a successful numerical scheme,
they have to be written as a set of quasi-linear partial differential equations of first
order in time;

oQ

5 = L@ ). (2)

In order to do it, I use the 3+1 ADM formalism'® in this article. Other approaches,
such as 2+2 formalism’® or Regge calculus,!” will not be discussed, because almost
all the successful results were presented in 3+1 formalism and I think it is the most
promising for the future.

In 3+1 formalism, initial values are defined on an initial spacelike hypersurface
and then evolved through their future development. The evolution is performed from
one hypersurface to a nearby surface. The space-time is foliated into a set of three-
dimensional spacelike hypersurfaces. (Other types of foliation can be considered. In
a characteristic 24-2 formalism, it is foliation to two-dimensional null hypersurfaces.)

tine spelike

Fig. 1. Slicing of space-time.
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Fig. 2. The lapse function and the shift vector.

The four-dimensional line element is written in the form
ds* = —(a? = B;3)dt? + 28,dx'dt + 'yijrl:ridarj. (3)

The time coordinate labels spacelike hypersurfaces with intrinsic geometry specified
by the spatial metric tensor v;;. The unit timelike four-vector normal to the hyper-
surface is given by

04 (44

1B
n, = (-a,0,0,0), n' = (— , = L) . (4)

The proper time interval along n#* between two neighboring hypersurfaces is o times
the coordinate time interval At. The three-vector S'At on the next hypersurface is
the vector from the intersection point of the normal line to that of the coordinate
line. So a and ' are called the lapse function and the shift vector, respectively. The
unit tensor of projection into the hypersurface is defined by

h*, = 6", + n"n,. (5)

For any vector, say 1%, the projected vector 2*, V¥ is the vector in the hypersurface
or n, W, V¥ = 0. The extrinsic curvature defined by

. o 1
Kij=—=h"h ny,, = - 7 (’ij,o — By + ﬁj]i) (6)

describes how the hypersurface is locally embedded in the four-dimensional space-

13 ”n

time. Here ;" denotes a four-dimensional covariant derivative with respect to g,,,,
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Fig.3. Extrinsic curvature.

“|” a three-dimensional covariant derivative with respect to ;; and ©, ? an ordinary

partial derivative.

The (3+1)-decomposition of Einstein equations is performed by multiplying

them by n#n", n*h;" to get
(1) the Hamiltonian constraint
2G,, '’ = R+ K? — K;; K = 16E,
where R = R;; =y R;;, and
(2) the momentum constraints
- G = KJ|; — Kjy = 8nJ;,
where K = K*;, and multiplying Einstein equations in the form
DR, =87(Ty — 9 T/2)
by h;#h;¥ to get

(3) the evolution equations

aK; = oRy+ KKy — 20Ky K} — 8w (Si; + v;(E — 5)/2)

—ayi; + ﬁklj.Kk.' + ﬂkh'ffkj + ,BkI(',-jp;.
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For the evolution of «;;, we use Eqs.(6) or
0{)’,‘1 = —2(1!1\‘.']' + ﬂiU + ﬂjli (11)

Here (")R,,,, is the four-dimensional Ricci tensor with respect to g, and Ry is the
three-dimensional Ricci tensor with respect to v;;. The energy density E, the mo-
mentum density J; and the stress tensor S;; of the matter measured by the normal
line observer are, respectively, defined by

E = 22T, (12)
Ji = =h"n*T,,, (13)
Sij = h.‘"hju];“,, (14)

and S = §¢,.
Evolution equations of matter are given by the energy-momentum conservation
equations, or the contracted Bianchi identities

T.,)» =G, =0. , (15)
For a perfect fluid, T, is given by
T = (p+ pe + P)uyu, + Pg,,, (16)

where p is the proper mass density (or baryon mass density), € is the internal energy
per unit mass, P is the pressure and u,, is the four velocity of the matter. The pressure
P and the internal energy € are related to the mass density p by an equation of state.
The conservation of mass (or baryon number) implies (pu®)., = 0, by definition. It
can be written as

Dy(au®p) = 0, (17)
where

DQ = a,(v'*Q) + & (v ?V*Q) (18)

with 7y being the determinant of v; and V¥ = «'/u®. The “(341) variables” E, J;
and S;; defined by Eqgs.(12)-(14) are related to p, €, P and u* by

E = (p+ pe)(au®)?P [(au“)2 - 1] , (19)
Ji = (p+ pe + Py, (20)
S,'_,' = ([) + pe + P)u,'uj + Ph,‘j. (21)

In order to obtain the evolution equations of E and J;, write the energy-momentum
tensor in the form

TIIU = (hpn - 71“,7!")(’[”" _ 7ly1lﬂ)T"/’
= E"w’llu + -I"'H.u + J,,n,, + S“”h"nh”/i (22)
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and project Eq.(15) along u” and (&;* — w;u"). Then we have

. 1/2 Jk jm
D.E = =8, (v/*P(V* + ) + a7 /?PK ~ 42 J*0c + =L PJ +’ EK"’" (23)
and
o 1/2Jk.]m
DyJ; = —0'71/23,-P - ')’1/2(P + E)('),-n- + -5%—13—_*_—1—;,—)-6,-7,5,,. -+ 7‘/2.Ik8,-ﬁ". (24)

Now we have 4 constraint equations, Eqs.(7) and (8), 12 evolution equations,
Eqgs.(10) and (11), of the metric and 4 evolution equations, Eqs.(23) and (24), of
the matter. However, these cquations are not independent because of the Bianchi
identities. To illustrate it, defince the deviations from the constraints:

H = y?(K;K% - K- R—8xE) (25)
H; = —29*(K7),; — K — 8rnJ,). (26)

If we assume H and H; do not vanish and « and 8 arc not functionals of v; and K5,
the deviations H and H; evolve as

OH = 2H'da+ adH' — 8;(HF) (27)
6¢H,- = Ha,'(t - BJ(ﬁ’H.) - Hjé),-ﬁj. (28)

These equations assure that H and H; vanish if H = H; = 0 at ¢ = 0. Therefore,
if we solve the constraint equations in the initial Cauchy slice, we need not solve
them afterward, when we have only to solve evolution equations. This is called the
free evolution method. In this method, the deviations of the constraint defined by
Eqs.(27) and (28) can be used to check the accuracy of numerical solution. Alter-
native methods can be chosen to evolve the metric. In constrained evolution, all
the constraint equations are solved. In partially constrained cvolution, some of the
constraint equations are solved. Chopped evolution is free or partially constrained
evolution which is fully constrained every fixed time interval. In any case, we solve 12
(or less if the system has some symmetry) evolution equations for the metric in cach
time step. This corresponds only 6 degrees of freedom and their time derivatives,
while there are 10 degrees of freedom in the four-dimensional metric tensor g,,. The
rest of degrees of freedom is determined by coordinate (or gauge) conditions, which
we will discuss later.

In a numerical point of view, it is more time consuming to solve a counstraint
equation than an evolution equation since a constraint equation is generally an elliptic
partial differential equation. This difficulty disappears in some gauges, where a con-
straint equation become parabolic. It has been shown that fully constraint schemes
are likely to be numerically stable in some cases. !
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Using transformed quantities, the Hamiltonian and the momentum constraint equa-
tions are written as

88 ~ fop + (Rsl?) 977 = SR = ~16mppy™ (36)

and 1

AW, + 29,5, - Ew*c = 8rJ, (37)
where py = ¥°F and J; = ¢°J;. The conformal factor " and the vecotr potential W;
arc determined by these equations, while %;, I\,J , I, pp and J; are frecly specified.
In many cases, %:; is chosen as the metric of the flat space and K IT = £ = 0. In this
choice, R = 0 and it simplifies the constraints equations.

Asymptotic flatness requires the boundary condition as 3 — 1 and W; — 0
for » — co. However, in numerical calculation the numerical boundary is not infinity
but finite though it is far from the source. Therefore we need the boundary condition
at the numerical boundary. For ¢, it is

M
Y=1++007), (38)
where M is the total energy. Usually it is used in the form
du u
— 4= =073
=0, (39)

where u =9 — 1. ) :
As for W;, at the region where J; = 0, for Eq.(37) with W; — 0 for r — o0,
there are three solutions which, combined, yield?? 20

1 D
W, =— 4r (nimye + Ti) PF + O(r™%), . (40)

where P is a constant vector and n; = ! /r is the unit normal of a sphere. With this
vector potential, K;; is given by

KV = -2—::-2- [P"nj + Pint — (37 — n'a/f )Pknk] +0(r™). (41)
Thus P? is the total linear momentum of the system;
P= -1- — [ (&9 - 710 s, = [Fav (42)

Since J* can be freely specified and it determined P, the boundary condition can be
written as

avi  avi _3 ‘
43
o = O(r™), (43)
where ' .
Vi = W; + (g + Ta) P/ (47). v (44)
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5. Coordinate Conditions

The coordinate conditions specify the lapse function « and the shift vector 3,
which, in principle, can be freely specified since they are not determined by Einstein
equations. The coordinate conditions are related also to the choice of the coordinate
system; Cartesian (z,y, ), spherical (r, 8, ¢), cylindrical (R, 4, z), etc. How to foli-
ate the four-dimensional space-time into a set of three-dimensional hypersurfaces is
determined by « and the coordinate system in each hypersurface is by 4. What coor-
dinate conditions are imposed plays a crucial role in suceess in a numerical solution.
Here T will present a brief review of various coordinate conditions.

We have the following demands on the coordinate conditions.

1. Singularity avoidance:

If a singularity appears in the numerical region, we can not continue the nu-
merical calculation. So we should use the coordinates that do not develop
singularities. For example, the coordinate conditions are imposed so that the
time advances slowly necar physical singularities but the whole space-time re-
gion that is physically important can be covered. Moreover the coordinates
must not develop coordinate singularities, apart from simple singularities that
can be factored out.

2. Simplification:

We should use a coordinate system that simplifies the metric and Einstein equa-
tions. A complicated form of the equations, in general, causes difficulty in
accurate solution and in stability of nmumnerical calculation.

3. Calculation of gravitational radiation:

Gravitational waves can propagate in the region away from sources. It is possible
if the coordinates turn to a natural radiation gauge asymptotically. In order to
calculate the energy and the waveform of gravitational waves, the gravitational
degree of freedom should be isolated as much as possible.

4. Unique form of known exact solutions:

In order to identify the final destiny of the space-time evolution, it is advan-
tageous if known exact solutions have a unique form in the chosen coordinate
system.

5.1. Lapse function and slicing condition

Slicing conditions, or the conditions on «, are particularly related to singularity
avoidance. Thus it is very important for success in numerical solution.
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Gaussian coordinates

The choice of
a=0 (usually with 8° = 0) (45)

1s called Gaussian coordinates. This is the simplest and used in early works.? However
it does not lcads to any simplification of Einstein equations except for elimination of
o (and f*). This coordinates has a tendency to form caustics and singularities that
arc pure coordinate singularity. Physical singularities can not be avoided.

Lagrangian slicing

In slicing
au’ =1, (46)

where u° is the t-component of the matter four-velocity, the spatial components of
the velocity 4’ vanish and the spacelike hypersurfaces are orthogonal to the flow lines.
If * = 0, the spatial coordinates follow the matter flow lines. So this slicing is called
Lagrangian slicing. It simplifies the hydrodynamics equations. However, the matter
flow lines converge towards a singularity if it forms. The Lagrangian hypersurfaces
touch the black hole’s singularity as soon as it forms long before all the matter falls
into the black hole.

Mazimal slicing

Maximal slicing condition is that
K =0, (47)

where K is the trace of the extrinsic curvature tensor. The variation 6V of three-
volume of each spacelike hypersurface V defined by

V=/q'y'/2d3:1: (48)

vanishes on this condition; 6§V = 0. It means that this condition maximizes the
three-volume. With K = 0 in the initial hypersurface, 8K /8t = 0 yields the maximal
slicing condition. Thus the lapse function « is determined by

aK

— = —Ba+ [KyK9 + 4n(E + S)] e = 0. (49)

Asymptotic flatness requires the boundary condition

const
o — 14

for r — oo. (50)
T
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Maximal slicing has excellent singularity avoidance features. The lapse function v de-
creases exponentially near the singularity where E 4+ S is large, allowing the maximal
slices to span the rest of the future development of the initial data.?® %% Grav-
itational radiation can propagate nicely on maximal slices.?® In the equation for a
Eq.(49), the shift vector 8 does not appear. Thus a can be determined independently
of #. Therefor maximal slices are very popular in recent numerical works, although
one needs to solve an elliptic equation at cach time step.

Constant mean curvature hypersurface

Maximal slicing is generalized as
K = k(t), (51)

where k() is constant in cach hypersurface, while it may depend on time ¢. It
has singularity avoidance feature like maximal slicing.?* Constant mean curvature
hypersurfaces become asymptotically null and reach null infinity (either *+ or -
depending on the sign of k(¢)), while maximal hypersurfaces reach spacelike infinity
I°. This may be advantageous for studying propagation of gravitational radiation. For
cosmological problems, this slicing leads to the natural generalization of the constant
time slices of the Robertson-Walker metric.??

Polar hypersurfaces

Polar hypersurfaces,

K-K,.=0, (52)
are compatible with spherical polar coordinates (r, 8, #).'? This slicing condition yields
the equation for o given by

ok oK, _ 53

ot ot (53)
which is a parabolic equation since the second order derivative of o with respect to 1
disappears. Solution of the parabolic equation is less time consuming than solution of
the elliptic equation Eq.(49). With the radial gauge discussed later, the polar slicing
seems to have singularity avoidance feature that is even stronger than that of maximal
slicing. Unlike in prior slicing conditions, the shift vector 8' appears in the equation
for a. If equations for v and ' are solved simultaneously, the equations become an
elliptic system. Morecover the behavior of polar hypersurfaces becomes irregular at the
origin. To avoid the irregularity, an inner portion of the polar hypersurface must be
replaced by another. For example, the condition that hypersurfaces are maximal near
the origin and polar outside the intermediate region, and they are fitted smoothly as

K=C@l/ro)K,, (54)

where C is a smooth function with C(0) = 0 and C(x) = 1 for = > 1.
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5.2. Shift vector

The condition on the shift vector §° is not so crucial as that on the lapse
function a. However it is related to simplification of Einstein equations and isolation
of the gravitational degrees of freedom.

Normal coordinates

The normal coordinate condition:
gi=0, (55)

is the simplest. The trajectories fo these coordinates are orthogonal to the spacelike
hypersurfaces. Thus this condition never leads to a coordinate singularity. Disap-
pearance of 8¢ makes evolution equations simple but this simplification is very minor
in the numerical point of view. It might be very difficult to identify the formation of
a specific geometry. In spite of such drawbacks, the normal coordinate condition was
used in many works.

Lagrangian coordinates

Lagrangian coordinates,
Bi = —u;fuo, (56)

leads to w and follow the matter, while u; does not generally vanish. (Note that
Lagrangian slicing Eq.(46) with #° = 0 leads to «' = u; = 0.) These coordinate
will not develop coordinate singularity unless a physical hydrodynamic singularity
appears. However, if shock waves appear, they causes difficultics. Morcover it may
be very hard to propagate the gravitational radiation through the coordinate shear
produced by the matter motion.

Minimal distortion

The minimal distortion condition specify £ as the solution of
;7 =0, (57)

where g;; is the distortion tensor defined by

1
o = Oy — §’Yij’7h"3z%m (58)
e 1 - 2 '3 [
= -2« (I\ij - 5 ’)','_,-I\) + /3,'|j + ﬁjp‘ - § ’Yijﬂ ‘- (59)
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It leads to y
1, . 1 j
BB+ 5 Bu + Rigft = 20K - 57,-,-1{)] . (60)

It has not heen shown yet that this condition will not. develop coordinate singularities.
However it scems to be an excellent radiation gauge.?® The greatest disadvantage of
the minimal distortion condition is that very complex vector elliptic equations Eq.(60)
should be solved in cach time step.

Sunplifying gqauge

In order to simplify Einstein equations and to isolate the gravitational degrees
of freedom, it is advantageous that one determines the form of the metric ; in
advance. For example, particular components of -y; is assumed to vanish. Or more
generally, assume that ;5 satisfies a general algebraic relation,

F('ij"'l"i) = Q(""j)a (Gl)
and the condition
_ ar a'y,-,-
oF = T (62)
oF
= —(ﬁ,'b' -+ ﬂ_ﬂ,’ - 2(1]\’5j) =1 (63)
i .

determines 4. With three components of 4, we can impose up to three coordinate
conditions of the form of Eq.(61).
In diagonal gauge, where the three-metric is given by

ds? = Yppda? 4y, dy® + v::dz?, (64)
the shift vector equations are
YezOyB* + 1yyOeff? = 2aciyy,
YVyyO: 8" + 1::0,8° = 20K, (65)
2200 + Yer 0.5 = 2aK_,.

Usually this set of equations does not have a solution or it is not unique even if it
exists.

With spherical coordinates (v, 8, ¢), the radial gauge is particularly useful.!?
The three-metric has the form

ds? = A%dr? + 2 B72d6? + +* B (sin 0dep + £d0)*. (66)
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The simplifying conditions are
Yo = Yrp =0 (67)
and
YooYes — YVop = 1" sin’ 0. (68)

Note that from Eq.(68) the coordinate 7 obtains a direct geometrical meaning, that
is, the area of a constant-r sphere is 4772, The radial gauge is a natural gencralization
of Schwarzschild coordinates. The shift vector equations are

267/}, - Sh%(:’i?ﬁ"" sinf), — (A" ¢

= [oalid+KD)] - ﬁ(zam sin6) » — (20K%) 4 (69)
g = 2aKT - (70)
g = 20K™ - p° (1)

The isothermal gauge,
ds* = ¢ [B"z(dr2 + 7%d6?) + r* B (sin 0d¢ + £ d9)2] , (72)
gives another simplifying condition. In this gauge
Yo ="%e=0, ¥ =", (73)

and the shift vector equations are

7

oK = 772Ky = =~ (r7'57)" + 77 (74)

together with Eqs.(70) and (71).

6. Conclusions

Numerical solution of the evolution equations requires boundary conditions at
the outer boundary and the inner boundary. The inner boundary condition is related
to the regularity condition at the origin or the polar axis when the polar coordi-
nates are used. This condition, together with isolation of the gravitational degrees of
freedom, leads choice of the numerical variable. For three dimension problems, it is
particularly difficult to impose completely the regularity conditions. Thus it seems
to be better to use Cartesian coordinates (x,v, z), where there is no inner bound-
ary. In addition, choice of numerical schemes for integration of elliptic equations and
evolution equations is very important to stable and accurate numerical calculation.
However we do not discuss these problems here.
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According to development of computer technology and computational algo-
rithms, the best choice of the coordinate conditions and the scheme of evolving the
space-time is altered. For three-dimensional problemns, it is natural to use Cartesian
coordinates. It does not lead so serious difficulties in numerical algorithms as to use
polar coordinates. However it is more memory consuming. If a supercomputer with
a lot of memory, 100Gbytes or more, this drawback is not so serious. Development
of computer technology affects computational algorithms as well as coding technique.
Since vector supercomputers are presented, algorithms suitable for vector processors
have been developed. During the next five years, a wide vaiety of parallel snper-
computers with a large number of processors (more than a thousand processors) will
become available and their use will be essential to achieve the speed-ups. This will
require a new generation of codes that take advantage of parallelism; we will have
to consider distribution of programs and data to processors and communication be-
tween them. Morcover handling output data will become increasingly important as
numerical computation becomes larger in scale.
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Perturbation near the Schwarzschild Black Hole and
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1. Introduction

One of the most important purposes in numerical relativity is to calculate
the wave form and the radiation efficiency of gravitational waves emitted in the
stellar core collapse and the collision of two compact stars. However there have
been only a few analyses of gravitational waves in the general relativistic way.
The most crucial reason is that we do not know an appropriate gauge condition
for each problem in numerical relativity well. Therefore we must find them,
but even if we just think of a good idea of gauge condition, it is very hard to
confirm the suitability of it by carrying out a numerical relativistic calculation.

Accordingly we need some testbed calculations of it.

One effective method is a perturbative calculation on fixed spacetime of a
black hole. This is because it is much easier than a fully relativistic calculation,
and still we can investigate features of the situations with the fast motion and the
strong gravitational field. Furthermore previous authors showed that the results
in the perturbative calculations are fairly coincident with the results in numerical
relativistic calculations in respect to the wave form and the radiation efficiency
of gravitational waves. For these reasons perturbative calculations have been

(1]

extensively performed by many authors'’ . But all of them calculated gravita-
tional waves only at infinity and did not utilize these analyses to investigate the
behavior of the metric perturbations in the strong field near the black hole. In

numerical relativity we need to know the behavior of the metric in the strong

—-151-



gravitational field and have to estimate gravitational waves and its energy flux
at a finite radius. Therefore it is important to know the behavior of the metric

perturbations, especially the gravitational waves, near the black hole.

So we calculate the metric perturbations near the Schwarzschild black hole
under a few gauge conditions used in numerical relativity and evaluate the min-
imum radius at which one can estimate the wave form and the energy flux accu-

rately.

2. Formulations

The metric perturbations on the Schwarzschild geometry when a test particle
of mass p falling straightly into a Schwarzschild black hole of mass M > p were
studied by Regge and Wheeler™ and Zerilli® . According to them, all of
the metric perturbations can be expressed by Ry, (7). In this case the system is

axisymmetric and nonrotational, so R;, obeys,

d? le
dr*

+ [w? — Vi(r)] R = St (r), (2.1)
where r* is the tortoise coordinate defined by

r —r+:zM|n(m ~1). (2.2)

Vi 1s the potential defined by

Vim o )2[2,\?(,\1+1)r +6ATMr? + 180 M?r + 18M°),  (2.3)

ri(Ar +3M

where A\j = (I = 1)(I + 2)/2. Sy, are the sources for Ry, which is

_ 4 1 2M r _ 2iA in(r)
St = Ar+3M VI+ 2(1 r )[V oM w(,\r+3M)]e ’ (2.4)

(r/2M)/2 4+ 1
(r/2M)/2 —17

where

T(r) = 2M[——( )3/2 Asyz )1’2 +In
describes the time when the particle passes the radius r.

—152—



Eq.(2.1) should be solved under the boundary conditions of purely outgoing
waves at infinity (»* — oo) and purely ingoing waves at Schwarzschild radius

(r* = —o0).

Now we carry out the gauge transformation from the Regge-Wheeler gauge
to some other gauge conditions. We write the metric perturbation as h,;. Under

new

the gauge transformation (z° = 29 — €9, the metric hg; 1s transformed to
gaug

hee = BV 4 Vb + Vit (2.6)

where 'new’ and 'RW’ denote a new gauge which we may use in numerical rel-
ativity and Regge-Wheeler gauge, respectively. V, is the covariant derivative

operator assosiated with the Schwarzschild metric.

2.1 Radial gauge

[4]

Radial gauge was suggested by Bardeen and Piran'~ and its gauge conditions

are written as
7M:=’%v==0:

and

Y00 Ve — Voo = r*sin’ 6. (2.7)

The linear approximation of the last gauge condition becomes

h
hog + —52— = 0. 2.8
o sin® § (28)

When we perform the gauge transformation from the Regge-Wheeler gauge to
the radial gauge using the above gauge condition, we get the following equations

for the gauge variables.

2
Brko + Oate ~ 2 = _KEW =,
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and

RW

1
———dy(sinB€g) + 2(r — 2M)E, = —(hig" + —25-)/2. (2.9)
sin § sin” 6
Now we expand §; by the vector harmonics
Ef = (61}/’07 fzylo,o, 0 ) ’ (210)

where £, and £ are functions of r, which depend on I. We also expand hfbw by
the tensor harmonics, then the equations of the Fourier coefficient of ; become

(we omit the subscript w, [ and m)

E2p — 262/r+ 6 =0,

and

Ar — 2M)E, — I(1 4 1)62 = —K(r)r?, (2.11)

where K(r) is the Fourier transform of one of the metric perturbations in the

o

Regge-Wheeler gauge Accordingly the gauge variable £ can be found by

solving the first order ordinary differential equations.

(4]

Now we are interested in the gravitational wave perturbations 7"~ , so we

calculate them from the gauge variables. Then

1 dw i
= —— E —hw 2.
n 2 ] \/2—1‘_3 E2 Wy, ( 12)

1>2

In the above treatment we only consider the spatial gauge variables, but the time
component of gauge variable can be added. However in the case of radial gauge

it does not affect 7, so it is sufficient to consider only the spatial displacement.

—154—



2.2 Isothermal gauge(Quasi isotropic gauge)
(4]

Isothermal gauge or quasi isotropic gauge was proposed by several authors

(5] (6]

and its gauge conditions are written as

Yrod = Tre = 0,

and
7rr7<pqpr2 = V88Ypp — 702<p~ (2.13)

The linear approximation of the last equation becomes
Yer = Yo9/7%. (2.14)

In the case of the isothermal gauge, the radial coordinate = corresponds to the

isotropic one, which is related to the Schwarzschild radial coordinate rg.; by

1
r=glrse = M+ iy —2rsaM]. (2.15)

In the following since we consider the metric perturbations in the isotropic coor-

dinate, we must rewrite the Regge-Wheeler gauge to isotropic form.

Using the gauge conditions, we get the equations of the Fourier coefficients

of the gauge variables as follows.

r ].
Orta + 00t — 2222 + 1)y =0,
and
roo 1 1 ,
0%+ (422 4 D = 06, = 1Y 3(Ha — KV, (2.16)

{

where ¢ = 1+ M/2/r, and the functions H; and K are the Fourier transforms

of the metric perturbations in the Regge-Wheeler gauge, but their argument is
7, not rgep.
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(4]

The + mode of gravitational waves ' can be written as

1
n= —¢—4r—230€a- (2.17)

In this gauge condition the time component of the gauge variable does not affect

the above gravitational wave variables just as in the radial gauge.

3. Numerical Results
3.1 Wave Forms of Gravitational Waves

We show the wave forms of gravitational waves at some finite radii in the case
of a test particle or a spheroidal dust shell falling straightly into a Schwarzschild
(1)

black hole. Detailed nemurical methods are shown in our paper' ' , so we omit

them here.

Gravitational waves variable 5 in the radial gauge and the isothermal gauge

can be written as

n=- Z mWio, for radial gauge
{

== Z ml(1 — 2%)T; » — zTj). for isothermal gauge.
l

In Figure 1 we show 7, in both the radial gauge and the isothermal gauge at
r = 20, 30, 50M in Schwarzschild coordinate. In both gauge condition the
amplitude of 5 does not go to zero for ¢ > 200M. It shows that 7 includes not
only the wave part, but also the mutipole moment part(nonwave part). As for the
wave part it is made of two modes, a quasi-normal mode and a long wavelength

mode, and we can see the wave form of the quasi-normal mode clearly at r = 30M.

In Figure 2 we show the wave forms in both the radial gauge and the isother-
mal gauge in the case of the spheroidal dust shell falling from infinity. It shows
that the amplitude of 7 goes to zero for large ¢, in contrast to one particle case.

This is because there are no multipole moments in 7 for large {. As to the wave
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part, the results are almost the same as those of one particle case. In the case
of the radial gauge this results are consistent with the simulations of Stark and

Piran ,[8] who explained in the radial gauge the wave form is almost unchanged
at r > 25M.

3.2 The Energy Flux

In this section we discuss the method to estimate the energy flux of gravi-
tational waves at a finite radius. Usually we calculate the energy flux of gravi-
tational waves by the formalism defined by the Landau-Lifshitz pseudotensor or
the fourth Newman-Penrose quantity. Surely they are good methods to estimate
the energy flux of gravitational waves at null infinity because they only include
the gravitational waves among the metric components. However if we try to
estimate the energy flux at a finite radius, we should be very careful to apply
these formalisms becauce they also include the information of the other metric

n

components

In numerical relativity, since we have to estimate the energy flux at a finite
radius, we must find an appropriate formalism to estimate the energy flux of
gravitational waves. So we try to find it taking the case of radial gauge. Stark and
(3]

Piran used the following formula to calculate the energy flux in their simulation

2
AE = % / dt / dz[K32 + %A'ZB“‘q?,]?, (3.1)

where A? is 4,,, B2 = 147 and K is the extrinsic curvature which is conjugate
to 5. In the case that the dust shell falls from infinity, Eq.(3.1) is fairly good to
estimate the total energy flux at »r > 40M, but in the case of a particle it is not
good. This is due to the same reason why the estimation of the energy flux by
the Newman-Penrose quantity fails: Nonwave mode is included in 7, and 5, does

. 7 .
not go to zero for t — oo, so AE dlverges[ I'. Therefore in order to calculate the
energy flux of gravitational waves, we must eliminate the time independent part

of 7. So we suggest the following quantity as the definition of the energy flux of
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gravitational waves.

2
AE = %/dtfdm[ls'i + %A"’B““ni]z. (3.2)

At infinity Eq.(3.2) is equal to Eq.(3.1) because 5, = 7, at infinity. So
Eq.(3.2) gives the energy flux of gravitational waves accurately at infinity. In

our perturbative calculations, Eq.(3.2) is written as

1 2
AB=(r- 2M)r2’:(l )i+ 1)(l+2)/dww2|mw| . (3.3)

In Figure 3 and 4 we show
AE(l=2),/AE(l = 2)

at each radius when a particle and a spheroidal dust shell, respectively, fall from
infinity. AE(l = 2) is the total energy flux of gravitational waves for | = 2
mode, so the above quantity indicates the accuracy of the estimation of the

energy flux at each radius.

In the case of the spheroidal dust shell falling from infinity, if we try to esti-
mate the total enrgy flux with the accuracy within 20 percent, we need the radius
at most r ~ 40M. Therefore when we estimate the energy flux of gravitational
waves by the dust collapse in numerical relativity, we will make fairly acculate

estimation of the energy flux of gravitational waves by Eq.(3.2).

By contrast, in the case of one particle falling from infinity it is found that
we overestimate the energy flux twice larger at » = 50M and one and half times
larger at r = 100M. If we try to estimate the total energy flux within 20 percent
accuracy, we need the radius r > 150M and it is difficult to take so many grids

as to perform the sufficiently accurate calculations in numerical relativity.

4. Conclusions and Discussion

In this paper we investigate both the wave forms and the method to estimate

the radiation efficiency of gravitational waves near Schwarzschild black hole for
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a few gauge conditions used in numerical relativity. We find that in the case
of the radial gauge and the isothermal gauge the wave forms of gravitational
waves become clear at » = 30M. We also find that the definition of the energy
flux by either the Newman-Penrose quantity or the Landau-Lifshitz pseudotensor
may be inadequate to estimate the flux at a finite radius. So we must find a
good method to calculate the energy flux of gravitational waves for each gauge
condition and for each problem in numerical relativity. It is found in the radial
gauge Eq.(3.2) is fairly a good formula to estimate the energy flux compared
with Eq.(3.1). The essence of our method is to extract the wave part and to
eliminate the nonwave part. We must also find the formula for the isothermal

and other gauge conditions, and it is a problem to be solved.

In the above calculations the global slice is the polar slice and it is not trivial
whether the results change or not if we choose other slices instead of the polar
slice. However if we use the maximal slice condition in the above, it can be shown

the results are almost unchanged as to the wave forms of gravitational waves for
r> 20
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THE SHELL COLLAPSE WITH SCALAR FIELD

Yosimi Oshiro, Sigeru Konno, Kouji Nakamura,
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Chtkusa-ku, Nagoya 464-01,Japan

ABSTRACT

We studied the shell evolution near the apparent horizon using the junction condition. The
spherically symmetric dust shell model coupled with a scalar field is considered. In the classical
theory we show that the shell can evaporate when the backreaction of the scalar field becomes
effective. The time derivative of the mass of shell is proportional to —M~! (M is a mass of
the shell).

1. INTRODUCTION

The discovery by Hawking that a black hole emits particle like a blackbody with temper-
ature proportional to its surface gravity {1] has acted as a great stimulus to research on the
quantum gravity and the quantum field theory on curved-space time. It must be emphasized
that Hawking evaporation is inferred from a semiclassical approximation where the gravita-
tional field is classical and not consider backreaction of matter fields. It is necessary to surpass
the linearized theory on fixed background in order to really understand these effects.

The primary approach to the backreaction problem has been through the semiclassical the-
ory of gravity, wherein one has a classical gravitational field coupled to the expectation value
of the stress-energy tensor of quantized matter fields via the semiclassical Einstein equations
G,, = 8n(T,,). Although solutions to these equations representing evaporating black-hole
spacetimes have not yet been found, substantial progress has been made in studying the semi-
classical theory.

To consider the importance of backreaction we study a shell which coupled to massless
scalar filed. It is known that a collapsing shell with constant mass will became a black-hole.
However, it is not even clear that mass emitting shell will became a black-hole. In classically
we show that shell can evaporates when backreaction is effectively on the Einstein equation,
and shell become black hole when backreaction is not dominant on the Einstein equation.
Thus, this result indicate that one must be consider backreaction when discuss about black
hole evaporation.
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In this paper we use a junction condition which was developed primarily by Israel [2], and
which has been used by several previous authors [3]. The basic approach is to examine the
embedding properties of the timelike three-hypersurfaces formed by the histories of the shell.
Israel first elaborated this sort of attack, in a general discussion of shock waves, boundary
surfaces, and thin shells. Usually shell model and junction condition are use to inflationary
universe model. We applied it to the problem of a collapsing dust shell.

In the next section we will review the Gauss-Codazzi formalism, in which four-dimensional
spacetime is parametrized by a one-parameter family of three-dimensional hypersurface; four-
dimensional geometric quantities are then expressed in terms of three-dimensional geometric
quantities related to these hypersurface. The Einstein equation in this (3 + 1) dimensional
language yield junction conditions which determine the dynamics of the shell. In Sec. III we
analyze the shell evolution near the apparent horizon. Our conclusions are presented in Sec.
Iv.

II. JUNCTION CONDITION

To describe the behavior of the shell, it is simplest to introduce a Gaussian normal coor-
dinate system in the neighborhood of the shell. Denoting the (2 + 1) dimensional spacetime
hypersurface swept out by the shell as £,we introduce a coordinate system on I. For definite-
ness, two of the coordinates can be taken to be the angular variables # and ¢ which are always
well defined, up to overall rotation, for a spherically symmetric configuration. For the third
coordinate, one can use the proper-time variable 7 that would be measured by an observer
moving along with the shell. The fourth coordinate 7 is taken as the proper distance from Z.
Thus, the full set of coordinates is given by z* = (z',n), where z* = (7,6, ), and i runs from
1to 3. '

In these coordinates the metric can be written as

ds® = —a’dr? + dn? + R*dQ?, (1)

dQ? = d6? + sin8d¢?,

where o, R is function of 7,7. (,n)coordinate is the co-moving along with shell, than « can
taken to 1 on the shell.
In this coordinates,the components of the normal vector n,, is given by

n, = (0,1,0,0).

The extrinsic curvature corresponding to each  =const hypersurface is a three-dimensional
tensor whose components are defined by

1
Ki; = —ni; = —2gism- (2)

Here the semicolon represents the four dimensional covariant derivative. The nonzero compo-
nents of the affine connection are given by

k _3rk
I} =T}

N I PR 221
g =K, T, =

17 7y J
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where the superscript (3) denotes three-dimensional geometric quantities.
The energy-momentum tensor T* is expected to have a §-function singularity at the shell so
one can define the surface stress-energy S** by writing

Ty = S,.6(n) + (regular terms). (3)
We assume the shell constructed from dust them surface siress-energy S$* can be written
as
S¥ =gUrU", (4)
where
U* =(1/,0,0,0), (5)

is the four-velocity of the shell.
Thus, the energy-momentum tensor T#* is given by

1 1
Tuu = S;wé(n) + 4_7r(au¢au¢ - Eguuaﬁ"/}aﬁw)- (6)
It can be shown that the Einstein equalions become
: | PP 1
G", = 5(1{- -K',K))- 53}2 = 8xT",, )
G",‘ = I(','—I(J,'[J =87I'T",‘, (8)
) ) . . 1.
G; = (K';-6,K),,—KK';+ ;5',(1\"2 + K* K %)
= 8xT",, - 9)

where a comma denotes an ordinary derivative and subscript vertical bar denotes the three
dimensional covariant derivative. '

To discover the effect of the surface stress-energy tensor, perform a n integration of the
Einstein field equation provided that g;; is continuous at 7 = 0. Thus, equation (8) then leads
to the junction condition

v ;=8,Try=8rS",, (10)

where 4*; is the ”jump” in the components of the extrinsic curvature

v; = [K'))
lim{(K" (1 = +€) = K*,(n = —¢)}. (11)

By taking the trace of the Eq. (10) we obtain Tr+y = 47rG Tr S, which can be substituted back
into Eq. (10) to give

¥;=8n(S"; - %5", Tr S). (12)

In analyzing the shell, one uses not only the junction condition (12), but also the four-
dimensional Einstein field equation applied on each side of the surface ¥ separately, and also
an equation of motion for the surface stress-energy. The equation of motion is derived by
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energy-momentum conservation law. Using Eq. (6) one can write down the equation for
energy-momentum conservation

T*f 5= A6 (n) + B*§(n) + C* =0, (13)

by setting the coefficient of 6(n) in Eq.(13) to zero, one deduce that

Si] I + [T;galar] = 0’ (14)
j?'JS'J + [Ta"czlar] = 0! (15)

where 1
K, = lim s {Ki;(n = +¢e) + Ky (n = -6)}. (16)

The vanishing of the term in §'(n) then implies that

s", = 0. (17)
s = 0. (18)

One see that (17) and (18) are satisfied automatically by Eq. (4).

The Einstein equation on one side of the shell can be derive from the Einstein field equation
on another side of the shell and junction condition. Thus, there are six independent equations
that need for analyzing the shell. By combining (5) with the expression (4) for the surface
stress-energy S**, one finds

[R] = —4moR, (19)

[«] = 4no, (20)

[0"2 + 1»[’_'2] = 0 (21)
(s +20%) = I¥) (22)

where a dot denotes a partial derivative of 7, and a prime denotes a partial derivative of n.
The 75 and 77 component of the Einstein equations on one side of the shell

Ra— R = Ryy', (23)
B pl ot L _L'z 1 e _l 72 ”
R-Rd'+ o+ B - 2R 5 R +97). (24)

III. SHELL EVAPORATION

It is useful to eliminate the mass M of shell by following combination [5]

- 5.21 (1-g"d,Rs8,Ry). (25)
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The quantity M has simple interpretation thus, gravitational mass. With the help of Eq. (19)
~ Eq. (24) one calculates M to be

. . 1. .
M= R { R\, — 5 e (95 4+ 9) ) (26)
We assume scalar field on outside satisfy outgoing condition
by + 9, = 0. (27)

Because, this condition is most efficacious for emission of the mass.
To solve Eq. (19) ~ Eq. (24) let expand all quantity by #.

R(r,n) = R(7)+ Ri(7)n+ ...,

a(r,n) =1+alr)n+...,
Wrn)=P@) +dalrn+...,
ele.,
We interested in neighborhood horizon. One usually defines the apparent horizon to be
such a point, at which one has [4]

,R=0,8,0,R <0, (28)

where v is the advanced time and u is the retarded time.
To see the behavior of the shell near the horizon we expand all quantity by 7, Thus

A(F) =€“(Ao + Are +...),
R(iry=e&(Ro+ Rie +...),
P(r) = €"(tho + thie +...),
etc.,
where .
A(r) =0, Ry = Ry + R,
EST—T.
This expansion insert in Eq. (19) ~ Eq. (24) and determine §, w, etc., to consist with basic
equation Eq. (19) ~ Eq. (24). When § = 0, the shell falls in the horizon. When 6 > 0, shell
collapse 1o origin without enter into the horizon.
There are two consistent solutions, that is, § = 0 and § = 1/2. In the case of § = 1/2, the
mass M of shell became zero in the same order with R. Thus, the shell can evaporate.
When shell evaporation scalar field become the same order of 7 to gravitational field in
Einstein equation, Eq. (23) and Eq. (24). However, shell collapse to a black-hole in this

time scalar part much smaller than gravitational part. This result suggest that backreaction
is important when the shell evaporate.
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In the evaporating case, time derivative of M is in inverse proportion to M itself,
Mo -M" (29)

It is an interesting result because the relation is M o« —M~? in the case of the Hawking
radiation. It is worth remarking that there is a difference between quantum and classical
results.

IV. CONCLUSION

We have analyzed the behavior of a spherically symmetric dust shell interacting with scalar
field in the neighborhood of the horizon. The shell can emit its mass and may collapse to the
origin, though it never enter inside of the horizon. The mass of shell tends to vanish as fast
as the shell radius R. Thus, this model reduce interesting result that a shell can evaporate in
classical level when the backreaction of scalar field becomes effective. This result suggests that
the backreaction has a key role in the dynamics.

Additionally, the time derivative of the mass of shell is proportional to ~M~!. Although
this result reminds us of the Hawking evaporation, the time derivative of the black-hole mass
is proportional to —M =2 in the Hawking radiation.

At this point it is interesting to note that in a shell evaporation one can derive the result
such that M o M~! . And backreaction has a key role in the dynamics.
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The Oppenheimer-Snyder Space-Time with A
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1. Introduction

Since our universe observed today is homogeneous and isotropic, its geom-
etry is well described by the Friedmann-Robertson-Walker space-time. That
feature of our universe is one of the mystery (so-called the homogeneity problem)
within the framework of the standard Big Bang universe model. The inflationary
universe scenario is a favorable model to answer the above problem.[1] In this
scenario, there is a period in which our universe undergoes the de Sitter-like ex-
ponential expansion due to the vacuum energy of the inflaton scalar field which
plays a role of the effective cosmological constant during the phase transition.
After the phase transition, the vacuum energy is transformed into radiation and
the standard Big Bang scenario is recovered. In the framework of this scenario,
the present homogeneity of our universe is attributed to that rapid cosmic ex-
pansion, based on the cosmic no hair conjecture which states that if a positive
cosmological constant exists, all space-times approach the de Sitter space-time
asymptotically.[2] However, even though there is a positive cosmological constant,
it is not likely that highly inhomogeneous initial conditions would lead to the de
Sitter-like expansion. In reality, there are several counter examples. For exam-
ple, the Kerr-Newman-de Sitter space-time is one of those.[3] Of course, such a
strong statement as the original cosmic no hair conjecture is not necessary for
the practical inflationary scenario since we do not observe the whole universe
and therefore there may exist regions which do not undergo inflation if those

regions are not observable. But it is important to obtain the knowledge about
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the behavior of general inhomogeneities in the space-time with a cosmological

constant, in order to understand the early stage of our universe.

For the practical inflationary scenario, inhomogeneities of the cosmological
constant itself is crucial and have been investigated by analytic and numerical
approaches.[4 - 7] On the other hand, we should also understand inhomogeneities
with a homogeneous cosmological constant A. In this paper, we investigate the
Oppenheimer-Snyder space-time with a positive cosmological constant A, which

describes spherically symmetric motion of a homogeneous dust sphere.

In the Oppenheimer-Snyder space-time, the interior of the dust sphere is de-
scribed by the Friedmann-Robertson-Walker (FRW) solution with dust and A
while the exterior of the dust sphere is the Schwarzschild-de Sitter space-time.
The evolution of the FRW space-time is essentially determined by the ratio be-
tween the total energy of the dust and A. On the other hand, the global structure
of the Schwarzschild-de Sitter space-time depends on the relation between the
gravitational mass My and A. Therefore there are various cases for the motion
of the dust sphere in the Oppenheimer-Snyder space-time. Garfinkle and Vuille
studied the Oppenheimer-Snyder space-time for the case of MZA < 1/9 and they
concluded that in this case “the weak cosmic no hair conjecture ” holds, which
which states that only a portion of the universe undergoes inflation and is suffi-
cient for the practical inflationary scenario.[8] However the other cases are also
important to understand the behavior of general inhomogeneities in the early
stage of our universe. Thus we investigate all possible cases for the motions of
the dust sphere in the Oppenheimer-Snyder space-time. As will be shown in
Sec.4, these results show that the inhomogeneity with the large gravitational
mass Mo does not necessarily obstruct inflation because the large gravitational
mass My gives the same effect as the large cosmological constant A, which leads

to the strong cosmic expansion.
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2. The Interior and Exterior Solutions

The interior solution is described by the closed FRW space-time in which the

metric with the cosmic time 7 is expressed as,
ds? = —dr? + a*(r)(dx? + sin? xdQ?), (1)

with

dQ? = db? + sin? fdy?. (2)

The Friedmann equation is given by

da\? 2m
(F) =T +Ha - 1= -W(a), (3)
where

i 3
pa” = constant,

A
H, E\/—
0 3’

with the energy density of the dust p.

We can understand the behavior of the solutions, regarding Eq.(3) as an

energy equation for a particle with the potential V;(a).

When m2H? < 1/21, there are two positive roots of the equation V;(a) = 0

as follows,
a = 2 cos(l(w + tan~! /o ))
/s | (4
as = H02\/§ cos(zl;-(?r — tan~! /w; )) ,
where
1
(5)

w; = ———— — 1.
' 2Tm2H}
Since a; and a; correspond to the turning points, there are two kinds of the

solutions, i.e., the recollapsing and bouncing solutions.
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For the case of m?H2 = 1/27, there is only one positive root,

1
ag = ——. 6
0 \/§H0 ( )
This is the unstable equilibrium point of the potential V;(a) and thus if the scale
factor a is equal to ap initially, the solution is static, i.e., the Einstein’s static

universe.

In the last case of m?H? > 1/27, there are two kinds of solutions. In one
solution, the scale factor a merely increases and becomes infinite asymptotically

and the other goes to the singularity a = 0 within a finite cosmic time.

The exterior solution is the Schwarzschild-de Sitter space-time in which, by

the use of the Schwarzschild coordinates, the metric is expressed as,

s? = —Cdt* + C"'dR? + R%dQ?, (7)
with
C=1- 3%49 - H2R?,

where Mp is the gravitational mass.

In contrast with the Schwarzschild space-time, there are three cases in ac-
cordance with the value of MyH, as follows. When MgHg < 1/217, there are
two kinds of the event horizons. One is the black hole (or white hole) horizon at

R = Ry and the other is the cosmological horizon at R = Rc. These radii are

given by
Ry = 2 cos(1 T+ tan™ l\/_))
HO\/— 8)
Rc = Ho\/_ cos(—(1r —tan™! \/_))
where
1
We = 27M_gHg - (9)

In the case of MZH2 = 1/21, there is only one kind of the event horizon at
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R = 3M, while in the case of MZHZ > 1/27 there is no event horizon.

3. Junction of the Metric and Motion of the Dust Sphere

Now we consider the junction between the interior and exterior solutions.
Since the areal radius 7 is a C! function on the surface of the dust sphere,
7 =asiny = R and g**(V,7)(V,F) is continuous on it.[8] From this condition,

we obtain the following relation,
My =msin® y,, (10)

where x; is the interior radial coordinate of the surface. Since the interior co-
ordinate of the surface is constant, the motion of it is along a timelike geodesic
in the interior space-time and also in the exterior space-time by the continu-
ity of the metric. Therefore we investigate the timelike radial geodesics in the

Schwarzschild-de Sitter space-time which 'obey the following equation,
2 _ 1 =
__) = =5(E" = 0) = =V,(R). (11)

Here the proper time f and radius R are given by

di = Cidt,
" dR=C"%dR,

and E is an integration constant corresponding to the energy of the particle with

unit mass because the four velocity is given by
uy =(E,£V E*-C/C,0,0). (12)

If we realize the above geodesic as the motion of the surface of the dust sphere,

from the continuity of the derivative along the normal to the surface of the dust
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sphere n#V 7, we obtain

E = cos s, (13)

where n* is the spacelike unit normal of the surface of the dust sphere:

u (0,a71,0,0) for the interior, (14)
nk =
(£VE? - C/C,E,0,0) for the exterior.

Therefore the interior coordinate of the surface of the dust sphere should be

Xs < m/2 in order that 0 < E. We can, then, easily see the following relation
Vi(a) = V,(R = asin x,) tan® x,. (15)

Fig.1 depicts the region, in which the potential Vj is positive and the motion of
the dust sphere surface is forbidden, by the shaded one in (MyHp, HoR) plane,
fixing E.

4. Conclusion and Remarks

The boundary of the shaded region in Fig.1 corresponds to the turning
point of the motion of the dust sphere surface. It should be noted that when
My > /\% /Ho, there is no turning point and therefore, if the dust
sphere expands initially, it does continuously expand and the space-time ap-
proaches to the de Sitter space-time asymmptotically. Furthermore, for the case
of My > /\H\Imq /Ho, by imposing the asymptotic de Sitter boundary condition,
there dose not exist collapsing solution.[10] Therefore the dust sphere with a large
gravitational mass My, i.e., a large inhomogeneity does not necessarily obstruct
inflation. The reason of the above fact is because the large gravitational mass
M) gives the same effect as the large cosmological constant A, which leads to the

strong cosmic expansion.[10]
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On the other hand, in the case of M H} < 1/27, there are collapsing solu-
tions which goes to the singularity within a finite cosmic time but this singularity
is enclosed by the black hole event horizon. There are, furthermore, static so-
lutions which do not collapse and do not expand, either. However these are all

in accordance with the weak cosmic no hair conjecture as discussed by Garfinkle

and Vuille.[8]
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FIGURE CAPTIONS

1. This figure depicts the region, in which the potential V; is positive and
the motion of the dust sphere surface is forbidden, by the shaded one in
(Mo Ho, HoR) plane, fixing and E.
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Experimental gravity, or sometimes called experimental relativity, is now an established
branch of physics, which owes its birth largely to Dicke and Schiff in the early 1960’s. Efforts
have been made to verify Einstein’s general relativity (GR) by using various types of precision
experiments. This has been done often through the attempts to rule out experimentally many
“alternative theories” having arbitrary parameters, choosing particular values of which selects
GR. Remarkably enough, results of extensive studies have pointed steadily toward narrowing
down the ranges in which GR is allowed. A brief survey of this unique field is attempted
for non-experts. For more general and extensive reviews, readers are referred particularly to
Will’s papers (1].

The subjects to be discussed will include:

I.  Equivalence principle,

Il Solar system experiments,
ITI. Binary pulsars,

IV. Fifth force.

Serious attempts at detecting gravitational waves are not included because many other re-
views are available. The appendix discusses a theoretical aspect of the choice of conformal
frame, an important but poorly understood subject in connection with the implication of

G/G.

I Equivalence principle

The equivalence principle (EP) is the physical basis of GR, as is well-known, and has been
the subject of experimental scrutiny. In the literature, however, EP appears under three
or four different names: Weak equivalence principle (WEP), Einstein equivalence principle
(EEP), and Strong equivalence principle (SEP). Sometimes WEP is further divided into two:
WEP(I) and WEP(II).
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WEP means that any object falls in the gravitational field with the same acceleration
irrespective of its mass and composition. This is the most naive expression of EP recognized
first by Galiley. In the sense of mechanics, this implies the equivalence between the inertial
and gravitational masses. Another familiar expression is composition-independence of the
gravitational force. WEP(IT) asserts that the acceleration should be independent also of the
spin states.

As modern tests of WED, refinement of the Eotvos experument, Dicke et al [2] and Bra-
ginski et al [3] verified the null result to the accuracy of 107! and 1072, respectively. These
experiments were carried out by using the Sun as the source of the gravitational force. Re-
cently, however, the suggestion of the fifth force, Non-Newtonian force of finite force-range,
stimulated the renewed interest of the experiment but with the Earth or nearby objects as
the source. The same type of experiment using torsion-balance [4] reached almost the same
level of the accuracy of 107!, demonstrating the remarkable improvement in the measuring
techniques during the past two decades.

In 1962 Schiff showed [5] that the experiment due to Pound and Rebka [6], who were
the first to bring GR in the arena of modern experimental physics, can be understood only
in terms of special relativity and EP. Since then the red-shift experiment which had been
proposed originally to test GR has been categorized as the test of EP. The improved version of
the Pound-Rebka experiment was carried out by Vessot et al [7) by using a rocket climbing up
to the altitude of 10,000 km, narrowing the possible discrepancy to 2x 1074, an improvement of
2 orders of magnitude compared with Pound-Rebka’s result. Incidentally, in this experiment,
cade named Gravity Probe (GP) A in NASA, the launching tower was 23 meters high, nearly
the same as the tower in the classic Princeton experiment in 1964.

Schiff went ahead further to offer a conjecture that WEP does imply EEP which asserts
that gravity is a metric phenomena. The concept of the metric theory is more general than
Einstein’s GR. It incorporates Brans-Dicke theory (BD), among others, in which the effect
of the scalar field shows up only through the metric; objects remain to fall along geodesics.
Alternative metric theories are distinguished from GR only through the different manners in
which the gravitational potential (of the Sun, for example,) enters in each component of the
metric tensor,

The conjecture was verified to be true, at least within some fairly realistic models. Ac-
cording to the “T'H es formalism” developed by Lightman and Lee, and by Haugan [8], the
Lagrangian of a massive particle and the electromagnetic field in a static and spherically
symmetric gravitational filed is formulated in term of the arbitrary functions T, H,¢ and p

of the gravitational potential; in any metric theories these function must obey the relation
E=p= H/T (1)

Interesting enough one finds that a violation of (1) results in the difference between the
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maximum speed of massive particles ¢,, = \/T/If and the speed of light ¢, = 1/./¢pi, implying
violation of local Lorentz invariance.

The authors of ref. [8] applied this THep formalism to the system of charged particles
bound by the Coulomb interaction. They computed the acceleration of a bound system in the
gravitational field, finding certain contributions depending on the details of the composition.
Requiring WEP amounts to requiring these contribution to vanish. This in turn results in
the condition (1), hence leading to EEP.

As mentioned before, the violation of WEP and hence EEP would result in the violation
of the local Lorentz invariance, suggesting an interesting type of experiment. In the above
calculation the composition-dependent terms come in as a form of the mass-tensor involving
a velocity of the object. This velocity should be interpreted as the one relative to certain
frame of reference, presumably fixed to the solar system, our Galaxy or the 3K cosmic back-
ground radiation which is falling toward the center of Virgo cluster. The preferred direction
introduced in our space might be detected through an uneven spacing in Zeeman splittings of
an atom in a magnetic field. This was an attempt first carried out by Hughes and by Drever
in 1960 [9].

A better measurement of the lughes-Drever experiment was carried out by Prestage
et al [10] who tried to see if one of the hyper-fine splittings of °Be* (having nuclear spin
3/2) shows any variation of 24-hour-period when compared with the hydrogen maser which
should remain unaffected because both its nuclear and electron spins are 1/2. Using such
techniques as Penning trap and optical pumping, they saw no evidence of the variation to the
accuracy of 70 ullz against the splitting of 508.856 MHz. This implies the equality between
¢m and c, to the accuracy of 1072 if the relevant velocity of the preferred frame is 1073¢.
Even better constraint has been obtained by Lamoreaux et al {11) who used **'Hg and *°Hg
nuclei. Their upper bound on the frequency variation is 0.48 j¢Hz corresponding to the energy
determination to the accuracy of 2 x 107%eV.

We now turn to WEP(II), the significance of which was pointed out first by Ni [12], who
showed that the THep formalism can be further generalized in the portion of the electro-
magnetic field, represented by a scalar field. Only with the vanishing of this field added to
the condition (1) can one recover EEP. On the other hand, the presence or the absence of
this field can be tested only by checking if an object falls with the acceleration independent
of its spin state. The experiments using torsion balances with substances with nuclear spins
polarized but magnetically shielded carefully by using superconducting coating are still under
way [13].

SEP asserts that any object falls along the geodesic even if the effect of the gravitational
sclf-interaction is included. In other word, the inertial and gravitational masses are the same
even with the gravitational binding energy is included. The effect can be significant only
with objects as large as astronomical bodies. It might sound somewhat curious to find that
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GR which started with accepting EP does not always observe the equality between the two
kinds of mass in the higher order terms with respect to the gravitational coupling constant.
As early as 1938 Eddington showed that the equality holds only if the second time derivative
of the moment of inertia of an obhject vanishes [14]. Late Professor Ryoyu Utiyama told the
author that Einstein used EP in a heuristic approach, ending up with a mathematical theory
from which strict EP follows only in the lowest-order effects.

More recently Nordtvedt analyzed the problem in a general framework [15] in terms of
the post-Newtonian parameters 4 and v, which are given also for the later use:

~Js0 =1_@+2ﬂ(g#)2’
9 =0, (2)
g, =6 (1+2984),

where we chose ¢ = 1 and the isotropic coordinates employed in the static, spherically sym-
metric and non-rotating field due to a mass M. GR predicts the standard values § = vy =1,
while BD gives v = (1 + w™')/(1 + 2w™!), for example. Nordtvedt studied a 2-body system
in a circular orbit, showing that the violation of EP is proportional to = 48 — v — 3, also
multiplied by A ~ GM /7 which measures the relative contribution of the gravitational bind-
ing energy, where 7 is the size of the body. The above factor 5 is 0 for GR, whereas it is
(24 w)~! for BD.

Nordtvedt proposed to apply the analysis to the Earth-Moon system orbiting around the
Sun. Due to the difference in A for the Earth and the Moon (~ 5 x 10~° and 2 x 10~!!,
respectively), they would fall toward the Sun with different accelerations if  # 0. As a result
the lunar orbit woull be “polarized” always in the direction of the Sun (the Nordtvedt effect).
Two groups [16] tried to detect the possible variation of the Earth-Moon distance with the
synodic period of 29.53 days by the way of laser-ranging using the reflector placed on the
lunar surface by Apollo 11. This “Lunar Laser Ranging” technique is capable of measuring
the distance to the accuracy of 30 cm.

The expected cffect is so small that they relied on the extensive least-squares fit of many
parameters representing various perturbations. After 4-6 years of measurements since 1970,

they confirmed SEP, namely 5 = 0 to the accuracy of 3%. This places a constraint w230 for
the BD parameter.

It might be worth keeping in mind that SEP can be violated even with GR if the motion
in a body is not circular, but the effect vanishes if averaged over periods of rotation.

II Solar system experiments

In this section we discuss
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(i) Deflection of light around the Sun,

(1) Time delay in radar ranging,

(iit) Perihelion shift of Mercury,

(iv) Time variability of the gravitational constant.

The deflection angle 8 of light passing at the distance d in units of the solar radius is given

by
Af = 1 1 L 1.75" 3
Af = 5(1+7)7 x 175" (3)

The original proposal to taking advantage of solar cclipses has never reached the accuracy bet-
ter than 10%. Since the end of the 1960’s, however, using long-baseline radio interferometry
and very-long-baseline interferometry measuring the signal of groups of strong quasi-stellar
radio sources made it possible to confirm (3) to the accuracy of 1%.

A much better experiment on essentially the same quantity is obtained by measuring
the time-delay of the radar-echo from the Earth to an object at the occasion of superior
conjunction:

At = %(1 + 4)(1 = 0.16 Ind) x 250ps. 1)

The best result was obtained from the data collected from the Viking Landers and Orbiters
during the period from 1976 through 1982. The latest of the results shows y =1+ 0.001.

The perihelion shift of the Mercury was the first triumph of GR due to Einstein himself,
but was shadowed in 1966 by Dicke who measured solar oblateness finding it sufficiently large
(J, ~ 2 x 107° as compared with the value ~ 107 expected from centrifugal flattening) to
be comparable with the effect of GR. The calculation including this effect shows

& = 42.98"yr! -;-(2 + 27— ) + 0.0003 (J:,/IO")} . (5)

Dicke viewed this discrepancy caused by a large J, as favored to his scalar-tensor theory.
Many of the experiments performed subsequently, however, supported smaller values like
J, ~ 1.7 x 1077 [17], though others reported larger values around ~ 107 [18], suggesting
time-dependent oblateness due 1o complicated solar dynamics. If J, is in fact “small,” then
the recent ranging data yields 4 = 1.000 £ 0.002 and 8 = 0.99 + 0.02.

It is emphasized that the results of all these modern experiments have been derived on
the basis of the “parametrized post-Newtonian ephemerides,” programs of extensive least-
squares fit of a large number of parameters including not only 3 and « but also such diverse
parameters as the masses and the initial data of 9 planets and masses of asteroids.

The current value of G/G was also obtained as one of such parameters: G/G = (0.2 +
0.4) x 10~"yr=! [19]. This already rules out what is expected from Dirac’s Large-numbers
Hypothesis: ~ 1079 r~!. The main source of uncertainty in the above result comes from the
uncertainty in the mean densities of 200 of the largest asteroids.
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Future proposed experiments include Galileo flying by Mercury, Venus, Jupiter and Mer-
cury Orbiter. An order or two magnitudes improvement of the result is expected, possibly
with J, determined separately from other parameters.

Another kind of experiment has been in preparation; gyroscope, called GP-B in NASA,
conceived originally by Schiff. This intends to measure the precession angle of a spinning
object (gyroscope on board a space shuttle on the polar orbit) predicted by 3(1 + y) x
0.”042yr~! [20]. The launching is currently scheduled in 1996. This experiment if successful
will be the first detection of the gravitomagnetism, also known as dragging of inertial frame
or the Lense-Thirring effect.

There is another proposal [21] of detecting gravitomagnetism by observing the nodal ad-
vance (predicted to be ~ 0.7031yr™!) of LAGEOS 11, to be paired with the existing LAGEOS
(Laser-Ranged Geodynamics Satellite) which has been in the sky since 1976. A similar exper-
iment is also proposed [22] to use a superconducting 3-axis gradiometer on board yet another
project of LAGEOS III

It should be noticed that all the experiments are done using atomic clocks. According
to this we must choose a conformal frame in which masses of elementary particles remain
time-independent provided e, ¢ and h are assumed truly constant. The theoretical implication
is discussed in Appendix, particularly in connection with G/G

ITT Binary pulsar

Seventeen years of continued extensive measurement of the binary pulsar PSR 1913416 have
passed. The successful arrival time analysis made it possible to determine the pulse period
of about 60 ms with precisions of 14 digits. The rate of decrease of the orbital period P, (~8
hours, also 12 digits) was also measured very accurately: P, = (-2.425+ 0.01) x 10~'2ss™1.
This agreed surprisingly well with the rate of the gravitational energy radiated calculated
according to the quadrupole formula, thus providing the first “evidence” of the gravitational
waves.

Both of the pulsar and its companion are interpreted as compact neutron stars. The orbital
semi-major axis is about 2 lightseconds, with the eccentricity 0.6171312(8), and the periastron
shift is 4.226605(30)deg -yr~!. With all of these and other orbital data, PSR1913+16 is now an
ideal testing ground of GR. It is emphasized that in contrast to the solar-system experiments
in which gravitation is relatively weak (notice GMy /Ry = 2 x 107%), the binary system is
unique in much stronger gravity (GM/R ~ 0.2).

One can finally determine the masses of the pulsar and the companion by fully including
the PN parameters affecting the time dilation in the binary system as well as in the solar
system. This is in fact an over-determination of the masses, serving as consistency checks. All

—181—



the data are mutually consistent, also agreeing with GR to an impressive accuracy. Readers
are advised to refer to the latest report [23], for example. The most recent determination of
the masses are 1.439£0.001 and 1.38920.001 for the pulsar and the companion, respectively,
in units of the solar mass.

The agreement with the data and GR is so good that Damour, Gibbons and Taylor went
further to see how the experimental uncertainties constrain the value of G/G [24). For this
purpose they applied a detailed analysis of the orbital motion including the terms up to the
order (v/c)®. Their conclusion is G/G = (1.2+1.3) x 10~'yr~?, still somewhat less stringent
than the result of [19]. This seems nevertheless to be a promising approach because the result
on several other binary pulsars are now available. Particularly important is PSR 1534412
detected first in February of 1990, providing the data with the precision approaching the
same level as PSR19134-16.

IV Fifth force

A fifth force is “defined” phenomenologically by the static potential between two point masses:

mm
V(r) = Gt (14 a e, (6)

where the coefficient a is expected to be of the same order of magnitude or somewhat
smaller than 1, implying that the force would be nearly as weak as or somewhat weaker than
gravity. lts dependence on the substance i and j is anticipated because the force is likely
to be composition-dependent, in contrast to the “authentic” gravity. The force-range A will
be of the order of a macroscopic distance, presumably somewhere between cm and km. The
possible occurrence of this type of force was first suggested based on the theoretical conjecture
on the mass hierarchy in the attempts to unify particle physics and gravity [25].

Two types of experiments have been carried out to probe (6). The “composition-independent
experiments” tried to discover any departure from the inverse-square law of the Newtonian
gravity, both in the laboratory scale and the geophysical scale (upward and downward). The
“composition-dependent experiments,” on the other hand, searched for the apparent viola-
tion of WEP, as revealed dramatically by Fischbach et al who reanalyzed the old Edtvés
experiment [26]. -

In spite of a number of “discoveries” reported, it is fair to say that no firm evidence is
present at this time. In some occasions, the sources of the error were pinned down, but not
in other cases yet. See the review articles [27] for more details. This does not imply that
the experiments were conducted with insufficient care. The real situation was exactly the
opposite, simply showing that the effect was so small that unexpected new kinds of “noise”
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were often unavoidable. By serious efforts to reduce these noises our understanding of the
gravitational force has increased considerably for the past years. Any new development in the
technique of precision experiments should be applied to this subject beyond the now available
level of accuracy.

It should be emphasized that most theoretical predictions based on a variety of motivations
are only crude estimates allowing a latitude of few orders of magnitude. This is true both on
the magnitude a and the force-range A. Also the two types of experiments mentioned above
can be correlated only on specific models on the coupling of the force (e.g. the baryon number
coupling). See ref. [28] for more detailed explanation. For these reasons further efforts to
search for the force are strongly encouraged.

As one of new experiments which might be feasible, the author proposed [29] the use of the
ultra-sensitive laser interferometer similar to the device now under development for gravity-
wave detection. Further improvement will be reported elsewhere, replacing the Fabry-Perot

cavities by active lasers used as very narrow resonators.

Appendix Choice of conformal frame

Possible time variability of G is usually formulated in terms of a scalar field ¢ that has a
nonminimal gravitational coupling, chosen as the BD-type for simplicity:

| 1
L=+v-g (§£¢2R - Eg“"ouéa"é + anuer) ' (Al)

where £ is related to BD’s w by € = (4«w)™!. The first term inside the parenthesis of (A.1) is
compared with the standard term (167G)™' R, hence the effective gravitational constant G_q
is given by :

= .é;r.£~1¢-2, (A.2)
where we use the unit system of ¢ = h = 1. In cosmology we may reasonably assume
that ¢ depends only on the cosmic time { as a first approximation. Eq.(A.2) thus gives a
time-dependent G .

This, however, does not immediately imply nonzero G/G to be measured in the exper-
iments using atomic clocks. Consider a fairy-tale situation, for example, in which time is
recorded by a pendulum, with its length, the mass and the size of the Earth assumed to re-
main unchanged. Then, by definition, G is time-independent. To meet this physical situation
we apply a Weyl rescaling (conformal transformation) ds®* — ds? as defined by

9 =P,  with Q7' = V8xGe'/2g, (A.3)
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where (7 is certain constant, at the moment. The Lagrangian (A.1) is now expressed in terms
of the quantities in the new (starred) conformal frame (CF):

L£=- (28 Glf - = iw('),ﬂ'(?,,ﬂ' + l;_ma"") , (A.4)

where the new scalar field o is given by o ~ In¢. In this CF, R, is multiplied by a pure
constant, indicating the constancy of the gravitational constant. This illustrates that one can
always go a CF in which the gravitational constant is a true constant.

In the more realistic situation, masses of elementary particles must be true constants
because the fime scale of atomic clocks is provided by the Rydberg constant and we may
reasonably assume that the fundamental constants ¢, h and the fine-structure constant are
pure constants. To be able to discuss particle masses we must specify the matter part L asrer

In the BD model the mass term is given as usual. Corresponding to this we choose the usual
Dirac Lagrangian of a massive particle as an illustration:

Ly=-6(P+m), (A.5)

where m is the mass and ) contains the spin connection as usual.

The kinetic energy part can be made conformally invariant if ¢ is transformed into ¢,
according to ¥ = Q732 _. This implies, however, that the mass term is not invariant. We
find in fact

V=9 v¢ = Q/=g. $.9.. (A-6)

It follows that the effective mass m, = mQ ~ ¢='m is no longer a constant in CF in which G
is constant. The CF in which m is constant is the original CF in which (A.1) is given. This
implies time-dependent G if measured by atomic clocks.

Let us simplify the discussion by assuming that the present experiment rules out the time

variability of G. If this is indeed the case, we must design L in such a way that we

matter

find a CF in which bhoth of G ; and m_; are time-independent. An example is provided by
replacing the mass term in (A.5) by an interaction term

w = S0V, (A7)

where f is a dimensionless coupling constant. This will give a mass approximately if ¢ varies
sufficiently slowly as a function of f. An inspection of (A.6) shows that the effective mass m,
in the starred CFis given by m, = f¢Q = f€-!/2, which is constant; the starred CF is a CF
corresponding to the physical situation in which time is recorded by atomic clocks.

It is one of the premises of the BD model to rule out any matter interaction of ¢ because
the term would violate the property that a particle falls along the geodesic. The requirement
can be loosened if the conpling constant f is sufficiently weak. Moreover it is likely that
¢ is massive, making the force due to the scalar field finite-range, thus leaving the effect
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relatively unimportant in solar system experiments, for example. A simple estimate shows
that f ~ 107" or less.

The above argument shows clearly that one must take microscopic physics into account
in order to fully appreciate the result on G/G In other word, G/G provides a precious
information about how gravity enters in microscopic physics. It seems, however, there is a
wide-spread confusion on the nature of conformal transformation. Some says that physics
looks the same in any CF, making it unnccessary to choose a particular CF. In this con-
nection we hasten to point out that any of realistic theories of gravitation are noninvariant
under conformal transformation. (The title and some of the statements in Dicke’s classic
paper “Mach’s Principle and Inrariance under Transformation of Units” [30] might be partly
blamed.) Others also say that physics will look different only if quantum eflects come in. In
the following simple but explicit example we first demonstrate that physical effects show up
differently in different CF even in the classical level.

Again as an exercise consider a perfectly standard theory of GR, and apply a Weyl rescal-
ing of an arbitrary function Q of time ¢. Also assume that Q(f) varies so slowly that one can
approximate it by

Q) = 1 +19, (A.8)

where € is a derivative at the present time ¢ = 0; we assume [{Q2| < 1 with the normalization
0) =1.

The geodesic equation is transformed into

(A.9)

D¢ Dz f lw_*_ﬁd:r"
D2~ D T \® T dr )

where f, = 8, In Q. This shows that a particle that falls along a geodesic in the original CF
does not do so in the starred CF; depending on the choice of CF, GR may look as if it were
not a metric theory! In the nonrelativistic limit, (A.9) gives an equation corresponding to
the Newtonian equation of motion:

D3z . dz

b7 =~ (A.10)

It appears as if a dissipative force were present.
In the application to solar system experiments we notice that z* and ¢ are not the correct
PN coordinates since the g_,, are not asymptotically flat due to the presence of 2 in (A3)

if g, are. This can be remedied by applying a general coordinate transformation to ' and

{[31):
t= (1439Q)1+ L1724,
= (1+iQ)z.

(A.11)
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Suppose the Newtnonian equation in the original CF is given by

d*z' el T .
= —(u‘lﬁ + PN terms. (A.12)
Using (A.10) and (A.11) we obtain
&z sy o F L dE
—T =" (1 -Qtn)c.fu5 ~ Q== + PN tenns, (A.13)

Let the solution of (A.12) be denoted by #'(f). We then show that the solution of (A.13) is
given by [31]
QiF(0), (A.14)

which shows explicitly that the particle moves in a different way from the way in the original
CF. The different behavior should come as no surprise because of conformal noninvariance of
the theory. It is something like different motions in different noninertial frames of coordinate
in the Newtonian mechanics.

Obviously choosing a correct CF is an indispensable part of any theoretical analysis. Also
obvious is that there is no apriori criterion to select a particular one. In the analysis of the
solar system experiments in the above sense, a CF in which the particle masses are constant
seems to be a right CF. This is, however, not sufficient if we go back to the past to discuss
the carly universe in which atomic clocks had not been available yet.

The same universe looks expanding differently in different CFs. Suppose the scale factor
behaves like a(t) = {2 in the original CF, and the scalar field dynamics gives @ ~ t7¢. The
time variable ¢, and the scale factor a,(f,) are defined by the relations dt = Qdt, and a = Qa,.
We then find a, = 12 and 1, = (¢*!, where o, = (a+¢{)/(1+¢). An example of the theoretical
models [32] gives o, = 1/2 and { =1 with m_ = const, and hence t = {!/2, m ~ { and a = 0.
The radiation-dominated universe in the starred CF shows no expansion in the original CF,
hecause rods now expands in the same proportion as the universe.

The difference in quantum effects will be even more drastic, because in many occasions
quantum theories are defined as small perturbations around classical solutions. Choosing CF
and quantization procedure may not be commutable. It is something like the effects in phase
transitions. See ref. [32] for an example.

References

1. C. Will, Theory and Experiment in Gravitational Physics, Cambridge University Press,
(1981): Phys. Rep. 113 (1984), 345: Science 250 (1990), 770.

2. P.G. Rol], R. Krotokov and R.H. Dicke, Ann. Phys. (N. Y.) 26 (1964), 442.

—186—



11

13.

14

16.

V.B. Braginski and V.I. Panov, Sov. Phys. JETP 36 (1971), 464.

1. E.G. Adelberger, C.W. Stubbs; B.R. leckel, Y. Su, II.E. Swanson, G. Smith, J.1.

Gundlach and W.F. Rogers, Phys. Rev. D 42 (1990), 3267: R.D. Newman, D. Graham
and P. Nelson, Proc XXIVth Rencontre de Moriond, (Editions Frontieres, 1989), p. 459.

L.I. Schiff, Am. J. Phys. 28 (1960), 310.
R.V. Pound and G.A. Rebka, Phys. Rev. Lett. 4 (1960), 337.

R.F.C. Vessot, M.W. Levine, E.M. Mattison, E.L. Blomberg, T.E. Hoffman, G.U. Nys-
trom, B.F. Farrel, R. Decher, P.B. Eby, C.R. Baugher, J.W. Watts, D.L. Teuber and
F.D. Wills, Phys. Rev. Lett. 45 (1980), 2081.

A.P. Lightman and D.L. Lee, Phys. Rev. 8 (1973), 364: M.P. Haugan, Ann. Phys.
{N.Y.) 118 (1979), 156.

V.W. Tlughes, H.G. Robinson and Beltran-Lopez, Phys. Rev. Lett. 4 (1960), 342:
R.W.P. Drever, Phil. Mag. 6 (1961), 683.

. J.D. Prestage, J.J. Bollinger, W.M. Itano and D.J. Wineland, Phys. Rev. Lett. 54

(1985), 2387.

S.K. Lamoreaux, J.P. Jacobs, B.R. Heckel, F.J. Raab and E.N. Fortson, Phys. Rev.
Lett. 57 (1986), 3125.

W.T. Ni, Phys. Rev. Lett. 38 (1977), 301.

C.-H. Hsieh, P.-Y. Jen, K.-L. Ko,K.-Y. Li, W.-T. Ni, S.-S. Pan, Y.-H. Shih and R.-J.
Tyan, Mod. Phys. Lett. A4 (1989), 1597: Y. Chou, W.I". Ni and S.L. Wang, preprint:
W.-T. Ni, Y. Chou, S.-S. Pan, C.-II. Lin, T.-Y. Hwong, K.-L. Ko and K.-Y. Li, Proc.
3rd ROC-ROK Metrology Symposium, May, 1990, p. 107.

A. Eddington and G.L. Clark, Proc. Roy. Soc. 166A (1938), 465.

. K. Nordtvedt, Jr., Phys. Rev. 169 (1968), 1014; 1017: 170 (1968), 1186.

J.G. Williams, R.I. Dicke, P.L. Bender, C.O. Alley, W.E. Carter, D.G. Currie, D.H.
Eckhardt, J.E. Faller, W.M. Kaula, J.D. Mulholland, H.H. Plotkin, S.K. Poultney, P.J.
Shelus, E.C. Silverberg, W.S. Sinclair, M.A. Slade and D.T. Wilkinson, Phys. Rev.
Lett. 36 (1976), 551: LI Shapiro and C.C. Caounsclman, I11I, Phys. Rev. Lett. 36
(1976), 555.

—187-



i7.

18.

19.

T.M. Brown, J.Christensen-Dalsgaard, W.A. Dziembowski, P. Goode, D.O. Gough and
C.A. Morrrow, Astrophys. J. 343 (1989), 526.

I.A. Hill, P.D. Clayton, D.L. Patz, A.W. Ilealy, R.T. Stebbins, J.R. Olesin and C.A.
Zanoni, Phys. Rev. Lett. 33 (1974). 1497.

R.W. llellings, P.J. Adams, J.D. Anderson, M.S. Keesey, E.L. Lau, E.M. Standish,
V.M. Canuto and 1. Goldman, Phys. Rev. Lett. 51 (1983), 1609.

. R.A. Van Pattern and C.W.F. Everitt, Phys. Rev. Lett. 36 (1976), 629.

. L. Ciufolini, Phys. Rev. Lett. 56 (1986), 278.

. B. Mashhoon, H.J. Paik and C. Will, Phys. Rev. 39 (1989), 2825.

3. J.I. Taylor, A. Wolosczan, T. Damour and J.M. Weisberg, Nature 535 (1992), 132.
. T. Damour, G.W. Gibbons and J.H. Taylor, Phys. Rev. Lett. 61 (1988), 1151.

. Y. Fujii, Naturé Physical Science 234 (1971), 5.

. E. Fischbach, D. Sudarsky, A. Szafer, C. Talﬁmdge and S.H. Aronson, Phys. Rev.

Lett. 56 (1986), 3.

. E. Fischbach and C. Talmadge, Nature to be published.
. Y. Fujii, Int. J. Mod. Phys. A6 (1991), 3505.

29. Y. Fujii, Phys. Lett. 255B (1991), 439.

30. R.H. Dicke, Phys. Rev. 125 (1962), 2163.

. P.J. Adams, V.M. Canuto, I. Goldman and R.W. Hellings, Phys. Rev. D28 (1983),

1822.

Y. Fujii and T. Nishioka, Phys. Rev. D42 (1990), 361.

~188—



Gamma Ray Bursters and Sources of Gravitational Waves

Takashi Nakamura
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Almost twenty years have passed since gamma ray bursters were discovered. The
main observational results as well as theoretical arguments up to 1990 are reviewed
by Higdon and Lingenfelter.1 We do not discuss topics treated in this review paper.
Here we only discuss recent astonishing observational results by BATSE science team
in GRO( Gamma Ray Ol:‘;s,erva,t‘,ory)2 2 whose gamma ray detector has 2000cm?®x8
area with energy range from 20 to 2000keV and can determine the position of the source
within the accuracy of 5 to 10 degrees. BATSE reported that the distribution of 153
located events is isotropic within the statistical limit. A measure of the dipole moment
with respect to the galactic center is < cos§ >= 0.002 + 0.006 ( vs. 0 % 0.046 for an
isotropic distribution) and that of the quadrupole moment with respect to the galactic
plane is < sin? b >= 0.310£0.006 ( vs. 0.333 0.023 for an isotropic distribution). The
quoted errors for the measured values are the instrumental errors due to inaccuracy of
the burst locations only, while those for the isotropic model distribution are the standard
statistical ones for the sample of 153 events. The value of the dipole moment suggests
that the source distribution is a symmetric function of cos #. There are equal number of
sources toward the galactic center and anti-center directions. The quadrupole moment,
hqwever, does not necessarily suggest the isotropy as stated by Meegan et al.® . To
show this we consider a model distribution of gamma ray bursters such that the source

luminosity and the number density are both constants within the spheroid given by

[ ]

2, ,02
+
AL A (01)
a1 a3
If we identify xy plane with the galactic plane , < sin?b > is given by
1—e?)(Lloglte —¢
<sintpse LZNGlEZE ) (02)
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where

From the observation, < sin? b > can be 0.25 for 35 lower bound. In the above model
this corresponds to e=0.7 or a; : az=1:0.7. Even for < sin?b >=0.295 (i.e.1o lower
bound) , e=0.5 (or a; : a3=1:0.86). This shows that more located events are needed to

distinguish whether the source distribution is isotropic or not.

The integral brightness distribution has a slope of -0.8 (vs. -1.5 for homogeneous
and isotropic distribution). The average value of V/V 4, is 0.3484:0.024(vs. 0.5 for a
homogeneous and isotropic distribution), while Ginga found V/V,,m,=0.35zi:0.0354 ,
where V/V . for each burst is the ratio of spherical volume defined by the distance of
the burst and the maximum volume from which the burst could have been detected. In
the homogeneous spheroid model distribution of Eq. (01) V/V ., is given by

< V/Vmaz >=(2(1- 62)1'5 +3(1 - 62)0‘5 + 3% tan~! (03)

=16,
where Vyaz=4ma3/3 is assumed. Then the value of < V/Vjuqr > are 0.387 and 0.43 for
e=0.7 and 0.5, respectively. Thus the spheroid model can be compatible with V/V ..
tests of GRO and GINGA satellites if e~ 0.7 and Vyq; ~ 4ma3/3. Note that the
spheroid model yields 0.5 for < V/Viuaz > if Vinar < 4ma3/3. The larger value of <
V/Vinaz > in the range of 0.4-0.5, which are reported by the other satellite experiments1
, might be interpreted in terms of the V5, smaller than ~ 4wa3/3. This suggests that
a homogeneous spheroid model which is anisotropic might be consistent with the dipole
and quadrupole moments of the angular distribution as well as the V/V . tests of GRO
and other satellites. On the other hand, if we assume the isotropy of the distribution,
the index of integral brightness distribution -0.8 and < V/V,;,,, >=0.348 is compatible

-15

with the inhomogeneity of the number of sources decreasing as r as a function of

distance r from the earth.

From the rise time of the bursts’ , the size of the sources should be smaller than
300km. This suggests that gamma ray bursts are the phenomena near compact objects
such as neutron stars or black holes. In reality cyclotron features measured in three out
of 23 events by Gamma-ray Burst Detector on board the Ginga satellite corresponds

to a magnetic field of ~ 10'% gauss, which strongly suggests neutron stars® . Ginga
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also detected X-ray emission in the 2-10kev energy range ~10s before the onset of the
gamma ray bursts as well as a tail of X-ray emission for ~30s afterwards. The spectra
of the precursor is well fitted by the black body with a temperature 1.5keV, which also
suggests emission from a neutron star at near Eddington limit. In view of these facts, we
do not consider sources other than neutron stars and black holes in this paper although
gamma ray bursters might be completely new compact objects about which we know

nothing.

If future observations confirm the isotropy of the distribution, we may abandon
galactic disk models as well as halo models. One inclines to consider a cosmological
model. If typical gamma ray bursters are at the distance of ~ 4Gpc(~ 10%cm), the
total energy amounts to ~ 10%%rgs . If this is the gravitational energy liberated by
the matter falling onto the neutron star, the total mass is ~ 0.1Mg. Even in the
dense core of globular cluster the collision time between a neutron star and a low mass

star is too long (~ 10'3

y). Although there are many pulsars which have a low mass
companion(~ 20) , the decay time of the orbit due to the gravitational radiation is much
longer than the age of universe. The most probable candidate seems to be coalescing
binary neutron stars. There are at least three systems, PSR19134-16, PSR2127+11C
and PSR1534+12 in the galactic disk. Two neutron stars in these systems will coalesce
after 3x 103y, 2 x 10%y and 3 x 10%y, respectively, due to the emission of the gravitational
waves. Then an ultra-conservative lower limit to the rate of coalescing binary neutron

star gives ~ 200events/y within 4Gpc6 . Phinney’s best estimate gives ~ 10%events/y.

Coalescing binary neutron stars at cosmological distance as gamma ray bursters
are consistent with the isotropy of sources. As for V/Vp,,, test, two aspects exist.
Since binary neutron stars coalesce ~ 3 x 108 to 10! after formation, the number of
sources should decrease as a function of distance, i.e. the backward time, from us. This
favors the small value of V/V 4, qualitatively. Even if the number density of sources is
constant in co-moving coordinate, V/V ;4 becomes smaller due to cosmological redshift.
As for the energy, potentially a part of binding energy of neutron stars ~ 10% ergs
might be liberated as gamma ra,ys7 . What is difficult in this model is the time scale
problem. Nakamura and Oohara performed post Newtonian 3D numerical simulations
of coalescing binary neutron stars including radiation reactions of gravitational waves®
. They performed several simulations with different mass ratio. The final product is a

rotating black hole with a Kerr parameter a/m~ 0.35. The time from the contact of
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two neutron stars to the formation of the black hole is at most 10ms or so. Even if we
include the accretion phase before the contact or tidal disruption of the smaller mass
neutron star, the time scale is at most lsec while there exist gamma ray bursters with
duration ~ 100 sec’ . Even the existence of event with duration 1000s was report.edg .
Regardless of energetics and radiation mechanism, it seems highly difficult to make an

phenomena with duration of 1000sec in coalescing binary neutron stars.

In numerical simulations by Nakamura and Oohara® when the initial mass of each
coalescing binary neutron stars is different, the smaller mass neutron star is tidally
disrupted. The tail of the tidally disrupted star makes spiral like structure due to the
differential rotation. After several rotation, these spiral structure disappear by winding
and a disk is formed around a rotating Kerr black hole. Here there are two energy
sources, one is the rotational energy of Kerr black hole which amounts to

a/m

= 6 x'10%
E,.. x10°°ergs( 035

)%,

and the gravitational energy of the disk estimated as

M
Eoce = lO“ergs(ﬁ).

If neutron stars have magnetic fields of ~ 10'? gauss before coalescence, it is not so
unreasonable to assume that a magnetic field may be amplified up to 10'°gauss due to
the winding and the differential rotation of the disk. Then E,,; as well as E,;.. may be
liberated by Blandford-Znajeck effect with the luminositym given by
a/m., M B

)*(

L~ 1050 2 2.
ergs/s( 0.35 3M®) (1015gauss)

T = (Eppt + Eace)/ L will give a time scale of the event which depends on the strength
of magnetic fields. In order to produce gamma ray we may use positron and electron
pair creation in the spark-gap and subsequent curvature radiation as in radio pulsa.r11
. The energy of electron pairs are estimated as'!

)-1/7(“/"‘)1/7_

E. ~ 101%eV/( 0.35

103gauss

Then the energy of the curvature radiation becomes

107em

E, ~1MeV( )s

where p is the curvature of the magnetic fields. In this case we can see gamma ray
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bursts only from a certain direction. Then the beam factor of ~ 0.1 will give us ~ 1000

events/y which is the correct rate.

If gamma ray bursters are coalescing binary neutron stars, they should be the sources
of gravitational waves certainly. Numerical simulations of coalescing binary neutron
stars by Nakamura and Oohara® suggest that the maximum amplitude of the gravita-
tional waves amounts h ~ 10~?! if the source is at the distance of 50Mpc. This shows
that the maximum amplitude will be A ~ 10723 if the source is at the distance of 4Gpc.
At present the goal of the gravitational wave detectors is to achieve the sensitivity of
h ~ 10721 at the frequency of ~kHz. However, in the advanced phase of detectors such
as LIGO " , the goal is h ~ 10722, Then we may observe almost all the gamma ray
bursts by the gravitational waves also. Such observations will give us important infor-
mation on physics in strong gravity such as black hole physics. At the same time the
gamma ray bursters will give us unambiguous standard candles which have been sought
for in cosmology. From the measurement of amplitude, the frequency and the time scale
of the increase of the frequency ~1sec before the coalescence of binary neutron stars, we
can determine the distance to the source directly13 , i.e. without using any empirical
relations often used in cosmology. The simultaneous observation of events by several
gravitational wave detectors as well as gamma ray detectors can determine the position
of the source. From the value of the redshift of the host galaxy and the directly deter-
mined distance, we may determine various important cosmological parameters such as
Hubble constant, energy density, deceleration parameter and the cosmological constant

unambiguously.

This paper is based on the paperPossible Origins of Gamma Ray Bursts by T.
Nakamura, N. Shibazaki, T. Murakami and A. Yoshida.(YITP/K-960) This work was
partly supported by a Grnat-in-Aid for Scientific Research on Priority Area of Ministry
of Education, Science and Culture(03250103)
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Black Holes in Astrophysics
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Abstract

Astrophysical aspects of black holes are reviewed. Firstly, observable
signatures of black holes are examined in the context of dense stellar
systems and X-ray sources. Then, basic ideas of accreting black holes in
explaining X-ray stars and active galactic nuclei are presented. Finally,

cosmological evolution of black holes in galactic nuclei is discussed.

1. Introduction

For modern physicsists who investigate the real world around us, the black hole
is not just a mathematical solution of the Einstein equation but an object which
can be studied observationally. The existence of the black hole is a natural outcome
of stellar evolution as was first noted by Oppenheimer and Snyder in 1939’'. As
the stellar energy source was understood in terms of the thermo-nuclear fusion, the
fate of stars after the consumption of the nuclear fuel has gathered much attention.
Theoretical study of stellar evolution predicts that a star of the initial mass more
than about 30M leaves behind a black hole. The problem is how to recognize the
existence of the black hole, because, by definition, the black hole does not emit any
radiation from inside the event horizon and it is unobservable. The breakthrough
occurred in 1960s that was the era when many important astrophyical objects were
discovered such as pulsars, X-ray stars, quasars and cosmic microwave background.
[t is rather surprising that they remain to be major topics in astrophysics in 1990s,
even 30 years later after their discovery. It was soon recognized that most X-ray stars
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in our Galaxy are in binary systems and emit X-rays through the gravitational energy
release by gas accretion from the companion star. Among them, one particular star
called Cyg X-1 proved to have a mass of about 10Mg which is well above the
theoretical upper limit for the mass of the ncutron star which is about 2Mg. Thus,
such a massive compact star should be necessarily regarded as a black hole.

It should be noted that the idea of accreting black holes was proposed as early
as 1964 by Salpeter® and Zeldovich® to explain an enormous luminosity of quasars.
This idea had not received much attention for an initial decade but eventually re-
vived in mid 70s. In the initial decade most theoretitians had developed models
in terms of supermassive stars and very dense stellar systems. Those studies had
finally lead to tha recognition that the formation of a black hole in the center is in-
evitable and it plays a major role in explaining quasars and active galactic nuclei*»®,
Today we believe that various activities seen in quasars and active galactic nuclei
are caused by accretion onto supermassive black holes of about 10¥Mg, although
detailed understanding of physical processes has not been fully appreciated. Such
physical processes are one of the most important topics in astophysics in 1990s.

In this review I treat basic concepts of black holes in the astrophysical point of
view. First, I present a basic idea of how Lo recognize the existence of a massive
black hole in dense stellar systems. Then, I describe observable signatures of black
holes in X-ray sources. The present status of theoretical understanding of accreting
black holes is also presented. Finally, cosmological considerations of the formation
and evolution of black holes in galactic nuclei are discussed.

2. Black holes in stellar systems

Stellar systems such as globular clusters and galactic nuclei are only moderately
dense. We may recognize the existence of a massive black hole by its dynamical
effect on the surrounding stellar system. A pioneering investigation of such an effect
was made by Peebles in 1972%. Following his paper much work has been done in
197057839}, For a detailed discussion and a list of references, readers may consult
a recent review paper by Dokuchaev'® in which many physical processes of stellar
systems are discussed.

Dense stellar systems may be described by an isothermal sphere model which is
characterized by the one-dimensional velocity dispersion o, the central density p.,
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rotationally supported, the rotation velocity increases in the same power. Observa-
tionally this is seen as a prominent jump in the rotation velocity at the both sides
of the black hole.

The number density distribution of stars around a black hole is more complicated
to treat. Sufficiently near the black hole, stars are tidally disrupted and eventually
swallowed into the hole. If the number density of stars is large enough, mutual stellar
collisions disrupt the stars. In any case a net flow of stars occurs in the direction
to the hole. The relaxation between stars owing to stellar distant encounters will
make up for swallowed stars. The relaxation time T is proportinal to ¢®n~!, where
n is the number density of stars. The steady state condition may be written as
nrift, ~ const., where t, is the time scale of the flow of stars. Accompanying
the flow of stars, a net energy flow should occur outwards since the hole swallows
stars with a negative energy. The condition of the steady energy flow is written as
nr3E Jtg ~ const., where E is the total energy of a star and may well be proportional
tor~! and ¢z is the time scale of the energy flow. At the minimum radius 7, where
stars are disrupted we can take Ty = T, = Tx. Then, we obtain from the two steady
state conditions g = (7min/7)ls. Since the relaxation time should be identified with
the minimum of ¢, and Tz, we should take Tg = Tg. Thus, we finally have the
distibution proportional to 7~7/4, which is called a cusp around the black hole.

As was shown above, observational search for massive black holes in stellar sys-
tems relies on the velocity and density distribution in the central region. The cor-
responding angular scale becomes

Ty ry 10kpc
d  “lpc d
where d is the distance. Nearby galaxies are within the reach of such study. Obser-

arcsec (5)

vations have suggested the existence of a massive black hole in several galactic nuclei
such as M31, M32, NGC4549, M87, NGC3311 and NGC33771112:13)_ The mass de-
rived ranges from 3x 10°Mg, to 3x 10°Mg. For our galaxy, a stellar system cannot be
observed due to heavy absorption, but it is also suggested that there exists a black
hole of 3 x 10°M¢ using infrared lines emitted by a gaseous component!?), Hubble
Space Telescope is expected to greatly improve the reliability of such observations
as well as extend the number of target galaxies.

A cusp in the density distribution can be also formed by the gravothermal catas-
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trophe without the central black hole as is frequently discussed for globular clusters.
It is to be noted that the velocity structure is very different from a cusp around

massive black hole and observationally discriminated.
3. Black holes in X-ray binaries and active galactic nuclei

As was stated in the Introduction, the first detection of the black hole was made
for Cyg X-1 which belongs to X-ray stars in the Galaxy. From the analysis of
binary motion we can infer the mass of the X-ray star and if the mass exceeds the
theoretical upper limit for the neutron star of about 2Mg, we may identify it with a
black hole. At present we have four such X-ray stars, Cyg X-1, LMC X-3, A0600-00
and LMC X-1. The characterictics of X-ray emission from such black hole candidates
is in fact distinct from those from X-ray stars containing the neutron star!®. The
latter population belongs to a majority of X-ray sources and is classified into two
categories. One category is the X-ray pulsars which show a modulated emission
pattern with its rotation period and a spectral feature of a steep cutoff above about
20keV due to the cyclotron resonance. The second category is called low mass X-ray
binaries for which the spectrum is fitted by a superposition of two component quasi-
black body radiation and occasionally phenomena called X-ray bursts occur. The
two components are interpreted as the emission from the stellar surface and from
the accretion disk. It should be reminded that the emission from stellar surface is
definitely observed for both categories of X-ray stars.

In contrast, for black hole candidates, no stellar emission, no regular pulsation
and no X-ray bursts have been observed. They are characterized by rapid time
variabilities with no characteristic time scale and their emission is composed of two
components, too. One is a hard component with a power law spectrum extending
up to 100keV and the other is an ultrasoft component that is peaked at 1keV or less.
Usually the latter is ascribed to the emission from an optically thick accretion disk,
while the former origin is still in debate, while the Compotonization in a hot plasma
with the temperature of about 100keV is most likely!®). Similar emission properties
are observed for quasars and active galactic nuclei'”. A hard X-ray emission with
a power law spectrum is a ubiquitous feature of active galactic nuclei and a strong
UV emission which seems to have a quasi-black body spectrum is also observed for
many active galactic nuclei. The latter seems to correspond to an ultrasoft X-ray
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emission from galactic black hole candidates.

Thus for black holes, the power law component seems to replace the emission
from the stellar surface in the case of neutron stars. However, theoretical models
of such a hard X-ray emission with a power law spectrum in the vicinity of the
black hole remain to be further developed. Recent detection of X-ray lines from
iron atoms has given another diagnostics of black holes in X-ray sources since in
principle they carry the information of the properties of the black hole through the

18),

effect of space-time structure!®»'?’. However, to make it possible we need a reliable

astrophysical model as well as very detailed observational data.
4. Accreting balck holes

As was briefly stated in the introduction, gravitational energy release due to ac-
cretion is considered to provide the energy source of X-ray stars and active galactic
nuclei. Since accreting gas posseses some amount of angular momentum in general,
it forms a disk around the central gravitating object, which is called the accretion
disk. A theory of accretion disks was developed by Shakura and Sunyaev®® and in-
dependently by Novikov and Thorne??, and it is now called the standard accretion
disk model. They assumed that the disk is geometrically thin and rotating obeying
the Kepler law. Through the action of the viscosity, angular momentum is trans-
ferred outwards and the rotating gas slowly moves into the central black hole and
at the same time frictionally generated heat is radiated away from the disk. For the
viscosity, they assumed that the off-diagonal component of the stress energy tensor
is proportional to the pressure. Although at first sight this may seem to drastically
affect the resultant disk structure, steady state structure of accretion disks seems to
be fairly robust, while stabilities of the disk much depend on the assumed shape of
the viscosity.

The solution of the standard accretion disk is not unique and two solutions are
known near the black hole where a major portion of energy release occurs. One
solution is an optically thick solution in which the radiation pressure dominates the
gas pressure and the disk emits the black body radiation at the local temperature.
The temperature is determined independent of the details since the luminosity is an
order of the Eddington luminosity and the surface area is given by the square of the
Schwarzschild radius. The typical temperature turns out to be 10°K for a stellar
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mass hole and 10°K for 108M hole in active galactic nuclei. Those temperatures
correspond to the ultrasoft component from galactic black hole candidates and the
UV bump from active galactic nuclei, respectively. While this incidence implies
some success of the theory, there is no room for explaining hard X-ray emission
from these sources. An alternative solution is an optically thin solution where the
ion temperature is much higher than the electron temperature?®?®, In this model
the dissipated energy is first used to heat ions, then electrons are heated by Coulomb
collisions, and electrons cools by repcated Compton scattering to produce a power
law X-ray emission. While this model is successful in explaining the X-ray emission,
emission at other wavelengths is not explained.

Thus we need a more complicated modelling of accretion disks even in the context
of explaining the electromagnetic emission properties. Moreover, jet production in
radio galaxies and quasars has been completely neglected in the model, which is
one of the most challenging problems in the contemporary astrophysics. Certainly
we need to incorporate many aspects of physics such as radiation hydrodynamics,
hydromagnetics and particle acceleration to fully understand the physics of accretion
onto massive black holes.

From the view point of general relativity, it is an important issue to obtain the
efficiency of energy conversion. The inner boundary of the standard accretion disk
is identified with the radius of the inner most stable circular orbit. For Schwarzshild
hole, this radius is 3 times the Schwarzschild radius with the specific angular mo-
mentum of v/3 and the conversion efficiency becomes 5.7%. For comparison for Kerr
hole, this radius becomes smaller as the rotation of the hole increases when the or-
bit is co-rotating with the hole. In contrast when the orbit is counter-rotating, this
radius becomes larger. For the extreme Kerr hole, the innermost stable orbit coin-
cides with the event horizon with 0.5r, with the specific angular momentum of 1//3
and the conversion efficiency becomes as large as 42%. It is fairly surprising that
most astrophysical applications have been made only for the Schwarzschild case. It
should be noted that accreting matter should have angular momentum and spin up
the hole in a relatively short time scale. We should use Kerr holes in astrophysical
applications; a factor of 8 difference of the conversion efficiency may change the
emergent spectra and affect interpretation of observations.

Above argument relies on the thin disk approximation and a fairly complicated

treatment is required to take the effect of the finite temperature of accreting plasma
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into account. Some authors have argued that thick disks are formed in the vicinity of
the hole when the efficiency of angular momentum transfer is low?!?%), A comment
on this model is that it leads to a very low efficiency of the enrgy conversion. As an
accreting plasma piles up with a large angular momentum, the plasma swallowed
into the hole has a large angular momentum as well as a large internal energy. Thus,
the conversion efficiency should be very low and larger accretion rate is required to
produce observed luminosities than for the thin disk.

Final comment on accreting black hole is made on the Penrose processes®).
While a particle orbit has always positive energy for a positive angular momentum,
a negative energy orbit becomes possible in the ergosphere of the Kerr hole. Since
such a negative energy orbit is bounded by a barrier in the effective potential within
the ergosphere, a negative energy particle can be produced only in situ by breaking
a particle of positive energy which comes from the infinity. If negative energy parti-
cles are preferentially swallowed into the hole and the positive energy particles that
are a counterpart of the break up leave for infinity, the eventual outcome is that
an energy can be extracted from the rotation energy of the hole. This is called the
Penrose process. Maximum energy extractable from the extreme Kerr hole is 29% in
theory. The astrophysical plausibilities of this process have been extensively exam-
ined such as the disruption of a star, Compton scattering of a photon, and electron-
positron pair production. However, the efficiency has proved to be extremely low
since positive energy particles are also swallowed into the hole at the same time??.
The effect of magnetic field is now a current topic but it seems to be very difficult to
realize afavorable situation because a surrounding plasma which is rotating slower
than the hole is necessarily free falling.

5. Cosmological evolution of black holes in galactic nuclei

The existence of supermassive black holes in active galactic nuclei and galactic
nuclei in nearby galaxies suggests that it is a ubiquitous feature. It is an unsolved
problem when and how such black holes are formed and evolved. As was stated in
the last section, a black hole accrete ambient gas and becomes a very bright and
active object. A black hole in nearby galaxies is considered to be accreting only a
tiny amount of gas for some reason. The accretion rate which is given by an ambient
gas is called Bondi’s rate and written by
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. GM
M= ‘17f('02—)2ﬂoocsoo- (6)

300

This rate critically depends on the sound velocity ¢,., and density p., of the ambient
gas. If we choose appropriate values, the rate proves to be sufficient large to provide
observed high luminositites. However, the Bondi’s rate does not take account of the
effect of the back reaction of the radiation that is produced by the accretion. In
actual case, owing to radiation force, accretion rate is limited by the Eddington’s

rate which is given by

_ anGMm, (7)
norc

where 1, m, and o7 are the conversion efficiency, the proton mass, and Thomson

M

cross section respectively. Since this rate is proportional to the mass, the black hole

mass evolves exponentially with time as
M = Myexp(t/tg), (8)
where the Eddington time {g is written by

_ _nhorc
- 47Gmy,

tg = 4.6 x 10*y years. (9)

For a typical efficiency of n=0.1, the evolution time is 5 x 107years. This finite
age has a fairly strong cosmological significance as discussed below based on the
argument by Turner®®,

Recent search for distant quasars has revealed many quasars of the redshift
greater than four. Take an example of PG115844635 with redshift of 4.73. Bolo-
metric luminosity is estimated as 2 x 10*%erg/s for Hy=100km/s and Qy=1. Then,
the minimum mass is 1.6 x 108My assuming that the quasar is accreting at the
Eddington rate. Then, the time required to grow from the intitial mass of 10Mg
is 7.6 x 10%years and 3.4 x 10%years from 10°My. These time scales are compared
to the age of the universe at z=4.73 which is 4.6 x 10%years. It is found that the
initial mass should be far greater than the stellar mass scale, unless the formation
process of a hole is inefficient in producing radiation. Thus the growing process of
black holes in galactic nuclei seems to be prolonged in the high redshift range. This

is reinforced by the fact that metal emission lines are seen in the spectra of quasars,
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which implies that nucleosynthsis of metals had proceeded before 2=5 in the host
galaxy.

Dynamical argument also suggests that quasars and their host galaxies were
formed in a rather early epoch. Equating the growth time ¢z with the free fall time
scale of the region which eventually becomes a black hole 1/\/47Gpy, we obtain the
characteristic density as

4rGm?

5, 0.1 ,
———L =6x 10-2°(T)2 gem™3, (10)

H =
P nfodc?

Comparing this with the average density in the universe we obtain the density

contrast in the cosmological context as

Ho
100km/s

This suggests that quasar host galaxies have attained a fairly large density contrast

21 g ot Uy )2Q72(1 4 2)°, (1)
p y

and have been formed at al least around the redshift of z=10-30. The age constraint
may be alleviated for open universe but in this case the adopted luminosity and the
resultant mass become larger and similar constraint is obtained. Furthermore, the

density constrast argument becomes more severe.
Epilogue

As was briefly described in this article, astrophysics of black holes has opened
many new aspects in various fields in astrophysics ranging from dense stellar systems,
X-ray stars and quasars to cosmology. It provides us many challenging problems
which are still developing and awaiting further studies by an increasing number of

physicists.
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MAGNETOHYDRODYNAMICAL ACCRETION ONTO A BLACK HOLE

M. YOKOSAWA
Dept. of Physics, Ibaraki University, Mito 310, Japan

ABSTRACT. Extraction processes of black hole’s spin energy by electromagnetic effects are briefly reviewed.
The computational method of general relativistic magnetohydrodynamics{MHD), MHD structure around a
black hole and the energy transfer by magnetic field are given. The evolution of magnetosphere of a black hole
and the instability in the sphere are discussed.

1. Introduction

X-ray emission has been observed in many active galactic nuclei (AGN). Observations have showed the X-ray
spectra of a substantial sample of Seyferts to be remarkably uniform, being well described by a simple power-
law model (Pounds 1977; Elvis et al. 1978; Turner and Pounds 1989). If the bulk of the X-ray luminosity is
synchrotron or inverse Compton radiation, it would require an AGN structure in which nonthermal emission is
far superior to the thermal type. The magnetic field could play a principal role in the required AGN model since,
for instance, the magnetic fields interacting with a black hole bring about electromagnetic power (Blandford
and Znajek 1977; Macdonald and Thorne 1982), or a magnetic field interacting with infalling "cold clouds”
(Guilbert and Rees 1988) would supply a large bulk of energetic particles in the same way as in solar flares
(Osawa and Sakai 1987). Thus, in this paper we discuss the structures of the magnetic fields formed near a
black hole and the energy extraction from a black hole by magnetohydrodynamical process.

The two types of processes were proposed regarding the extraction of rotational energy from a Kerr black
hole by means of magnetic fields. One is an electromagnetical extraction (Blandford and Znajek 1977) and
the other is a hydromagnetical-type extraction (Ruffini and Wilson 1975). The former type magnetic field is a
force-free field generated by the surrounding matter outside the event horizon. The interaction of a magnetic
field with the hole’s rotation produces a battery-like” behavior of the hole’s horizon (Thorne et al. 1986).
The latter extraction process is caused by the fact that two shells of different radii formed outside the event
horizon are dragged due to the rotation of the black hole with a characteristic angular velocity. If connections
between the two shells are made (ropes, springs or in the case of the magnetosphere magnetic lines of forces),
rotational energy can be pumped out from the innermost shell to an external one, and the rotational energy can
be extracted from a black hole (Ruffini 1977). Whereas electromagnetic extraction processes have been studied
by many authors, the latter case has not. When the magnetic energy builds up to equipartition with the kinetic
energy of infalling gas, the extraction energy could be comparable with the observed radiation energy from
AGN. Therefore, we investigate the hydromagnetical extraction process.

The magnetic field lines near a rotating black hole are twisted by a frame-dragging effect and, thus, the
rotational energy of the black hole is stored in the magnetosphere around the black hole(Ruffini 1977). The
twisted magnetic field exerts a torque on an ambient plasma. The particles acted on by magnetic stress either
increase or decrease their angular momentum. The increased kinetic energy of particles is changed in some cases
to thermal energy, wave energy or radiation energy. The actual extraction process should be determined by
many parameters, e.g. the strength of the magnetic field, angular momentum and density of infalling particles.
We first consider the possible structures of the magnetic field formed around a black hole in a simple case in
which initially a homogeneous field is changed by infalling gas with no angular momentum at infinity. We
evaluate the extracted energy from the Kerr black hole.
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Figure 1 (a) A rotating black hole immersed in a magnetic field that is time-independent, (8§/6¢)x = 0. The
coupling of the hole’s GM potential § to the magnetic field B produces an EMF around the closed curve L.
This EMF can be regarded as due to a magnetic-gravitomagnetic "surface battery” in the stretched horizon
(Thorne et al. 1986). (b) The deformation in time, as viewed in rigid coordinates attached to the LNRF at O,
of a box whose walls are at rest in absolute space. The rotation of the box about the hole is not shown. The
differential motion (shear) of absolute space deforms the box from its initial shape (solid line) into an elogated
shape (dashed line). The hole’s dragging of inertial frames rotates a magnetic force line at O from its initial
position (solid arrow) to a new pesition (dashed arrow).

2. Extraction Processes of Rotating Energy from a Black Hole by Electromagnetic Effects

The physics of electromagnetics is clearly understood by the 3+1 formalism. The 3+1 formulation chooses
a preferred family of 3-dimensional, spacelike hypersurfaces in spacetime ( surfaces of "constant time” ) and
treats them as though they were a single 3-dementional space that evolves as time passes ("decomposition of
4-dimensional spacetime into 3-dimensional space plus 1-dimensional time”)(Thorne et al. 1986). The general
relativistic physics of black holes, plasmas, and accretion disks takes place in this 3-dimentional space; and the
relativistic laws of physics that govern them, written in 3-dimensional language, resemble the nonrelativistic
laws. Several recent works on black hole electrodynamics ( Thorne and MacDonald 1982 ; MacDonald and
Thome 1982 ; MacDonald 1984 ; MacDonald and Suen 1985 ) relativistic MHD ( Phinney 1983 ; Sloan and
Smarr 1985 ; Camenzind 1986a, 1986b, 1987 ; Evans and Hawley 1988 ; Petrich et al. 1989 ; Zhang 1989 ;
Punsly and Coroniti 1989, 1990a, 1990b ; Punsly 1991 ; Takahashi et al. 1991 ; Yokosawa et al. 1991 ) were
presented. -

The 3 + 1 form of the Maxwell's equations becomes

6 * E = 4Tl’p¢, (1)
(% - Lﬁ)E = =V x (aBf) - 4maj, (2)
6 - B. =0, (3)
(5 - L5)B = -9 x (a). (4)

Here L5 denotes the "Lie derivative” along 8:
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MAGNETIC FIELD T =0 MAGNETIC FIELD T =70

Figure 2 Time evolution of an initially homogeneous magnetic field in Kerr spacetime with a = 0.999M .
The initial geometry of the magnetic field lines, which are uniform at infinity and modified by the presence of
the Kerr black hole, is shown in the upper left-hand diagram in r — § coordinates with ¢ = constant . The
evolutionary time is displayed in units of M. The infalling matter forms a paraboloidal configuration with a
growing scale. In the central region the "radial” flow rapidly increases the radial component of the field, so
that the configuration turns out to be "radial”. In the vicinity of the event horizon, however, the tangential
component is yet to be predominent.

LzE=(-V)E - (E-V)8. (s)

The "lapse function” and "shift vector” are represented by a and g.

As our first model problem we consider a Kerr black hole immersed in a time-independent magnetic field
[i.e., a field with (85/8t),s, where X/ are star-fixed coordinates}; see figure 1. We can gain insight into the
interaction of the B field with the hole’s rotation by applying Faraday’s law of induction to a carefully chosen
closed curve L(figure 1). The curve begins at some arbitrary point Q on the stretched horizon, extends out of
the stretched horizon and up a magnetic field line to a point far from the hole, then crosses over to some other
field line and descends down it to the stretched horizon at point P, then extends along the stretched horizon
back to the starting point Q. Faraday’s law is represented as follows :

fa(E+.7x§)-dT=-%/§-d£=o, (6)

where 7 is the velocity of the closed-curve boundary measured by the observer in the locally non-rotating frame
(LNRF)(Bardeen 1972). Faraday’s law says that
" L L U,
EMF:faE.dz=f-aaxB-dz=/ —fxB.di )
P
This EMF can be regarded as due to a magnetic-gravitomagnetic "surface battery” in the stretched horizon
(Thorne et al. 1986). The EMF around a massive black hole is given :
ploe - = o 1lsa M 27 B
= di~ = — ~ 10'? —t
EMF = g xB-di (M)MB,, 10 vous(mwe) (1040)' ®8)

equatorialplane 2
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Figure 3 (a) Energy flux of electromagnetic field. (b) Energy density of electromagnetic field. The lower part
shows the energy density at infinity eo(z). The positive region of the energy density is shown by solid lines
and the negative region is by broken lines.

As our second model problem we consider a Kerr black hole immersed in a freezing nmagnetic field in
surrounding gas. The freezind condition gives

-

E=-%xB, (9)

where 7 is the flow velocity of the gas measured in LNRF. Faraday’s law then becomes

‘;—f = ¥ x [~ §) x B]. (10)
Even if there is no gas motion, # = 0, the magnetic field is induced due to the differential rotation of the
space-time, (x"), (see figure 2).

The extraction rate of the hole’s spin energy in the above cases is obtained by summing the energy flux of
the electromagnetic field over the horizon :

R - 1, = Q . s
Power = fyas‘=° -dS = fH[G(E x B) - Gr;B,B,.n] .dS

~ 104531'g/3ec(ﬁ—(})2(ﬁ)2(-1-08-;‘—c). (11)

3. Numerical Calculation Methods of General Relativistic MHD

The magnetohydrodynamic caleulations are performed in a fixed gravitational field; for accretion problems
this field is represented by the Kerr metric in Boyyer-Lindquist coordinates. The line element is:

ds® = gudt® + 2gigdtd + gs3dd? + grrdr? + goeds®. (12)
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Figure 4 Dynamical evolution of accretion flows bounced by the magnetic stress. The first bounce occurs at
the poles in the vicinity of the horizon . The meridian motion is remarkable in the bounced region , which is a
characteristic common to all strong magnetic stress either in the case of rapidly rotating black hole or in slow
rotating black hole. When the gas pressure is comparable with the magnetic stress at the bounced region, no
remarkable meridian motion appears .

The motion of the fluid is governed by the equation of motion
Tab =0 (13)
Here, the energy-momentum tensor is given by

BeB#f
4z °’ (14)

-] B a, 8 B af
af —_— — -—
T**=(p+ P+ 41r)u v+ (P+ 81r)g
where B is a magnetic field component represented in terms of the comoving magnetic field
1
By = -2-qu55¢uﬂps¢ (15)

with 9486 = (—g)llzeapa¢.
We calculate the magnetic field in LNRF and then transform its components into the Boyyer-Lindquist
coordinate for a fluid calculation. The 3 + 1 decomposition of the line element is

ds® = —a®dt? + v;(dz’ + gidt)(dz? + pldr), (18)
in terms of the lapse function a, shift vector 8% and spatial three- metric «;;. The magnetic induction equation
is represented by

8,B° = ;|(av’ - B*)B? - (av? - ') BY), (17)
where, 8% = 43/ zBR’ and B' is the magnetic field component observed in LNRF.
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Figure 4(to be continued)

4. Magnetohydrodynamical Accretion

W set the initial conditions such that the magnetic field and the gas are homogeneous, and the gas observed
in LNRF is rest. Two types of boundary condetions are adopted at the outer boundary. One is the free fall
condition in which the gas density and the magnetic field strength are given by the analytic solutions of the free
fall (Yokosawa, Ishizuka and Yabuki 1691). Other is the quasi-stationary condition in which the gas density
is constant and the magnetic field strength slowly increases. The latter case is calculated in order to evaluate
the energy and angular momentum transport rate of a black hole to the ambient matter in a stationary state.
The initial gas temperature is selected either to be cool or to be hot. In the hot case, the gas pressure behind
the shock front is comparable with the magnetic pressure. The calculating space is r = 1.07r, ~ 10r), and
8 = 0 ~ 7 /2, where r), is the horizon radius. The mesh size is 125 in the r-direction and 100 in the 8-direction.
Computations were performed on the workstation, MIPS RS3230.

5. Dynamical Evolution of Magnetosphere around a Black Hole

(a) We discuss the dynamical evolution of the energy density distribution of the field and also discuss the
energy transfer through the surface of a stretched horizon. The radially infalling gas enhancese both the radial
componet of the magnetic field B; and the meridian one 1'35 . The hole's rotation strengthens the toroidal
component f?,; . Therefore the gravitational binding energy and the hole’s rotation energy are stored in the
magnetosphere formed around the black hole. The stored energy in a region should be evaluated by » the
energy-at-infinity” E.,. Initially the energy density e, (z) is negative over the most of the area around the
horizon. After the delayed time , ¢t > t; , the positive peak in €, (z) is formed at the stretched horizon and
then the electromagnetic energy density at any position in the magnetosphere increases with time (figure 3).
The large amount of the electromagnetic energy caused by the hole’s rotation is stored in the region whose
distance from the center of the black hole is several times as long as the horizon radius. We investigate the
transfer of the electomagnetic energy through the surface of the stretched horizon. When (3,;3;),, ree €0,
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this part acts as the extraction of the energy from the black hole, that is , the rotational energy of the hole is
tranferred to the outer space by means of the magnetic field.

(b) Next we discuss the Dynamics of accretion flows bounced by the magnetic stress. The first bounce occurs
at the poles in the vicinity of the horizon (figure 4). The meridian motion is remarkable in the bounced region
, which is a characteristic common to all strong magnetic stress either in the case of rapidly rotating black hole
or in slow rotating black hole. When the gas pressure is comparable with the magnetic stress at the bounced
region, no remarkable meridian motion appears .

(¢) The maximum energy density of the magnetic field obtained in quaisi-stationary accretion flows is B, , x =
10~3pc%. The more strong magnetic field produces the shock structure in the flow. The rotational velosity of
the fluid reaches to vsarax = 0.1c . The stored energy in the magnetospher around a black hole is about 0.1
percent of the rest mass energy of the accreting matter.
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Linear Perturbation Theory of Relativistic
Magnetohydrodynamics
Toshio Uchida

Astronomical Instilute, Fuculty of Science, Tohoku University, Sendai 950, Japan

Abstract

We formulate a Lagrangian linear perturbation theory of relativistic magnetohydrody-
namics. The Lagrangian displacement is introduced as a basic variable and small changes in
all the physical quantities are expressed up to second order by this vector field. The basic
equation becomes three components second-order partial differential equation whose inde-
pendent variables are components of the Lagrangian displacement normal to u*. The action

principle and the geometric optical approximation are also formulated.

1. Introduction

Recently, relativistic magnetospheres around black holes or accretion disks draw much
attention as energy sources of the active galactic nuclei or quasars. Most of previous works
were concerning with the stationary and axisymmetric configuration, and now more general
consideration will be necessary for deeper understanding. For this purpose, we study a
linear perturbation theory which enables to treat arbitrary small perturbation around any
solution of relativistic ideal magnetohydrodynamics. Since changes in gravitation are small,

we completely neglect changes in the metric in the following.

2. Unperturbed configuration

It is assumed that the unperturbed configuration is obeying the following set of equations:

Vu(nu") =0, (1)

uV,s =0, (2)
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VAFuv + Vval + VVFAM =0, (3)

V.F* = 4rJ*, (4)
F,u =0, (5)
v, T* =0, (6)
p=p(n,s), (7)

where n is the particle number density, s is the specific entropy, F,, is the electromagnetic

field, and p is the energy density. The energy momentum tensor T#* is given by
1
T = (p+ p)w's” +pg + —(F**F5 = ¢ F" F,), (8)

where p is the pressure of the fluid. By introducing the projection tensor on the hypersurface
normal to u# by

P = u g,

equation (6) is reduced to

uVup+(p+p)V,u* =0, (9)

(p+pu'V,u* + 4V, p=F*"J,, (10)

where equation (9) is the energy conservation law and equation (10) is Euler equation, of
course. Then our aim in this paper is to develop a linear perturbation theory which is

applicable to the small perturbation around any solution of these equations.

3. Lagrangian displacement

When treating small perturbations, two schemes are known, i.e. Eulerian perturbation
theory and Lagrangian perturbation theory. Here, we adopt the latter approach. Thus
we must first introduce the Lagrangian displacement as a auxiliary variables. To do this,

we assume that the perturbed configuration relates to the unperturbed configuration by a

—214—



one-parameter family of maps 9#(), z), having following properties;

¥¥(z,0) = 2, (11)
and if
Th = 'ﬁ”(m, ’\l)r
then
YT, Aa) = P¥(z, M + Xa). (12)

Here different value of A corresponds to a different perturbed configuration. The Lagrangian

displacement ¢* is defined by

dy*(z,) _
— =¢@). (13)

By integrating this equation iteratively, ¥* is written explicitly as
Wz, 3) = 2 + AC"(2) + 5XUCBC)a) + O(N). (14

(Hereafter we omit A and make order-counting by {* itself.)
Perturbations can be represented by two ways. The Eulerian changes in quantity f is

defined by
§f = F(z) - f(=), (15)
where f is a quantity in the perturbed configurétion. The Lagrangian change is defined by
Af = ¢7f(z) - f(z), (16)

where 1° is a pull back of . Then the Eulerian and Lagrangian change relate as

AW = §0f 4 £ f,

ADf =53 f 4 £ 5Wf 4 %.c(‘c( 1, (17)

where £, is the Lie derivative with respect to ¢*.
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4. Expressions of perturbed quantities
Next we are going to express changes in physical quantities by ¢*. First, let us consider
the velocity field. Let 2* = z#(7) be the trajectory of the fluid element parametrized by the
proper time 7. Then perturbed trajectory is given by T# = z#(7) = 9¥*(z, A), and its tangent
vector is given by
dz

F(SB) =y - fcu“ + %L'(f(u".

However 7 is no longer the proper time along the perturbed trajectory, because length along
curves is not preserved by map 1. Then above expression implies that the proper time 7/

along the perturbed trajectory is relating to r as

j—:’ =14 2u,Leu* — (g Lo Lou” + u, Lo Lou?).
Since
o = 47047
= dr dr”’
we have

§Mys = %u“u"u'f(gxr — Lout,
5Dy = %(.,uv,;(nua Vil — MV, 50y)
1
+§(6mu“u" + w6V, ¢, (18)

To construct changes in the particle number density, the entropy, and the electromagnetic

field, we put following requirements:

A(neyau’) =0,

AF,, =0, (19)

where €,,,5, is Levi-Civita tensor. These condition implies that we consider only perturbations

which can be attained by changes which conserve the specific entropy and the particle number
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density and preserve the flux-freezing condition from the unperturbed configuration. Then

these conditions yield

Vs = —(*V,s, (20)
§9s = %C‘VX(C’st), (21)
§n = =V, (n¢*) — nu’V,¢, (22)
§n = —%V,,(&“’n(") - %5(1) nuu”V,(, (23)

— S0+ w5,
5(1)Fuu = vp(Fw\<A) - VV(FMXCA)) (24)
1
&R, = E{v,,(a‘”mc*) -V (6PF M) (25)

The change in the energy density is determined by the first law of the thermodynamics,
dp = TdS — pd(1/n). The results are

§Wp = =V ,(p¢*) - (pu*u" + p1**)V (., (26)
) Wy, 4 1B, g
§%p = ub n+§—6 né'n, (27)
n
where 4 is the specific enthalpy, i.e. 1= (p+ p)/n, and c, is the speed of sounds.
The essential point here is that these expressions already satisfy the perturbed version of
the energy conservation (9), the entropy conservation (2), the particle number conservation

1), the degenerate condition (5), and the one of Maxwell’s equation up to second-order in
g p

¢*. Thus only the perturbed Euler equation is equation we must solve. That is,

(p + P)*V280ub + (V,p) (6D u# + w6My¥)
+(o + p)(Var) 606 + 9,6Wp + (80 + 6Dp)u U, u*

= Presy, 4 6Mprr g, (28)

where we regard that all the first-order quantities are already expressed by the Lagrangian

displacement (*.
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5. Action principle
The equation of motion for unperturbed configuration can be derived by extremizing the

action Iy,

1

Io = / pv=gd's = o [ F*F,/=gd's, (29)

under the constrained variation of the form in equations (24) and (26).
Thus the action which yield our equation of motion (28) will be derived by expanding
(29) using equations (20) ~ (27). After tedious calculation and disregarding the total four-

divergence term, we have
L= / Lad*z, (30)

where

1
L, = 5nm“(u"v,.cA - "V, )(w' V.07 = "V, u7)

+%#{VX(nCX) = n(uV, ) H=el V! + (1 + )¢ w0 Van )
_%;{VI‘(FW\CA) - VV(F‘“CX)}{VI‘(FI:\Cx) _ VM(FKC'\)}

= 5oV P)HT(Fon?) = Vo FurC): (31)

1t should be noted that this Lagrangian permits a sort of gauge transformation.

5. Geometric optical approximation

Unfortunately, the basic equation (28) is complex and explicit knowledge of the unper-
turbed configuration is necessary to investigate in detail. However, it is possible to develop
a systematic approximation when the wave length of perturbations are much less than the
typical length in which physical quantities in unperturbed configuration change, i.e., in the
geometric optical regime.

The formulation of the geometric optical approximation is achieved as follows:

First, we expand the lagrangian displacement as

¢* = (a" + eb” + - - ) exp(if/e), (32)
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where ¢ is a dimensionless small quantity. By substituting this into equation (28), the leading

order O(e~?) term is
(p + p{u*u*V 0V, 07, — 34V, 07V, 60}a"

1
+:1-;{F,\"F,"V,.9 Vil — F F"¢""V 6V 8}a" = 0. (33)
The next order term is complex, but its inner product with a* reads

Vu{l (o + p) (e ¥, = 73 7)

+4—l7;(F':F':\ - FiF,g"")]Vibaa’} = 0. (34)

These two are the basic equation in the geometric optical approximation.

After some manipulations, the first equation yields the dispersion relation,

(o + P)(1 = c]) (k) — (o + P)(c] + VAWK (wF, )

+-41—7rcfk2(B"k,,)2 =0, (35)
B2 m 2 1 " 2
{o+p+ g}(" ku)* = 47(3 k,)* =0, (36)

where k, = V6, v, is Alfven velocity and B* is the magnetic field defined by B* = «F#vy,,.
Equation (35) is the dispersion relation of the fast and slow mode, and equation (36) is the
dispersion relation of the Alfven mode. In general, the former equation cannot be divided into
the product of the quadratic form of k,, but in the cold limit, i.e. p = 0,c? = 0,p — nm,

the slow mode vanishes and the dispersion relation of the fast mode becomes
B? B?
Z oyt — =0.
{(nm+ o Jutu 47r7“ ek, =0 (37)

Substituting this relation into equation (35) again, we see that ¢ must be written as

A .
L
a _(_,wk“ku)mﬂ ky, (38)

where A is the amplitude of the perturbation, (H"“k,k,)"/? is the normalization factor, and
H" is defined by
ﬁlw = 7”1’ _ B“B"/Bz.
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Substituting equation (38) into equation (34), we have equation for A
B?
v, {A[(nm + p)utu® — Fg""]ku} =0. (39)

Equations (37) and (39), together with V&, = V,k,, determine behaviour of the fast mode
completely.

By the same way, equation (36) yields equations for the Alfven mode as

A
# —_——_—— Lid vy
a (H""k,,k,)”’e k (40)
B? BB
2 gt = —— =0.
Vol (o+p+ Dyww - 22y = 0 (1)

Then equations (40) and (41) determine 6 and A for the Alfven mode. It should be noted
that (p + B?/4w)u*u” — B*B¥/B? is rank two as a matrix, and well-known characteristic

behaviour of the Alfven wave results from this fact.

6. Conclusion
The formulation which enables us to treat small disturbances of the relativistic ideal mag-
netohydroedynamics is presented. More complete exposition of this theory and applications

to the black hole magnetospheres will appeare elsewhere.
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TIME VARIATION OF MHD ACCRETION
ONTO A ROTATING BLACK HOLE

Kouichi HIROTANI, Masaaki TAKAHASHI, AND Akira TOMIMATSU

Department of Physics, Nagoya University
Chikusa-ku, Nagoya 464-01, Japan

ABSTRACT

We examine non-stationary and non-axisymmetric perturbations on a Kerr black
hole magnetosphere which will exist in an active galactic nucleus (AGN). In the high
wave number limit, relations between perturbed quantities are derived and especially the
influence of a small perturbation in the magnetic field on fluid quantities are analyzed in
detail. The most important aspect of this study is to make a convincing argument that
the time-dependent nature of the magnetohydrodynamic (MHD) accretion flows onto
a black hole appears prominently near the fast-magnetosonic point in the magnetically
dominated limit. Some implications of the present results are briefly discussed with
respect to observed short-term variations in luminosity of AGNs.

subject headings: accretion — black hole physics - galaxies: active

1 INTRODUCTION

-Short-term variations in luminoesity have been reported in various classes of AGNs,
which are thought to contain accretion disks and magnetospheres around central black
holes (e.g., Rees 1984). Such variations may be caused by some kind of instabilities
in accretion disks or by the time-dependent nature of accretion in the magnetosphere.
The former problems have been explored by many authors (e.g., Papaloizou & Pringle
1984, Abramowicz & Kato 1989). Nevertheless, the latter problems have hardly been
studied in spite of the fact that the energy output from the magnetosphere can become
comparable with that from the accretion disk.

In this paper we study the possibility that the observed short-term variations in lu-
minosity can be attributed (at least to some degree) to the time variation of the accretion
in the black hole magnetosphere which comprises ingoing and outgoing flows. Both flows
start from a region where plasma particles are injected with very low poloidal velocity;
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this injection region may be the disk surface. We expect that plenty of plasma can be
supplied from the disk into the magnetophere, and as a consequence we may treat the
flows by MHD approximation. Then the causality requires that the inflows must pass
through the fast magnetosonic point where the poloidal flow velocity is equal to the wave
velocity of fast-magnetosonic mode (Phinney 1983).

Basic equations for general relativistic MHD flows are presented in the next section.
In Section 3 we display critical conditions for stationary and axisymmetric flows and
describe the equilibrium configurations. Then we consider the non-stationary and non-
axisymmetric perturbations superposed on the equilibrium state in Section 4. In Section
5 we will show that the time-dependent nature of the MHD accretion onto a rotating black
hole appears prominently at the fast-magnetosonic point in the magnetically dominated
limit that the rest mass density of particles is negligible compared with the magnetic
energy density. The final section is devoted to discussion.

2 BASIC EQUATIONS

The self-gravity of electromagnetic field and plasma around the black hole is very
weak, hence the background geometry of the magnetosphere is described by the Kerr
metric

— a2ain? , in28 . 2 5
daz=A azsm 0d12+4Ma;sm dtdd:—Asg 0d¢2—zdr2—2d02, (1)

where A =12 —2Mr+a2, T =r?+acos?d, A= (r?+a?)?— Aa®’sin’f and a = J/M.
Throughout this paper we use geometrized units such that c=G = 1.

Under ideal MHD conditions the electric field vanishes in the fluid rest frame, thus
we have F, u* =0, where F,, is the electromagnetic field tensor satisfying the Maxwell
equations and u* is the fluid four velocity. The motion of the fluid is governed by the
equations of motion

™, =0, (2)

where the energy-momentum tensor T#* decomposes into a material part

T = mymaa ®
in the cold limit and an electromagnetic part

™ =

1 v 1 v a
(em) — 4_W(F“pFP + Zg“ FaﬂF ﬂ)' (4)

Here, the semicolon denotes a covariant derivative and m, the rest-mass of a proton.
The proper number density n obeys the continuity equation (nu*),, = 0.
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3 CRITICAL CONDITIONS FOR STATIONARY FLOWS

As an unperturbed state, we consider stationary and axisymmetric accretion flows in
a Kerr black hole magnetosphere. From the analysis of stationary and axisymmetric ideal
MHD equations above, it is known that there exist four integration constants conserved
along each flow line (e.g. Bekenstein & Oron 1977; Camenzind 1986a,b). These conserved
quantities are the angular velocity of a magnetic field line (Q2F), particle flux per unit
magnetic flux tube (7)), total energy (E) and total angular momentum (L). They are
defined as follows:

=Ftr FW

Q = — 5
F= T = Tog ()
g’ _\/—gnuo _ _\/—gnu'(Q - Qp) (6)
? Fyq Fyy Fro ’
Qp
E= myly — mB¢, (7)
L=-myuy — —l—B (8)

where Q@ = u®/u' is the angular velocity of the fluid, and the magnetic field B¥ is
covariantly defined by

- 2\/1__!]6"”"”17,,,5,,, (9)
where £# = (1,0,0,0) is the time-like Killing vector. The poloidal flow lines are iden-
tical with the poloidal field lines and are given by ¥(r,d) = constant, where ¥ is the
¢-component of the electromagnetic vector potential. The conserved quantities are func-
tions of ¥ only. We assume that ¥ is arbitrarily given in unperturbed state.

Since we are interested in an active state of the black hole, we impose the condition
E < 0 which means that the energy extraction due to the Blandford-Znajek process can
work (Blandford & Znajek 1977).

Fluids must pass through the so-called critical points before they fall into the horizon.
In order to derive this critical condition, we first write down the poloidal wind equation
(Camenzind 1986b),

E)2kok2 - 2k2MA2 - qu,f‘

2 =({=
up +1 - ({A (ko — MA2)2 ) (10)

where the poloidal velocity u, and the Alfvénic Mach number M 4? are defined as

w2 = =g (') + 900 (a*)?], (1)
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dmpn’

Myt = (12)
and ko, k2, k4 are abbreviations of the following quantities,
ko = g¢¢Q%~ + 2g,¢Qp + git, (13)
k= (1 -QrL)?, (14)
+ 2016 L + gu L2
ky = 9s9 Jto gu ’ (15)

Pl

where p2, = g,2¢—gug¢¢ = Asin’8 and L = L/E. Equation (10) determines the evolution

of M 42 along a flow line
Differentiating equation (10) along a poloidal flow line, we obtain (Takahashi et al.
1990)

(n u,) = l(ﬁ)’ﬂ, (16)

2\m,

where

' 6 (kOE’P)2 ! n oy 4 ' 2 !
N = KM A8+ koks [1n T] 4+ 2ky(In B,) S Ma® + Bkok M 42 — kokokhy, (17)
EN2 ka + koks
D= b= M) [“p (I‘) Ma I(ko—MA2)3| ’ (18)
and the prime denotes the derivative 8, —(¥, /¥y)8y. The Alfvén or the fast magnetosonic
critical point appears when D vanishes. In order that the flows may smoothly pass
through these critical points, N also must vanish there (Waber & Davis 1967). Thus the
critical condition is given by

N=0 and D=0. (19)

With the help of (10), D = 0 is satisfied when
(20)

where e = E — Qp L. We define Upy as the fast-magnetosonic velocity.
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In the black hole magnetosphere, there are two light surfaces which are defined by
ko = 0 (see e.g., Znajek 1977). One is called the outer light surface which is formed
by the centrifugal force in the same manner as in pulsar models. The other is called
the inner light surface which is formed by the gravity of the black hole. In a region
between the horizon and the inner light surface plasma must stream inwards, while in
a region beyond the outer light surface it must stream outwards. The plasma source
where both inflows and outflows start with low poloidal velocity (M 42 = 0) can be
located between these two light surfaces (Nitta et al. 1991). It can be understood from
equations (16)—(18) that inward acceleration u,u;, < 0 (outward acceleration upuy, > 0)
occurs in the region where kj > 0 (kg < 0) and M 42 =~ 0 hold. The injection region of
plasma inflows is separated with that of plasma outflows. We call the boundary surface
defined by kf = 0 the separation surface. If we consider plasma injection from a thin disk
(8 = w/2), the separation point corresponds to the corotation point where QF is equal
to the angular velocity of circular orbits in Kerr geometry. The accretion starts from the
disk surface between the inner edge and the corotation point. Along magnetic field lines
plasma inflows pass through the Alfvén point (r = 74), the light cylinder (r =rr) and
the fast magnetosonic point (r = r5) successively, and at last reach the event horizon
(r=rg).

Magnetjc Field Kines F
Side view
s
(:JH
V4 T~ V)
{ . I: Injection t
E(l)?gk & I [ / A: Alfvén ptl:»)iol::l
] \5‘_ F: Fast magnetosonic
- Accretion Disk point
Ergosphere

. Figure 1. Schematic picture of the black hol
inflows and outflows start from the surro:nd?:g digl:. megnetosphere. Both
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4 NON-AXISYMMETRIC PERTURBATIONS ON MHD FLOWS

We next consider a small-amplitude non-axisymmetric perturbations superposed on
the unperturbed state discussed in the last section. In the perturbed state all perturbed
quantities are solved self-consistently including trans-field equation, in contrast to the
unperturbed state in which the poloidal magnetic field is arbitrarily assumed.

Since the terms containing the derivatives of quantities in the equilibrium state are
very complicated, we adopt the approximation in which all such terms can be neglected
comparing with those containing derivatives of quantities in the perturbed state. In this
approximation, neither the acceleration due to gravity nor the curvature of the magnetic
field will be taken into account, because all covariant derivatives can be replaced by
normal derivatives and all the derivatives of magnetic field in the equilibrium state will
not contribute. From now on, we will call this approximation high wave number limit.
As perturbed quantities, we use #*, #, and F# for perturbations of u#, n, and F#¥,
respectively. And we sometimes use a symbol (0) such as u*() to mdlcate that the
quantity is in the equilibrium state. We will investigate the mode distinguished by k, =
(—w, kr, kg, m); perturbed quantities are expressed as

9,0 =ik, u%.

We treat all the quantities in the equilibrium state to be already known and thus we
have 11 independent perturbation equations for 11 quantities %#, i1, and Fuv,

In this paper, we wish to examine the behavior of fluid quantities in response to
the variation in the electromagnetic field, we shall henceforth focus our attention on
the relations between perturbed quantities. By ignoring terms of the second and higher
orders in perturbations, we obtain the following results after a tedious analysis (Hirotani
et al. 1992b):

- u, 2Qp u,,
Ol = - a (21)
and
ﬁ_p _ _2(u¢ - Qrut)u"u’ \[g, geeutk, L—'Ll; (22)
u, up?lurk, + (w— mQp)ut] F
for the Alfvén mode,
iy, _ 2(u® — Qpu')u"u’ G goopw’utk, F ; (23)
up, (€2 = ko)up?[urky + (w— mQp)ut] by
for the fast-magnetosonic mode, where
F= up(kd’ - Qpk') + k"(u"’ - Qput), (24)
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1 N .
k) = ;(urkr +u’ke), kL= gu_goa(u kK — k), (25)
» P

- _1(B B

b=2(B'_B")' (26)
Here, ¢ and I denote the energy and angular momentum of the fluid in the perturbed
state, respectively. If the poloidal part of k, is longitudinal to the unperturbed poloidal
magnetic field, then £, becomes 0. b expresses the variation of the poloidal magnetic
field in the direction perpendicular to the unperturbed field. The Alfvén and the fast-
magnetosonic modes are given by the following equations (Lichnerowicz 1967);

Alfven mode : (ko — MAD)(u*k,)? + (w — mQp)|w — mQp + 2eu”k,] = 0,(27)
fast mode : (u*k,)? + UpmZk*k, = 0. (28)

In the next section, we study the behavior of i,/u, in response to b for both the Alfvén
and the fast-magnetosonic modes.

5 ANALYSIS OF ALFVEN AND FAST-MAGNETOSONIC MODES

Let us now examine qualitatively the behavior of fluid quantities represented by
i, /u, at several typical points along the flow line for both the Alfvén and the fast-
magnetosonic modes. We shall first consider the Alfvén mode. The dispersion relation
(27) gives

e-—(kg—MA2)u‘:i:\/eQ—k0+MA2

W S e 1 (o = MaD(@)? (k" +

¢_ t
EoIR ), ()

which shows there exist two modes.

We analyze equation (22) for each mode at three typical points ry < r <rp, r=1r4
and r = rg. (1) In the sub-Alfvénic region (r4 < » < r/), one mode is out-going and
the other mode is in-going. In this case, no quantities in equation (22) diverge, and as a
consequence, we obtain

| 1.‘1’/“1’ |5| b | (30)

in order of magnitude, except when the special mode which cancels the leading order
in utk, + (w — mQp)ut or F occurs. (ii) At the Alfvén point (r = r,), the one mode
stagnates and the another mode is in-going and no quantities in equation (22) diverge.
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Thus the same relation as (30) holds. (iii) At the horizon (r = ry), the dispersion
relation (27) is satisfied only when

holds, where k,, = [(r? + M?)/A]k,. This means that the both modes become in-going
with the same velocity. In this case,

F=0(A""?), v -Qru'=0(A""), w?=0(a"")

bk, =0(1), ubk,+(w—mQr)u' = (w—-mQp)u' =0(A7)

hold, and as a consequence, we have

| @y /up 1S (A/M?) | B (32)

in order of magnitude, except when the special mode which cancels the leading order in
F occurs. From (i)-(iii), we can conclude that the perturbations in fluid quantities such
as | ip/u, | will not become large comparing with those in poloidal magnetic field | b
Let us next consider the fast-magnetosonic mode by introducing the magnetically
dominated limit (| E/m, |>> 1). In this limit, the fast magnetosonic point is located very
close to the horizon (Phinney 1983). We analyze equation (23) at the following three
regions: rp < r < ry, 7 =rp and r = rg. (iv) In the sub-fast-mangetosonic region
(rF < r < r7) no quantities in equation (23) diverge, because we can put A/M? ~ 1 in
order on magnitude in this region. We thus have the same relation (30) as in the Alfvén
mode. (v) At the fast-magnetosonic point (r = rr), we have the following two modes:

w—mwy = 0(—%) ( mode I ), (33)
w—mwy = —k,, + 0(— %’i) ( mode I1), (34)

where wy = (a/2mry) is the angular velocity of the black hole. On the other hand, we
have

ﬁP (w —mwy + krt)2 E N

5 - C -k, 35

up ((wyr — QF)m — k. )[ks + 2P(ME,.)] ( mp) (35)
where C is in order of unity and does not depend on k,, and P = —(r8, ¥/, ¥)y

represents the shape of the field line near the horizon. Substituting equation (33) and
(34) into (35), we obtain

| ity /1y |~ (—E/mp) | b ( for mode I), (36)
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| @, /up |~ (—m,/E) | b] ( for mode 11 ) (37)

in order of magnitude. (vi) At the horizon (r = ry), we have

w—mwy = —k.. + 0(4A) (38)
from equation (28). Substituting equation (38) into (23), we obtain

|ty /up |< (A/Mz) | b | (39)

in order of magnitude. Note that —E/m, > 1 is finite. From (iv)-(vi), we can conclude
that in the magnetically dominated limit | #,/u, | becomes much larger than | | for
mode I at r = rp even if | 4, /u, | < | b | holds at other points. This is because the
physics changes disruptly between rz < r < rg for the mode I: the wave stagnates at
r = rp but must fall inside at r = rz. A small perturbation in the electromagnetic field
of which energy density is dominant compared with the fluid’s can exert a significant
influence on fluid quantities near the horizon.

In summary, we have calculated the relation between quantities perturbed by non-
stationary and non-axisymmetric perturbations in the high wave number limit. The
magnetically dominated limit is crucially essential to the results that | @,/u, |>] b |
holds for the fast-magnetosonic mode at the fast magnetosonic point, because this point
is located very close to the horizon in this limit. In addition to this result, we also showed
that | i,/u, |<| b | holds for the fast-magnetosonic mode at the remote place from the
fast-magnetosonic point and that | &, /u, |<| b | holds for the Alfvén mode at an arbitrary
point along the flow line. Therefore we can conclude that the time-dependent nature of
the MHD accretion flows onto a black hole appears prominently near the horizon in the
magnetically dominated limit.

6 DISCUSSION

The results derived in the previous section lead to a conjecture that the motion of
fluid will become time-dependent as it approaches to the fast-magnetosonic point in the
magnetically dominated limit. Thus when the magnetic field is not very dominant, say
when (—E/m,) = 10, the flow may perturbed by several tens of percent in amplitude
in somewhat extended regions around the black hole. Radiation will be emitted from
such regions provided that several part of the kinetic energy of the fluids changes into
thermal energy. If the perturbation period is longer than the dynamical time scale (i.e.,
Mw < 1), the luminosity of these regions will vary with frequency w. Note that the high
wave number limit is still valid even if Mw < 1, because m, Mk,. > 1 holds. The short-
time variations in luminosity observed in AGNs may be caused by such mechanisms.
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Let us next consider the MHD energy flux T4, = TM e+ T em )t where A is r or 8.
By ignoring terms of the second and higher orders in the pertur ations, we have

T4 _ Tems 4 Tt [Tems o [ Tonte ) Tane
T4, T(em)Al T(em)At

At the fast-magnetosonic point, this equation reduces to

40
T(em)At T(em)At T'(M) t ( )

I.A_f. = T(e"')A‘ + =2 ™ (U)M (41)

TA! :r(em)At E TI(M) ¢
in the magnetically dominated limit which gives (Tiary*¢/T(em)?t)0) = (m,/E)u,(o)
Note that this equation is valid only for the small perturbations such that | (E/ m,,)b |« 1.
In the right hand side of equation (41), both the first and the second terms are in order of
b. This implies that the fluid part has almost the same contribution as the electromagnetic
part. This could be understood that the inertia of fluid becomes essential near the
horizon. Such feature would never been seen in the force-free approximation in which
we neglect the fluid part in T4,. The same discussion can be applied to the angular
momentum flux 74 4. Thus we can suggest that the force-free approximation should be
abandoned near the horizon in the perturbed state and that we should take the inertia
of fluid into account.

We have seen that the flows tends to become time-dependent as they approach to
the horizon in the magnetically dominated limit. This is due to the effects of a critical
point, the horizon and the inertia of fluid. Nevertheless, we have neglected the effect of
gravitational acceleration by adopting the high wave number limit in this work. Such
nature of MHD flows would be clearly seen if we would analyze the fully time-dependent
flows near the horizon without using the high wave number limit.
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Electromagnetic Radiation from Rotating Objects around a Black Hole
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Abstract
This paper examines the nature of the eletromagnetical radiation emitted from a test
particle with magnetic field as it rotates around a Schwarzshild black hole.

Electromagnetic Fields around Schwarzshild Black Hole
We will formulate the dynamical approach of general relativistic plasma based on the
“341” formalisum. This approach has been extensively applied to numerical relativity.
Thorne and Macdonald (1982) have formulated Maxwell equations with the familiar lan-
gauge for astrophysicists. Around a Schwarzschild black hole (B.H), by using the 3+ 1”
formalism, we can write the Maxwell’s equations for the electromagnetic field,

OE

W:Vx(aB)—Mraj, VE = 47p,
0
—0?;=_VX(GE)1 VB =0, (1)

where the lapse function a = (1 — 2M/r)}/? |
The electric and magnetic fields can be derived from a scalar potential ¢ and a vector
potential A, B=V x A ,E = -1Va¢ - })% . The solenoidal gauge derives the final

equation for the vector potential,
1 9A

o? o2
Representation with Vector Spherical Harmonics

Any vector field can be expressed by the spherical vector harmonics. Then, with introduc-
ing the "tortoise coordinate ” r* as Regge and Wheeler (1957) defined dr* = I:d;lr 7=

lV x (@V x A) — 4xj . (2)
a

r+2Min [2'7, - 1] . We obtain the equation for the solution with the radial dependent
as

¢ _ @
[5,:5 - % - V(r)] Gim(r,t) = =47 i = S(r,w), (3)
2 H
v(r)=(1-¥)[(:;” , (4)
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where §i,n = rogm or rf,, and ]"lm = j,,v,,,,g ot jgimr. The clectric transverse mode 3 is
important.

Formal Solutions
Let gin and gou be the homogencous solutions to Eq.(3) without the source term in the
right hand. Then the solution for the Fourier compornents of Eq.(3) can be expressed as

" W) = e x
o 10) = s

[go,..(r',w) [ gl @)SG @) + gl 0) [ gm(r",w)S(r",w)dr"] - (5)

where the Wronskian is represented as W(w) = gi,,ég"’—_"‘- - gou,%"r—‘ﬂ = 2iw (T(‘w))
Since our interest is in the emitting radiation to infinity, we only need the form of g

for the outgoing compornet at r* — oo. Then,

g(r* = 00,w) = GW)T(w)e™" w)=—— / Gun(r™', )S(r™" )dr™ . (6)

Properties of Sources
We will write the source terms of the current by the bases introduced for the representation
of the vector potential. Our interest is the radiation from a moving moment. Then,
we can obtain effective polarization induced by the moving magnetization from Lorentz
transformation. From the similarity between the transformation of (E,B) and that of
(P, M) we can obtain the effective current sources for the moving magnetized objects

. 9 y
Jegr = E(va)+Vx(aM)
= jpol +jmay ’ (7)

where we have defined jpo = g'(v x M) and jmag = V x (aM).
For the point dipole source with its moment m at r’, the magnetization can be repre-
sented as,

M = §(r — ¢ (£))m(r (1)), (8)

In this paper, we will assume that the velocity is perpendicular to the magnetization. It
means that M’ = M. Furthermore, we will consider that the direction of the moment at
the point r' is parallel to its radial position vector r. Then, the magnetic moment can
be represented as

1

m = mdr_. . (9)
r

We obtain the source term,
S:.B,lm(r)w) = 47"0’2]',_5.1,"(7‘,01)1‘
(I —=m)i(2 +1)

Quim—r J
slm\/71+ 1) 47 I+m)'

Prn(0)8(r = 7)6(w — mQ) , (10)
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where s = mag or pol,

ax o 21(141 ‘
Sroaim | = | A botr =)ot = me) (1)

Radiation around Schwarzshild Black Hole
We can see the source term is only non zero at the radius of the particle. For a pure
multipole of order (I,m), the power-radiated per unit solid angle per unit frequency interval
is the angular distribution reduces to a single term,

d* P

2
w ) ,
dwdQ? 4 I Glm(w)ﬂm(W) | | Sﬂ,lm I

= 4% | Ginge (', w) |2 {| Srmagm(r"",w) I + | Spotam (", w) |3} | Tim(w) |2,
(12)

where we had used the property that Qnagtm and Qpum is pure real respectively. The
solution g;, and g, can be well approximated using hypergeometric functions as shown
by Ferrari and Mashhoon (1984). From the approximation, we can represent the refrec-
tion and transmission coefficients with gamma function. From the relation between the
frequency and the orbit radius

Al”2
lwl=ImQ|=lm| (—55) (13)

The asymptotic solutions are well approximation as long as ' < 2.5M or v/ > 10M, which
are represented as,

g&‘. ~ ZlTr'I e’ | T(w) |2| S(r'*,w) |2 :1r'" — —o00
dv ~ | 2| e + Rw)e ™ P S(r""w) P 1" =00

When ' > 3M, we can see | w |< 57%;,-1. Then, we can treat the reflection and transmis-

sion coefficients as | R(w) |~ 1, and | T(w) |~ e {IS-00+D-102} 40 Gyl cases for the
orbiting objects.
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Cosmic No-Hair Theorem in Exponential and Power-Law Inflation
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Abstract

Generalizing an inflaton potential as exp(—Ang) (0 £ A < V2), we prove an ex-
tended version of Wald’s cosmic no-hair theorem. For A # 0, we find that an isotropic
power-law solution is the unique attractor and that anisotropies always enhance infla-
tion for any initially expanding Bianchi-type models except type-IX, with an inflaton
and matter fluid which satisfies the dominant and strong energy conditions. For Bianchi
IX, this conclusion is also valid except for the effect of anisotropies, if the following two
conditions are initially satisfied; the ratio of the vacuum energy A.g to the maximum
three-curvature 3 Ry is larger than 1/(3(1 — A2/2)] and time derivative of this ratio
is initially positive. Setting A = 0, we can show that it guarantees inflation for a wider
class of Bianchi type-IX spacetimes Lthan Wald’s one.

1 Basic Equations

Assuming Bianchi-lype homogeneous anisotropic spacetimes with an exponential potential
exp(—A&é), we investigate whether or not a power-law inflationary solution (1] is the unique
attractor and such anisotropic spacetimes are really isotropized in finite time [2]. Such a
potential appears at least approximately in some inflation models, e.g., in (hyper-)extended
inflation [3,4] and in soft inflation [5). '

In the present. paper, we show two types of cosmic no-hair theorems for Bianchi models
as extensions of Wald’s theorem [6,7], based on our recent works; Ref.[8] (limited case of
0<A< \/2—/_3- ) and Ref.[9] (general case of 0 £ A < v2). In addition, we give a recollapse
theorem for Bianchi-IX models and discuss the relation to the so-called closed-universe-

recollapse theorem [10].
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where we introduced a new variable K defined by K = K exp(Ang/2), and K is the trace of
the extrinsic curvature with respect to time ¢t. The other variables with tilde relations are
defined similarly, c.g., shear 5,5 = o,,0%%e*? and three-curvature ¥R = B Re . Our
argument is always reduced to the case of original inflation (a constant vacuum energy) by
setting A = 0 and ¢ = 0, that means exponential inflation. The terms with K¢ in (4) and

with ¢? in (5) appear due to the new time coordinate and new variables.

2 Cosmic No-Hair Theorem

We can show that Wald’s cosmic no-hair theorem is simply extendable to power-law infla-
tionary models for a limited case (0 € A < a\w\lw ) [8], by the replacement of the "positive
cosmological constant A” with a positive exponential potential of an inflaton ¢ as the effective
cosmological constant: Agp = 2V(9) = w?Vhexp(—Aug).

The theorem is as follows.

Theorem 1. Cosmic No-Hair Theorem for Bianchi Models (Wald’s Type)
Assume there exists a scalar field ¢ which has an exponential potential V(¢) = Vyexp(—Axg),
where Vo (> 0) and A (0< A < ,\yv are constants, and that the ordinary matter fluid sat-
isfies the dominant and strong cnergy conditions. Then any initially expanding Bianchi-type
spacetime except lype-1X approaches asympiotically to the power-law (0 < A < /\ﬁv or
ezponential (A = 0) inflationary solution. Anisotropy, three-curvature, and all components
of the energy-momentum lensor of the matter fluid, vanish faster than the inflaton poten-
tial. For initially expanding type-1X models, these results are also valid under the following

additional initial condition \ |
Seff > M , Amv

vamuuumwx -.l
where Ay = K2V(9) is the cffective cosmological constant, and ¥ R, is the marimum

three-curvature for a fired proper volume.

For the general case 0 < A < /2, the simple way used in Ref.[3] does not apply to
Bianchi models except type-IX for a mathematical reason, although the no-hair conjecture
is still valid for non type-1X. As for type-IX, even if the above condition (6) is satisfied
initially, some spacetimes do not inflate but recollapse to the singularity in the case of
,\wl\u. < A < V2 (sce Fig.2.3 and the discussion in §3). Hence we have to generalize the
Wald’s theorem or Theorem 1. Fortunately, for the general case of 0 < A < /2, we can prove

a new version of cosmic no-hair theorem by a detailed phase-space analysis [9]. In particular,
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this new theorem is an extension of Theorem 1. and guarantees inflation for a wider class

of Bianchi-IX spacetimes than the Wald's-type theorem (Theorem 1) even for 0 < A < /2/3.

Theorem 2. Extended Cosmic No-Iair Theorem for Bianchi Models
Assume there exists a scalar field o which has an exponential potential V() = Voexp(—Axd),
where Vo (> 0) and A (0 < A < /2) are constants, and thal the ordinary matter fluid satis-
fies the dominant and strong energy conditions. Then any initially expanding Bianchi-type
spacelime excepl lype-1X approaches asymplotically to the power-law (0 < X < /2) or expo-
nenlial (A = 0) inflationary solution. Anisolropy, three-curvature, and all components of the
energy-momentum tensor of the matler fluid, vanish fusicr than the inflaton potential. For

type-1X models, these results are valid under the following lwo edditional initial conditions:

.,,/a:. w -
@) R TT=V72) (7)
and
d >n= v
(b) N?S._i >0, (8)

in place of the requircment of iniliad expansion.

[f we apply Theorem 2 to Bianchi-IX spacetimes in the cosmological-constant case: A = 0
with ¢ = 0 (exponential inflation), the required initial conditions (a) and (b) reduce to
A/® R0y > 1/3 rather than 1/2 and initial expansion, respectively. Hence we would say
that Theorem 2 is more general than the original Wald’s theorem, even in the case of original

inflationary model, under the same energy conditions for the matter fluid.

3 Recollapse Theorem for Bianchi Type-IX

Halliwell systematically studied the evolution of FRW spacctimes with only an exponential
potential [11,12] for all A > 0, and obtained the phase diagrams shown in Ref.[11]. However,
his classification is not complete for the power-law inflationary case (0 < A < v/2) (Note that
AHalliwenl in his notation is related ours as Ayagiwen = ,\m\c. We have to refine the classification
for the power-law inflationary casc into three cases: (i) 0 < A < ,\w\luﬁumm.m.:, (iiYA= ,\w\lm
(Fig.2.2), (i) ,\w\l.w < A < V2 (Iig.2.3). The case with a constant vacuum energy (A =0)
is also shown in Fig.1. Note that the Fig.2 in Ref.[11] is valid only for the case (i).

In the (¢, K)-plane, we can define a "recollapse region™, as a sufficient condition such

that any spacetime that enters once into the region recollapses inevitablly.
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In the anisotropic (homogeneous) case, the boundary of recollapse region coincides with

the curve of the isotropic case in general, except for some modification near the repeller only

in the case 0 < A < /2/3 (sce Fig.2.1).
We stated above that, in the case (iii), some spacetimes which initially satisfy the con-
dition (6) do not inflate but recollapse. That is due to the following reason. The condition

(6) requires (but not equivalent to)
K- m%% >0 (9)
b T3

(see Fig.2.3), and in case (iii), some spacetimes in the region of the inequality (9) that have
relatively small anisotropy (and small matter energy-density) can satisfy both the condition

(6) and the recollapse condition, to vesult in the fate of recollapse.

4 Evolution of Bianchi Models and Effects of Anisotropies

For Bianchi models except IX. because of the nonpositive spatial curvature BIR <0, we
can easily see from the constraint equation (3) that anisotropies (as well as energy density
of matter) always cnhance inflation. So, here, we shall focus our discussion on effects of
anisotropy in the case of type 1X.

The above extended theorem (Theorem 2) is also interpreted as a restriction condition
to initial anisotropy which leads to inflation. We define two quantities: one is a measure of

anisotropy (including energy density of ordinary matter)

= 3. ... 3 ~ - -
Saniso = MQ.%Q b + 5 A.uvh:.az - Au:wv + MZNN‘E:& AW Ov y :cV
and the other is
s oa e S/l 3. . 3= -
S=S(¢ )= K =32 Amau + a\cv = MQ.&Q% - ma_m +3x*Tw(n), (11)

where the last equality comes from Eq.(3), which is nothing but the Hamiltonian constraint
equation,
From Eqs.{10) and (11), the condition (a) (Eq.(7)) implies

Condition (a) <= Condition (¢) : (0<) S < S(¢,K) =55 (12)

=  5(,K) > S, (13)
where S5 = —3(2 — A?)xV, (=constant). Note that contour curves of S are hyperbolas in

the (9, K)-plane, and S = Ss is the special hyperbola that passes through two of saddle
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points and represents a part of the boundary of the inflation region (see all figures). While,
the condition (b) is equivalent to 2K — 3Ako > 0.

In order for a spacctime to inflate, a sufficient condition is that the spacetime is initially
in the inflationary region (S > Ss with 21 — 3Ak¢ > 0) with an additional requirement,
i.e., "small-anisotropy condition™ (Condition (c)) (see all figures). These conditions are
equivalent to the conditions (a) and (b). This provides the constraint on initial anisotropy.
Since both the shear term due to anisotropy and the energy density term affect in the same
way in Eq.(3), moderate anisotropy (§m.;so b3 §(¢,7\7) — §s) enhances inflation. However,
too large anisotropy which is estimated by the initial condition of (9;(7‘0),7\7(7‘0)), tends to
lead the spacetime to the recollapse region, for the shear term in Eq.(4) acts so that the
spacetime evolves downward in the phase diagram. It is, in particular, much more effective
if the point’'is or comes near the recollapse region. This result is consistent with and explains
the qualitative result by the numerical simulation [2]. The above tendency is intuitively
understood by setting A = 0,40 = 0, ®R = BR ., and #*Tw(n) > A, when the
spacetime reduces to a matter-dominated closed FRW universe with a positive cosmological
constant, that recollapses and is a well-known counter-example against the naive cosmic
no-hair conjecture. ‘

Finally, we shall mention to the so-called closed-universe-recollapse theorem recently
proven by Lin and Wald [10] for Bianchi-IX spacetimes, assuming matter-fluid satisfies the
dominant energy condition and a trace of the spatial projection of the stress-energy tensor is
non-negative. The latter condition is not always satisfied if we have an inflaton field ¢. Since
we have shown the recollapse theorem in the case with an inflaton, it applies to a wider class
of spacctimes than their theorem. In fact, if we show their condition in our phase diagram,

it is a subset of our recollapse region [9].
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Figure Captions

Fig.1: Phase diagram on (6 — K) plane for inflation and recollapse in Bianchi IX space-
time with a constant vacuum energy (A = 0). There are four critical points for isotropic
Friedomann-Robertson-Walker spacetimes with the scalar field : A is the atiractor (infla-
tionary solution), R is the repeller, and two of S are saddle points. The attractor and the
repeller are on either of two branches of a hyperbola § = 0. If a spacetime-point initially
exists in the cross-hatched region under the small anisotropy condition (c) (see text), in-
flation always occurs and the spacetime is isotropized with time. While, if a spacetime is
in the shaded region at some time, it eventually recollapses. Both conditions are sufficient
conditions. We set k%2 = 8z and 14 = 1.

Fig.2: The same phasc diagrams for the case of a power-law inflation with an inflaton poten-
tial V = Voexp(—Axé). We classify the model into three cases; (i) 0 < A < /2/3 (Fig.2.1),

(ii) A = /2/3 (Fig.2.2). (iii) \/2/3 < A < V2 (Fig.2.3).
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Abstract

To investigate the so-called cosmic no hair conjecture, we nuerically analyze
the behavior of 1-ditnensional inhomogeneous space-times. The spacetimes we ana-
lyze are to be a plane symmetric and vacuum with a positive cosmological constant.
This is a complementary work to the Goldwirth-Piran spherically symmetric case,
because their inhomogeneity is due to a matter fluid while ours is due to gravita-
tional waves. We find that the scale of an initial inhomogeneity and its curvature
invariant characterize the later evolution of the spacetime. In our simulations, all
initial inhomogeneities damp out within one Hubble expansion time, although the
curvature invariant increases once in the early stage for which inhomogeneous scale
is small compared to the horizon scale.

1 Introduction

The widely accepted inflationary cosmology model [1] is an attempt to solve many long-
standing cosmological difficulties—-such as the flatness, horizon, monopole and galaxy
formation problems-—in the standard big-bang model. Although no successful and nat-
ural particle physics model has vet been found to support it. we believe that inflation
occurred in the carly stages of the Universe’s history. However, even if we accept the
inflationary scenario. we still face one more important and unsolved problem: the ex-
planation of present isotropy and homogeneity of the Universe. In order to see whether
inflation, which is usually studied in an isotropic and homogeneous spacetime, is natural,
we have to study an inflationary model in anisotropic and inhomogencous spacetimes as
well. If inflation occurs in such spacetimes and homogenizes and isotropizes the universes,

then inflation is a universal and natural phenomenon in the history of the Universe.

*BITNET address: maeda@jpnwas(0
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On the other hand, we know the so-called cosmic no hair conjecture (2]. The conjecture
is: “All initially expanding universes with positive cosmological constant A approach the
de Sitter spacetime asymptotically”. There exist, however, simple counter examples. For
example, a closed Friedmann-Robertson-Walker spacetime with positive A collapses if the
initial energy density is largé cnough. Hence, to prove this conjecture, we have to look
for additional criteria.

For homogeneous but anisotropic spacetime, many works have done. Wald [3] showed
that initially expanding spacetimes (except Bianchi IX) with positive A approach the de
Sitter spacetime within one Hubble expansion time 7y = \/m And for Bianchi IX,
with one additional initial condition that A be larger than a hall of the maximum value
of 3-dimensional Ricci scalar, this result is still valid.

For inhomogeneous spacetimes. on the other hand, one practical method we have at
present is to solve the Einstein equation numerically. Some groups have alrcady started
to investigate this subject. Assuming a spherically symmetric spacetime, Goldwirth and
Piran [4] studied the behaviour of inhomogencous distributions of scalar field and matter.
They proposed a criterion for inflation to occur such that

a physical scale of inhomogeneous distribution

) )
. > a few times —¢ (1)
lhorizon scale My

where ¢ is a relative spatial deviation of the scalar field to the mean value and my; is
Planck mass. They showed this criterion is (rue for most chaotic inflationary models but
not for any new inflationary model. In the latter case, they found any inhomogeneity
prevents the onset of inflation immediately.

In the Einstein theory, however, there are gravitational waves, which are another source
for inhomogeneity and have not been, so far, discussed. This type of inhomogeneity due to
gravitational waves may play a different role in a homogenization process in an inflationary
scenario. In this report, thercfore, we analyzed numerically this type of inhomogeneity
driven by gravitational waves, especially in the case with 1-dimensional inhomogeneity.
Our simulation may be thought of as complementary to the spherically symmetric case

discussed by Goldwirth and Piran.

2 Setting the Problem and Numerical Code

To analyze the behaviour of 1-dimensional inhomogeneities cue to gravitational waves,
we consider the following case:

o Spacetime is vacuum.
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o Positive cosmological constant A exists.
e Spacetime is plane symmelric so that we can deal with gravitational waves.

Here we mean by plane symmetric that spacetime has two commuting spacelike Killing
vectors (8/dy.d/0z). Since such a metric allows different behaviour in y- and in z-
directions, our definition of “plane synunctry” is not exactly equivalent with the usual
mathematical definition (for example, see Kramer ¢f al.[5) §13). Under these assumptions,
we examine whether such a spacetime leads to an inflationary era, and whether such initial
inhomogeneities and anisotropies be smoothed out during inflation periods.

We use the ADM formalism [6.7] to solve the Einstein equation
1
Huu - 5!};.:1 R + -‘\y;w = 0' (2)
with the metric
ds* = —(a® — e~V 32)d1? + 23dtdr + eFde?® + el dy® + 2Ldyd:z + eVdz?, (3)

where the lapse function a, the shift vector (3,0,0), and the “3-metric” F,H,U and L
all depend on only time ¢ and position ». We set the speed of light ¢ = 1.

So far, the Texas group [8] has constructed a numerical code for planar cosmology.
Their metric is different from (3). They adopt a diagonized spatial metric, which fixes
the shift vector.

As for a procedure of simulation, we follow Nakamura et al.[9]: (i) Determine initial
values by solving the two constraint equations. We use the York-O’Murchadha’s formalism
[10] to set initial values. (ii) Evolve time slices by using the dynamical equations. (iii) The
accuracy of the simulation is checked by the constraint equations. In our all simulations,
the accuracy is under 107! on the initial slice, and decrcases monotonically with time
steps.

As a measure of inhomogeneity, we use Riemann invariant [ = (3)12,-,'“ BRI swhere
(3)R;jm is the Riemann tensor ol the 3-metric on the hypersurface T [11]. We calculate
the ratio of the Riemann invariant / to the cosmological constant A,

J OB,y BRI
C{t,x) = on L(t)

A (4)

which we call the “curvature™ hercalter. We estimate the strength of inhomogeneities by

the maximum value of this “curvature”, Cuax(f). on each slice. We also define the width
! of the distorted range by the proper distance between two points where the 3-volume

(trace v of 3-metric %;) drops to a hall of its maximum value, Yners at the center.
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I'he range of the 2 direction in our computations is several times larger than the width
of the distortions initially assumed. We solve the Hamiltonian constraint equation on the
initial slice by a fourth order Runge-Kutta method. We use a finite difference method to

calculate dynamical evolutions with 400 meshes in the a direction.

3 Evolutions of Pulse-like Inhomogeneities

We may consider two initial complementary situations: (1) The 3-metric is conformally
flat and all distortions are produced by the transverse-traceless(T'T") part I\';{,:T of the
extrinsic curvature. (2) All distortions are given by the 3-metric ;5 and 1\';1;!' = 0. Plane
symmetry is, however, not consistent with the case (1). Hence we examine only the case
(2) with a pulse-like distortion expressed by the metric in York’s conlormal [rame, defined

by 4:; = ¢7"vij,

| — ¢ omtefxol 0 0
Ai; = 0 | —aq e~=/=) (5)
0 0 1

where « and 2 are {ree parameters but ¢ is fixed so that the conformal scale ¢ is not
singular on the boundary. An image of this type of distortion is shown in Fig.1.

We set the trace A of the extrinsic curvature on the initial slice as
KN =vV3A=const. on X(t=0) (6)

to make the Hamiltonian constraint simple. The coordinate conditions are imposed as a
geodesic slicing a = 1 for the time coordinate and g = 0 for the spatial coordinates.

Giving a and x¢ in (3), an initial form ol gravitational waves is determined and the
width { and Cp.«(0) are calculated. Since a pulse-like wave has two characteristic param-
eters, a width and an amplitude. we describe those two by the above [ and C,,.(0)- Since
we have one dimensional paramecter A, we have typical and natural units. So we use the
Hubble expansion time 7y = /A/3 as our time unit, which is a characteristic expansion
time of the expanding Universe. And our unit of length is also normalized to the horizon
length of the de Sitter universe Iy = (A/ 3)=12, Ranges of I and Cax(0) calculated here
are 0.0400;; <1 < 1.8{;. 0.220 < C,,,0:(0) £ 13,1,

In Fig.2 we show a typical time evolution of the “curvature” C(t,z) corresponding
to [ = 0.14l; and C,ua(0) = 0.83. The dotted line shows C(0,z), and the dashed and
solid line shows C({,2) at 1 = 0.1377 and 0.2717, respectively. We see that the initial
inhomogeneity is decaying and is almost smoothed out within 0.37, and this final stage is

commonly seen in all simulations we tried.
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Changing the width of the initial pulse, we display evolutions of Cpuy (1) for Cpax(0) =
1.0 (Fig.3(a)) and C,ax(0) = 2.0 (Iig.3(b)). In both cases, as the initial width becomes
greater, the slower homogenization proceeds monotonically.  While as the width gets
narrower, we sce C..(f) goes to a growing phase for a while after it starts decaying.
In particular for the case of C,,,,(0) = 2.0 in Fig.3(b). we find “curvature” is enhanced
beyond its initial given value. This growth of inhomogeneitics may be an effect of the
nonlinearity of gravity. which is suppressed later by the expansion of the Universe due to
the cosmological constant.

Fig.3 indicates that such a nonlinear effect of gravity, which may produce a singular-
ity, appears for a narrow-width pulse. To test for such a possibility, we search a wide
range of the parameters. 1 and C.(0). All the results we get are summarized on the
“curvature”-width plane in Fig.l. Irom this figure, we can classify the cvolutions of the
“curvature” into four types: (1) Cyax(t) decays monotonically (dotted with o), (2) Crax(t)
stays constant for a while or grows up little like the dotted line in Fig.3(a) (dotted with
e in Fig.4), (3) Chax(?) 1s once enhanced larger than its initial Cpuax(0) like the dotted line
in Fig.3(b) (dotted with A). and () “curvature™ starts growing up from the beginning
(dotted with x). The results depend strongly on the width I, but very weakly on Cy . (0).
From this fact, we conclude that it is the width of an initial distortion that characterizes
its time evolution. Although the chosen values of the parameters in Fig.4 are restricted,
we believe that we are able to deal with the nonlinear effects of gravity enough to check
the reliability of the cosmic no hair conjecture,

The same phenomena were found in the case of another form of gravitational waves,

i.e., (14 acos’(x/xy))-type in the (a7) and (yy) components in (5).

4 Discussion

We examined the evolution ol inhomogeneities driven by gravitational waves in plane sym-
metric vacuum spacetimes with a cosmological constant. We assumed a one-dimensional
pulse-like distortion of space and integrated the Einstein equations, calculating the “cur-
vature” (the ratio of Riemann invariant to the cosmological constant) as a measure of the
strength of the inhomogeneity. For a wide range of widths and “curvatures” present ini-
tially, all inhomogeneities decay below 5 % of their initial “curvatures” within 0.3 Hubble
expansion times.

A temporal growth of the “curvature™ in carlicr stages for some sharp pulses was found,
which may be a reflection of the nonlinear effects of gravity. However the expansion of

the Universe later overcomes this nonlincarity.
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The result that all initial inhomogeneities we assumed decay and disappear does not
give any additional condition to the cosmic no hair conjecture, but il gives a sirong
and positive support to the conjecture. This result, however, docs not agree with that
by Goldwirth and Piran [4) who simulated effects of inhomogeneities due to a matter
field. We have not yet determined whether our results are characteristic behaviors of
inhomogeneities driven by gravitational waves, or due to our ansalz of plane symmetry.
In order to answer these questions, further simulations including matter or a scalar field, or
in some other or more general spacetimes—for example, cylindrical or axially symmetric

or fully 3-dimensional—are required. It is one direction of our future works.
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Figure 1: An image of assumed distortion at the initial time. Physical scale of space that
expressed by the present metric is drawn on a virtual flat coordinate.
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Figure 2: Spatial profiles of “curvature” C(t,z) for the case of initial width { = 0.07ly,
and an amplitude a = 0.1. The dotted line shows initial state (¢ = 0), the dashed line
and the solid line correspond to t = 0.137ry and t = 0.2717y, respectively.
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Figure 3: Evolutions of Cnax(t) for the initial data with the same “curvature” Cpax(0)
but different width I. (a) Crax(0) = 1.00, I=0.14 (dotted line), 0.23 (dashed line), 0.48
(dot-dashed line), 0.97 (solid line). (b) Ciax(0) = 2.00, =0.088 (dotted line), 0.16 (dashed
line), 0.31 (dot-dashed line), 0.68 (three-dot and solid line), 1.80 (solid line}).
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Figure 4: All results are summarized on (width-“curvature”) plane. They are classified
into four types: (1) monotonous decaying are found at o, (2) small nonlinear effects are
discovered at e, (3) “curvature” grows up larger than the initial Cmax(0) at A data and
(4) at x we see “curvature” starts growing up from the beginning.
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Decaying Cosmological Constant and Inflation

Tsuyoshi Nishioka and Yasunori Fujii

Institute of Physics, University of Tokyo-Komaba, Tokyo, Japan

The cosmological constant is a problem because it requires an extreme fine-
tuning or cancellation to the unimaginable order of 120 or so. One of the natural
ways out is the scenario of a decaying cosmological constant;»*3* A ~ t=2. We use
the unit system ¢ = h = 87G = 1. The present age of the universe is t & 14Gyr =
1.68 x 10%, hence giving A ~ 107! = 10™*cm™2. According to this idea, the
present-day cosmological constant is small only because our universe is old.

This idea is implemented by a scalar field ¢ which has a nonminimal gravitational
coupling. The field is much like the JBD field, and will be called a “gravitational
scalar field.” It appears that the gravitational constant also decays with time. This
is not only in conflict with the observed constancy of G, but also invites a cynical
comment; how is A a worry in the world without gravity? The question is, however,
ill-addressed. One can always go to a conformal frame (CF) in which G is a true
constant. The real question is if A in this CF still decays with time.

We start with a generalized scalar-tensor theory with the cosmological constant
A2
£ = V3 [3Fo®R — 3Fe(8)9 0,608 = ] + Lpsser * Lorpingr (D)
where we choose
Fo=1+6, (2)
and

F = (1+x¢6%)/Fg, (3)
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for simplicity (€ and y are constants). The essential behavior of Fis

1 2«1
F(¢)= {X gzz §§ L (4)

The constant x may not be positive because ¢ is not a canonical field. Even if
X is negative, ¢ is not necessarily a ghost. Later we choose a negative y, to ob-
tain successful cosmology, in the choice of which ¢ is not a ghost because another
contribution to the kinetic term of ¢ is induced from the nonminimal coupling.
The effective gravitational constant is given by G, = (87F;)™! and changes
with time. The observed upper bound on G/G, however, seems to exclude such
time variability of G.> Moreover, it is hard to understand the real nature of ¢
because ¢ is not a canonical field. To avoid these difficulties we apply a conformal

transformation
) -l
g;w - g-pv’ gpv - FG gopy’ (5)

such that the curvature scalar is multiplied by a pure constant;
1 | - -2
L= v—Y. §Ra - 50:‘ apaava - AFG -] + Etmauer + Cocoupling’ (6)

where ¢ is the new canonical field defined by

j—; = F;WVD; D=1+ (x+66)Ed. ()

If this D is negative, then o is a ghost. We avoid this by imposing a condition
X 2 —6€ to ensure that o is a canonical field. Our choice of y satisfies this condition.

From (2),(7), the relation between ¢ and ¢ is given by
px=oc EoPK], (8)
and

I o B (9)

where £ = /6 + x£-7/4.
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We must also pay attention to masses of fermion fields representing ordinary
matter fields in the new CF. We introduce a simple Yukawa coupling of ¢ to a

fermion field ¥ from which mass term of the fermion is derived;

L:coupling = _-\/—_gf'/;wq& (10)

This coupling is as weak as gravity and the mass is constant asymptotically after

the conformal transformation ¥ = F3/*y,;
m, =[O — g, (11)

For these reasons we reasonably anticipate that we are in the starred CF. Since
we expect that m, is O(1GeV), we must choose a very small f ~ O(107°); the
coupling is too weak to reheat the universe after inflation.

The constant term A is multiplied by a function of ¢;
V = AF;2 (12)

This serves as a potential of the scalar field. A reasonable assumption on F.(¢)
leads to a potential falling off monotonically toward the asymptotic value zero. The
scalar field goes down the hill slowly to infinity, hence resulting in the decay of the
effective cosmological constant. The absence of the minimum of the potential is
essential to the successful decay scenario. Using (8),(9), we find that the potential

(12) as a function of ¢ is given by
V(o) = A(1 - 2¢0?), €0’ <], (13)

and

V(o) ~ exp (—%), £’ > 1. (14)

Since we reasonably assume that the initial value of o is Planck scale at the Planck

time, sufficient inflation is expected to occur in the early epoch if € is sufficient
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small ~ 0(1072) from (13). In the late epochs the potential (14) is an exponential
potential of & and we find that we must choose an appropriate xy (=6 < y <
—2£) to obtain the radiation-dominant universe. Successful cosmology (primordial
nucleosynthesis), hence, excludes a usual and simple kinetic term of ¢(F,. = 1)
requiring an extended form with y < 0.5

We point out that the cosmological constant in this CF can be large enough in
the past to cause inflation. Historically, the inflaton, a scalar field expected to drive
inflation followed by reheating, has been recruited from the list of the fields in the
standard model of elementary particles. The inflaton of this type, e.g. the Higgs,
differs from the gravitational scalar field we considered above in two respects. One
is that the usual inflaton potential has a minimum; there is no guarantee that the
value of the potential at this minimum is exactly equal to zero (or extremely small),
hence raising the cosmological constant problem. As the second difference, the
ordinary inflaton couples to other fields rather strongly, hence producing sufficient
reheating, whereas the gravitational scalar field has a much weaker coupling, nearly
as weak as gravity.

We point out that there is a natural coupling of this gravitational scalar field

to another scalar field ®, like the Higgs scalar, after the conformal transformation

d = Fcl;/"'(b,;

1
Lins = V=3 (-59"0,20,) (15)

1 o
= V=3 (-3eD.0.0.2.), (16)
where D, = 8, + (1/2)8,(In F;). This coubling, derived from conformal nonin-
variance of the kinetic term of a spinless field, contains derivatives, and hence is
sufficiently strong to give reheating in the early epoch but is as weak as the gravi-
tational interaction in late epochs. Spinor and vector fields do not have this kind of

coupling. In many models including those discussed previously,? a dissipative term
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which converts the energy of the inflaton field to the radiation energy has been in-
troduced by hand. To take the derivative coupling nature correctly into account, we
derive the dissipative term explicitly based on the quantum theory.! Among many
methods proposed, we choose the Morikawa-Sasaki-Ringwald recipe’ which allows
us to calculate the backreaction of quantum fluctuations of the gravitational scalar
field. We limit our calculation to the one-loop order in an adiabatic approximation.

We solved the cosmological equations numerically by using this dissipative term.
We show an example in Fig.1, plotting a, 8, p,/p, p./p., p, and p, vs. t for A =1,
€ =108x10"2 y = —4.48 x 1072 and the initial value ¢ = ¢ =1 att =1 where
p, = 02/2 — V is the “pressure” of the vacuum. These values of £ and x have
been chosen to obtain sufficient inflation and successful primordial nucleosynthesis,
respectively.

We find: (i) An exponential growth of a({) to 2 €* ending at ¢, ~ 10° (in
units of the Planck time) emerges naturally from the potential V with (13) having
a “plateau”. From t, to t, ~ 10" the scale factor a evolves according to a power-

'3 and expands like ~ t'/? after ¢,. By the way, primordial nucleosynthesis

law ~ ¢
occurs at about ¢ ~ 10%® and non-relativistic matter energy becomes dominant at
t =t ~ 10°. This example, hence, reproduces successful cosmology.

(i1) The scalar field ¢ also grows exponentially until ¢,. The asymptotic solution
¢ ~ 1112 begins at {, ~ 10%°. Note that ¢ stays nearly constant from t, to t, owing
to non-linear effects.

(iii) The curve of p, /p shows that the radiation energy becomes dominant after ¢,
and begins to converge to the asymptotic value around ¢,. Notice the corresponding
behaviors of a and ¢ at ¢, and t,. The ratio p,/p,, so to say, representing an
equation of state of the vacuum, shows a very interesting behavior due to non-

linear effects. This behavior is often called a “relaxation oscillation” and is one of

common phenomena in nature. Most interesting is the behavior between ¢, ~ 10
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and {, showing that p, behaves like a “suspending” cosmological constant. Around
t,, p./p, begins to damped-oscillate as a function of Int and finally settles to 1/3.
It is interesting to notice that the vacuum p, does not claim its own “equation of
state.” It adjusts itself always to obey the same equation of state which we assume
for the matter.

(iv) After the end of inflation, dissipation quickly pushes up p, which had super-
cooled. The dissipative interaction, however, begins to dwindle, as was expected.
Also the growth of a(f) is still quite fast. As a consequence p, shows a rapid de
crease, leaving a spike-like behavior. It then starts decreasing slowly like ~ ¢~/
at {,. Combining this with the power-law expansion a(t) ~ ¢'/* from ¢, to t,, we
find that entropy production is no longer appreciable. We may define the reheat-
ing temperature T by p, at the onset of this power-law behavior. We find that
sufficient reheating T, ~ 10" GeV can be obtained in this mechanism despite the
absence of an oscillating phase.

(v) The energy density of the vacuum p, behaves like a “cosmological constant”
at the beginning and decays like ~ t72 from 1, to ¢, and like ~ =%/ from t, tot,.
Again it behaves like a “cosmological constant” from ¢, to t, and the asymptotic
solution (~ t72) begins after {,. This behavior may provide a natural explanation
of the present cosmological constant which is 107'?° times as small as m},.

Many features sketched above are quite general, insensitive to the choice of
parameters and initial conditions, given the rate of the inflationary expansion and
the asymptotic value of p,/p.

In Fig.2, we show an example in which the suspending cosmological constant
equals about 107!?°, Unfortunately this suspending cosmological constant is too
small to make up the difference between the recently observed small Q and the
prediction = 1 from inflation. Some “recent evidences” for the nonzero A0

however, can be explained by introducing another scalar field.!
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To summarize, a gravitational scalar field is responsible for causing inflation,

prov

[—

o

'iding sufficient reheating and relaxing the cosmological constant.
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Figure Captions

Fig.1: An example of the numerical solutions a, ¢, p’s and p, plotted against
log ¢, with in units of the Planck time. (The epoch of nucleosynthesis, the end of
the radiation-dominated universe and the present age correspond roughly to 45, 54
and 60, respectively, on the abscissa.) Parameters chosen are A =1, £ = 0.8 x 10~2
and y = —4.48 x 1072 in the unit system of 87G = 1. Initial conditions are given
byéd=1,¢=1landp, =1att=1.

Fig.2: An example with y = —4.692 x 102 with the éame values of the other
paramecters as in Fig.1. The example shows that the “suspending cosmological

constant” equals about 1071,
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Gluing Schwarzschild-deSitter Space-Times
along the Null Shells

Jiro SODA

Uji Research Center
Yukawa Institute for Theoretical Physics
Kyoto University, Uji 611, Japan

Dray-t’Hooft showed how to join two Schwarzschild space-times, possibly
of different masses, along a null cylinder representing a spherical shell of
massless matter.” They then showed how to join four Schwarzschild regions
by colliding two such shells. Dray and Joshi generalized their results by
showing how to join Reissner-Nordstrom space-times along null cylinders
corresponding to charged, pressureless dust clouds moving at the speed of
light.”™ In this work, we further extend their works to the cosmological
context, i.e.the Schwarzschild-deSitter space-time.

Let us introduce coordinates U and V, which are labels for outgoing and
ingoing, radial, null geodesics;

2 2
ds?=0=—(1 - ? _ HAY)de + (1 - ? ~ HYWNdr (1)

More precisely, outgoing geodesics are given by U = const, where

~

U=t-r’ (2)
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and ingoing geodesics are given by V = const, where

-~

V=t41r" (3)
Here
. r r T
r =u-log|:—1!+ﬂslog|§—1l+uologl;,;—ll .4

The radius r_,rs and rp are determined by

1 2m
flr)y=r®- 7 + I (5)

=(r—r_)r—rs)(r—rp), r-<0<rg<rp,

and p_,pus and pp are defined as

= = <0
== Tm G —rs)r-—1p)
1 rs
= —— > 0, 6
Hs H2(rg —r_)(rs —rp) (6)
! D < 0.

KD = " Hilrp—r)rp — 73)

Now we are in a position to introduce the Gibbons-Hawking coordinate
system;

U
u = —exp[-—] ,
(-
v = exp[—] .
e 2us

At this point, we treated the Schwarzschild horizon specially. The resulting
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metric is

2 _ 4H* % f(r) 2 102
ds® = —er(r) dudv + r*dQ)* | (8)

where r is implicitly defined by

{2}

~uv = Gs(r) = (- - 1)5—2(%— 1)(— - 1)%. 9)

™D
In this coordinate system, the coordinate singularity at rs disappears al-
though another coordinate singularity remains. Of course, the converse
treatment is also possible.

The Penrose diagram is obtained by the appropriate conformal transfor-
mation and is shown in Fig.1.

We now join two Schwarzschild-deSitter space-times of different masses
and cosmological constants, with metrics given by

_4H?*ukf(r)

2 2 102

ds? = G (1) dudv + r°d)°, (v < a), )
2 _ AH*p%f(r) 2 1092

ds® = G (1) dUdV + r*dQ*, (u> a),
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where U = U(u),U(a) = 8,V = V(v), and

—uv = Gs(r), (u<a), (11

~UV=Gs(r), (u2 ) )
Here, the bared quantities denote that of replacing the H,m in terms of
H,m. As we want to match the metrics at u = «, the following conditions
are imposed

a B
T 12
ps  AsU'a)  ° (12)
From the continuous but not smooth space-time,
gab = (1= 0(u — a))gy + 0(u — a)g},, (13)

we can easily compute the Ricci tensor. The only non-zero component is

=_g[37 =Z)6(u - a) (14)

where [Q] = lim,_,+ Q — lim,_,- Q. In the present case, we obtain

2 [2(m —m) 72— 2,2 _
o " + (H® — H*)r*| 6(u — a) (15)

+ regular terms ,

where we used the junction condition (12) in the above calculation.
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From eq.(15), the interesting results can be extracted. If we assume
a < 0 then vs < 0. And we assume m > m,H > H, the eq.(15) becomes

2 2(m — ) -
= —H2—H2r2]6u—a
fas|r [ r ( | ol =e) (16)
+ regular terms.
The curvature (16) changes its sign at the point
2(m — )
iy an

hence the radius r larger than ry is physically excluded. How to interpret
this result is similar to that of Reisner-Nortstrom.™ As we imposed the light
velocities on the shell motion, we get the apparent contradiction. That point
must be the turning point of the shell motion. To confirm this observation,
we shall examine the collision of the shells. (Fig.2)

To remove the conical singularity at o, we must impose the consistency
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condition

2”12 2”@3

To

2m1

(-2 HEr)(1- 2

Hyrg) = (1-——==H3r{)(1~—=- H}r}). (18)
To To

If we consider the case, m; = m3 =my =m,my = m,H, = Hy = H, =
H,H, = H, the eq.(18) reduces to the eq.(17). This situation can be

understood as in Fig.3.

In this work, we have shown what condition must be imposed for gluing
two Schwarzschild-deSitter space-times. To keep the positivity of the en-
ergy, it turns out that the collision of two such shells must be considered.
As a result, the qualitative aspects of the dynamics of the shells are under-
stood from that of the null shells. Consideration of the extreme situation
such as the null shells makes the analysis of the shell dynamics simple. So
it naturally leads us to the study of the quantum counterpart of this anal-
ysis. Up to now, we know that the homogeneous and isotropic universe
can be quantized using a mini-superspace model. If we include the matter
fields and inhomogeneity, the problem becomes tremendously difficult. As
for this direction, the quantization of the null shell model is of interest. It
may be formulated as a topological field theory.
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Abstract

Developing a thin-shell formalism in inhomogeneous spacetime, we study the
evolution of hubbles nucleated by a first-order phase transition in extended inflation.
We find that : (1) The world-hypersurface of any true vacuum bubble expands
rapidly to hecome asymptotically null; this contradicts the result of Goldwirth-
Zaglauer, who maintain that bubbles created initially later collapse. (2) Worm-
holes can be produced as well as in old inflation, resulting in the multi-production
of universes.

1 Introduction

La and Steinhardt proposed extended inflation (EI)[1] to solve the graceful exit prob-
lem{2] in old inflation. In El. gravity is described by the Brans-Dicke (BD) theory[3)
instead of the Einstein theory. The BD ficld decelerates the expansion of the Universe so
that true vacuum bubbles can coalesce, thus ending the phase transition driving inflation.

In this paper we investigate within the context of EI the dynamics of bubbles and the
space-time structures to which their evolution may lead. We address the following two
questions: (a) What is the fate of true vacuum bubbles surrounded by false vacuum? (b)
What is the fate of false vacunm remnants surrounded by shell-like true vacuum regions?
We base our answers on the assumption that the boundary layers of created bubbles are
spherical and thin.

Answering question (a) is necessary to understand the percolation process in the late
stages of inflation. Several authors have pointed out that the constraint from the homo-

geneity of the cosmic microwave background requires a BD) parameter w < 25(4), which

*BITNET address:macda@jpnwas00
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is inconsistent with the experimental bound « > 500[3). Those authors assuine, however,
that bubbles expand with the velocity of light[6]. [t is important to determine whether
this assumption remains valid in the BD theory. Goldwirth and Zaglauer have recently
extended the thin-shell formalism first devised by Israel (Gauss-Codazzi formalism)(8] to
obtain the equation of motion for a bubble in EI[7). They found that the interior of a
true vacuum bubble cannot be homogencous. Hence, following the method of Berezin,
Kuzumin and Tkachev[9], they rewrote their bubble equation of motion using only those
field variables defined outside the bubble. They showed that bubbles nucleated in the
early stages of El later collapse. and that the absence of large bubbles imposes limits on
the inhomogencity duc 1o bubble collisions. thus loosening the bounds on w.

Though their equation of motion is correct. Goldwirth and Zaglauer lailed to consider
a regularity constraint on the bubble initial data: to ensure the flatness of spacetime at
the center of a bubble, the BD field must be regular there. We reinvestigate the evolution
of true vacuum bubbles in El, taking this constraint into account.

As for the problem (b). we note that the evolution of false vacuum remnants and the
resulting spacetime structure were first studied by Sato ef af[10] in the context of old
inflation, and several authors[9.11] have discussed it using the thin-shell formalism. We
investigate the same problem in EL Particularly we are interested in worm-hole solutions,

and in the possibility of production of child universes.

2 Evolution of True Vacuum Bubbles

The field equations in the BD theory are written as (8=G = 1)

. | o p

. - ;g,,.,ff =T (2.1)
’[‘l"l‘
P = 99
Pl = 5 (22)
where

[ - 1 ‘uv il PO I 25 1 w» 2

1,.,, = 7;‘ + "‘5‘2'(,0.;‘0.11 - 59,..165:,»4) )+ E(ﬁsuw - G ;p)' (-3)

and T, is the energy-momentum tensor of the matter fluid including a Higgs-like inflaton
field. The BD ficld ¢ is normalized to unity at the present epoch. Replacing 7}, in the
Einstein theory with 7),.. we can use the thin-shell formalism developed in the Einstein
theory[8,9,11]. To describe the behaviour ol the shell, we introduce a Gaussian normal

coordinate system (n.7.0,¢), where 7 is chosen to be the proper time on the shell.
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Here we consider only vacuumn energy as our matter fluid, so that T}, for the case with

true vacuum bhubbles is described as
T.o(outside) = —pogye, Tuu(inside) = 0, (2.4)

T, (shell) = —aé(n)h,,, (2.5)

where pg is the [alse vacuum energy density, ¢ is the surface energy density of a shell and
h,, is the three-gecometry ol the shell’s world hypersurface.
If the universe (old phase region) is assumed to be homogencous, isotropic and flat,
the metric is given by
ds? = —di® 4+ 2(D)(dr? + r?2dQ?). (2.6)

We know the solutions of I5I[1],
X w-i-%'
a(l) = a{0) (l + -g!) . (2.7)

2
olt) = o(0) (! + (-\l-!) . (2.8)

where x? = po/39(0). a? = (3 + 2w)(5 + 6w)/12, and { = 0 is the time when EI starts.
Goldwirth and Zaglauer showed that the inner region is not homogencous from the

junction condition of the BD field. Without knowing the inner inhomogencous solution,

one can derive the equation of motion only in terms of the outer field variables[7]. In this

paper, we rewrite that equation in a more tractable form,

d3 ) , 2 sfpp 3 2w o
(- (:ﬁ- —) e (—-- -). 2,
ar = U=+ )+ 0 =8 T =~ 13503 29)
where , el di
' Rean dz=a and n= 4 (2.10)
dt a

represent the circumfcrence radius of the shell, the peculiar velocity relative to the outer
background expansion and the Hubble expansion parameter in the outer region, respec-

tively. The relationship between R and 3 is given by

dR
—_—= A 2.
T 14 HR (2.11)

From the (n,7) component of the field equations (2.1) across the shell, we can also show

o _y, (2.12)

dr

which is the same result as in the Einstein theory.
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Once initial conditions are given, we can find the evolution of the shell from Eqs.(2.9)
and (2.11) because o is constant.(2.12) Assuming 3 = 0 at the nucleation time o, the
initial parameters ave ty, o and R(l). In the Einstein theory, we cannot give ¢ and
R(t,) independently, il we assume that the inside of the bubble is Minkowski space-
time. A similar situation occurs here although we do not know the inner inhomogeneous
solution. An additional condition is obtained from requiring the flatness of space at the
bubble’s center, i.c., regularity at the origin. We have to set up initial conditions which
are consistent with this condition.

For this purpose, we solve lor the inner space-time on an initial hypersurface assuming
a distribution of the B ficld. We calculate o as an cigenvalue problem, by integrating
iteratively the constraint equations of the field equations (2.1) with boundary conditions

specified at the shell. As the result of numerical calculation, we find

o _ 3429 dR\? \/ diyz .
a~a;\|,,,=—w—-—l—?-{\/l+(d—r) -1+ (o) - R (2.13)

independently of the values assigned 1o the adjustable parameters, where oy, means the

value that results when we take the inner region to be Minkowski space-time.
Next we analyze the dynamical equation (2.9) and investigate the o dependence for

given R(ip). If B(to) = 0. Eq.(2.9) becomes

d 2 3 2w o

%(to) =7 (% - TWWO)) (2.14)
Then the critical surface energy density . between expansion and contraction is ap-
proximately given by o, = pof(lo)/2 = 1.50z;. Numerical calculation shows o =
(1.5 = 1.6)opin, which confirms the above result. Hence we can conclude that every bub-
ble expands and no bubble collapses. because o & ouin < G The speed of the shell
approaches the velocity of light soon after nucleation, and the asymptotic coordinate
radius of the bubble is almost the same as that of null geodesics,

> (i @ 1
T'uull(to) = -/lo “(t) = viw - %) (1 +‘§to)' (2'15)

This result is verified for any parameters and for any [unctional forms of the BD field. We

can conclude that the effect of the BD field has little influence upon the bubble motion
and the approximation ol null geodesics is valid even in the BD theory.
Our result is contrary to that of Goldwirth and Zaglauer, who insist that bubbles

collapse if

o | dllo)
vo \ 4(0)

f

<. (2.16)
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Equations of motion for ¥, and ¥, are given by
q

B 1 g+ L) vt - (2322 5) ot o
7 = (= A Bil + 7 + (1 = /%) o 131204/ (i=1 or 2) (3.1)
where ¢, = =1 and & = 1. [l we assume 3, (ly) = F2(lp) = 0, the remaining initia}

parameters are lo. a1, a2, R(ly) and Ra(l). However, as in the previous case, these
parameters arc not independent of each other because of the constraint equation in the
space-time B and the boundary conditions on £, and X,. In order to set up initial
conditions, we must solve [or the space-time B assuming some spatial distribution of the
BD field, which may be determined by a complicated numerical simulation of bubble
nucleation and collision processes. Although the cosmic time in A differs, in general,
from that in B, we think that these are the same time {; on the initial slice by using
constant-mean-curvature slicing.

We regard oy, R ({e) and the proper distance between &, and I, as free parameters,
in addition to w and {y, and we integrate the constraint equations iteratively until the
boundary conditions are salisfied. We find numerically that the space-time structure of
B depends mostly on Lwo parameters, f2({y)/ H ™ (lo) and af\/d(lo)po. We Lhus classify
the solutions by these two parameters.

A physical restriction is the energy condition o, > 0. If o1 is chosen too large, then
the region B becomes a closed space and £, cannot be connected to it with positive o.
The critical values are plotled as the solid line in Fig.2. We also present the critical values
that the bottle-neck structures appear initially as the dotted line.

Now we evolve the equations ol motiou (3.1) for obtained initial values. As a result,
¥, always expands and the comoving rvadius asymptotically approaches null geodesics.
£, expands or collapses depending on initial parameters. This critical values Ry(tg)cr are
also illustrated as the dashed line in Fig.2. It is found that in the range o,/v/pod < 1,
Ryi(lo)er = H™Y(1p), which agrees with the analysis in the previous paper[10]. In the range
o1/Vpod > 1, there is a narrow region where small scale bubbles still expand.

For small value of w. the BD field is initially small and then the effective gravitational
constant becomes initially large. However we can classify the solutions just with param-
eters Ri(lo)/ H™(to) and a,/\/ollo)po as in Fig.2. llence the results do not depend on
w or tg. As long as the boundary conditions are satisfied, the results do not depend too
much on the configuration of BD field, either.

Finally, we discuss the evolution of the space-time B. Il 0,/v/p® < 1, the bottle-neck
structures are not formed initially unless Ry(fq) > H~'({). In the Einstein theory the

region B is the Schwarzschild space-time and if Ry(fo) > H~'(4). &) and E; go out of

—274—



a white hole imo'scpm'ate two regions, that is, a worm-hole is created between £, and
E2[10}. We predict that the evolution of the space-time is similar to that in the Einstein
theory and the space-ltime also changes into a worm-hole if R ({p) > H~'({o) in the BD
theory. It is natural to think that a worm-hole appears when £, expands, because the
regions A and C are in the inflationary phase while the region B is not. To know the
evolution of the spacetime I3 exactly, we must solve the dynamical equations of the field

equations (2.1) and (2.2) numerically. This work is in progress.
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Figure 1: a false vacuum surrounded by true vacuum bubbles
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Figure 2: an example of classification of solutions

(w = 25, at the end of inflation)
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Worm Hole Formation in Numerical Cosmology
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abstract. Using a spherically symmetric inhomogeneous code we study the evolution of
the inflationary inhomogeneous universe. The formation of a worm hole is discussed by embedding

the spatial hypersurface into a higher dimensional flat space and determining apparent horizons.

I. Introduction

Many cosmologists pay much attention to the inflationary model because
it can solve problems in the standard cosmology and explain the origin of the
large scale structure. In the inflationary phase, the universe experiences de Sitter
(quasi-de Sitter) expansion which implies the existence of cosmic event horizon.
Initial small inhomogeneity and anisotropy are erased out by rapid cosmic ex-

pansion. Then the resultant universe becomes homogeneous and isotropic.

To utilize these aspects of inflation, it is important to discuss whether the uni-
verse can enter into the inflationary phase from the wide range of initial condition.
This implies that the inflationary phase is an attracter solution in the considering
dynamical system. ‘Cosmic no hair conjecture’lis a very naive statement‘which
represents the property of the inflation. R.M.Waldzprove'd this conjecture par-
tially for homogeneous Bianchi type models. By his theorem, we can conclude

that most of homogeneous universe with positive cosmological constant goes into

t E-mail address: ynambu@jpnrifp.bitnet
! E-mail address: msiino@cc.titech.ac.jp
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the inflationary phase. However we cannot say so much things for inhomoge-
neous models. In fact, a remarkable inhomogeneity may cause the formation of
cosmological global inhomogeneous structure like a worm hole. The spacetime
with worm hole can be regarded as the counter examples of the ‘cosmic no hair
conjecture’ since the global structure of spacetime is completely different from the
de Sitter spacetime. Using the thin wall approximation, Maeda, Sato, Kodama
and Sasaki’showed that the structure of a worm hole (child universe) is formed
in the spherically symmetric inhomogeneous universe. From their discussion, the
worm hole structure is formed when certain the condition for the inhomogeneity

is satisfied. Then the universe is no longer ‘no hair’.

Our purpose is to understand the dynamics of worm hole formation for var-
ious initial conditions. To do this we numerically analyze the evolution of the
spherically symmetric inhomogeneous universes'. Our main interests are differ-
ences between the result with the thin wall approximation and the result without
any approximation. We must set up the scalar field bubble with finite wall thick-
ness and calculate its dynamics numerically. In our system, the inflationary phase

is driven by a massive scalar field ® with potential V(®) = A($? - ¢?)% .

To establish numerical calculation we fix the topology of the universe to
3-sphere. This choice of spatial topology enables us to treat outer boundary con-
dition easily. We introduce an extra massless scalar field ¥, by which constraint
equations for initial data are simplified successfully. In our expanding universe
the contribution of the ¥ field to the total matter fields rapidly damps in time

and this field has no effect on the evolution of geometry soon.

To investigate the worm hole formation, we determine apparent horizons”
instead of determining event horizons, because apparent horizons can be deter-
mined without knowing the global structure of the spacetime. A spatial hyper-
surface at each timestep is embedded into higher dimensional flat space. From

these information we judge whether worm hole or black hole are formed.
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II. Thin wall approximation

In the context of the first order phase transition in the early universe, Maeda,
Sato, Kodama and Sasaki considered a spherically symmetric inhomogeneous
universe with thin wall approximation. In Fig.1, the region A and C have cosmo-
logical constant A, and the region B has a cosmological constant A, that satisfies
A, > A, > 0. Supposing that the domain wall runs with the speed of light, the
region A, B and C are causally disconnected each other. Then in the region A

and C, the spacetime is de Sitter and the metric is given by

ds® = —di® + Rie* M (dx® + x?dQ%) , (1)
Al
N 1{1 = —3- . (2)

In the region B, the spacetime is Schwartzschild de Sitter:

A A

ds? = —(1- = - 20)ds2+ (1 - m _ 22,2)-1gp? 4 12402, (3)
r 3 r 3

where m is the Schwartzschild mass of the region A. In the table, we summarize

their results classified by the ratio of A, to A, and the scale of initial inhomo-

geneity. The ratio of the inhomogeneous scale to the initial horizon scale is

_ Roxo

The global structure of spacetime changes at the value of ¥ = 1,9* where 7* is

related to the ratio z = A, /A, as

Ll 1 13 i
o =ﬁ(zll2(1—z)> >1. ()

In the case of ¥ > 4* (‘large inhomogeneity’), the metric (3) has nc event hori-

zon. In this case, the whole spacetime becomes de Sitter like. If ¥ < 4*, the
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metric (3) has de Sitter and Schwartzschild event horizons and there are three
possibilities. When vy < 1 (‘small inhomogeneity’), a black hole is formed since
inner domain wall W~ fall into the singularity within the Schwartzschild horizon.
Ify* >y >1and A, > A /3, the spacetime becomes de Sitter like because the
world lines of the domain walls cross no event horizon. Worm hole formation
requires the condition v* > v > 1 and A, < A /3, which imply the world lines

of the domain walls cross the both of de Sitter and Schwartzschild horizon.

III. Calculation

A general form of the metric of the spherically symmetric inhomogencous

space 1s reduced to
di? = A(x)%dx® + B(x)*(d6? + sin® 8d¢?) . (6)

Now using the gauge freedom corresponding to shift vector NX = 3, we can
rewrite spatial metric in natural style of the closed 3-sphere space. We use
the lgeodesic timeslice that lapse function is equal to one, so that the timeslice
actively approaches to a source of gravity. After all, the spacetime metric in our

calculation is given by
ds? = —di® + R(x,1)* [(dx + Bdt)? + sin® xdm] . (1)
Using this metric form, we solve the Einstein equations by finite differencing on

. 4
numerical grids".

To set up numerical calculation, we must prepare the set of initial data that
satisfies the Hamiltonian constraint and momentum constraints. But it is not so

easy in a inhomogeneous situation. The Hamiltonian constraint is

32 2, .
DR =20, + 5K - F(DK)’ (8)

where K is the traceless part of the extrinsic curvature K, and ()R is the 3-Ricci
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scalar :

4

BR=—— (R,xx +2

R, cosx B R?x ) 6
R3

sin Y 2R +ﬁ’

and momentum constraints are left only one independent component

0 . - . 2, ..
-6—;(1{3 sin® xK) = R3sin® x(J, + E’HI& x) (10)
where
J,=T). (11)

As the matter fields, we use a massive scalar field & with potential V(®) =
A(®%2-0?)%. To circumvent solving constraint equations, we determine the spatial
distribution of the massless scalar field to make total energy density p, , =
py + py becomes homogeneous. As the universe expands, the contribution of
the ¥ field to total energy density becomes small quickly, and we can simulate
the evolution of ® field inhomogeneity. The Hamiltonian constraint becomes

homogeneous initially:

6

2 .
i 20,00 = §(Im )?. (12)

In this method, we can solve momentum constraints trivially too.

It is also difficult to establish the well behaving boundary condition in nu-
merical analysis. In our system, since the topology of the universe is S, the
boundary condition is reflection symmetry at x = «/2. This condition is not so
difficult compared to the case of open universe, in that case we must demand

suitable asymptotic boundary condition at outer boundary.

In our analysis, it is necessary to know whether a black hole or a worm hole is
formed in the numerically generated spacetime. The best way is to determine an
event horizon, which becomes possible if the global structure of the spacetime is
known. However, knowing the global structure of the spacetime is much difficult

because the region of the spacetime in which we can follow the evolution of initial
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data is limited. The practical method is to determine the apparent horizon. The
apparent horizon can be determined without knowing the global structure of a
spacetime. In the general spacetime the existence of an apparent horizon implies
the existence of the event horizon®. An apparent horizon is a 2-surface on which

a null geodesic congruence has zero expansion 8,
0=V, k'=0. (13)

We calculate the expansion 6 + and 6_ for outgoing and ingoing null geodesic

congruence about origin, respectively. For the metric (7),
8, < RR+ (1 - RP)(R, + Reotx) . (14)

By observing the sign of these expansions, we can determine the apparent hori-
zons related to the de Sitter and Schwartzschild horizons. This information

suggests us the formation of a black hole and a worm hole.

IV. Results and discussion

In the calculation reported here, the grid size is x = /2 x 1/100 and the
timestep i1s 6 = 0.02. This 6t satisfies the Courant condition. We continue the

calculation until 10000 timestep.

We prepare the initial inhomogeneous scalar field as

A COSX 9 1.,
=0 + —— -(—=)°) - —(=))] - 1
o+ T [ep(=(5)") — exp(=(55)")] (15)
Initially p, is distributed on a 3-sphere like Fig.2. The main result of the our
calculation with parameters A = 0.35,D = 0.2,®, = 0.045,p,,,, = 2.0 and
TrK = —2.4 is shown in Fig.3. In this calculation, we evaluate a numerical error

by computing the Hamiltonian constraint at each timestep. The absolute value

of the error AH was below 2 x 1073, as seen in Fig.4.
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Fig.3 is obtained by embedding the spatial grid points into a higher dimen-
sional flat space at each time step. The x-axis is Schwartzschild coordinate
r = Rsin x and the y-axis is appropriate extra dimension, which is determined so
that the length along the curve coincides with the proper distance on 3-surface.
Each grid point is drawn by four kinds of markers which are distinguished by
the sign of the expansions 6 and #_. The small, middle, large, and white dots
are correspond to {#, > 0,6_ < 0}, {f, < 0,0_ < 0}, {6, > 0,6_ > 0}
and {6, < 0,6_ > 0} respectively. The initial inhomogeneity of the matter
deforms the homogeneous universe into a bottle neck structure, and apparent
horizons appear. In Fig.3(d), three apparent horizons appear at the place where
different kind of markers adjoin. We can identify each apparent horizon: two
correspond to de Sitter and one to Schwartzschild event horizon. Schwartzschild
event horizon appears at a throat of bottle neck structure. This indicates that

the Einstein-Rosen bridge is formed.

Now we present some comments and physical implications about our calcula-
tion. In this article we showed only a little part of our analysis. We demonstrated
that the worm hole formation is possible when appropriate parameters are se-
lected. As shown in the section II, Maeda, Sato, Kodama and Sasaki discussed
the initial condition for the formation of the worm hole in the thin wall approx-
imation. On the other hand, we studied the worm hole formation numerically
without thin wall approximation. Physical situation of our calculation is much
different from the case of the thin wall approximation in the following points:
The thickness of the bubble wall is finite and may change during its time evolu-
tion. Furthermore spacetime inside the bubble is not completely de Sitter because
the energy-momentum tensor inside the bubble is not always the form of false
vacuum. These facts may affect values of the parameter which is necessary to
form the worm hole. According to the result of the thin wall approximation,
the collapsing bubble cannot generate a worm hole because it hits a black hole
singularity. But if one consider the effect of time varying wall thickness, the

situation may change drastically and we expect that worm hole formation is pos-
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sible. These differences will be analyzed and discussed in detail in a forthcoming

papers.
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Fig.3
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Wesson's 5D Space-Time-Mass theory of gravity
T. Fukui
Faculty of Liberal Arts, Dokkyo University, Soka, Saitama, Japan

Abstract. Wesson's 5D Space-Time-Mass theory of gravity(1983) is
reviewed, and the basic equations of a cosmological model are presented
for the preparation of studying the effects of the theory on the baryon
synthesis in the early Universe. Also the comparison of the theory with
the Brans-Dicke theory of gravity is touched upon.

1. Introduction

Wesson(1983,1984) proposed the 5D Space-Time-Mass theory of gravity by
introducing a new variable x5=Gm/c? to the standard 4D Space-Time theory
of gravity. Originally Wesson introduced the fifth coordirate on the two
grounds, firstly to attempt to construct variable-gravity theory where
mass B should be variable, and secondly to regard m with the
gravitational constant G as a coordinate along the same line as
regarding time t with the velocity of light ¢ as the fourth coordinate.
By solving the 5D Einstein tensor in vacuum G:;=0, Wesson presented

a solution which is the 5D analog of the 4D Schwarzschild solution, and
studied the rate of change of rest mass by applying the solution to the
5D geodesic equation. In order to compare his theory with the Kaluza
-Klein cosnology which is the subject of special interest among particle
physicists, Wesson(1985,1986) also studied a 5D cosmological model that
is homogeneous and isotropic, and suggested that the fifth coordinate
will contribute to the physical consequence of the present 4D Universe.
Fukui (1987, 1988a) obtained another particular cosmological solution and
studied the rate of change of rest mass, and showed explicitly the
contribution of the fifth coordinate. And again Fukui(1988b) obtained
the other solution of the metric coefficient with off-diagonal
components to study the possibility for yielding a new natural constant
which might be required in unifying the gravitational interaction with
the other three interactions(¥esson,1981). Ponce de Leon(1988) presented
other cosmological solutions in the more coaprehensive manner. And

Chatterjee(1986) and Greé n(1988) obtained other solutions in the
cosmic time coordnate, which are useful

in studying physical processes
in the early Universe.

In order to see the effects of the theory on the
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cosmological processes, Coley(1990) studied helium formation with the
solution obtained by Gré n and set limits on the value of the
non-negative parameter appearing in the model. Quite recently Wesson
(1991) studied particle horizons with the solutions obtained so far to
have a kind of theory for the origin of mass which is consistent with
the cosmological observation. In Section 2 of the present article, we
derive analytical equations showing the effects of the theory(Fukui,
1992) before we proceed to the numerical calculation of baryon synthesis.
Section 3 is devoted to comparison of the theory with the Brams-Dicke
theory, because both of them are variable-gravity theories and may
probably correspond with each other. Some comments are made in Section 4.

2. Effects of 5D-STM theory

The metric to be concerned is

ds2=e"dt2-e“ (dx2+dy2+dz?) +e“dg?. (1)

The last term in RHS of Eq. (1) is the mass coordinate which Nesson
introduced on the grounds mentioned in lntkoduction. Actually t and
should be written as ct and Gm/c? if conventional physical dimensions
are desired. From the 5D Einstein tensor in vaccum Gi; ¢5’=0,

Goo'S'=-302/4-30 i /4-e" * (38 /243D 2/2-34 1t /4) =0, (2)
Gos 138 /2430 & /4-32 @ /4-3& 11 /4=0, (3)

Gr1 %7262 57 =Gs3 S =e " (B 430 2/4+ L /2+ 12 /4+d 1 /2-0 @ /20 f1 /4)+
+e W3/ 4V /2 Dt/ L S /2-0 B /1- 8 1 74) =0, (4)

Gss 1 =-342/4-30 & /4-e*7" (36 /2430 2/2-35 & /4) =0, (5)
where (-) and (*) denote partial derivatives with respect to t and a,

respectively. In this Section, we use most general matter-free

cosmological solutien in the cosmic time coordinate obtained by
Chatterjee. The solutions are
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e“=f (n)t2+g (m) t+h(m), : (6)

e“=- {?(m)t“g(m)ﬁﬁ(m)} 2/ (Af(p) { f(m)t2+g(m)t+h(m)} ], (n
where f(n) is interrelated with g{(m) and h(m) as
f(m)={g(m)2+2C} / {4h(m)} . (8)

where C is an arbitrary constant. Here we tentatively assume
h(n)=constant(=he) for simplicity. When we divide the Einstein teasor
Gi; ‘% into two functions, Gi;‘*’, the part which is proper to 4D, and

the remainder, H:;, (Fukui 1988a)

Gi;f% =Gi;'® +Hi;, (9)
then the non-zero components Hi; are obtained as follows,

Heo=3 [ { (g2+2C)t+2heg! /A] 2, (10)

Hi1=-(g2+2C)/2he+ { (g2+2C)t+2heg} 2/(4ho4), an

vhere g(m) and A(t,pm)=(g2+2C)t2+4hegt+4ha? are abbreviated as g and A
respectively. 1f these quantities can be regarded as those giving the
physical state of the 4D Universe, the cowmponents Hae and Wi,
to the energy momentum tensors Tes and T:i: of the 4D Universe,

respectively, which give the total density and pressure of the Universe

correspond

in the case of a perfect fluid. Taking the ratio of Hi1e™“ to Hee then
results in the equation of state,

p/oc2=-{2(g2+2C)A} / [3{ (g2+2C)t+2hag} 2] +1/3. (12)

When the fifth coordinate shrinks to zero, g(m)=0, then g2+2C in the
first term of RHS of Egq. (12) can be assumed to be zero and Eq. (12) leads
the Universe to a radiation-dominated state. Therefore, the first term
can be regarded as a term produced by variable rest mass. To see the
effects of the fifth coordinate more specifically, we study the

trajectory of a test particle descrihed by the 5D geodesic equation,
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dzx*/ds2+T % ; (dx'/ds) (dxi/ds)=0 (i.J.k=0,1,2,3,5). (13)

The evaluations of Eq. (13) for k=1,2,and 3 give

dx/ds=4ha t« /A, (14)
dy/ds=4het, /A, (15)
dz/ds=4het: /A, (16)

where ty,ty,and t: are integration constants.
For k=0, the geodesic equation can be transformed to
d®2t/ds?+4hate? { (g2+2C)t+2heg) } /A%+
+g2t (gt+2ho) { (g7+2Cg) t3+6hog2t2+12ha2gt+Bho?} /
/ 1 (g2+2C)A%Y - (dm/ds)?=0, an

where to2=t,2+t,2+¢t,2,
And for k=5, Eq. (13) can also be transformed to

Et(gt+2ha)/ { (g2+2C)A} - (d2m/ds?) +2g { (g9+2Cg)t*+6heg?t2+12he2gt+
+8he®} / { (g2+2C)A2} -(dt/ds)-(dn/ds)-4hat.2 /A2+

+t [¥(g2+2C) (gt+2ho) A+E2 { (4C2-g*)t® - (6heg®+4Chag) t2-12he?g2t-
-8he3g} ] / { (g2+2C)% A2} -(dm/ds)?=0. (18)

With Eqs. (17) and (18)

(g2+2C) "7 2- (dt/ds) +Et (gt+2ho) { (g2+2C) t+2hog} /
/{1 (g2+2C)' 24} - (dm/ds)=¢, (19)

where ¢ is an integration constant. By taking the metric Eq. {1) into
account, we get

dt/ds= { (g2+2C)t+2heg} 2(& £B'72)/ { 8he2C(g2+2C) 72} +
+& /(g2+2C)1 2, (20)

&-(dn/ds)=(g2+2C) -2 { (g2+2C)t+2heg} A(-Z ¥B'72)/ { 8he?Ct{gt+2hae)} ,
(21)

where B= [ 1+8h2eC/ { (g2+2C) t+2hog} 2] & 2-
-8he?C(g2+42C) { 4hato2/A+1} / { (g2+2C) t+2heg} 2. (22)
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Eqs. (20) and (21) teach us the evolutionary path of the rest mass of a
test particle with time. That is, rest mass changes till it saturates
at the compactification of the fifth dimension. The equations correspond
to Eqs. (11} and (13) in Gré n. The time variation of rest mass is also
studied by Wesson(1986), Fukui(1988a,1988b), Banerjee et al. {(1990), and
Coley.

In case of ¢ =0, the total differential equation Eq. (20) can be solved
analytically as

(g2+2C)172 { (g2+2C)t3/3 +4hegt?2/2 +4he?t} =0. (23)
By using this relation in Eq. (12), the equation of state becomes
p/pc2=-(Ct2+2he?)/(2Ct2+3h0?)+1/3. (24)

It deserves notice that Eq. (24) admits the existence of the state of
stiff matter in the early Universe(Raine 1981). The first term of RHS
should be zero at the time (say,te) when the fifth dimension shrinks to
zero, and one has

Ctc2+2he?=0. (25)

Eq. (24) then reduces to the equation of state for radiation at t=t.
through a stiff matter state. According to the scenario just described,
Eqs. (12) and (24) should be applicable only to the period before to in
the early Universe, not for t very large.

By fitting e“, Eq. (6) to e“=(-2C)!'“2t+he and g, Eq. {(23) to g=(-2C)'’?
at t=tc, we get a spatial component before tce=(-2ha?/C)'“2 as follows,

e’= [ -he+ { -(2Ct2+3he2)} '~ 2] /2 (26)

and negative values of he and C. Actually the scenario in this Section
is applicable to the following period

{-3he2/(20)}' 2= t= {-2he?/C}' 2. @an
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Therefore Eqs. (32) and (33) are the relations for the Brans-Dicke
cosmology with the Wesson's theory to be investigated in the future work.

4. Conmments

The effect of the fifth coordinate is conspicuous in Eq. (12), and the
equation of state of stiff matter in the early Universe can be derived
without making any assumptions about the physical contents of the
4D Universe. It is natural therefore to expect that the physical
state, especially in the very beginning, of the 4D Universe is inherited
from the geometrical property of the 5D Universe. This supports the
suggestion made by Wesson(1990). Therefore, the present procedure is
quite helpful in inferring the early physical state of a lower-
dimensional Universe from the geometrical property of a higher-
dimensional Universe. The analytical study in the present procedure
prepares us well for further numerical calculations of cosnological
phenomena in the early Universe, e.g. baryon synthesis.

And the relations presented in Section 3 will surely be useful in
clarifying the significance of the Wesson's theory.

Last of all, we would like to make speculative comment that if the
present string theory tries to explain the origin of a physical contents
in terms of the frequency of a string, then the present theory implies
that there are ripples in the 5D Universe and the 4D Universe with the
Physical contents is embedded at the crests or troughs of the ripples.

Acknowledgements. The author wishes to express his gratitude to
P.S.¥esson and A.A.Coley for their valuable suggestions.
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Ashtekar variables and their applications

Hitosni IKEMORI

Department of Economics, Shiga University,
Baba 1-1-1, Hikone 522, Japan

ABSTRACT

The fundamentals of the formalism for nonperturbative canonical gravity proposed by
Ashtekar are reviewed. The procedure of transition to the new variables is recapitulated as
the steps of rewriting the covariant action, in which the Ashtekar theory is understood as a
kind of gauge theory that contains the self-dual connection as its gauge field.
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1. Introduction

The Ashtekar formalism is one of the most interesting subjects in the recent study of
general relativity, which seems especially suitable for quantum description of the theory. It
is a problem of great importance in fundamental physics to construct a consistent quantum
theory of gravity. There is no room for doubt that Einstein’s general relativity is the most
superior theory of gravity, because of its confirmed consistency and great elegance. Though
it has been established in the regime of classical theory, no one have yet been successful with
the quantum theory of general relativity. As it stands, the Einstein theory is perturbatively
unrenormalizable. Although an attempt based on the superstring theory has been expected
to save the situations, it has not been a satisfying theory because of its lack of predictive
power in the low energy physics. It seems that the nonperturbative quantum effects and the
techniques to reveal them are increasing their importance for the investigations of quantum
theory of gravity. Recently Ashtekar sheds a light on the nonperturbative canonical theory
of gravity by proposing new variables [4,5,6].

2. Appearance of Ashtekar variables

First let us go back to a canonical formalism of the Einstein theory. The Einstein-Hilbert
action

Sulo] = / &'z /R (1)

can be put into a canonical theory by means of the ADM method, in which the space-time
metric gy, is decomposed as

ds? = g,,dzPdz” = —N2dt? + g;;(dz* + N'dt)(dz) + Nidt) ; (2)
—N? 4 N.N* N; @)
Guv = )
" N; 9ij

where N and N' are the lapse function and the shift vectors respectively, and gij is the
spatial or 3-dimensional metric.

Then the canonical action is given by
Sela, 7] = /d"f [Gijp" = ( Nity, + NHy ) ] (4)

where

HE = —2(”V' 2
{ M iP (5)

.. ())
Hu = Gyup o™ -G R ;
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1
( Gijkl = 7(‘1:’1:‘11'! + Git9jk — Qij k1) )

In this case the dynamical variables are the spatial metric ¢;; and its conjugate momentum

pY which is essentially the extrinsic curvature. As there are constraints ’H' ~0and Hy =0
accompamed by the Lagrange multlphers N and N?, the phase space of the Einstein theory
which has the coordinates ( gij , p*! ) should be reduced to a physical one on account of these
constraints. They are first class and called the momentum constraints and the Hamiltonian
constraints respectively. They are non-polynomial in g;; due to the existence of the inverse
metric ¢¥ in "“[‘j-k and mR, which causes many troubles in either case of classical or quantum
theory. Especially the troubles in the quantum theory with regards to the Hamiltonian
constraint seems to be serious and the quantum version of this constraint known as the
Weeler-DeWitt equation has never been tractable except for some extremely reduced models.

The new variables proposed by Ashtekar allows a reformulation that makes the theo-
ry more promising and may even solve this problem. The translation from the standard
canonical variables ( g;j , p” ) to the Ashtekar variables ( E, , tA!) is a kind of canonical
transformation, however, to the complex variables. Ashtekar employs a densitised inverse
triad E’; as a canonical coordinate and a new connection "‘A{ as its conjugate momentum.
Roughly speaking, %A/ is related to the standard variables by

t=p-iTl) | (6)

then we can recast the constraints into new forms

Cui=—F . tFy ~ M,
1 ~: s 7
C" =—i ‘2- (E' X EJ) . +fij ~ ﬂn ( )
by means of its curvature '*‘.7:',{, And an additional constraint
¢l .= -tD;Ei =0 (8)

which means a requirement of invariance under a gauge transformation introduced in the
new formalism. New constraints Cp;, Cy and Cé are at most quadratic polynomial of new
variables, and we may hope them to make things manageable.

3. Lagrangian formalism for Ashtekar theory

It seems easier to understand the transition to Ashtekar theory in the framework of
Lagrangian formalism [35-40], though Ashtekar has introduced the new variables through a
kind of canonical transformation in the Hamiltonian formalism.
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The procedure of transition to the new variables consists of three steps of rewriting the
action. The first step is consideration of the first-order formalism and the second is the
introduction of internal symmetry which means the use of the tetrad instead of the metric.
The last step of the transition is the use of the self-dual connection instead of the spin
connection. These steps are summarized in the following table.

Theory order of 3, | independent variables
2nd order | metric
Einstein-Hilbert action Guv
Palatini action 1st order | metric | affine connection
Guv qu

Tetrad Palatini action | 1st order |tetrad |spin connection

b
ez w;}
Ashtekar 1st order |tetrad |self-dual connection
Jacobson-Smolin action ed | twib

3.1. First order formalism

The first order formalism of general relativity is well known as the Palatini form and
the action employed in this formalism consists of the terms with the first order derivatives
in contrast with the Einstein-Hilbert action which contains second order derivatives. The
Einstein-Hilbert action

Selg] = / d'z\/gR(g) ~ ¢0’g+ (9g)? (9)

consists of the terms with the second order derivative or the square of first order derivative of
metric g,,. The Palatini’s idea is to consider the affine connection I'f, to be independent of
the metric g,,. The Palatini action with the independent variables g,, and '§, ;(Ty, = I'},)
is

Silo, 1) = [ d'ayGe" RulD) ~ @0 +1T) (10)
which is equivalent to the Einstein-Hilbert action Sg[g] when a '}, equation is satisfied. The
equation of motion that follows from the variation with respect to 'y, ; H‘LaSp[g, F=0is

nr

satisfied when the affine connection is equal to the usual Christoffel symbol I'g, = Ty, (g) ~
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dg consisting of the metric. Substitution of this result into the Plaltini action shows that it
is equal to the Einstein-Hilbert action.

6
SP[g)P]=0 - F:‘,‘—‘qu(g)'\lag

6Tg,
' (1)

SP[g)P(g)] = Sz[g]

3.2. Tetrad formalism

The next step is introduction of the internal symmetry, that is, considering the local
Lorentz transformation as a gauge symmetry. We employ the orthonormal tetrad ej instead
of the metric g,,, which acts as a basis of the local Lorentz frame. And we also employ the

spin connection wzb instead of the affine connection I‘;}V, which acts as a gauge field of the

local Lorentz algebra so(3,1). So far as the internal indices a,b, - - - are concerned, lowering
and raising the indices are performed by the metric ng = diag(—1, 1,1, 1). Asis well known
the tetrad plays a role of a square root of the metric and they are related as

Guv = Naselel . (12)
The Palatini action in the tetrad form is

Sile,w] = / &'z e EPELR®,,(w) (13)

where e is the determinant of ef ; (e := detes = \/<g ) and E¥ is the inverse tetrad. The
action is equivalently written as

Srle,w]) = / ,l,eabcdR“"(w) AeSAed ' (14)

making use of differential forms.

Now that the internal symmetry is taken into consideration, the Riemann curvature
R%g,, will be replaced by the curvature sz,(w) of the spin connection wzb defined by

R (w) = Byuld — Qw4+ Wil — Wi (15)
that is to say, the curvature 2-form R% is defined from the spin connection 1-form w? by

R*(w) := dw™ + . Aw®® (16)

in the language of differential forms.
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After Palatini we consider the spin connection w,‘}b to be independent of the tetrad ej, we
only require the antisymmetry in its indices wz” = —wﬁ“. The situation is much the same as

6
the metric Palatini formalism. The equation of motion with respect to w®®; mST[e, w]=0

is nothing but a torsion free condition
De® :=de® +wy Aeb =0 (17)

and is satisfied when the spin connection is equal to the Levi-Civita connection w®® = w®(e)
consisting of the tetrad ej;. Substituting this result into the tetrad Palatini action, we obtain
the Einstein-Hilbert action written in the tetrad form.

%S—,[e,w] =0 — w¥=uwe)
4 (18)
Sefe,wl(e)] = / dizeR(w(e)) = / dz\/GR(g)

3.3. Self-dual connection

As the last step of the transition, the self-dual connection should take place of the spin
connection. Let us explain a self-duality of connection, which is the self-duality with respect
to internal indices and should not be confused with the self-duality with respect to space-time
indices.

Suppose Fgp is an antisymmetric tensor with respect to its internal indices a and &, then
the duality transform will be defined as

P = ey (19)

O |

making use of the totally antisymmetric symbol €%, We should remark the fact that the
dual of dual is equal to the multiplication by —1,

‘(‘ ab) ==Fy , (20)

when we choose the Lorentzian signature and use the metric 7, = diag(-1,1,1,1) to
lowering and raising the internal indices.
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As a result of this fact, we recognize that the eigen values of the duality transform
operation are =i and the eigen states are supplied by the complex combinations

1 .
iFab= §(Fab:Fz‘Fab) y (21)

which satisfy the eigen equations
(Fap) = £i%Fa (22)

The notion of self-duality means an eigen state of the duality transform operation and we
call tF,; self-dual part (and ~Fj anti-self-dual part) of Fjy.

The spin connection 1-form w® which has a pair of antisymmetric internal indices can
be uniquely decomposed into the self-dual and anti-self-dual part :

wab = +wab + —wab . (23)

Substitution of this relation into the definition of the the curvature 2-form R® brings us the
result

R*(w) = R*(*w + W) = R*(*w) + R*(w) , (24)
which means that the curvature 2-form R% can be also decomposed additively according
to the decomposition with respect to the self-duality. Where R%(w) is the curvature of
self-dual connection *w® and is nothing but the self-dual part of R%(w), and the curvature

R®(~w) of anti-self-dual connection “w? is the anti-self-dual part of R*(w) in the same
way.

Previously mentioned tetrad Palatini action
1
Srle,w]) = / EeabcdRab(W) AecAed = /‘Rcd(w) AeSAed (25)

is decomposed as
Sile,w]) = *S[e, Y] + ~Sle, W] ; (26)

£, %] = / Raw) A Aed (27)

with regard to the contributions of (anti)-self-dual connections.
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This means that the self-dual action would lead to the same equation of motion as the
Einstein equation so far as the tetrad or equivalently the metric is concerned. The anti-self-
dual action can be employed instead in the same way and the situation is quite the same as
the case of the self-dual action.

4. Ashtekar theory from self-dual action

The Ashtekar formalism can be regarded as a canonical theory starting from the self-dual
action stated in the previous section [36,43]. Let us consider the 341 decomposition of the
self-dual theory in the tetrad form after the ADM decomposition in the metric form in order
to relate the self-dual action with the Ashtekar theory. The self-dual action can be written
in the form

+S[E, %] = / d' e BVEY R, (*w) (32)

employing the inverse tetrad EJ rather than the tetrad ej, which is just the same action
previously described in the notation of differential forms. It is convenient to choose the gauge

condition E? =0 and denote Ef = (1—{,-, —%'-) then the inverse tetrad has the form of
. Nl
. (B B (v -%
Ea - EO N - H ’ (33)
1 Er 0 E
where we use the notation I,J,--- = (1,2,3) for the spatial indices out of the internal
indices a,b,--- = (0, 1,2,3) and the notation i, j,--- = (1,2,3) for the spatial indices out of

the space-time indices y, v,--- = (0,1,2,3).
This choice allows us to think of Ef as a normal vector field to the spacelike hypersurface
spanned by the condition of ¢t = 20 = const. which plays the same role as that of ADM.
It is easy to verify that E} acts as an inverse triad from which we can define the inverse
of space metric ¢ by
¢’ = E}E} (34)
and that the inverse of space-time metric obtained by ¢** = n**E4 E} is exactly the same as

that given in the ADM decomposition. It deserves an attention that this gauge choice is not a
restriction on the general coordinate transformation but on the local Lorentz transformation.

Under the above gauge condition the rotational group SO(3) survives as an internal
symmetry out of the local Lorentz group SO(3, 1), which will be in accord with the situation
that the self-dual connection is in fact a complex so(3) connection.

We may think of the complexified algebras to make things clear, then the decomposi-
tion of the spin connection into the self-dual and anti-self-dual parts is understood as the
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decomposition of the complexified Lorentz algebra into a couple of the complexified so(3)
algebras; s0(3, 1; C) = so(4; C) = so(3; C) & so(3; C).

Actually we define the so(3; C) connection +A,’, )

i A
+A,', = 2+w21 = w?,’ -3 g!JK w;{" , (35)

from the so(3, 1) connection w‘“‘b . The new connection +A{‘ is equivalent to the self-dual
connection "’wzb, because +w2' carries all the elements of "'w“}" due to the relation +w2' =
—% e”"""w,‘,’K brought by its self-duality.

Now we are ready to write over the action for the Ashtekar theory, making use of the
gauge choice and the variables described above, the self-dual action can be written as

S(E, A = / d'z [ TA; - B — (YAo-Co + N¥Cyi + NCy) (36)
where
¢l = —"'D,'E’;.

S U
Cyi=—1 3 (E x E*). *Fik
The notations employed here are as follows. The inner and outer products concerned with
the internal indices /,J, K, - -- are denoted as E’ - *Fj; := E} '*'}'j’k and (EV x ER) .=

MK EJ E% . The quantities which transform as densities under the space coordinate trans-
JEK q p
formation are denoted as

E}:= oE} density of weight 1

38
N =0"'N density of weight —1 , (38)

—~

where ¢ := (det(E‘}'))‘1 = /g9 and g is the determinant of the space metric ¢;;. The
covariant derivative tD; and the field strength +.7",-'j of the connection *A4; are defined by

{ ;=0 —itA;x
(39)

YF = 0T - 07 AL - i(i x *Ay)!

It is obvious that *4J, N* and N act as Lagrange multipliers that accompany the con-

straints C! ~ 0, Cy; = 0 and C; = 0 respectively. These constraints are first class and
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they are often called the gauge constraint (or the Gauss law constraint), the momentum
constraint (or the vector constraint) and the Hamiltonian constraint.

i E}) as the
coordinates of the phase space for this theory. They are nothing but the Ashtelkar’s new
variables. Thus we have reached the Ashtekar theory starting from the covariant action for
the self-dual theory. To summarize the decomposition employed in our procedure, we will
schematize the variables and their degree of freedom as follows.

It seems natural at a glance to consider the canonical variables ( A/

covariant variables | =»| canonical variables | gauge conditions | Lagrange multipliers
(associated constraints)
E! = E} EY=0 Ni N
16 9 3 3 1
(Cui) (Cu)
vt tal |s] ! +45
12 9 3
()

5. Discussions
5.1. Comparison of Ashtekar and Einstein theory

Let us itemize the difference between the Einstein theory and the Ashtekar theory.

Einstein theory Ashtekar theory
purely geometrical theory gauge theoretical features
2nd order derivative theory Ist order derivative theory

dynamical equations are non-polynomial | dynamical equations are polynomial

does contain the inverse of variables does not contain the inverse of variables

does not admit degenerate metric does admit degenerate metric

The polynomiality of dynamical equations in the Ashtekar theory is indebted to the fact
that all the constraints which rule dynamics are polynomials of the new variables as it has
been seen. It owes largely to this polynomiality that the Ashtekar theory has preferable
aspects to the Einstein theory especially in considering a nonperturbative quantum gravity.
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As far as the constraints are concerned, they are more manageable than those in the Einstein
theory in either case of classical or quantum theory. Furthermore these dynamical equations
does not contain the inverse of E} employed as a fundamental variable and they works even

if E‘} is degenerate [14-16]. In the Einstein theory, it is not allowed for the metric g;; to
be degenerate because the constraints and the dynamical equations contain the inverse of
space metric ¢;; and they never work if g;; is degenerate. It seems possible for a solution
of the equations of motion to go over singularities when they are written with the Ashtekar
variables, then one may discuss a possibility of topology change [17] even in the classical
theory. There are expected wider classes of classical solutions because of the extended
nature of the phase space in the Ashtekar formalism. The extended phase space is that of a
complexified Yang-Mills theory, though it should be reduced to a physical one by virtue of
constraints. The gauge theoretical features suggest that various techniques in gauge theories
may be applicable to study the quantum gravity in this formalism [18-22,24,25].

5.2. Reality condilion problem

Not all properties of the Ashtekar formalism are welcome and there is a price to pay, that
is, a reality condition problem. It seems curious that one of the new “canonical” variables,
+4] is complex and the other, E} is real. Though one may be inclined to consider Ei to be
also complex, it is not allowed if one thinks of a strict equivalence to the Einstein theory.
On the contrary, one should claim E} to be real throughout its time evolution in this case.
The consistency of the reality with the time evolution requires that the imaginary part of
*A] is to be determined as a function of Ej (or ef). Recalling the definition of *A! (35)in
which one finds Sm(2Af) = —% elMKWIK | this requirement means that the imaginary
part of +A/ should be equal to the the spatial part of w/¥ (e) or 3-dimensional Levi-Civita
connection. This substitution seems to breakdown the polynomiality of constraints and to
cause undesired difficulties. But there will be a remedy for the reality condition problem,
though it seems that there has never been an exhaustive discussion on this problem. For
example, it is pointed out [2,3] that the reality condition can be recasted into a polynomial
form, however it is cubic. More detailed investigations on the issue will be necessary anyway.

5.3. Applications

The Ashtekar formalism has been applied to various directions and has revealed its re-
lations to some other theories. As Ashtekar’s main aim has been the quantum gravity, most
of related works are concerned with this subject and a lot of papers [29-34] are written e-
specially on the loop-space representation of the non-perturbative quantum gravity. There
are excellent lecture notes [1,2] and review articles [3], to which we will leave detailed expla-
nations and comprehensive references. One can find also a readable survey of applications
within the classical theory in one [3] of them.

There is no room to enumerate all the related topics but some selected references will
be found in the end of this report and it will serve for a rapid survey.
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Vacuum Polarization around Black
Holes and Quantum Hair:
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Properties of black holes (BHs) with quantum hair [1] have been
discussed recently [2]. The quantum hair is supported by virtual string
loops surrounding the BH. In this talk, we examine the renormalized
value of {p*®) and stress tensor for a scalar field in the Hartle-Hawking
vacuum around Schwarzschild BHs in the presence of the virtual string
loops.

First of all, consider an Abelian Higgs model in D-dimensional
spacetime. Suppose that the Higgs scalar has the U(1) charge Ne,
where N is an integer larger than one. Another complex, free, scalar

field is introduced, which has the charge e. In this system, a vortex,

1This talk is based on ref. [0}
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which has (D-3)-dimensional extension, is made from the circular
configuration of the Higgs field. Although this extended object (string) is
invisible for a classical measurement, the additional complex scalar field
feels the existence of the for the vortex quantum-mechanically.

A virtual loop of the string can be created around an O(D-1)-
symmetric BH in the D-dimensional spacetime. The (D-2) dimensional
world-sheet of the string can wrap the membrane of the event horizon of
the BH. The virtual motion of the object induces a virtual electric field,
though the field strength is confined at the wake of the loop if the string is
assumed very thin.

At spatial infinity, a field strength takes a topologically-determined
value in the presence of the virtual string world-sheet wrapping the
horizon k-fold. We can simply express the field strength by the following

gauge field:

A_,Zk, 1
r _LNﬁeﬁ (1)

where p-!=(D-3)fic/(4nr,) and r, is the Schwarzschild radius.
The higher components in the Fourier expansion with respect to the

periodic Euclidean time (1) are irrelevant for the quantum nature of the
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complex scalar field. We can also neglect other components of the gauge
field, because their contribution to quantum effect is small at r>>r.

Now we start with the estimation of the vacuum polarization of the
complex scalar field with the charge e in the Schwarzschild spacetime
with the back ground gauge field configuration (1).

The asymptotic value of {p*) at spatial infinity in D-dimensional

Schwarzschild spacetime with the back ground gauge configuration is [0]

RT((D-2)/2) Z cos (2rtkn/N)

ek 2P2c(phic)>? oy nP?

. (2)

Next we examine the quantum energy-momentum tensor which comes
from the polarization of the scalar field. The asymptotic value at spatial

infinity in D-dimensional spacetime turns out to be

(Tt ﬁf‘zl;((;z;niws O diag (D1, 1, .01). (3)
T C)” n=1

Finally, we consider the sum over the possible configurations. If the
system including the BH has a charge Q, then the expectation value for

{b* ) can be presented as
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b dlo— IN_M wmo mxl-mmh”m (b* Dk eSA 4

where S, is the action for the extended object (string) and can be

approximated using the tension k as

Se. = KK2E2D2_ Doz i | (5)

T((D-1)/2)

Zyis defined as to keep the identity <1>o=1. <T* >, can be defined in
the same manner.
Then the asymptotic value of {p*¢) at spatial infinity for the D-

dimensional case is approximated by

. HI((D-2)/2) {(D-2)
2D/2¢(Btic)P2

"l x fp.(Q/e,N,kA), (6)

and similarly <T® > at infinity is given by

_, _28T(Dr2) .
(T alg%m% fp(QAie,N,kA) diag.(-(D-1), 1, ...,1), (7)
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where

cosh kA - cos(2nQ/Nhe) , _ Ccosh kA - cos(2mQ/Nfie) | (8)
Z | n%|cosh KA - cos(2/N(Qffie-n)) ~ cosh KA - cos(2/N(Q/ie+n)) ||

2C(x)

For large kA, we obtain

fy=1- (zx) erA cosNhe Z 2"7‘ 9)
We have found that the amount of the Hawking radiation of the bose
gas is suppressed if the total charge of the system vanishes (Q=0). (but it
never becomes negative value.) Provided that the extrapolation to the
region of small xA is permitted, the rise in the Hawking temperature may
take place in the presence of quantum hair.
There seems to be much difficulty in the thermodynamical
interpretation of the system, because the proper temperature of BH (B-1)
and the temperature of the charged boson gas take different values; the

equilibrium of the total system is not attained in general, according to our

result.

In this talk, we have studied the quantum property of the BHs with
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virtual loops of strings. Numerical calculations for the precise value of
physical quantities near a BH with virtual string loops will be necessary

for the future analyses.
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Inner-Horizon Thermodynamics and Stability
of Kerr Black Holes

Osamu Kaburaki

Astronomical Institute, Faculty of Science, Tohoku University, Sendai 950, Japan

ABSTRACT

Thermodynamic formulation for the physical states of the event horizons (or outer hori-
zons) of Kerr black holes is extended also to their inner horizons, according to Curir’s sugges-
tion. From a mathematical standpoint, this corresponds to extending the range of variation
of the rotation parameter, h = a/ry where a is specific angular momentum of a hole, by
letting ry stand for the ‘radius’ not only of the outer horizon but also of the inner horizon.
For a given set of observable quantities of a kerr hole, its mass M and angular momentum
J, all other thermodynamic variables defined on both types of horizons are obtained as dou-
ble roots of corresponding quadratic equations. However, the physical meanings of these
quantities on the inner horizon have not clarified fully yet.

By using the linear series expressing the equilibrium states of both outer and inner hori-
zons, the thermodynamic stability (which is known to be equivalent to local dynamic sta-
bility) of these horizons are examined in four different circumstances. The results may be
summarized as that the stability is generally different for different circumstances.

Among the four ensembles representing the above four different cicumstances, canonical
and microcanonical ensembles are of special interest. The former describes isolated Kerr
holes and there is no change of stability on both horizons. Combining with the knowledge
for dynamic stability of a Schwarzschild hole, we can conclude that any Kerr hole is stable to
axisymmetric perturbations. On the other hand, the latter describes the holes in heat baths

and, in this case, there is a change of stability on the event horizon but nothing on the inner
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horizon. It can be seen that, in a heat bath of infinite size, a Schwarzschild hole is unstable
but angular momentum has a stabilizing effect.

The peculiarity of the extreme Kerr holes is also suggested from these analyses.

The details will be found in the following papers.
“The ‘Inner-Horizon Thermodynamics’ of Kerr Black Holes”
by 1. Okamoto and O. Kaburaki, Mon. Not. Roy. Astron. Soc., in ress.
“Thermodynamic Stability of Kerr Black Holes”

by O. Kaburaki, I. Okamoto and J. Katz, Phys. Rev. D, submitted.
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Rindler Noise and Thermalization Theorem
in the Flat Spacetime with a Boundary

Kouji OHNISHI

Department of Physics, Tokoku University, Sendai 980,Japan

ABSTRACT

The vacuum noise of a quantum field as viewed by a uniformly accelerated observer
is studied in the flat spacetime with a static boundary. The noise consists of the ordi-
nary thermal term and a boundary-effect term,which has some special properties. These
properties are understood from the view point of a quantum correlation among Rindler
particles. By introducing a Minkowski Bessel mode that is a Fourier transform of a
Minkowski plane-wave mode, we investigate the nature of this correlation. We find that
a modified thermalization theorem holds with the same structure as the thermalization
theorem in the absence of a boundary, provided that the boundary is located at a special
position. This result holds regardless of the dimension of the spacetime and for massive
as well as massless fields.

§ 1. Introduction

The world line of a Rindler observer ( a uniformly accelerated observer) is a hy-
perbola on the Minkowski spacetime( see Fig 1). Hence, Rindler observers confined
to the right wedge R (z > |t|) can not obtain information of the spacetime as a
whole. How does the existence of the horizon influence quantum theory? One of the
consequences is the Unruh effect;'~® a Rindler observer in the Minkowski vacuum
feels as if he were in a thermal bath of temperature T' = a/2x(= ha/2xckg) where
a is his proper acceleration .

To be precise, consider a system (a detector) endowed with internal degrees of
freedom and coupled linearly to a quantum field ¢(z) which was initially in the
Minkowski vacuum state. When this detector is accelerated uniformly, its transition
probability per unit time from an internal energy level E to another level E + w is
proportional to the Rindler noise F(w) 22 which is defined as

F(w) = / dr / dr'e TG (5, ') | (1-1)
where Gt is the positive frequency Wightman function
G¥(r,7') = (0] ¢(())é(=(r")) O) ,
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Fig.1 Rindler observer and Minkowski spacetime

The world line of a Rindler observer is a hyperbola on Minkowski spacetime, so
Rindler observers confined to R have horizons.

where G7 is the positive frequency Wightman function

G*(r, ') = (0| $(=(7))(2(r")) [0)

where z(7) is 2 world line of a uniformly detector and 7 is a proper time of a detector.
Hence Rindler noise "the power spectrum” F(w) is just a Fourier transform of two
point correlation function along a uniformly accelerated observer. And this noise
turns out to be of Planckian form

F) = Fulw) * sy (1-2)
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which satisfies the KMS condition,
F(w) = exp(—w/T)F(-w) . (1-3)

Under this thermal property of Rindler noise lies the following thermalization
theorem®® ,which states that ”the pure state(i.e. Minkowski vacuum state) which
is the vacuum from the point of view of inertial observers is a canonical ensemble
from the point of view of Rindler observers ”.

The regions R and L(z < —[t|) of spacetime are causally disconnected. But the
Minkowski vacuum state |Ops) is a coherent state in which R-Rindler particles %
and L-Rindler particles b% are pair-wise correlated (product of two-mode squeezed
states):

[On) Hexp[e"‘“’bf} bﬁ:‘_z ] 10R), (1-4)

w,k

where |Op) is the Rindler vacuum: b%|0Og) = bL|Og) = 0. The mode func-
tions(Rindler mode)associated with 5% and b are completely localized to R and L
,respectively(see(2.14)).

As a result, when a physical observation is made entirely in R, the L-Rindler
particles, which can not be observed,play the role of a thermal bath. Moreover the
expectation value of the Rindler particle number turns out to be given by the Bose
distribution function,

(OMIBYHBR L |OM) = N(w)b(w — ') 6(k — K')

w'E
(Om| 526 |OM) = 0 (1-5)
N(w) = [exp(27w) — 1)}

Recall that the theorem is closely related to Thermo-Field Dynamics(TFD)73; de-
grees of freedom in R correspond to the physical-field degrees of freedom , those
in L to the tilde-field degrees of freedom , and the Minkowski vacuum state to the
thermal vacuum state. As a result of the thermalization theorem, F(w) satisfies the
KMS condition.

In order to understand the role played by the region L and the nature of quantum
correlation among Rindler particles in more detail,we examine the Rindler noise in

the case when a part of L is absent,that is, when there is a boundary at z = -y < 0.
9,10
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FIG.2 Rindler observer and the boundary

These is a static boundary at @ = —bgp in the flat spacetime .

Previously,we found that F(w) = Fp(w)+ F p(w) where the boundary effect is
represented by a term Fpg(w), which has a remarkable property

].imbo_.o fg(w) x 5((0) . (1 . 6)

In one explanation, this special property can be interpreted as the consequence of
specific types of interference among various Minkowski modes of the field. Detailed
investigation has been given elsewhere!l.

In order to understand the properties of the Rindler noise in terms of quantum
correlation among Rindler particles, we shall formulate a2 modification of the ther-
malization theorem, and find that a modified thermalization theorem for the case
of boundary at by = 0 has the same structure as the thermalization theorem in the
absence of a boundary.
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§ 2. Modification of thermalization theorem

To understand the thermal property of the noise in the presence of the boundary
at & = —bg (see Fig 2), we shall introduce the Minkowski-Bessel(MB) mode!?1® as

an intermediate step, and extend the thermalization theorem by using the properties
of the MB mode.

§2.1 Definition of modified Minkowski Bessel mode

Let Py be the two-dimensional part of the Minkowski plane wave,

Py(U,V) = \/i_ﬂ_exp{i( krz — wit )}
(2-1)

= %exp{—i%( Ul +Ve )} ,
w

where (U, V) is null coordinates ; U =t—2, V =t+z ,and k= (wk,kr,lz) , W =
VEZ+p?,  p? = k% + m? where m is the mass of the field and 8 is rapidity ;

{kx = p sinhé
wi = p coshd

MB mode is defined

w .
B,(U,V) = —\/12=w / e Py(U, V)
-00

] (2-2)
By(U,V) = B,(U,V)e'*¥ (2x)-n/2 |

where n is dimension of spacetime and ¢ = (v, I;) From this definition, MB mode
has following properties.

property 1
MB mode is complete and orthogonal in Minkowski spacetime.
property 2

The vacuum state of MB particle is the same as the Minkowski vacuum state.
From the property 1 ,we can write a quantum scalar field as

o0 - o0 1 . o,
#(z) = / dk/w dk {ay —_ n e'lksz-wnt) ik § (27)172 4 c.c.}
o J- Virwg

o _ poo .l (2-3)
=/ dk/ d8{a,; Py(U, V)e'td (27) "2 4 cec. } ,
o0 -0
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where a,; is a Minkowski particle related to the ordinary Minkowski particle a; as

a,; = y/pcoshfa;, . (2-4)

And also using MB mode ,we can write as
o0 ‘- oo
é(2) = / di / d{d,BU,V) +cc} . 2-5)
-00 -00
Comparison shows that MB particle

1 o0 ivd
dq = E‘/:mdo e"' aoz ) (2‘6)

is a linear combination of Minkowski particles. Hence,the vacuum state of MB
particle is the Minkowski vacuum state,

Vg d,[Om)=0 . (2-7)

property 3

MB mode is an eigenfunction of the Lorentz-boost ;

(z% + t%)B.,(U, V)= —iwB,(U,V) . (2-8)

property 4
A parallel displaced MB mode is

By(U - bo, vV + bo) = \/5/00 dV'B,,v(U, V)Bu_yl(—bo,bo) . (2 . 9)

From above properties,we can extend the MB mode in the presence of a boundary.
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§2.2 MB mode in the presence of a boundary

A Minkowski plane wave satisfying the Dirichlet boundary condition at 2 =
by < 0is

%sin kz(z + bo)e ™t = PH(T, V) - Pfo(f],f’) : (6>0) , (2-10)

where U = U - by , V =V + by . We can write in the terms of MB mode as
- - - - 1 L . . - -
Py(T, V) = P_g(T, V) = —— f dv{e*¥? — =0} B(T7,T) , (0 > 0)
vzﬂ' —00

= \/L2_1r./:° dv2i sin uﬂ{B,,(ﬁ,f’) - B_,,([},ff)} .

(2-11)
Here, a modified Minkowski-Bessel(MMB) mode is defined as

By(U,V)=i{ B(U,V)-B_§(U,V) } :v>0 , (2-12)

where g = (1,k), §= (v, -l:) and v > 0, and this MMB mode is also complete
and orthogonal in the region 2 > —by of Minkowski spacetime. }

We consider a particle dg associated with MMB mode. From the definition, d
particles satisfy

>0,k d,|08)=0 (2-13)

where |Op) is the Minkowski vacuum state modified by the presence of the boundary
at 2 = -5y < 0.

§2.83 Modification of thermalisation theorem
We introduce the Rindler coordinates(n, §,%) by

t= Ifl sinhg , z=¢coshy , ¥ = ¥rinkowski

In terms of these coordinates ,the Rindler mode is defined as

W (m, €, ) = 0(c€)(2vx?) V2 (2v sinh 7)1 /? K, (ul€])e* I(2x) 7 2e=ivn
xe ™ (0<v<+o0) ,
(2-14)
where o stands for + in Ri.e.,6 > 0) and — in L (i.e.,£ < 0), and this mode is
complete and orthogonal in the region R and L,respectively.
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On the other hand,a MB mode is as

B = 2= [ a8 & exploiple]inh(0 ~ on))

= \/21—-, Kiy(nl€]) exp(omv/2) exp(—oivn) (2-15)

xe ' (—o<v<oo)

where o denotes + in R and — in L as above and v now takes not only positive
but also negative values. Note that these modes are normalized with respect to
Klein-Gordon inner product.

To see the relationship between d particles and Rindler particles b associated
with the Rindler mode, let us calculate the Bogoliubov coefficient in region R.

i i 5 =
bp = NTT—;[) du{P(w,u)dq - Q(w,u)d;;} (2 . 16)
where p = (w,l.c‘) y D= (w, —I:) ,

P(w,) = {1 Kifyap(itbo) = € - K1) }

. (2-17)
Qw,v) = {e""n * Ki(yw)(pbo) — e™™/2 . Ki(u-w)(#bo)}

Using this relation, the expectation value of the Rindler particle number in
vacuum state |Op) can be calculated;

+ 6(k k') .
(O5lb; by |08) = 55———= A dVQ (w,v) Q(v',v)
w?sinh 7w (2-18)
_ 6(’6 _ k’) [6(60 - ) _ x(w+w')(2”b0) ]
e?™ —1  zv/2sinh 7w - 2sinh 7w’
and

5(k + k'
(Oplbp by |05) = —3 2 ) / dv P(w,v) Q(«',v)

iy sm W (2 . 19)

n(2pb
— 6(k +k’) z(w—w )( H 0)

7V 2sinh 7w - 2 sinh 7w’

The second term of < b*b > as well as < bb > represents the boundary effect;
thermalization theorem of(1 - 5) does not hold.
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Two limiting cases are particular interest. One is the case of by — o0 ;

(03“’;’ bP' IOB) = 27w
(Ol by by |0B) =0

) (2-20)

This result coincides with the no-boundary case as expected for the boundary effect
of the noise. The second is the case of by — 0;

(OB|bf by |0OB) = T §(p~ ')
o (2-21)
(OBl b, by |0OB) = el )

§2.4 Modified thermalization theorem when by = 0
In the special case of by = 0, (2 -16) reduces to

(,f;‘i) - 2 (,jf) (2-22)

v= (N, + )2, v=N? N, =(" —1)"!

where

This Bogoliubov transformation can be invoked to find the relationship between
the modified Minkowski vacuum state |Op) and the Rindler vacuum state|Op).
Restricting our attention to the two modes (d, , dj) or (b, , b;) only, we examine
the conditions

0= = (ub, — vb}) |0
05108) = (s 25105} 2.2
0 = id;|0p) = (—vb} + ubq) |OB)
Then we fine
[OB) Hexp(e"bq"'bq"') [Or) . (2-24)
q

Comparing this with Eq.(1 - 4), we see that quantum correlation between bR and bR
endows the thermal character to < bR"'bR > for which boundary effects are absent
as shown in Eq.(2 - 21), where bR now plays the role of qu
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A crucial difference,however,is that < bfbff > does not vanish;indeed boundary
effect to the Rindler noise just comes from this term , which offers an alternative
explanation to Eq.(1 - 6).

In the foregoing discussion we have excluded the 2-dimensional massless case,
where rapidity @ could not be defined . Therefore we reexamine this case. It can
be shown that the same structure is found if boundary is at € = by = 0 by using
a Minkowski Mellin mode that a Fourier transform of right(left) moving Minkowski
plane wave. The result is

|08) o J] exp(e™“bBMW+pLMW+) 10,y | (2-25)

where bRMW and pIMW 410 right(left) moving massless Rindler particles in 2-
dimensional spacetime. Hence we conclude that modified thermalization theorem of
the form above hold regardless of the dimension of the spacetime and for massive
as well as massless fields.
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Equilibrium States of General Relativistic

Rotating Stars

Y. EricucHi

Department of Earth Science and Astronomy,

College of Arts and Sciences, University of Tokyo

ABSTRACT

Techniques and schemes to study equilibrium states of rotating stars which are available
up to now are briefly reviewed. General relativistic treatments are mainly explained but
Newtonian cases are also referred to. As one application of numerical computations some

results of rapidly rotating neutron stars are discussed.

1. Introduction

Equilibrium configurations of rotating bodies have been investigated since Newton dis-
covered the gravity and applied it to the shape of the earth. Classically the shapes of rotating
fluid were pursued because it was relatively easy to treat constant density configurations.

Maclaurin discovered that spheroidal configurations can be in equilibrium when they
rotate uniformly or rigidly (Maclaurin spheroids). This sequence (Maclaurin sequence) is
characterized only by one parameter such as the ellipticity of the meridional cross section or
the angular momentum. It should be noted that the angular velocity is not a good parameter
to specify the Maclaurin spheroid because there are two different equilibrium states for one
value of the angular velocity. About 100 years later Jacobi discovered that ellipsoids can be
equilibrium states of uniformly rotating fluid (Jacobi ellipsoids). This Jacobi sequence exists
only when the angular momentum of the fluid exceeds a certain critical value. It implies that
uniformly and slowly rotating fluids must be axisymmetric but that rapidly rotating fluids can
become non-axisymmetric as well as axisymmetric. Furthermore since the Jacobi sequence

bifurcates from the Maclaurin sequence, this change can occur continuously by increasing the
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amount of the rotation.

Riemann introduced uniform vorticity as well as the uniform rotation and found that,
as far as the velocity field is expressed by a linear combination of the coordinate, ellipsoidal
conﬁglirations are allowed to be in equilibrium states (Riemann ellipsoids). In other words
constant density fluids can be in equilibrium when there is a special kind of internal motion to-
gether with the uniform rotation. As a special case of Riemann ellipsoid there is an ellipsoidal
configuration whose shape is maintained only by the internal motion. This configuration is
called Dedekind ellipsoid.

As for the compressible stars the effect of rotation has been tried to include by many
authors. However for a long time, since the problem is difficult to treat exactly and no
powerful numerical computational ability was available, a perturbational technique was the
only method to attack the problem. Although, as far as slowly rotating compressible gases
are concerned, some understandings had been obtained, effects of rapid rotation on stars had

been estimated from those classical equilibrium configurations.

The appearance of high speed computers seemed to give us a useful tool which helped to
compute equilibrium models for rapidly rotating stars. However a moderate numerical com-
putational power was not enough to obtain equilibrium structures of compressible gaseous
stars. Mathematically speaking we have to solve an boundary value problem for an elliptical
partial differential equation with free boundary. In an ordinary situation elliptical type equa-
tions are approximately solved by solving a set of linear equations, i.e. inverting a matrix.
Even for axisymmetric configurations the matrix becomes very large and requires a huge
amount of computational time. Moreover since one boundary is the surface of the star which
is also unknown quantity, it is difficult to apply boundary conditions to the partial differential
equation.

Under such a situation, equilibrium configurations of rapidly rotating compressible New-
tonian stars was first solved by James in 1964. Around 1970 Ostriker and his colleagues devel-
oped the self-consistent-field (SCF) method and applied it to rotating Newtonian barotropes.
However, their SCF method cannot be applied to highly deformed and/or very rapidly ro-
tating configurations. Around 1980 Eriguchi and Hachisu succeeded in developing powerful
but simplified numerical schemes for obtaining equilibrium structures of rotating compress-
ible stars. They computed many kinds of configurations and found many new equilibrium
sequences. Thus as far as the Newtonian gravity is concerned, we have reasonable and prac-

tical numerical schemes for rotational problems.

Concerning the strong gravity, since no exact solutions has been found, the effect of the
rotation has been estimated and/or extrapolated from the results of Newtonian configura-
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tions. It was in 1967 that the problem for slowly rotating configurations was formulated
perturbationally by Hartle. Using this formulation slowly rotating configurations have been
computed many authors. As for rapidly rotating configurations a thin disk was first solved
by Bardeen and Wagoner (1971). The thin disk can, however, be included just as the bound-
ary condition to the Einstein equation. Therefore it would be fair to say that Bardeen and
Wagoner solved vacuum solutions with special boundary conditions on the equator.

The internal structure of general relativistic rotating matter was, therefore, first solved
by Wilson (1972, 1973). He found that an ergo-region appears inside the matter for rapidly
rotating models. However, one of his boundary conditions is Newtonian-like and so his
solutions cannot be accepted as accurate ones. Almost the same time Bonazzola and Schneider
(1974) used a different numerical scheme and computed relativistic incompressible fluids and
ideal Fermi gas models. In their treatment there is a very severe restriction that the metric
component g, can never become positive (here (—,+, +, +) convention is used). Thus they
cannot solve very strong gravity cases.

Concerning general relativistic incompressible fluids Butterworth and Ipser (1975, 1976)
have succeeded in computing equilibrium structures even for very strong gravity. Their
numerical scheme is an extension of the Newtonian scheme developed by Stoeckly (1965). The
non-linear differential equations, i.e. Einstein equations, are solved by a Newton-Raphson-
like iteration scheme. Therefore they treated carefully the boundary conditions. However its
scheme did not work for the compressible gas (Butterworth 1976).

Although the reason of the failure of their scheme for compressible gases is not clearly
shown, it may be that their scheme could not be applied to significantly deformed configu-
rations. It may sound strange that the scheme can give solutions for very rapidly rotating
and very strong gravity fluids but not for rapidly rotating and strong gravity gases. In order
to understand this result we need to think about the nature of the rotation and the gravity.
Although the rotation deforms configuration, the gravity acts to gather matter to the central
region which results in decreasing the deformation. For the incompressible fluid case the
gravity is large even in the outer region of the star and so the deformation is not so large
even for significantly rapidly rotating models. On the contrary for the compressible gases
the density of the outer region is so low that the rotational effect is not decreased. Thus the
numerical scheme which would succeed in solving general relativistic compressible gas must
be able to handle a significantly deformed configurations.

Komatsu, Eriguchi and Hachisu (1989) have succeeded in developing such a computational
scheme. They extended the Newtonian scheme developed by Hachisu (1986). They can
compute any kinds of configurations even for very soft equation of states. Thus even in the

—333-



general relativistic cases we have basic tools in our hands and have come to the stage to solve
structures of rapidly rotating bodies in a practically short time.

It seems that almost every problem can be solved by just computling numerically if a
problem is properly posed. However we have to remark that the problem of rotational equi-
librium can be handled only for barotropes in general relativistic cases. Rapidly rotating
baroclinic stars are just begun to investigate even in the framework of Newtonian gravity.
The development of Newtonian field from now on will give us many clues to extension to the

general relativity.

2. Axisymmetric Equilibrium States of Rotating Stars

2.1. Assumptions

The equilibrium configurations of rotating stars are considered under the following as-
sumptions.

The space-time and the matter are azially symmetric and stationary. It implies that there
are two Killing vectors. In the framework of general relativity rotating non-axisymmetric
space-time and configurations will not be in equilibrium state, although there can be non-
axisymmetric equilibrium states in Newtonian gravity. We assume that the matter is confined
to a compact region in the space so that the space time is asymptotically flat. Concerning the
matter it is assumed to be a perfect fluid. The energy momentum tensor can be expressed as

T = (e + p)u'e’ +pg¥, S
where T | £, p, u', and g¥ are the energy momentum tensor, the energy density, the pressure,

the four velocity and the metric, respectively. Moreover as written in the introduction the
equation of state is assumed barofropic, i.e.

p = p(e). (2)

2.2. Meliric

The stationary and axisymmetric space time can be expressed by the following metric
(see e.g. Bardeen 1970; Thorne 1971):

ds® = goodt? + 2goadtdy + gaadp? + g1 (dz')? + gg2(dz?)?, (3)
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where f and ¢ are the time and the azimuthal coordinates corresponding to two Killing vectors,

respectively. When if we use spherical coordinates (r, 8, ¢), this metric can be written as:
ds? = —e? dt? + €2*(dr? + r?d8?) + r?sin? e?? (dp — wdt)?, (4)

where v, a, B and w are four gravitational potentials. In particular w is the frame dragging
potential (see e.g. Bardeen 1970).

When we treat only the vacuum region, the potential 4 + v can be set to vanish and the
metric can be reduced to simplified form such as (Papapetrou 1966),

ds? = [~'[e*V(dp® + d2?) + p*dy’) ~ J(dt — wdyp)?. (5)

However we will not refer to this metric in this review any more.

2.3. Boundary conditions

Since the matter is confined to the compact region, there is a surface of the matter
distribution which is defined by the place where the pressure vanishes. When a rotating star
or a black hole is surrounded by axisymmetric configuration(s) such as toroid(s), we need to
consider two or more surfaces corresponding to matter configurations.

Concerning the metric the asymptotically flat conditions are written for the metric (4) as

M 1
v— —T+0(r—2), (6a)
M B 1,
B——+—+0(3), (66)
2J 6MJ 1
w—'r—s-—’T+0(r—5), (6¢)
a-—vﬂ-{-O(rlq), (6d)

where M, J and fp are the gravitational mass, the total angular momentum and a certain
constant, respectively.

When we consider a rotating star, the gravitational potential must be regular at its center.
However when we consider a (rotating) black hole and a surrounding axisymmetric matter
configuration, the metric should behave on the horizon of the black hole as follows if we use
coordinates in which the horizon is set to r = constant (see e.g. Bardeen 1973):

e =0, ' (7a)
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w = wy (= constant), (78)

and

B = finite, (Te)

where wy is the dragging of the horizon.
One more boundary condition is obtained from the local flatness of the space-time on the
rotation axis, which reads
a=8, z — axis. (8)

The problem is, therefore, only to solve the Einstein equations derived from the metric (4)
with boundary conditions mentioned above which are suitable for the situation considered.
However it is not easy to solve them directly. Historically speaking, as discussed in the

introduction, weak gravity cases and/or slow rotation cases have been investigated first.

3. Newtonian and Post-Newtonian Rotating Stars

Concerning equilibrium configurations for Newtonian stars details are not reviewed in
this paper but references are listed for those who are interested in them.

When the gravity becomes strong but not so strong, the problem can be handled in the
post-Newtonian frame. Chandrasekhar (1965) formulated the problem to the order of 1/¢?
and after that Chandrasekhar and Nutku (1969) extended it to the order of 1/c*.

In the post-Newtonian treatment of uniformly rotating stars the metric can be expressed
by using three potentials, U, ® and D as follows:

U 2U%+4%
goo = —c? (l + 20—2 + c—4) , (9(1)
2U

gn =g =g =1+ = (9.b)

49:20
gor = — 3 (9¢)

and 40z D
Jo2 = 3 ! (9d)

where © and (z,, 22, 3) are the angular velocity and the Cartesian coordinates, respectively.
These potential must satisfy the following differential equations:

ViU = 47Gp, (10a)
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VD +=-— - 5— = 47Gp, (100)

and

V2 = 4xGp |21 - p?) - U + w: + WW_ . (10¢c)

where g = cosf, p and pll are the mass density and the internal energy density which is
defined as

e=p(1+1). (11)

The hydrostatic equilibrium equation can be written as

1- =|.M~RN Vp=pV |-U+ ansn sin® 6

+M|N AWA?. sin8)* — 2U (Qrsin8)? — 2& + 4(Qrsin Subv~ . (12)
These equations are solved for slowly rotating polytropes by Fahlman and Anand (1971)
when 1.5 < N < 3 where N is the polytropic index. For rapidly rotating cases Miketinac and

Barton (1972) applied the Stoeckly’s scheme (1965) and obtained equilibrium configurations
for N = 1.5 and N = 3 sequences.

4. Slow Rotation Approximation

The rotation can be parametrized by the following quantity

bu
2= 1nGe (13)

This parameter is roughly equal to the ratio of the centrifugal force to the gravitational force

w

or the ratio of the rotational energy to the gravitational energy. Thus when stars rotate
slowly, this parameter is so small that we can expand physical quantities in terms of this
parameter.

The first attempt of this slow rotation approach was tried by Hartle (1967). The metric
for slowly rotating stars can be expressed as

ds? = —€® di? + e?*dr® + r2e?*[d9? + sin’ 8(dyp — wdl)?), (13)

where
€2’ = e2*°[1 + 2ho(r) + 2h2(r) P2(cos 6)], (14a)
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2Xo

e = g2 (1 + £

e?# =14 2ky(r) Ps(cos §), (14¢)

(1 4 2mo(r) + 2m2(r)P2(cosﬂ)]) , (14b)

r

and the quantities with subscript g are those for spherical models. From the Einstein equation
the dragging term w must satisfy

1d ,dw 4dj .
- (#15) +¥TJr“=°' (15)
where
w=0-w, (16)
and
j = e votio) (17)
The boundary condition to this equation is
- 2J
w—N- ?;- (18)

Thus we can solve the dragging term without knowing other perturbed quantities. Other
perturbed quantities are solved afterwards. These equations are numerically solved by Hartle
and Thorne (1968) for Harrison-Wheeler equation of state, V. equation of state and for
massive stars with N = 3 polytrope. They applied their results to obtain the increase of
the mass due to rotation and found that rotation can increase the mass about 20% as far as
uniform rotation is concerned. This formulation has been used by many authors for various
situations which are considered to be rotate slowly (Chandrasekhar and Miller 1974; Miller
1977) and for slowly rotating neutron stars (Datta and Ray 1983; Ray and Datta 1984).

5. Rapidly Rotating Relativistic Disks

Although thin disks are not interesting objects from the standpoint of the internal struc-
ture, the behavior of the space-time deserves investigation because the rotational effect of
the matter may be understood. Bardeen and Wagoner (1971) treated uniformly rotating in-
finitesimally thin disks. As for the metric they used the same type as Eq.(4) in the cylindrical
coordinates (p, z, p). Since almost all space are vacuum except on the equatorial plane, the
metric component § + v can be set to vanish, i.e.

B+v=0. (19)
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Two components of the Einstein equations for the vacuum can be written as:

Vi = —pe " VuwVuw, (20a)

0| -

and
p~iV(p?Vw) = 4VrVw. (208)

Here it should be noted that in these equations the metric a does not appear. Thus we can
solve two metric components v and w first and then solve for & which satisfies a first order
differential equation which we will not write here.

The boundary conditions which can be obtained from integration of the Einstein equation
with matter terms through the disk are written as

v v?
Vi 27al |0'l ey (21a)
0w Q-w
%" 81ra|q|¢rl — (218)
where £ and 7 are oblate spheroidal coordinates defined by
p=a(l+§2(1 -0 z=aty, (22)
o= /eeh‘dz, (23)

and a is the coordinate radius of the disk.
In practice Bardeen and Wagoner made use of the expansion of physical quantities with
respect to the quantity 4 which is defined as

y=1- e, (24)

where v, is the value of the metric at the center of the disk. This quantity measures the
strength of the gravity or is related to the red shift factor at the center z. as

T=Tva (25)
For example the metric v is expanded as
o0
v=> w7 (26)
n=1
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In this way Bardeen and Wagoner obtained the binding energy (E3), the gravitational mass
(M) and so on of the thin disks. They can be written as:

B _2n42 2 B4

M= S[1+ 27 +0.187997 +0.10029° + -] (27)
M2 10
- = 3—"7'/2[1 +0.05 — 0.023629 — 0.023994° — - - ], (28)

where Mp and J are the rest mass and the total angular momentum, respectively. The
limiting values for ¥ — 1 of these quantities are

Ey
T = 0473 (29)

2
”% — 1.00014. (30)

These vales are those of extreme Kerr metric and so in this Jimit the space-time will reach
that of Kerr space-time. One special nature of the space-time around the thin disk is the
appearance of the ergo-toroid region, i.e. the topology of the ergo-region is not spheroidal
but toroidal where the rotation axis is not included inside the ergo-region.

Salpeter and Wagoner (1971) treated the effect of the pressure of the disks.

6. Rapidly Rotating Relativistic Stars

Wilson (1972) computed the structure and the space-time around the massive star with
the polytropic index N = 3 in the framework of the general relativity. He wrote down the
Einstein equations and solved the differential equations iteratively and obtained solutions.

However his treatment had two shortcomings. First he fixed the matter distribution.
Thus he obtained the gravitational field and the rotation law which are consistent with
the prescribed matter distribution. In this kind of approach unless we know the matter
distribution rather precisely, we cannot obtain physically realistic models.

Second point is related to the boundary condition of the metric. Since in the numerical
computation we can only handle a finite region, we need to be very careful about the asymp-
totically flat condition. Wilson applied Newtonian-like boundary condition to the metric ».
Therefore his computation might be significantly different from the real solutions especially
when very strong gravity is treated.
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Although his scheme was limited in the sense mentioned above, he found the ergo-toroidal
region for the first time for the matter.

Wilson (1973) computed rapidly rotating neutron star models by revising his code whose
details, however, were not be clearly described. He computed differentially rotating models
and applied the stability criterion of the Newtonian analysis that rotating configurations may
become unstable against the m = 2 deformation mode when the ratio of the rotational energy
to the gravitational energy exceeds 0.14. In doing so he concluded that the rotation might
increase the gravitational mass of the neutron star by 50 — 70% compared with that of the

spherical cases.

Almost the same time Bonazzola and Schneider (1974) developed a completely different
numerical scheme to handle general relativistic rotating stars. Their idea was to use the
integral representation of the potentials. Of course the Einstein equations are not linear
equations the potentials cannot be represented explicitly as the case for Newtonian potential.
However if the non-linear terms with respect to the potentials are treated as the source terms,
the remaining linear differential operators have been integrated by using appropriate Green
functions corresponding to the operators. The most important point in this kind of treatment
is that we can easily include the boundary condition at the infinity. This is essential for the

numerical computation because we can only treat a finite region.

Therefore their basic ideas were fine but their metric was not nice. They used In(—gy,)
as one of the variables. It implies that they cannot treat the space-time in which a region
where g;; > 0 appears, i.e. very strong gravity case. (In Bonazzola and Schneider paper
the sign convention is taken as (+,—, —, —) but in this paper the sign convention is taken as
(= 4+, ++))

They computed the incompressible fluids and completely degenerate Fermi gas models.
For incompressible fluids their results were compared with results of Newtonian (Maclaurin
sequence) and post-Newtonian treatments. The agreement was good and as far as the strength
of the gravity is not so large. Their results showed that there appeared prolate iso-density
regions in the central region of the degenerate gases. However it is very difficult to deform the
central region to prolate shape by rotation, although they interpreted that the effect of the
dragging could work to prolate configuration. The dragging potential can never exceed the
angular velocity at the same point and so they cannot act as "anti-centrifugal” force which

might result in prolate shape. Thus there may be something wrong with their codes, which
should not be said officially(?).

First satisfactory configurations for rapidly rotating and highly general relativistic stars
were obtained by Butterworth and Ipser (1975,1976). They solved the differential equations
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by applying Newton-Raphson-like iteration scheme. In doing so the boundary conditions
were carefully analyzed because of the finite region requirement in numerical computations
mentioned before. In practice multipole expansions for the metric were done to the orders
1/r%, 1/r7 and 1/r8 for v, w and g, respectively.

If a set of non-linear equations, i.e. Einstein equations, were properly treated by Newton-
Raphson scheme, a very large size of matrix would be inverted, which would be very time
consuming and far from practical. Thus they handled as follows. When the second order
differential of a certain metric appears in a certain equation, its equation is treated as the
equation for its metric by assuming that other metrics which are necessarily included in
the equation are already known. Therefore its equation is linearized with respect to the
metric concerned and the "Newton-Raphson” iteration scheme is applied. After the iteration
converges, the second metric and the second equation are chosen ad the same procedure is
followed. In solving the second metric the newly converged values for the first metric is
used. The convergence of this scheme is not assured but as far as the uniformly rotating
incompressible fluids they have succeeded in computing many equilibrium configurations.

Their models for the incompressible fluid cover very wide range of rotation and the gravity
space. For very strong gravity model sequences they found that an ergo-toroidal region
appears for rapidly rotating cases. Therefore their scheme may be said very satisfactory for
investigation of general relativistic rotating stars.

However it may sound strange that their scheme did not give solution for Newl{onian
or post-Newlonian configurations if the rotation is very rapid or it should be said that the
deformation becomes considerable. They can only obtain equilibrium configurations with the
axis ratio less than 0.4, r,/re < 0.4, where r, and r, are the polar radius and the equatorial
radius of the star, respectively. For very strong gravity models strong gravity acts as gathering
mass towards the central region and thus even very rapid rotation does not deform the star
considerably as far as the incompressible fluid is concerned.

Butterworth (1976) applied this scheme to the compressible stars. However his code could
not give equilibrium solutions for rapidly rotating and strong gravity models. Butterworth
wrote that the reason of the failure was unclear. Although there may be some errors in the
numerical codes, one reason may be that their scheme is not suitable for highly deformed
configurations.

Anyway Butterworth computed polytropic configurations with 0.5 < N < 3.0. The
strength of gravity can be parametrized by the following quantity

Pe
— 1
K= e’ (31)

where subscript . denotes that the quantities are evaluated at the center. Models he could
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Fig. 6.1 The non-dimensional angular velocity Q/el,2 is plotted against the coordinate
ratio rp/re for N = 1.5 polytrope. The numbers attached to curves are the
values of the strength of gravity £. The open circles denote critical states where
mass-shedding begins.

computed were those with £ < 0.25, which are not so highly relativistic. This is contrasted
with the fact that for the incompressible cases their code gave solutions even for k = 2 ~ 3.

Butterworth and Ipser’s scheme are, therefore, nice for rather wide range of parameters
but not be satisfactory for any parameters of models. If possible more powerful numerical
schemes are desired.

In the Newtonian framework Hachisu (1986) succeeded in formulating a very versatile
scheme to treat any kind of rotation law and any kind of deformations so far as barotropes are
concerned. The basic idea of Hachisu’s scheme is the extension of the SCF method by Ostriker
et al. In the SCF method the problem is divided into two parts: the potential part and the
density part. In the potential part the assumed density distribution is used to compute
the gravitational potential. After obtaining the gravitational potential, the density is solved
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form the hydrostatic equilibrium equation by using the obtained gravitational potential. This
iteration cycle is pursued until the density and the potential converge. In this iteration scheme
the most important point is the choice of model parameters whose values are fixed all through

iteration cycles. If improper parameters are chosen, the iteration will diverge.

{c) ]
-

1.00

b=4
o T T T L) L L3 ¥ L L) v Ll 1
%. 00 %zu 0.40  0.60  0.80 1.00
A
To
Fig. 6.2 The energy density in the meridional cross section is drawn for N = 1.5 poly-

trope when £ = (0.4. Contours are linearly spaced by 1/10 of the maximum
energy density. The arrow with 1, denotes the radius of the gravitational radius

corresponding to the total mass of the "ring”.

Komatsu et al.(1989) have extended the Hachisu’s scheme to general relativistic stars. In
doing so they combined the integral representation of the Einstein equation which Bonazzola
and Schneider (1974) formulated and the Hachisu’s scheme for iteration to solve non-linear
equations. This scheme has worked almost perfectly as far as problems treated thus far and
seems to have almost no limitations for its applicability.

Komatsu et al.(1989) computed rapidly rotating relativistic polytropes with uniform ro-
tation without any difficulty. They found that the critical states where the ”centrifugal”
force balances the gravity at the equatorial surface are characterized by the same axis ratio
irrespective of the strength of the gravity for N = 1.5 polytropes (Fig.6.1)

They also applied their scheme to differentially rotating polytropes. For highly differen-
tially rotating cases equilibrium configurations become ring-like. One example is shown in
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Fig.6.2, in which the iso-density contours are shown for N = 1.5 polytrope. The gravitational
radius corresponding to the total mass is show by the arrow. As seen from this figure that
this configuration is highly relativistic and considerably deformed.

As shown by Komatsu et al.(1989) we are now at the stage that any configurations in
general relativity can be solved as far as barotropes are concerned (of course in the weak grav-
ity cases Hachisu’s scheme (HSCF-scheme) (1986) or Eriguchi and Miiller’s scheme (SFNR-
scheme) (1985) can give solutions for almost every situation ). Therefore we should apply
these schemes to realistic states such as rapidly rotating neutron stars or extend their schemes

to treat baroclinic states, which may be very difficult.

7. Rapidly Rotating Neutron Stars

Although the equation of state is uncertain for the nuclear matter region and beyond
from the analysis of theories and experiments on the earth, the existence of the neutron star
may give us information about the equation of state. Since soft equations of state resulis in
relatively small radius of the neutron star, rather rapid rotation can be allowed. On the other
hand, for stiff equations of state, rapid rotation will cause to shed mass from the equator by
the centrifugal force because of its rather large radius. Thus it is important to determine how
rapidly neutron stars can rotate for each equation of state proposed thus far for the neutron
star matter.

As mentioned in the previous section several authors (Butterworth and Ipser 1975, 1976;
Butterworth 1976; Komatsu, Eriguchi and Hachisu 1989) have succeeded in solving Einstein
equations by different schemes. These schemes can be applied to obtain structures of rapidly
rotating neutron stars.

Friedman et al. (1984, 1986, 1988, 1989) have used the same formulation as Butterworth
and Ipser’s (1975) and developed an independent numerical code. They have applied it to
realistic neutron stars by using many kinds of equation of states for the high density region
and obtained many equilibrium configurations. However they did not explicitly mention that
their code gives different results from those by Butterworth who wrote that Butterworth’s
method (1976) did not give solutions for highly relativistic and rapidly rotating compressible
models as mentioned before.

Since the existence and the structure of the realistic neutron stars affect the nuclear
matter physics, it is desirable to compute the same problem by totally different numerical
scheme and compare results with theirs. Komatsu et al.’s code (1989) has been applied to

—345-



models with very wide range of the rotation rate and the compressibility, and their scheme
seems to have no limitation in the strength of the relativity and the rotation rate. Eriguchi
et al. (1992) have used Komatsu et al.’s scheme (1989) to compute realistic neutron star
models.

The metric is that of Eq.(4). Uniformly and differentially rotating models are computed.
Concerning the equation of state, four different equations of states are used : (1) Pandhari-
pande’s equation of state for neutron matter (1971); (2) Friedman - Pandharipande’s equation
of state (1981); (3) and (4) Bethe -Johnson’s equations of state (I) and (V) (1979).

For uniformly rotating neutron stars the results are summarized in Fig.7.1. In Fig.7.1
the maximum angular velocity is drawn against the total mass of the neutron star. As seen
from this figure results by Eriguchi et al.(1992) (E-H-N) are in good agreement with those
of Friedman et al.’s computation (1989) (F-I-P) except in rather high energy density region.
The difference of the maximum angular velocity is several percent at the most highest density
region especially for the Friedman-Pandharipande’s equation of state.

LS

1.3

Qo /10

0.9

0.7

0.5
1.6 1.8 2.0 2.2

LY,

Fig.7.1 The maximum angular velocities for uniformly rotating neutron stars are drawn
against the gravitational mass of the neutron star. Different curves correspond
to different equations of states whose abbreviations are attached to curves. P :
Pandharipande’s neutron matter. F-P: Friedman - Pandharipande’s equation of
state. B-J: Bethe-Johnson’s equation of state. Full curves denote present results
and dashed curves denote Friedman et al.’s results.
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This may come from the difference of formulations and numerical codes. In order to obtain
the maximum angular velocity we have to compute the equatorial radius of the neutron star
as accurate as possible. If the radius determined by one numerical code may be a little larger
than a true value, the angular velocity obtained will becomes smaller than a true value and
vice versa. In particular the accuracy of the obtained model for very high energy density
region becomes crucial for that problem. In this region the central energy density and the
ratio (&) of the central pressure p. to the central energy density €. are :

K= pfec =067, e ~3.4x10%/cm®, E—H-N
k£~038, e.~25x10%g/em®. F-1-P

Therefore the difference may come from the limitation of applicability of numerical schemes
in computing structure of rotating matter with very strong gravity.
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ABSTRACT

We have got solutions of general relativistic equilibrium structure of black hole - ring systems. Our com-
putational method are without any approximations about gravity of the ring or the rotation of the black hole.
The ring around the black hole is a thick toroid of the polytropic gas. This is the first solutions of the Einstein’s
equation consisting of a self-gravitating thick toroid around a black hole, and our method has no limitation
about the mass of the ring relative to the black hole’s. Here we investigate the highly relativistic effect of the
ring to the black hole or the external space. Dragging of inertial frame caused) by the ring is studied through
the black hole’s mass - angular momentum - angular velocity relation.
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I. INTRODUCTION

Since Schwarzshild discovered the black hole as a solution of the vacuum Einstein equation, many works
have been done for the black hole physics analytically or numerically. There are many solutions representing the
black holes in the pure vacuum. But it is very difficult to solve the Einstein equation which has non-vanishing
stress-energy tensor.

Will(1974,1975) got stationary axisymmetric solutions of the infinitesimal ring around a slowly rotating
black hole by perturbing Schwarzshild solution to the first order of the ratio of the ring’s mass to the hole’s
mass and to the second order of the hole’s angular velocity. Chakrabarti(1988) used vacuum static axisymmetric
solution for the infinitesimal ring configuration around a hole. But they didn’t solve the matter equation
T4¥ = 0. There is no analytical solution for matter until now. Practically it seems impossible to handle the
matter distribution analytically. Then only numerical computation is what we can do in order to solve the non
vacuum Einstein equation more generally.

Even numerically it is difficult to solve non-vacuum equation. There is only one calculation solving the
relativistic self-gravitating disk around a black hole(Lanza;1991). Lanza’s method deals with stationary axisym-
metric infinitesimally thin disk around a black hole.

We have succeeded in obtaining the genetal relativistic solutions of self-gravitating thick polytropic fluid
around a rotating hole. Our method basically allows any mass ratio of the ring to the hole. So our method
can be applied to not only astrophysically reasonable models but also astrophysically unrealistic but physically
interesting ones. As the latter case, we discuss the dragging of inertial frame due to the ring and the hole, tidal
force to the hole by the ring. All of these are the ring’s highly relativistic effect in the spacetime. These effects are
described by the changes of macroscopic quantities of the black hole i.e. gravitaional mass, angular momentum,
angular velocity, surface area, effective temparature. These quantities are ralated by only one equation in the
general stationary axisymmetric case, although Kerr black hole have only two independent quantity.

From the astrophysical point of view, it is important to investigate the structure of accreting ring around the
black hole. Stability of a thick toroidi has been discussed by many people. Abramowicz(1983) suggested runaway
instability will oceur by the ring’s axisymmetric accretion to the hole. This is the result of changing the location
of the cusp from which accretion occurs. Abramowicz used Newtonian effective potential of Schwartzshild metric
modeling the ring’s accretion. Wilson(1984) denied this conclusion by introducuing Kerr metric and angular
momentum transport by accretion. But these discussions don’t use self-gravitating ring, so fully self-gravitating
equilibrium configurations must be needed to end these discussions.

We will describe the outline of this paper. In the section I the problem is described and some assumptions
are discussed. Further we make a few simplification to the matter distribution for the ring. This simplification is
adequate in application to astrophysical problems. In the section 111 we show the basic equations to be solved in
this paper. The existence of a general stationary axisymmetric black hole is described as a boundary conditions
on the event horizon. Equations are transformed to the integral representations which are suitable to treat the
boundary condition for the metric on the event horizon and in the asymptotically flat region. In the section 1V
we present the computational scheme to solve the basic equations.

—354—



II. PROBLEM AND ASSUMPTIONS

We will solve both the space-time and the structure of a system which consists of a black hole and the
surrounding toroid.

We make several assumptions for the matter and the space-time. The space-time is stationary (pseudosta-
tionary). There is a Killing vector field £ that is timelike at least in the asymptotic distant region. The word
"pseudostationary” implies that this Killing vector field is not everywhere timelike. The space-time is assumed
azisymmelric. We can define a Killing vector field 7} which vanishes on the axis of symmetry and is spacelike
everywhere. This implies that there exist integral curves which are topologically circular. Two Killing vector
fields mentioned above are assumed to commute, i.e.

[€.5 =0. 2.1)
It follows from three assumptions mentioned above that the metric can be written as
ds? = —e®dt? + ¢**(dr® + r2d0?) + e27=V)r? sin? 8(d¢ — wdl)?, 2.2)

where ¢t and ¢ are the coordinates associated with time and axial Killing vectors, respectively : £ = ajot,
i} = 8/8¢. Coordinates r and # are chosen so that the metric can be written as that of the spherical coordinates
in flat 3-space except for the factor e?®. Metric components o, ¥, v and w are functions which depend only on
r and 8. We choose the units ¢ = G = 1 throughout this paper.
Concerning the matter we assume that the matter is perfect fluid. Therefore the energy momentum tensor
T4 is written as:
T* = (e + p)u®ub + pg®, ) (2.3)

where ¢, p, u® and g° are the energy density, the pressure, the four-velocity and the metric tensor, respectively.
We use polytropic relation as the equation of state:

p= Ke'tUN, (2.4)

where K is a constant and N is the polytropic index. The matter is assumed to have only circular motion. This
implies that the four-velocity is a linear combination of two Killing vectors, i.e. r and & components of the four
velocity do vanish. Thus the four-velocity can be written as follows:

ud

= \/_:;__"7(1,0,0,9), (2.5)

where v is the velocity of a fluid element measured from an inertial frame of the zero angular momentum
observer, i.e.:

v = (R — w)rsin 0?7, (2.6)

and Q is the angular velocity measured from infinity i.e.:

d
= d—‘f. 2.7)

Moreover the matter is assumed in equatorial symmetric and consequently all quantities are equalorial symmet.
ric, i.e.

f0) = f(z - 0), (2.8)
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where f represents a physical quantity such as the density or the metric. Further since we are considering a
system of finite size, the space-time must be esymptotically flal. This condition is expressed as

v~ 0(), 7~0(), w~0(z), 29)

when r — oo.

By the requirement of local flatness, we must set the condition on the axis:
a=y—v. (2.10)

In stationary axisymmetric and circular case we can express the existence of black hole in a simple manner.
On the event horizon (smooth null hypersurface spanned by two Killing vectors) metric coefficients must behave
as follows:

e’ =0, ¢ =0, w=wy = consl, (2.11)

We can make the coordinate locus of the horizon a sphere of constant radius » = h without loss of gencrality. These
can be regarded as a complete set of boundary conditions on the horizon.

III. BASIC EQUATIONS

Although basic equations are almost the same as that of our last paper(1992) , we made some changes to
treat the present problem. So we will show an outline of whole discussion again for readers’ convenience. The
Einstein equations for v,y and w can be written as follows:

Al = S\(r,p), 3.1)
19 1 0
(At oo - ',5!“-9-‘-;)3 = Sp(r, p), (3.2)
29 2 8
B+sa- ﬁlla—")w = Su(r, i), (3.3)
where
20 1442 l s 2\ p2y-3
Sx = 4wAe[(e +p)m + 2p] + 3" (1=-p)B’A~"Vw -V = V(y-v) -V, (3.4)
Sp = 16apBc*°, (3.5)
Sw = V(4v = 3v) - Vw — 167e**(c + p) ?::; . (3.6)
Here

B=e%, A=¢",

A and V are the Laplacian and the gradient in the flat 3-space, respectively, and u = cos#, and subscript
denotes differentiation with respect to the variable followed. As for the equation for a, by using the Einstein
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equations, we come to the following expression:
= = vy = {(1 = g1+ B B} 4 [ — (1 = wD) B B2}
1 __ -
[53 Hr?Bipr - (1~ 1‘2)3’51]’# = 2By} [-p+ (1 - p*)B lB'u]

1 1 -
+ rB“Bu,[ép +prB7'B, + 3(1- #2)B'B),)

+ gB-lB‘u[—l‘z + (1 - Pz)B-IB‘ﬂ] -(1- I‘z)"B-lB'ur(l +rB7'By)

= ur?vih = 21 = pyrvvne + p(1 = W2, - 2(1 - p?)r*B-1 B,
X vt + (1 = p?)B7' Buy [P, — (1= Wi ]+ (1 — p?) B2~

(3.7)

1 1 1 1
x {Zﬂ"qw'zr +3(1- 1), — 3/‘(1 =¥yl + C1the #)
1 -
x B! Biywiywi, — Z(l — 1) B7 B[l — (1 - Wi 31
As for the matter, the equation for the hydrostatic equilibrium can be written as

1 Q

- 2 = .
Vp+(€+p)[Vu+l_v2( vWu+v Q—w)] 0. (3.8)

In addition to these basic equations we must specify the rotation law of the central star and the toroid. According
to Komatsu, Eriguchi and Hachisu(1989) from the integrable condition of the equation of motion we choose the
following relation as the rotation law:

(Q — w)r?sin? ge2r—2¥) 20
1— (2 — w)?r2sin? 6e2r-7) (39)

AAQ.-Q) =

where A is a constant which we will call a rotation parameter. If we choose this rotation law, specific angular
momentum measured by the proper time of the matter must increase as far as angular velocity of the matter
decrease . The smaller the rotation parameter becomes, the stronger the degree of differential rotation. This
relation becomes in the Newtonian limit as follows:

Q/Q. = A2/(A® + r¥sin 0). (3.10)

This rotation law with small value of A represents that for the constant specific angular momentum except near
the rotation axis region.

IV. METHOD OF SOLUTION

Since the boundary conditions (2.9)-(2.11) for the metric can be easily taken into account by using Green
functions, we rewrite Eqs.(3.1)-(3.3) in the integral form as was done by Komatsu et al. (1989). The integral
representation of Eqs.(3.1)-(3-3) are

h d ) 1
A=1=2- 3 [T [ e 3 P Pants)5 0, ), ()

n=0
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rsindB =(1 — —)rsm0 - = Z/ dr' / dll""zfzn-l(".")

n=1

sm(2n - 1)

x sm(?n = 1)#'Sp(r, 1), (4.2)
1
. 3 2 1
rsinfw = sm0 Z[ dr' / du'rsin ' f5,_\(r, r')szn_l(u)
X Py_1(1#)Su(r' '), (4.3)
where
X, ey =(r' /) - for'ir <1,
( ')"
20 (4.4)
(r/r')* - et forr'/r>1,
and
2 ' ! n h2"+l '
L, ) =) fr)" = Ty Jorv'/r <1,
, , p2n+1 , (4.5)
/) /e = e Jorr'fr> L
The equation of motion for the toroid is integrated to give
(14 Nym(KeM™ + D+ v + % In(t - v?) - %A’“’(Q -Q.)2=C, (4.6)
where C is the integral constant. The rotation law for the toroid is
- 2 gin? ge2(7-2v)
A2(Q. - Q) = (2 — w)r’sin” de @7).

1 = (R - w)2r?sin® fe2(v=2)’

In order to obtain one equilibrium state, we must specify seven independent parameters. We choose followiong
quantities as seven parameters:

1) the ratio of the radius of the event holizon h to the outer boundary of the ring rous;

2) the dragging of innertial frame on the horizon wy (angular velocity of the black hole;

3) the relative thickness of the toroid 1in/rour, Where rin and roy. are the distances to the inner edge of the

ring and the outer edge from the rotation axis, respectively;

4) the ratio of the maximum pressure to the maximum energy density of the ring & = pmaz/€maz of the ring ;

5) the maximum density of the ring emazr;

6) the polytropic index of the ring N;

7) the rotation parameter of the ring A.

Numerical procedure begins with specifying seven parameters mentioned above. Next we need to prepare
initial guesses for the variables v, 7, w, a, €, p and Q. Substituting them into the right hand side of Eqs.(4.1)-
(4.3), we can obtain new values of v, and w. Using these new values, we can integrate Eq.(3.7), starting from
the rotation axis and ending at the equator, to obtain a new value for . After that we compute ¢ and  in
order to keep consistency with new potentials v, ¥, w and « using Eqs.(4.6)-(4.7)

We regard newly obtained values as an improved set of guesses and return to the next iteration step by
keeping the model parameters fixed. We continue this iteration cycle until the differences of each physical
quantity between two successive cycles become sufficiently small and then we regard those values as true values
which satisfy the basic equations and the boundary conditions.
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IV. RESULTS

Since there are seven parameters which we can frecly specify, we need seven dimensional parameter space
to see the whole structure of the solution space. Here we will discuss mainly the effect of the existence of the
toroid on the black hole. ‘This can be done by fixing the model parameters of the black hole and changing the
size of the toroid.

The gravitational mass M, and the total angular momentum J, of the ring are defined by
M, =1 //r"' sin 8drd0% - (BVv - %r"' sin? 0836"”wVw]
_21// r? sin O0drd8Be®° (e + p) + 2p+ 2rsinf(e + p) 2 ] (5.1)
Jr= - 3 //r sin 8drd0V - [r®sin? 0336"‘"Vw]

=27r/

respectively. It is obvious thal we can rewrite the above formula for gravitational mass and the total angular

"elo-'.'v‘ (52)

momentum using the surface integral on the event horizon and infinity. It is natural to define the mass and
angular momentum of the black lole from the surface integral of the black hole. And the total mass and angular
momentum are given by surface integral at the infinity:

M= % /o ) smoda[r-ag— - %sm’ Ori Bl ‘;‘:] (5.3)
J= —-/ d0sin30r' BRe -4”‘3‘: (5.4)
So we scparate the total quantities into two part:
M=M,+ M,, (5.5)
J=Jp+Jy, (5.6)

where subscript h denotes the surface integral on the event horizon.

We draw the typical behaviour of the dragging of innertial frame caused by the ring’s rotation in Fig.1 .
This is the 2-D plotting of the w on the plane containing the rotation axis. Two peaks nearly correspond to the
density maximum and there is the black hole of wy; = 0 between the peaks. In this model M, and M, is nearly
constant. To see the ring’s dragging effect, we plotted J; of a sequence changing the thickness of the ring and
fixing other parameters(wy = 0) in Fig.2 . This shows that the larger the ring’s gravity become, the larger the
black hole’s angular momentum become in order to maintain zero angular velocity.

Fig.3 presents the comparison with pure vacuum case i.e. Kerr black hole. In this figure the angular
momentum of the black hole is plotted against the angular velocity. A solid line denotes the sequence of
solutions of black hole - ring systems, and a dashed line is that of Kerr black holes which have the same mass
with hole - ring systems. From this figure we can read the angular momentum and angular velocity of a black
hole may have different signature due to the dragging by the ring. Beacause ergosphere covering the black hole
disappears only when wy = 0, there is the case in which the zero angular momentum black hole have ergosphere.
That is to say, the ring helps to make ergosphere around the black hole. When the black hole rotates rapidly,
the ring’s role changes from the motor to the anchor. The black hole must have large angular momentum to
have the same angular velocity and same mass as that of Kerr black hole .
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Figure captions

Fig.1 2-D Plottining of the dragging of inertial frame in the meridian plane. Model parameters
are as follows: &/r,u = 0.03, wgy =0, rinfroue = 0.38, s =001, N =1, A=0.1.

Fig.2 Plotting of Jy/M7? versus M, /M;. In this sequence only Pin/Tour are changed and wy is
fixed to zero.

Fig.3 The solid line is the sequence of the black hole - ring system obtained by changing wy.
Dashed line is the sequence of Kerr black hole that has the same gravitational mass as the
solid line. The values of My and M, are nearly the same.

Fig.1
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Gravitational Soliton Solutions in General Relativity

Akira Tomimatsu

Department of Physics, Nagoye University, Nagoya 464-01, Japan

We give a brief review of solution-generating techniques applied to the vacuum Einstein
equations. Some properties of the soliton solutions which describe interacting black holes or

colliding waves are discussed.

1 Introduction

A main mathematical difficulty in general relativity is to solve the highly nonlinear Einstein
equations. We have no method to treat the general solutions as yet. However, considerable
efforts have been devoted to the developments of analytical techniques for obtaining the exact
solutions. If we limit our discussions to symmetric spacetimes with two commutable Killing
vectors, various solution-generating techniques have been found. These are closely related to
the mathematical methods well-known in soliton physics. Now it is straightforward to derive
an interesting family of the metrics which may be called the gravitational soliton solution.

The metrics which we consider here have the form
ds® = f (¢ (dg*)* +(dg®)? ) + gapdp®dp®, (1)

where ¢ = 1, and the metric functions f and g.s (o, 8 = 1,2) depend on the coordinate
variables ¢* and ¢? only. When ¢ = +1, the determinant of the matrix (g,s) must be negative.
The spacetime can be interpreted to be stationary and axisymmetric, and the spatial cylindrical

coordinates p, @, z and the time coordinate ¢ are introduced as follows,

pl=t, =9 ¢'=p ¢=uz (2)
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When ¢ = —1 and det(g,s) > 0 , we obtain gravitaitonal wave solutions, which are cylindrically
symmetric (¢! =, ¢° = p) or plane symmetric (¢' =1, ¢ = z).

In Sect.2 we shall give a brief review of the solution-generating techniques applied to the
vacuum Einstein equations for the metrics (1). The soliton solutions can describe interacting
black holes or colliding waves. Their physical properties are discussed in Sect.3 and Sect.4.
Our purpose is to shed a light on such interesting problems in general relativity in terms of the

soliton solutions.

2 Solution-Generating Techniques

The essential part of the vacuum Einstein equations for the metrics (1) is reduced to the form

-1 ~17_
[ (aqlg)g 1+ 75 a : [W(3 g)y 1=0, (3)
where g is the two-rowed matrix (gog), and its determinant is equal to —¢W?2. The function W

must satisfy the simple equation

d? 92

(e dg'0q’ * 8¢%0¢?

)W =0, (4)

For example, plane waves give the solution W = a(t — 2) + b(t + z), where a and b are arbitrary
functions. For stationary and axisymmetric spacetimes, a natural choice is that W = p. If g is
given, the equation for the remaining metric function f is easily integrable.

Instead of the matrix g we can introduce a complex potential E which is called the Ernst

potential. For the stationary and axisymmetric metric (¢ = +1) of the form

ds® = f(dp® + dz°) — h(dt — wdp)® + h™'W2dy?, (5)
the Ernst potential is defined by E = h + i3, where

dp[dp = W h?0w[0z, 0%]0z = —W ' h*Bw/dp. (6)

The compatibility condition for these two equations is satisfied by virtue of the original Einstein

equations for g, which can be rewritten in the form

(B+ BV oW o)+ W) 1 E=2w [ Gy + (520 @

—363—



For the plane symmetric waves (¢ = —1) with the line element
ds® = f(—dt® + dz®) + W [ xdy® + x}(dz — wdy)? |, (8)

the Ernst potential is defined by E = x + iw.

There exists an internal symmetry in the Einstein equations for g and the Ernst equation
for E, and a new metric generated through some transformations of a known metric can satisfy
these equations. The important point is that such a new metric can contain extra parameters.
We obtain a more general solution compared with its seed solution. Let us discuss the solution-
generating transformations.

(1) One of the solution-generating transformations is based on the Geroch transformation,
which was originally applied to spacetimes with one Killing vector £2(a = 0 ~ 3). The new

metric g& generated by the Geroch transformation has the form
N _ s -1
9ab = FG(gap — F7 €abs) + GNu Ny, (9)

where g3, is a seed metric, and F, G and N, are given by £, and an arbitrary parameter.

If two commutable Killing vectors exist, the successive transformations become possible by
using their different combinations. A useful realization of the Lie algebra of the Geroch group
was constructed by Kinnersley et al ( see Xanthopoulos [1] ). The transformations act on
an infinite sequence of complex potentials, in which the Ernst potential is included. Through
a suitable choice of a set of transformations, the procedure to derive new metrics ( with an
arbitrary number of mass and angular momentum parameters for stationary and axisymmetric
spacetimes ) is reduced to only algebraic manipulations.

(2) The method of Bicklund transformations which generate the soliton solutions was
introduced by Neugebauer [2]. This originates from the transformation theory in differential
geometry ( or in fotal differential equations ) and can be applied to the Ernst equation. For
plane-wave metrics, its essential part is the Neugebauer-Kramer involution between the seed
Ernst potential ES = x + iw and the new one E¥ = V¥ + i®, where ¥ = Wx™!, and

. ... 50 . . 30
E(D—Wx Pl az{J—Wx T (10)

—364—



For stationary and axisymmetric metrics, we need two successive procedures of the involution
to obtain a mapping of real metrics to real ones.

(3) In general, Bicklund transformations can be reduced to fundamental linear equations of
inverse scattering methods. For example, let us consider stationary and axisymmetric metrics
with W = p. We can construct a system of linear differential equations for scattering problem
with a complex spectral parameter X as follows [3),

V=AU pU + AV
Dip = S Do = S, (1)

where ¥ = (A, p, z) is a two-rowed matrix, and U = p(dg/0p)g~", V = p(8g/8z)g~". The
differential operators defined by

2)2 2)
T D=ty +"p,aA (12)

Dl = a:
are commutable, and the integrability condition (D,D; — D; D))y = 0 is satisfied by virtue of
the vacuum Einstein equations for g.

The matrix function 4 is related to the metric g via the equation (A = 0, p, z) = g. Hence,
from a seed metric and Eq.(11), we obtain a seed complex function %°, which is transformed

via the matrix x(), p, z) into a new complex function $*¥ ( = x3° ). The transformation matrix

X may contain n simple poles at A = p(k =1~ n) in A plane as follows,

x=1+3 R/ = ). (13)
k=1

where [ is a two-rowed unit matrix. Then, the metric gV corresponding to ¥ is called the
n-soliton solution. ( Its topological property was investigated by Belinskii [4].)

For wave metrics, by a slight modification of the above-mentioned inverse scattering tech-
nique, we can obtain the soliton wave solutions. The relationship between stationary, ax-
isymmetric solutions and wave solutions is not so clear. Any complex transformations of the
coordinates and parameters may not succeed in deriving the physical wave metrics from the
stationary, axisymmetric metrics, and vice versa.

There exist some different methods which were not mentioned here ( for example, the

method of homogeneous Riemann-Hilbert problem [5]). More detailed explanation of the
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solution-generating methods can be seen in Tomimatsu and Sato [6] for stationary and axisym-
metric metrics and in Griffiths [7] for wave metrics. The relationship between the technique
of Backlund transformations and other methods has been discussed by Cosgrove [8]. In the
following, however, we shall not refer to further mathematical developments of the techniques.
Let us focus our attention on physical properties of the soliton solutions generated via the

inverse scattering method.

3 Interacting Black Holes

First we consider stationary and axisymmetric spacetimes. The simplest seed metric is the flat
Minkowski metric

ds? = dp® + dz* - di* + p*dy’. (14)

If the number of simple poles in the soliton-transformation matrix x given by (13) is odd,
the deteminant of g% becomes positive, and we have no physical stationary, axisymmetric
solution. The double-soliton transformation is fundamental, and the transformation matrix x
has two poles A = u,,u_ satisfying the equations p% — 2(ws — z)us — p> = 0. By acting
this transformation on the seed metric (14), we obtain the well-known Kerr-NUT metric. The
parameters w; may be written in the form wy = 2z + (m? — a®)'/%. The Kerr-NUT object (
which is a black hole if the NUT parameter is chosen to be zero ) is located at z = z5 on the
axis p = 0, and m and @ are mass and angular momentum parameters, respectively.

In the same manner the four-soliton transformation generates the two-Kerr-NUT metric.
Two rotating masses are located at a distance on the axis of symmetry. This stationary metric
may represent two black holes in equilibrium due to a balance between their attractive force and
spin-spin repulsive force. Such an interpretation is valid only when the following requirements
are satisfied;

(1) local flatness on the axis,
(2) no curvature singularities outside the horizons,

(3) positive masses which are defined by the Komar surface integrals on each event horizon
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Hy(k=1,2), e,
M= =g [ H(EH = E)ds > 0. (15)
Unfortunately, any choice of parameters involved in the metric cannot satisfy all the require-
ments for equilibrium [9], [10]. A head-on collision of two black holes will occur to generate
pulsed gravitaitonal waves propagating along the axis [11].
Because any sta,tionar‘y state of many interading black holes is unlikely, we consider only

the double-soliton solution. Here, the seed metric is the Weyl metric written in the form
ds® = f(dp® + dz?) — e™dt? + pPe~*dy?. (16)

The gravitational potential is assumed to be regular in an inner region surrounded by matter
(for example, accretion disk). Then, the metric function v in the inner region should be given
by
oo
v =3 AnPa(n)Pu(ps) (17)

n=0 .

where A, and P, are arbitrary parameters and the Legendre polynomials, respectively. The

coordinates n and u are defined by the equations
PP =m(p = 1)(1 - ), z = mnu. (18)

The double-soliton transformation of the Weyl metric can generate a Kerr black-hole metric
deformed by the gravitational field v of the surrounding matter [12], [13]. We can calculate
the mass M and the angular momentum J through the Komar surface integrals on the event
horizon ( a spatial 2-sphere ). Then we obtain the well-known black-hole mass formula

kS
M= e + 2Qy4J, (19)

where «,S and Qy are the surface gravity, the area and the angular velocity of the horizon,
respectively. No effect due to the interaction between the black hole and the surrounding matter
appears explicitly in this formula. However, such an interaction can induce interesing effects.

For example, the maximum angular momentum of the black hole is given by

Jmaz = M? exP(—2 Z Az,‘). (20)

n=0
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If the gravitational field of the surrounding matter has a negative potential at the poles (i.e.,
T2 5 Aan < 0), the maximum angular momentum of interacing holes becomes larger than that
of isolated holes with the same mass. To determine the parameters A,,, we must give a model

of the surrounding matter. This remains in future works.

4 Colliding Waves

Now let us study the soliton solutions representing gravitational cylindrical or plane waves. In
general, gravitational waves have two dynamical degrees of freedom ( + and x modes ). For
waves of pure + mode, it is not so difficult to solve the vacuum Einstein equations. ( Note
that the metric component g;» vanishes just like the Weyl metric given in the previous section.
The x mode plays the role of rotation in stationary and axisymmetric metrics. ) However,
no general solution of two modes is known. The soliton transformation is a useful procedure
to generate x mode from + mode, and through the soliton solution we can observe nonlinear
interactions between the two modes.
(1) Cylindrical Waves

For cylindrically symmetric metrics, the determinant of the matrix g may be chosen to
be equal to p?. Then we can use the flat metric written by the cylindrical coordinates as
a seed metric. The cylindrical soliton gravitational field on the flat background spacetime
contains pulsed waves of two modes outogoing from and ingoing to the axis p = 0, where a non-
propagating disturbance is always excited. The outgoing and ingoing waves interact at some
region near the axis. The ratio of the amplitudes of two modes changes as these waves propagate
in the interaction region. This effect is a gravitational analogue of the electromagnetic Faraday
rotation, which was first pointed out by Piran, Safier and Stark [14]). For the soliton waves
(15], the + mode dominates at the axis, and its complete conversion to the x mode occurs at
the interaction region. Through the subsequent interaction between the outgoing and ingoing
waves, a part of the x mode changes into the + mode. The mode conversion stops at a region

far distant from the axis. The soliton solution presents a good example which shows a very
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effective gravitational Faraday rotation.
(2) Plane Waves

For plane symmetric metrics, the determinant of g for the flat metric should be chosen to be
equal to unity. Then, the soliton transformation cannot generate any non-trivial metrics from
the flat seed metric. Here we consider cosmological metrics as the seed metrics. The soliton
field describes a cosmological inhomogeneity.

For the Friedmann background model which does not satisfy the vacuum Einstein equations,
a matter field should be introduced into the field equations. Then, the inverse scattering
technique may not be applicable. Fortunately, this obstacle can be overcome for the scalar-
coupled Einstein equations

Ry = V,9Vo. (21)

Because the scalar field ¢ depends only on the two coordinates ¢ and z, it does not contribute
to the equations for the matrix g. To study the evolution of the cosmological soliton waves,

Belinskii [16] obtained the single-soliton solution on the Friedmann background model
ds? =t (—dt? + d2® + z%dz® + dy?). (22)

The soliton perturbation defined by H,, = (¢} — g5,)/g5, is initially localized at the region
z =~ 0, and it begins to die away via the production of a wave. The wave propagates to
infinity with the speed of light, and its amplitude decreases as the cosmological expansion of
the Friedmann background goes on. This shows a decay of initial inhomogeneity due to the
cosmological expansion.

The final topic is concerned with the soliton collision, which obeys the vacuum Einstein
equations. The problem of collision of plane waves has Been studied by many works. It has
been found that when the rightward-traveling waves collide with the leftward-traveling waves
at some region, a focusing of the null congruences occurs. This singularity theorem [17] is a
result of the Raychaudhuri equation for null geodesics. Some Riemann scalar curvature may

become infinite at the singularity ( curvature singularity ). Then, the metric near the singularity
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behaves like an inhomogeneous Kasner metric [18]. Some simple solutions for colliding plane
waves were given by Szekers [19], and Khan and Penrose [20)].

By using the Kasner seed metric which is an anisotropic cosmological solution of the vacuum
Einstein equations, Ibafiez and Verdaguer [21] derived the four-soliton solution. It is shown that
the collision between the rightward-traveling and leftward-traveling solitons does not induce any
convergence of null rays to a singularity. The cosmological expansion of the Kasner background
can suppress the focusing effect of null rays.

The role of polarization of plane waves also is interesting. The Szekeres solution is collinear (
pure + mode ), and the curvature singularity does occur. Through the soliton transformations
of the Szekeres solution, we obtain colliding-wave solutions of two modes [22]. By virtue of
the noncollinear generalization, the curvature singularity found in the Szekeres solution turns
into the Cauchy horizon. The interaction between different polarization modes can affect the
formation and structure of singularity.

It is clear that we can obtain many informations of nonlinear interactions of gravitational
waves from the soliton solutions. However, this solution-generating technique is applicable
only to wave solutions with complete cylindrical or plane symmetry. It will be necessary to
show how the soliton solutions become an approximation of realistic waves of finite energy and
finite extent. To establish the notion of graviton in general relativity, quantum effects in the
nonlinear interactions also should be investigated. Quantum theories of colliding waves will

become important in future research.
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Static Gravitational Solitons and the Ring Solution
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ABSTRACT

We study the soliton solutions to the static vacnum Einstein equation which
are obtained by means of the inverse scatiering method. In the 4-soliton case

with complex pole trajectories there appears an intriguing ring solution.

1. Introduction

Belinskii and Zakharov[1l] showed that the soliton technique known as the
inverse scattering method(ISM) gives a systematic way of solving the stationary
vacuum Einstein equation with axial symmetry. They obtained an infinite series
of solutions which are classified by the even soliton number n and showed that
the 2- soliton solution is just the well-known Kerr solution. The “nonlinear su-
perposition” of two Kerr solutions has the soliton number 4 and in the degenerate
pole case it is known as the Tomimatsu-Sato solution[2] with § = 2.

Alekseev and Belinskii[3] investigated the structure of the general n-soliton
solution in the static case which corresponds to the superposition of multi-
Schwarzschild solutions and found the “weak singularities” between two
Schwarzschild solitons. In the stationary case several people[4] also studied

the structure of the multi-Kerr solution.
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In these soliton solutions the soliton number n corresponds to the number
of the single poles in the complex A plane where A is the parameter appearing
in the linear system of ISM. The infinite series of solutions starting with the
Schwarzschild and Kerr solution mentioned above are obtained by adopting only
the real poles in the static and stationary case, respectively.

In this report we consider the soliton solutions which are obtained by adopt-
ing the complex poles in the static case. In Sec. 2 we give the generalized
n-soliton solution which includes an extra arbitrary parameter g. This g comes
from our renormalization of metric coefficient which is different from that in
Ref. [1). In Sec.3 we study the 2- and 4-soliton solutions with complex pole tra-
Jectories and show that there appears an intriguing ring solution in the 4-soliton
case. In the last section we propose a classification of the series of solutions by
means of the combinations of real and complex pole trajectories[5]. We also show
that among these combinations there is an interesting solution which describes

a black hole accompanied by rings.

2. Generalized »-soliton solution

We consider the metric given by
—ds? = F7IQdp” +d2?) + (- fdf? + F1prdg?), (2.1)

where f and Q are functions of the cylindrical coordinates (p,z). For the metric

coefficients in the last two terms in Eq. (2.1) we define a diagonal matrix g by
g = diag(-f, f_lpz)' (2.2)

We apply ISM to the integration of the vacuum Einstein equation for g and
obtain a nontrivial solution g’ from the vacuum metric go = diag(—l,. p?). But
g’ does not satisfy the normaligation det g = —p?, which forces us to renormalige
the matrix g'. Belinskii and Zakharov(1] renormalized their non-diagonal g’ by
multiplying it by an overall factor —p(— det g')~1/2. On the other hand, we can

renormalize our diagonal g’ to get a physical metric g(P*) as
g* = Ng', (2.3)
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where N is a 2 x 2 matrix given by
N = diag{[p(—det g')71/?)7, [p(— det g')=1/?]3~1}, (24)

Here we introduce an arbitrary parameter g. Using this renormalization we

obtain a generalized static n-soliton solution

LN ) q
f= (,-n"l";*nl‘n) , (2.5)
P™ 1 T1 (o — mi)?
Q= = , (26)

I + ) [Ty 0

with the pole trajectories

ﬂkzwh—zi\/(wk_z)2+pz (k=112)"'1"'): (2'7)

and the constant

C(") = 2" nz-: H(wz"_l - w;,_l)’(wgl. b wu)’. (28)

h>l
Here w,’s are constants which could be real or complex corresponding to the real
or complex pole trajectories. The =+ sign in Eq. (2.7) is to be determined so that
the metric may become asymptotically flat.
In order to see the meaning of the parameter g, let us consider the simplest

case, i.e., the 2-soliton solution with real pole trajectories. In this case p;’s are

chosen as
= -2+ = 2P A, (2.90)
pr=ws—z— /(s — 2P ¥ 7, (2.95)
with the real constants
w = z0 + 7, (2.10a)
Wy =29 — o, (2.10b)
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and the solution is given by

F=(—ppa/p*)?, (2.11)
T A 1
M EwD 7 p’)] ' (242)

Introducing the prolate spheroidal coordinates (u,v) with the constant o by

p=o/@-D(I=0), (2.13)
z — 2 = ouv, (2.14)

we can write f and @ as

f= (““)q, (2.15)

u—1
3_1\¢
Q= (H) , (2.16)

which is referred to as the Weyl solution if we put ¢ = —8§. Therefore we find

that the parameter g is necessary in order to obtain the Weyl solution with the

arbitrary distortion parameter § by means of ISM.

3. The solutions with complex pole trajectories
We first consider the 2-soliton case where we replace o by ic in Eq. (2.10).
Note that the pair of pole trajectories in Eq. (2.9) are not complex conjugate
even by this assignment of wi. The solution is given by Egs. (2.11) and (2.12)
but the parameter ¢ must be pure imaginary in this case to keep the reality of

metric. In the oblate spheroidal coordinates (z,y)

p=0c/(z2+1)(1-3?), (3.1)
z— 2y = ozy, (3.2)
f and Q are expressed as
f =exp(—28tan~12), (3.3)
22 + 2\
o= (5E2) (34
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where § = —ig. This is the well-known solution which is obtained by transform-
ing the Weyl solution to the expression in the oblate spheroidal coordinates. We
now refer to this solution as the 2-soliton solution with non-complex conjugate
pole trajectories. The solution in Egs. (3.3) and (3.4) is known to have the
naked singularity of ring type at 2 = y = 0(p = 0,2z = z5). The curvature of
space-time becomes infinite at the ring, which is caused by the fact that Q tends
to zero as z,y — 0. We note that the 2-soliton solution with complex conjugate
poles does not satisfy the condition of asymptotic flatness.

We next proceed to the 4-soliton case. It is easily expected from the above
discussion about the 2-soliton solution that there is a solution constituted of
two ring singularities in the 4- soliton case. In addition to this we have an-

other intriguing solution constructed from two pairs of complex conjugate pole

trajectories
p1 =21 + 18 — 2+ /(21 + 181 — 2)? + p?, (3.5a)
B2 = 22 + izg -z \/(23 + izz - z)’ + p2, (3.5b)
B3 = iy, (3.5¢)
Ba =y (3.54)

What is different from the 2-soliton case with complex conjugate poles is that we
can choose the signs in front of the square root in Eq. (3.5) so that the metric
may satisfly the asymptotic flatness condition. Using these trajectories f and @

are written as

F = (lealual? /%), (3.6)

2
Q= Ales — paltls — Bl — ) (2 — B)*]°
285352 |ud + P2 2|13 + P22 |ea ¥ e '

(3.7)

with real q.

In order to investigate the behavior of this solution let us assume that ¥; <
Y2 and z; = 23 = 2¢ for simplicity. We then notice that the numerator of @
does not vanish for any p and z, while the denominator of @ becomes zero at

p = Zu(k =1,2) and z = z. This causes the divergence of Q and the metric
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singularities of ring type at (p,z) = (1,20) and (32, 20). However, in the case
where ¢ = 1 we find that Q has a finite expression at the inner ring(p = ¥y) in

such oblate spheroidal coordinates as

p=31/(22 +1)(1 - 3?), (3.8)
z—z9 = Ty2y. (3.9)

We can also see that all the metric functions and their derivatives approach
finite values as p — X; and z — zo(z,y — 0). Similarly, we find that the
metric becomes finite as p — X; and z — zg in the oblate spheroidal coordinates
with the constant ©;. Therefore the curvature invariant R®A7¢ Ropgqs, which
is independent of the choice of coordinates, naturally has finite limits at these

rings:

3x 21754 (453 - 51 - 3%, /] - 17
(E; - gi)s (23 + v o3 - 2:1)

3 x 213(432 — 22)
(23 - 3})°

Raﬂ‘ﬂRaﬁw —

, as p — 3,,(3.10)

Rap“Rap-,& —

, 85 p — B, (3.11)

Furthermore, for null geodesics we have the equation

__ 1 g L o
B1Q(=? + 9?) [E DI(2? +1)(1 - yz)] (k=1o0r2), (3.12)

2 +9° =

where the dot denotes differentiation with respect to an affine parameter, and E

and L are constants. As we approach the inner or outer ring(z,y — 0) Eq. (3.12)

behaves as

9, .3 24 2 I?
22 + % ~ E* - = .
2’ +y S ( 2,’.) (k=1o0r2), (3.13)

the right hand side of which is finite. This means that the geodesics starting from
the ring have a finite length for a finite affine parameter. On the other hand, in
the case of the ring singularity mentioned before 22 + % — oo as z,y — 0, and
so the geodesics cannot be extended through the ring.

In the above discussion we have clarified the difference between the rings

mentioned in the 4-soliton case with complex conjugate pole trajectories and
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the ring singularity appearing in the 2-soliton case with non-complex conjugate
pole trajectories. The difference is caused by the fact that @ diverges at the
ring in the former case while it becomes zero at the ring singularity in the latter
case. These behaviors of Q are determined by whether the parameter g is real
or imaginary corresponding to the case of complex conjugate or non-complex
conjugate poles. Taking these facts into consideration, we shall call this 4-
soliton solution “the ring solution” in order to distinguish it from the solutions

with the ring singularity.

4. Classification of static soliton solutions

In the previous sections we have shown the static soliton solutions to the
vacaum Einstein equation which are characterized by the even soliton number.
In the real pole case there is a series of static solutions starting with the Weyl
solution in Egs. (2.15) and (2.16). These are understood as the nonlinear su-
perposition of multi-Weyl solutions[3,6]. In the complex pole case we have two
kinds of solutions, i.e., the ring solution and the solution with ring singularities.
We must consider all these solutions in the classification of the series of solutions.
For the higher soliton numbers this classification becomes complicated because
we can mix the various cases of pole trajectories. In table 1 we list the the
possible solutions with the soliton number 2, 4 and 6.

Last of all we comment on the 6-soliton solution with two pairs of complex
conjugate pole trajectories and one pair of real trajectories. Although the so-
lution is much complicated, we can distinguish the two parts of solution which
come from the real and complex poles. In the case where ¢ = 1 the one part
constructed from real pole trajectories describes a black hole with the event hori-
zon and the other describes the two rings mentioned in Sec. 3 which are located
outside the horizon. There is of course an effect of interaction between the above
two parts but the event horizon evade defectiveness. We thus have an interest-
ing solution constituted of a black hole and two rings. We already found the
solution which describes a black hole accompanied by two rings in the vacuum

six-dimensional space-time[7]. Here we have shown the similar solution also in
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four-dimensional space-time.

soliton real pole complex pole
number
2 Weyl [c.c. poles] —

SBH(¢g=1) [non-c.c. poles] Weyl'(ring singularity)

4 superposed [c.c. poles] Ring sol.(g = 1)
Weyl [non-c.c. poles] two ring singularities
2 SBHs(g=1) [mixture] —

[mix. of real and c.c. poles] —

[mix. of real and non-c.c. poles] Weyl + ring singularity
6 superposed [c.c. poles] ’ —
Weyl [non-c.c. poles] three ring singularities
3 SBHs(g =1) [mixture] Ring sol.
+ ring singularities(¢g = 1)
[mix. of real and c.c. poles] SBH + Ring sol.(¢=1)
[mix. of real and non-c.c. poles] Weyl + ring singularities

Table. 1 The possible solutions with the soliton number 2,4 and 6. In this table
SBH and c.c. stand for Schwarzschild black hole solution and complex conjugate,

respectively. — means no asymptotically flat solution. Weyl’ is the solution

given by Eqgs. (3.3) and (3.4).
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Superposed Weyl Solitons
—String Connecting Black Holes—

TAKAO KolKawa
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ABSTRACT

We study an exact solution of the vacuum Einstein equation which consists of
a string and two Weyl’s at the ends. Estimation of the string tension shows that

its repulsive force is balanced by the attractiove force between two Weyl’s.
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1. Introduction

Lately we classified the static solutions of the vacuum Einstein equation with
axial symmetry [1]. Two infinite series of gravitational solitons starting with the
Weyl solution and the ring singularity appear in the classification. The difference
of two series lies in the fact whether they take real poles or complex poles in con-
structing the solutions. We have clarified an interesting features of a ring solution
appearing in the complex pole trajectories in ref.[l] . Here we focus on the real
pole trajectories. The solutions appearing in this series are classified by their even
soliton numbers. The first solution with the soliton number 2 is the well known
Weyl solution. The next solution has the soliton numer 4 and can be understood
as a nonlinear superposition of the solutions. We will discuss the features of the
solution in detail in the next section. In section 3 we give an interpretation of the 4-
soliton solution as a system composed of two Weyl solitons and a string connecting
them at the ends. This turns out to give a natural interpretation of the balancing
of the attractiove force by two massive Weyl’s and the string tension by the string.
Here the string tension yields a repulsive force and so can be balanced against the
gravitational attractive force between the two Weyl solitons. In the last section we

discuss the lensing effect due to the string.

2. Features of the superposed Weyl solitons

In order to clarify the meaning of the 4-soliton solutions we consider several
limits of the parameters. For that purpose we first study the 2-soliton solution,

that is, the Weyl solution:
—ds? = —fdi? + fN{Qdp? + d2?) + pde?), (2.1

where f and Q are given by

f= (—%)_6, (2.2)

_ pi(p2 — m)? d
©= ((p2 +p3)(p? + u%)C(z)) ’ 23)
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where C(?) is a constant. Here g and pg are real poles and now given by

1 =wy — 2z + 1/ (wy — 2)? + p?, (2.4a)

po = wy — z — [ (wg — 2)2 + p2. (2.48)

Here w; and w2 are real constants guaranteeing the reality of the pole trajectories
with an order w; < wq. It is known that this solution reduces to the Schwarzshild

solution with mass m when é equals 1. The behaviour of f and @ near p = 0 are

given by
-5
f~(wl_z) , @~1, for z < wy, (2.5a)
wy — 2z
z—w\’
f~( ‘).,Q~1, for ws < z. (2.5b)
z — wo

In the 4-soliton case, f and @ are given by

-6 .
= (tatzpr) (260)
0= (Ps(ﬂz — 1) (13 — p1)?(pa — p1)? (3 — p2)? (pa — 12)*(psa - #3)2)
(6 + 13)(p? + 1) (? + 12) (P + D)l i3 C™ (’ )
2.7
where C®) is a constant. Their behaviour near p ~ 0 are given by
8
-5
Mee =) RUSES I
fo ((z — wy)(ws — z))"‘
(z — wy)(wyg — 2) ’
(e —wn)(ws —w)\*
Q ((w4 — o) ws—wp)) for wy < z < w;s. (2.8b)
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3. String attached by two Weyl solitons

It is natural to ask how they can be gravitationally balanced. As far as we
assume that both masses of the Weyl solitons at the ends of the string are positive,
there should be some repulsive force against the attractive force between two Weyl
solitons. In the case of Kerr solution, the spin-spin interaction can be a candidate
of the repulsive force between them. It was investigated if the flat metric is possible
around the string in this case and found to be impossible to impose the Euclidean
nature around the string[2]. We can not expect such a spin-spin interaction in
the Weyl solution case. Instead we expect one-dimensional object lying along the
z-axis between two Weyl’s rather than nothing as has been discussed before in the
superposed Kerr solution case. We, therefore, do not expect any Euclidian nature
around the string between two Weyl’s. Just as we expect massive entitiy is filled
inside of horizon in the black hole, we expect that the entity, which is a long,thin and
straight string with the string tension g, lies between two Weyl solitons,which turns
out to break the Euclidean nature around it. In order to measure the deviation of

space-time around the string from the Euclidean space-time, we define Py by (3]

P? = lim (-’;-“’f-) . (3.1)

It is easy to see that Py = 1 in the Euclidean case. The present 4-soliton metric

yields

_ (G=n) - (@ - o\
Po= ((22 —21)t = (o2 + 01)2) 21 (3:2)

It is easy to find in the limit that the two Weyl’s are separated infinitely

4G mym,

Py~1 .
0 +(22'—21)2

(3.3)

where m; = 601/G and mj = §03/G are masses defined in the Newtonian potential
in the isolated limit. Note that (Pp —1) becomes positive or negative depending on

whether both masses are positive or either of them is negatibe. They correspond
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to the repulsive force or attractive force, respectively. As an origin of this non-
Euclidity, suppose the stress energy tensor assciated with a long, thin and straight

string given by
T#, = pé(r)é(y)diag(1,0,0,1). (3.4)

The metric outside of the string was solved by Vilenkin [4] in the limit Gu << 1:
—ds? = —dt® + dz% + dp? + (1 — 4Gp)? pPd?. (3.5)

This yields
Py ~1—-4Gp. (3.6)

Comparing this with eq.(3.3), we find that the present space-time is induced by a

string of which tension is given by

Gmym,

St ey (3.7)

Note that negative p means the repulsive force rather than the attractive force in
the z direction when both masses are positive. On the other hand the gravitational

force between two far separated Weyl solitons is given by
(3.8)

This shows that the gravitational force between the two positively massive Weyl’s

could be balanced by the string tension which works repulsively in z-direction.
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4. Discussion

It has been well known that there lies a weak singularity between two Kerr
solutions, and so does the present two Weyl soliton case. It is interesting to ask if
the light can really reach to the weak singularity. Before discussig it, let us consider
the Weyl solution case. Suppose that the light is emitted inward from outside of
the singularity and travels only on the plane including the equator of the Weyl

solution. The equation reads

L fh
= TV pek?k7 =0, (4.1)

where k* = dz#/d\ are the 4 components of a null vector of light and I'* ,, is the

Levi-Civita symbol. Since k* is a null vector, we also have

gurk" k" =0, (4.2)
which leads to
E? L? E? 2900
k12=__+— = - (1+B~—') 4.3
(+) (!700 933)/gn 900911 93/’ (43)

where E and L are the constants corresponding to energy and angular momentum.
Here we note that the non-negative condition of the RHS yields a prohibited region
where the light can not enter, and the size of the region depends on one parameter
known as the impact parameter B = E/L. In the case that § > %- there exists a
critical impact parameter B¢ which separates absorption from scattering of light

from far infinity. It is given by

(26 + 1)(26+1)/2
¢= (26 — 1)E@-H2T
which coincides with the well known value for the Schwarzschild black hole when

6 =1. In the case that 0 < § < %, we find that

(4.4)

Bc =0, (4.5)
which means that the absorption cross section equals zero. In other words, when
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the angular momentum is non-zero, no light from outside can reach the equator of
the singular surface of the Weyl solution as far as we limit that the light travels
only on the plane including the equator of the Weyl solutin. This originates from
the fact that the second term on the RHS in eq.(4.3) can be as large as we want in
the limit z — 1, which corresponds to approaching to the singular surface of the

Weyl solution.

The similar situation can also be found in the string case which we are now
discussing. We consider the behavior of light emitted inward toward the string
with two massive Weyl’s at the ends. We found that B¢ = 0, which means that
the light approaching the string is scatiered off from the string and never gets the
string if the angular momentum is non-zero. This is because as far as the angular
momentum of light is non-zero, the second term in eq.(4.3) gets dominant as the
light approaches the string. The only case that the light is absorbed to the string
is when the impact marameter is zero, which means the measure of the absorption
cross section by the siring with unit length is zero. This might be that strings
do not cause any serious trouble physically, even if they might be subject to the

mathematical weak singularity. The details will be published clsewhere[5].

The author would like to thank all the organizers of the workshop. Ile acknowl-
edes Prof.Azuma for invaluable discussion on this paper. Without the discussion
this work has not been completed. He also acknowledges Iwanami Fiajukai for

financilal support.
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Abstract
An estimation is given for the formation rate of primordial black holes from
cosmic strings. The plausibility of the underlying assumptions for the estimation
is critically examined. It is found that the formation rate is negligibly small
contrary to the claim in the literature.

1 Talk given at the Workshop on General Relativity and Gravitation held at
Tokyo Metropolitan University, December 4-6, 1991.
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Primordial black holes are interesting objects which can be used as a probe
into the largest and the smallest structure of the matter. This possibility arises
due to the phenomenon of Hawking's radiation [1] through which the very
existence of the primordial black holes is detectable. They can probe the density
inhomogenity in the early universe at far earlier epoch than that can be
investigated by other observational means. They are also of interest from the
particle physics point of view. They can probe the fundamental structure of the
matter at energy scales far beyond that amenable to accelerators [2].

In order to use them as a useful probe it is of key importance to identify the
formation mechanism of primordial black holes. The candidate mechanism, so
far proposed, include (1) density inhomogenity in the early universe [3], (2)
bubble collisions at the time of cosmological phase transition [4], and the collapse
of cosmic strings [5,6]. Probably, many more are on the waiting list. At the
moment we cannot identify the right mechanism. (Even two or three of them
would be competing!) To prepare possible future observations it is important to
thoroughly examine the known mechanisms to estimate the formation rate and the
mass distribution of primordial black holes.

In this talk I address the third mechanism of the formation of primordial
black holes; callapse of cosmic strings. It is very natural to expect that cosmic
strings are the intense source of primordial black holes. If we consider the GUTs
cosmic string its energy density per unit length would be ;1:(1016 GeV)2~lO43
erg/cm. It is imaginable that such high concentration of the energy density can
lead to the copious formation of black holes. It turns out, however, that an
estimation [7] which I will present here indicates that this naive expectation is
wrong. It appears to us that we can extinguish this mechanism form the list of
the candidate mechanism for formation of primodial black holes.

How can one estimate the formation rate of black holes form cosmic strings?
Our estimation which I present below relys on the following assumptions [8] :
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1) Our method estimates the formation rate assuming that cosmic strings are
doing quasi-free motion.

2) String's quasi-free motion is disturbed by the emission of gravitational waves.
We assume that this effect does not invalidate our key asumption 1).

3) We assume that the network of cosmic strings is in the scaling solution [9].

It is not difficult to justify (though not in a rigorous sense) the assumptions
1)~3). Let us begin with the third assumption. It is now well established in
detailed numerical simulations [10-12] that the network of cosmic strings
eventually approachs to the scaling solution. In this scaling solution the energy
densities of long strings, loops, and the radiations (including gravitational waves
off loops) are in peaceful coexistence, all have the identical time dependence,
c>c|.1/t2 in the radiation dominated era.

The second assumption is next easier to justify. Cosmic strings radiate

gravitational waves at a rate
S 2
E =-T'Gu (1)

where I'= 50-100. The effect of emitting gravitational waves for quasi-freely
moving strings may be quantified by estimating TpE/E, the energy loss rate per

one period of oscillation Tp. Using (1) EfE = -I'Gu/L and one period of

oscillation is, on the order of magnitude, Tp~L where L is the length of the
string. Then the energy loss rate during one period of oscillation is estimated to
be ~I'GJ. Since we are interested in the parameter region of G|,L~10'6 required
by structure formation scenario (or by grand unified theories), the energy loss
rate is ~1074. Therefore, the effect of the gravitational wave emission can be
safely treated as a pertarbation to the quasi-free motion of cosmic strings.

We now tum to the assumption 1). It is known [13] that the viscosity due to
interactions with surrounding particles has negligible effect on cosmic string
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<xZ>=[dx x2f(x) / [dxf(x) (5)

for the matter dominated era. In deriving (3) we have ignored the effect of
gravitational wave emission since it is a small perturbation. If we use

f(x):A\/L;e'Bx (6)

as suggested in Ref. [10], then loop production rate can be estimated as
~(&/Ry)B2. Since (Rpy/E)% =210 and B = 2.6 in the radiation era Albrecht-

Turok simulation the loop production rate per one period of oscillation is ~
1/100. We also obtain similar result for the matter dominated era. Thus it
appears that the intercommutation of the strings is not so frequent that hardly
affects significantly the quasi-free motion of cosmic strings. We have relied upon
the functional from of f(x) as well as the values of parameters of Albrecht and
Turok since the corresponding informations on the loop production function have
not been reported in more recent Bennett-Bouchet simulation [11].

This completes our arguments to justify the assumptions 1)~3). Of course if
the string motion would be completely free then the collapse to black holes could
not occur since the motion of loops is completely harmonic [5]. But, as we have
just learned, there are several sources of perturbation which make the motion of
strings deviate from the exactly harmonic ones.

We now proceed to the estimation of formation rate of black holes from
cosmic strings based on our assumptions 1)}~3). Our presentation will essentially
follow our paper, Ref. [7]. Broadly speaking we treat the quasi-free motion of
strings basically as a sequence of random walks of the string segments. In the
rest of my lecture I try to make this statement more precise. .
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It is well known since Kibble and Turok [14] that the equation of motion of
free relativistic string can be solved by superposing left- and right-moving
components;

r(c, 1) = %[a(cwt)+b(c—t)]. N

The functional forms of a and b are arbitrary apart from the condition
la‘|2=Ib'|?=1. ®)

Here we are working with the gauge 1=t (t is our time coodinate) and the primes
in (8) imply the derivative with respect to their dependent variables o+t.

The solution (7) means that by arbitrarily generating a and b subject to the
condition (8) we can have a solution of relativistic equation of motion of strings.
Then, it is very natural to regard them as random variables: By randomly
generating a and b we can simulate the quasi-free relativistic motion of strings.

To carry it out we latticise 6+t space for a and b variables. Then the
constraint (8) implies that the sequence of a and b variables forms two
independent random walks whose step length are unity. After n-steps a variable
can be written as (let us take 1=t=0)

n
a(6,)=Ac Y a'(cy), )

i=1

where Ao is the quantity which must exist in (9) on dimensional ground. The
physical interpretation of Ac is the correlation length (51, or the curvature scale
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of cosmic strings. Following Ref. [5] we denote AG as s hereafter. Thus we have
set up the random walk picture of quasi-free motion of relativistic strings.
Now it is straightforword to evaluate the formation probability of black

holes. We define that a black holes has formed if at certain time all the string
coodinates r(c,t) of a particular loop are within the Schwarzschild radius

re=2GLpu=2Ly. (y=Gp) Let us estimate the probability that such event occurs.
The probability that a string remains within ry after one steps of a-and b-walk is

given by

2
HEAE _ 452y2 (10)
41t(‘2‘

where we have defined x=L/s. This is the ratio of the area of the Schwarzschild
circle to that of the whole globe which can be reached after a b-step as
represented in Fig.1 (next page). Since it is the random walk the probability of
confining into the Schwarzschild radius after n-steps is

P = (4x2y2)n-1 (11)

where we have taken into account the fact that tha loop is closed (n—1, not n).

The step number n is not the physical quantity by itself. It is an antificial
quantity because we latticised o-space by hand. Nevertheless, when we make up
our mind on what is the black hole n is self-consistently determind. Let L be
length of the string black hole. On the other hand, since all the string

configurationis are within the Schwarzscild radius, the string length must be of
the order of ~ rgn.  Eliminating L form both side of the equation
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L =rn =2Lyn. (12)

Fig. 1. Set of one steps of random a- and b-walks is drawn for the case that xy<<1, or
equivalently, the correlation length s is much larger than the Schwarzschild radius
rg=2Ly. A globe with radius % is depicted such that an a-step starts at the north

pole and ends at the center of the globe. The following b-step ends at somewhere

on the globe as shown by the solid line. For a black hole configuration it must
end in the arctic region of radius ry as indicated by the dashed line.
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we obtain

an (13)

which is a very large number ~10° for y=Gu=lO'6. Then the black hole
formation probability we finally obtain is [15]

P-= (4x2y2)y_1/2—1. (14)

We refer Ref.(7) for the discussion of estimating x. The result is, on the
order of magnitude, x~10. With x=10 and ),'=G],L=IO'6 the black hole formation
probability (14) takes the value

6
P~ 10~5%10 (15)

which is entirely negligible.

Why the formation rate of black hole so tiny? The answer is clearly
exhibited in (12). The step number n is the ratio between L and rg (=2Ly). With
y=Gp«l1 the Schwarzschild radius is so small that n must be a very large number.
If the step number is huge there is almost no probability that the string
configuration remains within the Schwarzschild radius.

The reason why we reach to a conclusion quite different from that of
Hawking [5] is explained in more detail in Ref.(7). Our conclusion is not
inconsistent with Ref. [6] since they do not really address the absolute rate of
black hole formation.
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I have described a way of estimating formation rate of primordial black
holes from cosmic strings. In particular, I presented some critical discussions on
the underlying assumptions for the estimation. Our result indicates that even if a
characteristic signal for the evapolating black hole would be observed in the

future it is not the one from cosmic strings.
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